
Estimating Binary Choice Models with Random Forests

Jihuan Zhang

April 13, 2024

Abstract

We propose a modified random forests estimator for binary choice models, which
uses the negative log-likelihood function instead of the impurity measures in the origi-
nal random forests. The parameters in the latent utility function are estimated using
the recursive partitioning maximum likelihood estimation. Simulation studies suggest
that the modified random forests estimator works well in finite samples, and it per-
forms better than the kernelized probit approach in estimating discontinuous or nearly
discontinuous functions.

1 Introduction

Random forests, developed by Breiman (2001), are tree-based ensemble learning methods for

regression and classification. Random forests rapidly gained popularity due to their notable

accuracy, significant flexibility, and relatively straightforward tuning process (Genuer et al.,

2008; Lechner and Okasa, 2019). In addition, they can handle a large number of variables

without overfitting (Biau, 2012). Therefore, random forests have become serious competitors

to many other popular machine learning techniques such as boosting (Freund and Schapire,

1997) and support vector machine (Cortes and Vapnik, 1995).

The Binary choice model (BCM) is an econometric model with theoretical implications of

individual utility maximization and decision-making, which makes it very popular in many

economic fields such as health economics and labor economics (Bhattacharya, 2021). In a

typical BCM, the latent utility is a sum of a systematic component as a function of co-

variates, and a random component that represents the idiosyncratic error. The observable

binary outcomes are driven by the latent utility as an indicator function. Like many other

1

machine learning methods, random forests relate the outcome variable directly to the covari-

ates without making any assumptions about the data-generating process. In the classification

problem, the underlying error term follows a Bernoulli distribution, with the probability of

success given by p(x), the conditional choice probability, which is quite restrictive. The BCM

provides an additional structure of p(x) using the information in the systematic component

and the distribution function of a more general error component. Without any modification,

random forests cannot capture such a structure and thus, they cannot be applied directly to

estimate the BCM effectively. Then, it is interesting to investigate how random forests can

be adapted to estimate and analyze the BCM. In this paper, we propose a modified random

forests probit estimator, which makes use of the negative log-likelihood function instead of

the impurity measures that are used in the traditional random forests, such as the Gini

index and cross-entropy. The parameters in the systematic component are estimated using

the recursive partitioning maximum likelihood estimation.

There is a growing literature on the use of machine learning methods in economic and

econometric analysis. For example, Chernozhukov et al. (2018) introduced a de-biased es-

timator for treatment and structural parameters using machine learning techniques such

as LASSO. Wager and Athey (2018) applied random forests on estimation and inference

of heterogeneous treatment effects. Farrell et al. (2021) studied the theoretical properties

of deep neural networks and their application in causal inference as first-stage estimators.

For a more comprehensive discussion, see, for instance, Varian (2014), Mullainathan and

Spiess (2017), Athey and Imbens (2019), and references therein. The paper contributes to

this expanding literature on estimation and inference in econometric models using machine

learning methods, in a high-dimensional and big-data environment.

We also enrich the literature on the nonparametric estimation of BCMs. The majority of

the studies focus on regression analysis, with relatively less emphasis placed on estimating

discrete choice models. Yan (2023) proposes a kernelized nonparametric estimator (KNP) for

the BCM using kernel tricks. The method leverages the concept of reproducing kernel Hilbert

space, a foundation for many machine learning techniques such as support vector machine.

The KNP is able to estimate any function in the space of a continuous function equipped

with the supremum norm defined in a compact Euclidean space. However, in econometric

modeling (e.g., regime-switching models and regression discontinuity designs), sometimes

2

certain types of jumps may appear in the models inherently. The nature of random forests

allows us to estimate the systematic component nonparametrically by simple functions, which

can capture a wide class of Borel measurable functions, including discontinuous ones. This

is a significant departure from traditional linear models like probit and logistic regression.

Moreover, our approach is capable of managing a very large number of covariates without

succumbing to overfitting. This capability sets it apart from other nonparametric techniques

like local constant/linear estimators, which might struggle with high-dimensional data. They

only use data points locally, while as tree-based approaches, random forests look at global

information within the entire dataset. Our simulation results demonstrate the effectiveness

and robustness of our approach for both continuous and discontinuous model specifications.

The rest of the discussion is organized as follows. Section 2 briefly introduces Breiman’s

original random forests algorithm. Section 3 describes the methodology for the estimation of

BCM using modified random forests in detail. Section 4 presents the Monte Carlo simulation

results, and section 5 concludes the paper.

2 Random Forests

The ideas of random forests were influenced by early works of Amit and Geman (1997), Ho

(1998), and Dietterich (2000). Bootstrap aggregation (or bagging), column subsampling,

and the Classification And Regression Trees (CART) split criterion (Breiman et al., 1984),

are key components of forest methodologies. As a computationally intensive nonparametric

approach, random forests work especially well for high-variance, low-bias procedures, partic-

ularly with extensive, high-dimensional datasets where the complexity of the problem makes

it impossible to derive an optimal model in a single attempt (Bühlmann and Yu, 2002; Hastie

et al., 2009; Biau and Scornet, 2016).

This subsection aims to briefly introduce the original Breiman’s random forests estimation

procedure. The method involves a technique commonly referred to as recursive partitioning.

Recursive partitioning begins with the root cell containing the entire dataset. The root node

is partitioned into two daughter cells based on the optimal split determined by a specific

criterion. Subsequently, these subsidiary nodes are each split further into two more nodes.

The process will continue until a predefined stopping condition is satisfied.

3

Root Cell: t0 := [0, 1]p; Split: (j1 ∈ Θ11, c1)

Cell: t11; Split: (j2 ∈ Θ21, c2)

t21; Split: (j3 ∈ Θ31, c3)

Terminal Cell: t31 Terminal Cell: t32

Terminal Cell: t22

Terminal Cell: t12

Figure 1: A tree example of depth 3

Let us focus on the task of binary classification. Like most machine learning methods for

classification, random forests do not place any assumptions on how the binary outcomes are

generated. For simplicity, let a p-dimensional covariate vector beX ∈ [0, 1]p, and the outcome

be Y ∈ {0, 1}1. Let the data be D = {yi,xi}ni=1 as n independent copies of {Y,X}. From

the data, we create B bootstrap samples {D1, ...,DB}. A typical tree structure is illustrated

in Figure 1. Starting from the root cell t0 := [0, 1]p that contains the entire bootstrap

sample Db, we uniformly draw Θ11 ⊂ {1, ..., p} of cardinality m < p, with replacement. The

random selection of covariates is called column subsampling, one of the essential ingredients

of random forests. The integer m is the column-subsampling parameter. It is a tuning

parameter and is usually set to be m = ⌊√p⌋ for classification2. Then, we construct the set

of all splitting rule (j1, c1), where j1 ∈ Θ11 and c1 ∈ {xij1 : xi ∈ t0} ⊂ [0, 1] is a cutting point

corresponding to covariate j1. Each split will yield two daughter cells denoted by t11 and

t12, where t11 := [0, 1]j1−1 × (c1, 1] × [0, 1]p−j1 and t12 := [0, 1]j1−1 × [0, c1] × [0, 1]p−j1 . The

best split is determined by the so-called sample CART-split criterion,

(ĵ1, ĉ1) := arg max
j1∈Θ11,c1

{I(p(t0))− pLI(p(t11))− pRI(p(t12))} (1)

where pL := #{i:xi∈t11}
#{i:xi∈t0} and pR := #{i:xi∈t12}

#{i:xi∈t0} are proportion of examples in t0 that fall in

t11 and t12, respectively
3. p(t) := #({i:xi∈t}∩{i:yi=1})

#{i:xi∈t} is the proportion of class 1 in cell t

1In fact, there is no need to standardizing the covariates as the sample CART-split criterion described in

(1) is scale-invariant.
2For regression, m is usually set to be ⌊p/3⌋. In practical applications, m is context-dependent and thus,

it requires careful tuning by researchers.
3# denotes the number of elements in a set.

4

and I(p) is called the impurity measure. The criterion breaks ties randomly. As formally

discussed in Breiman et al. (1984), an impurity measure should satisfy the following three

properties: (i) I(0) = I(1) = 0; (ii) I(p) = I(1 − p); and (iii) I ′′(p) < 0, for all p ∈ (0, 1)4.

Commonly used impurity measures for classification include Gini index I(p) = p(1− p) and

cross-entropy I(p) = −p ln p − (1 − p) ln(1 − p). Intuitively, these measures are designed

so that impurity is highest when p is near one-half, reflecting a high level of uncertainty or

mixed classification within a node; thus, I(p) reaches its maximum at p = 1/2. The sample

CART-split criterion selects the optimal split that maximizes the decrease in impurity. The

same process is repeated on the resulting two descendant cells until certain predetermined

stopping criteria are met5.

Let us formally define a final tree Tb(Θ1:k). We use the letter k to denote the depth of

the final tree. For example, Figure 1 is a tree of depth k = 3, where cell t11 is in level 1 and

cell t21 is in level 2. There are four terminal nodes (or leaves) in the example, each of which

is associated with a unique path originating from the root node. In particular, they form

a set of branches and leaves Tb(Θ1:k) = {(t11, t21, t31), (t11, t21, t32), (t11, t22), (t12)}, where

Θ1:k := {Θ1, ...,Θk} is one realization of column subsampling, which is a discrete random

variable. In this example, Θ1 = Θ11, Θ2 = Θ21, Θ3 = Θ31. Note that a tree with depth k

has at most 2k terminal nodes, in which case Θl = (Θl,1, ...,Θl,2l−1) for all 1 ⩽ l ⩽ k and

Tb(Θ1:k) = {t1:k := (t1, ..., tk) : tk is a terminal node}. A similar definition can be found in

Chi et al. (2022).

Given a new input x, the output of a single tree is an estimate

Ĉb(x) :=
∑

t1:l∈Tb(Θ1:k)

1{x ∈ tl}1

 ∑
i∈{i:xi∈tl}

yi >
#{i : xi ∈ tl}

2


Each leaf is associated with a predicted class which is the majority class within the leaf. The

output of the entire random forests classification is an estimate for the classifier C : [0, 1]p 7→

{0, 1} such that

Ĉ(x) = 1

{
1

B

B∑
b=1

Ĉb(x) >
1

2

}
(2)

4See, for example, chapter 4.2, proposition 4.4, and theorem 4.5.
5Various frequently applied stopping rules are discussed in section 3.2.

5

which is the so-called majority vote.

Growing a single tree only will cause overfitting issues, even with a proper pruning pro-

cess. Random forests effectively reduce variance and significantly mitigate overfitting by

aggregating a large ensemble of trees, which are made less correlated through column sub-

sampling. To see this, note that the average of B identically distributed estimators with

positive pairwise correlation ρ and individual variance σ2, has variance ρσ2 + 1−ρ
B

σ2 (see

Hastie et al., 2009). The variance reduction can be achieved by reducing ρ through col-

umn subsampling as B increases. This variance reduction mechanism is one of the reasons

why random forests have gained popularity and have been implemented in various software

packages.

The next section of the discussion will explore how random forests can be effectively

adapted to estimate the BCM.

3 Methodology

3.1 The Model

The BCM is given by

Y ∗ = G0(X)− U

Y = 1{Y ∗ > 0}
(3)

where Y ∗ represents the latent utility, G0 is the systematic component (or indirect utility)

and U denotes the idiosyncratic error, assumed to be independent ofX. For a binary outcome

Y ∈ {0, 1} and covariates X ∈ X , the conditional choice probability (CCP) is given by

p0(x) = P{Y = 1|X = x} = E(Y |X = x) = F0(G0(x)) (4)

where F0 is the distribution function of U .

Random forests, as a popular machine learning method, are able to estimate the CCP

directly by minimizing Var(Y |X) = p0(X)(1−p0(X)). However, it lacks the ability to discern

the underlying structural form present in the CCP. Therefore, we are driven to investigate

how random forests can be adapted or refined to estimate discrete choice models as they

6

capture the structural interpretation in the CCP and align with economic theories, such as

the random utility theory.

For the BCM, (see Matzkin, 1992), we say (G0, F0) ∈ (G,F) is identified in (G,F) if

for all (G,F) ∈ (G,F) such that F (G(X)) = F0(G0(X)) for X almost surely, it holds that

G = G0 and F = F0 almost everywhere with respect to the probability measure induced by

X and the Lebesgue measure, respectively.

In this study, due to the computational intensity of the proposed modified method as well

as our limited expertise in programming, we simplify the BCM by assuming that the error

term follows an i.i.d. standard normal distribution (so that F = F0). This simplification is

standard, as with linear probit regression, and can always serve as a benchmark. Because

of the simplification, the model is identified as long as the covariates are independent of the

error term6. To see this, define AG := {x ∈ X : F (G(x)) = F (G0(x))} and BG := {x ∈ X :

G(x) = G0(x)}. For all x ∈ AG, we have G(x) = G0(x) since the distribution function of

standard normal F is strictly increasing. Therefore, AG is a subset of BG so that P(AG) = 1

implies P(BG) = 1, from which identification of G0 is established.

3.2 Estimation

The estimation of a binary choice model with random forests can be achieved by using

the negative log-likelihood function instead of the impurity measure. Similar to the CART

methodology, recursive partitioning can be applied to estimate the parameters of the sys-

tematic component.

In a cell t, the binary choice model to be evaluated can be represented by

Y ∗ = βL1{X ∈ tL}+ βR1{X ∈ tR} − U

Y = 1{U < βL}1{X ∈ tL}+ βR1{X ∈ tR}}
(5)

where tL and tR denote the left and right daughter cells of t such that t = tL ∪ tR. Here

we view the systematic component in the current cell as a linear combination of two indi-

cator functions. This is due to the fact that within the current cell, the indicator functions

associated with other cells will take on the value of zero. Different from the CART-split

criterion, we must also optimize our objective function over the two coefficients, βL and βR.

6For the identification results with unknown F0, see, for example, Yan (2023)

7

The optimization problem is thus defined by

max
j∈Θ,c,βL,βR

{∑
Xi∈t

[yi ln(F (Gt(Xi))) + (1− yi) ln(1− F (Gt(Xi)))]

}
(6)

where Gt(Xi) := βL1{Xij > c}+ βR1{Xij ⩽ c}. It can be further simplified to

max
j∈Θ,c

max
βL,βR

 ∑
Xij>c

[yi ln(F (βL)) + (1− yi) ln(1− F (βL))] +
∑

Xij⩽c

[yi ln(F (βR)) + (1− yi) ln(1− F (βR))]




(7)

Note that if either one of the two daughter nodes contains only one class, then |β̂L| or
|β̂R| will explode to ∞, because of the fact that ln(F (βL)) and ln(1 − F (βL)) are strictly

increasing and decreasing in βL, respectively. The issue is more likely to appear as the depth

of the tree increases. Some regularization techniques are needed to make the optimization

problem well-defined. In this paper, we consider L1 and L2 penalty terms. The one we choose

in the paper is the L2 regularization, and we demonstrate how to include the L1 penalty

in the appendix. Finally, the best split is determined by solving the following optimization

problem

max
j∈Θ,c

{
max
βL,βR

{
n1L ln(F (βL)) + n0L ln(1− F (βL)) + n1R ln(F (βR)) + n0R ln(1− F (βR))− λn(β

2
L + β2

R)
}}
(8)

where n1L denotes the number of observations in cell t with yi = 1 and Xij > c, n0R

denotes the number of observations with yi = 0 and Xij ⩽ c, and n0L and n1R are defined

similarly. Here the dependence of n1L, n1R, n0L, and n0R, on (j ∈ Θ, c) are suppressed for

simplicity. The problem given in (8) not only provides the best split for the current cell but

also determines the heights of the two indicator functions. However, those heights will not

be useful unless the cell is a terminal one.

The estimate for the systematic component given by a single tree corresponding to boot-

strap sample Db is

Ĝb(x) =
∑

t1:l∈Tb(Θ1:kb
)

β̂tl1{x ∈ tl}. (9)

And the random forests estimate as a bagging of {Ĝb}Bb=1, is defined as

Ĝ(x) =
1

B

B∑
b=1

Ĝb(x). (10)

8

Algorithm 1 below provides the modified version of the original Breiman’s random forests

algorithm with the sample CART-split criterion replaced by (8), and the majority vote

replaced by the estimate for the systematic component as output. minsize, maxdepth, and

maxnode characterize the stopping rules, which serve as further tuning parameters to avoid

overfitting. In particular, if a cell contains less than minsize number of observations, or if

it is already cut maxdepth times, or if a tree has already maxnode number of cells, then the

tree will stop growing.

3.3 Model Selection

An important characteristic of random forests involves the utilization of out-of-bag (OOB)

samples, which are the data points from the training set that are not included in each

bootstrap sample. We will describe how OOB samples can be used for validation under the

framework of BCM. Suppose B trees are already grown. For each observation (yi,xi) in

the training set, calculate the systematic component predictor by averaging the predictions

made by the trees for which (yi,xi) was not part of their corresponding bootstrap samples.

More formally, for each (yi,xi) ∈ D, we calculate

G̃(xi) =
1

#({b : (yi,xi) /∈ Db} ∩ {1, ..., B})
∑

b∈{b:(yi,xi)/∈Db}
b∈{1,...,B}

Ĝb(xi) (11)

where Ĝb(xi) is defined in (9).

The generalization error is then

err(γ) := −
n∑

i=1

[
yi lnF (G̃(xi)) + (1− yi) ln(1− F (G̃(xi)))

]
(12)

where γ represents the set of hyperparameters to be tuned. Therefore, unlike many other

nonlinear estimators, validation can be performed in random forests during the training

process. As usual, it is done by choosing γ that minimizes the OOB generalization error

over a set of different γ’s. An OOB error estimate yields similar results to K-fold cross-

validation (Hastie et al., 2009; Ljumović and Klar, 2015). These aspects suggest that OOB

error can serve as an effective alternative for model selection.

9

Algorithm 1: Random Forests for BCM

Input: Data D = (Y ,X) = {yi,xi}ni=1, number of bootstrap samples B, column

subsampling size m, minsize, maxdepth, maxnode.

for b = 1, ..., B do
Draw n points uniformly in D, with replacement. Denote the bootstrap sample

by Db = (Yb,Xb).

Initialize P ← (Db), the list of root cells containing the entire bootstrap sample.

Initialize Pfinal ← ∅.

while P ≠ ∅ do
cell← the first element of P .

if cell contains less than maxsize observations, or if the depth of cell equals

maxdepth, or if all xi or all yi in cell are identical then
Remove cell from the list P .

Pfinal ← Concatenate(Pfinal, cell).

else
Draw m out of p covariates uniformly, without replacement.

Create a set S of all possible splitting rules based on the selected m

covariates only.

Select the best split by solving the problem given in (8).

Cut cell according to the best split. Denote the resulting cells as cellL

and cellR. Store the corresponding β̂L and β̂R.

Remove cell from the list P .

P ← Concatenate(P , cellL, cellR).
end

if cardinality of P ∪ Pfinal ⩾ maxnode then

Pfinal ← Concatenate(Pfinal,P).

P ← ∅.
end

end

Get the estimate Ĝb(x) =
∑

cell∈Pfinal
β̂cell1{x ∈ cell}.

end

Output: The estimate for the systematic component is Ĝ = 1
B

∑B
b=1 Ĝb.

10

−1 −0.5 0.5 1

1

x

1
1+e−κx

κ = 5
κ = 10
κ = 100

Figure 2: Sigmoid functions

4 Monte Carlo Experiments

To test the performance of the proposed method, we consider three high-dimensional spec-

ifications and compare the results with linear probit and the kernelized probit proposed by

Yan (2023). We also compare the results with the original random forests using the Gini

index for classification.

The BCM model is as given in (3) in section 3.1, in which U ∼iid N(0, 1) and is in-

dependent of X. The covariates for all specifications are X = (X1, ..., X10)
′ with each

Xj ∼iid Unif[−1, 1]. The three specifications are given by

(1) : G0(X) =
5∑

j=1

βj sin(πXjXj+5)

(2) : G0(X) =
5∑

j=1

βj
1

(1 + e−κXj)(1 + e−κXj+5)

(3) : G0(X) =
30∑
j=1

βj1{X ∈ tj}

(4) : G0(X) =
5∑

j=1

βj1{Xj > τj}+
10∑
j=6

βjXj

where (β1, ..., β5) = (0.81, 0.91, 0.13, 0.91, 0.63) and (1,−1.75, 0.5,−1.25, 1.5) for the first and

second specification, respectively. In (4), β = (0.05,−0.1, 0.85, 0.55, 0.06,−0.44, 0.28, 0.99, 0.12,−0.02)

and τ = (−0.16, 0.32, 0.9,−0.34,−0.06). For the second specification, we consider a linear

combination of interactions of sigmoid functions f(x) = 1
1+e−κx whose steepness increases

11

t1

t2

t3

X1

X2

Figure 3: An example of binary partitioning with two covariates

with κ (see Figure 2 for a visual illustration). It is expected that both sin waves and sigmoid

functions can be consistently estimated by the kernelized probit approach with Gaussian

kernel given by k(v, w) = exp(−∥v − w∥2/2σ2) since the reproducing kernel Hilbert space

with Gaussian kernel is dense in the space of continuous function equipped with supremum

norm defined on a compact Euclidean space. We expect that the modified random forests

method is robust against discontinuous functions, and thus will perform well for the third

specification. For the second specification, random forests probit is expected to have better

performance as κ increases.

In the third specification, β is drawn from Unif[−2, 2] and is fixed across all experiments.

Figure 3 demonstrates how the indicator functions are generated. In the j-th cut, a cell

and a variable are selected at random and the cell is divided into two cells in the middle

along the chosen variable. In Figure 3, X1, X2 ∈ [−1, 1], t0 = [−1, 1]2, t1 = (0, 1] × [−1, 1],

t2 = [−1, 0]2, t3 = (−1/2, 0]×(0, 1], and the sequence continues in this manner. The outcome

of this procedure is a highly discontinuous function. Consequently, we expect that neither

linear nor kernelized methods can consistently estimate this systematic component.

For each specification, we generate a test set with size 10000, and a training set with

size ntrain∈ {200, 500, 1000, 2000, 5000, 10000}. As for now, each Monte Carlo simulation

has 10 replications. Based on our experiments, we find that growing 200 the number of

trees (B = 200) would be sufficient for the OOB generalization error to stabilize. As an

illustration, Figure 4 plots the OOB generalization error for the second specification with

κ = 10 and ntrain=2000, with respect to B. The validation error stabilizes after about 200

trees. For this reason as well as for computational consideration, we set B = 200 throughout

12

0 500 1000 1500 2000

10
50

11
00

11
50

12
00

B

O
O

B
 G

en
er

al
iz

at
io

n
E

rr
or

Figure 4: OOB generalization error with respect to number of bootstrap samples

this section.

The metrics for methods evaluation are chosen to be the sample analog of the mean error

of the systematic component E|Ĝ(X)−G0(X)|, the mean error of the CCP E|p̂(X)−p0(X)|,

and the misclassification error rate P{Y ̸= 1{p̂(X) > 1/2}}.

The outcomes of the simulations are detailed in Table 1, 2, 3, and 4, aligning with

our initial expectations. For the first specification, the kernelized probit outperforms the

random forests probit. Conversely, for the other specifications, the random forests probit

is competitive, and it performs better when dealing with more discontinuous underlying

functions. Although the original random forests model is quite effective for classification

tasks, it falls short of accurately estimating the CCP.

13

Table 1: A Comparison of performance across four methods

E|Ĝ(X)−G0(X)| E|p̂(X)− p0(X)| P{Y ̸= 1{p̂(X) > 1/2}}

ntrain Probit KPB RFP Probit KPB RFP RF Probit KPB RFP RF True

Specification 1

200 0.8304 0.8708 0.8071 0.2590 0.2732 0.2490 0.2749 0.4815 0.4931 0.4348 0.4243 0.2449

500 0.8304 0.7834 0.7423 0.2590 0.2403 0.2253 0.2711 0.4815 0.4248 0.4042 0.3894 0.2449

1000 0.8304 0.6435 0.6752 0.2590 0.1886 0.1997 0.2688 0.4815 0.3526 0.3423 0.3323 0.2449

2000 0.8304 0.5241 0.6406 0.2590 0.1489 0.1865 0.2668 0.4815 0.3101 0.3183 0.3158 0.2449

5000 0.8304 0.3467 0.6127 0.2590 0.0917 0.1757 0.2645 0.4815 0.2694 0.2917 0.2918 0.2449

10000 0.8304 0.3307 0.6062 0.2590 0.0869 0.1728 0.2629 0.4815 0.2665 0.2770 0.2769 0.2449

Notes: KPB, RFP, and RF represent the kernelized probit, the proposed random forests probit, and the original Brieman’s

random forests with the Gini index, respectively. True denotes the misclassification error rate using the true CCP.

14

Table 2: A Comparison of performance across four methods (cont.)

E|Ĝ(X)−G0(X)| E|p̂(X)− p0(X)| P{Y ̸= 1{p̂(X) > 1/2}}

ntrain Probit KPB RFP Probit KPB RFP RF Probit KPB RFP RF True

Specification 2 (κ = 10)

200 0.5359 0.6098 0.6024 0.1493 0.1710 0.1690 0.2767 0.3015 0.3206 0.3203 0.3175 0.2467

500 0.5359 0.5584 0.5283 0.1493 0.1553 0.1439 0.2757 0.3015 0.3057 0.2917 0.2933 0.2467

1000 0.5359 0.4912 0.4484 0.1493 0.1351 0.1195 0.2734 0.3015 0.2899 0.2764 0.2768 0.2467

2000 0.5359 0.4253 0.3965 0.1493 0.1150 0.1029 0.2713 0.3015 0.2766 0.2685 0.2672 0.2467

5000 0.5359 0.3790 0.3253 0.1493 0.1011 0.0824 0.2697 0.3015 0.2678 0.2619 0.2644 0.2467

10000 0.5359 0.3658 0.3120 0.1493 0.0969 0.0776 0.2684 0.3015 0.2633 0.2573 0.2591 0.2467

Specification 2 (κ = 100)

200 0.7036 0.7570 0.7418 0.1851 0.2021 0.1958 0.2952 0.3137 0.3334 0.3205 0.3206 0.2380

500 0.7036 0.7234 0.6582 0.1851 0.1919 0.1686 0.2931 0.3137 0.3210 0.2898 0.2897 0.2380

1000 0.7036 0.6712 0.5625 0.1851 0.1759 0.1382 0.2904 0.3137 0.3033 0.2656 0.2666 0.2380

2000 0.7036 0.5972 0.4861 0.1851 0.1535 0.1151 0.2878 0.3137 0.2849 0.2574 0.2581 0.2380

5000 0.7036 0.5647 0.4050 0.1851 0.1437 0.0925 0.2861 0.3137 0.2786 0.2501 0.2510 0.2380

10000 0.7036 0.5557 0.3581 0.1851 0.1406 0.0794 0.2838 0.3137 0.2765 0.2473 0.2488 0.2380

Notes: KPB, RFP, and RF represent the kernelized probit, the proposed random forests probit, and the original Brieman’s

random forests with the Gini index, respectively. True denotes the misclassification error rate using the true CCP.

15

Table 3: A Comparison of performance across four methods (cont.)

E|Ĝ(X)−G0(X)| E|p̂(X)− p0(X)| P{Y ̸= 1{p̂(X) > 1/2}}

ntrain Probit KPB RFP Probit KPB RFP RF Probit KPB RFP RF True

Specification 3

200 1.0577 0.9971 0.9575 0.3009 0.2794 0.2656 0.3410 0.3975 0.3725 0.3521 0.3447 0.1761

500 1.0577 0.9828 0.8749 0.3009 0.2743 0.2371 0.3425 0.3975 0.3725 0.3153 0.3120 0.1761

1000 1.0577 0.9711 0.8048 0.3009 0.2703 0.2127 0.3436 0.3975 0.3589 0.2778 0.2782 0.1761

2000 1.0577 0.9489 0.6699 0.3009 0.2615 0.1708 0.3428 0.3975 0.3408 0.2428 0.2384 0.1761

5000 1.0577 0.9085 0.5415 0.3009 0.2477 0.1314 0.3419 0.3975 0.3273 0.2076 0.2046 0.1761

10000 1.0577 0.8861 0.4045 0.3009 0.2396 0.0933 0.3428 0.3975 0.3169 0.1892 0.1895 0.1761

Notes: KPB, RFP, and RF represent the kernelized probit, the proposed random forests probit, and the original Brieman’s

random forests with the Gini index, respectively. True denotes the misclassification error rate using the true CCP.

16

Table 4: A Comparison of performance across four methods (cont.)

E|Ĝ(X)−G0(X)| E|p̂(X)− p0(X)| P{Y ̸= 1{p̂(X) > 1/2}}

ntrain Probit KPB RFP Probit KPB RFP RF Probit KPB RFP RF True

Specification 4

200 0.4373 0.4126 0.4112 0.1369 0.1182 0.1237 0.2641 0.3155 0.3074 0.3135 0.3131 0.2718

500 0.4373 0.3213 0.3199 0.1369 0.0904 0.0944 0.2568 0.3155 0.2909 0.2969 0.3018 0.2718

1000 0.4373 0.2966 0.2751 0.1369 0.0838 0.0810 0.2543 0.3155 0.2876 0.2937 0.2956 0.2718

2000 0.4373 0.2825 0.2464 0.1369 0.0792 0.0711 0.2525 0.3155 0.2840 0.2849 0.2885 0.2718

5000 0.4373 0.2677 0.2147 0.1369 0.0765 0.0617 0.2511 0.3155 0.2868 0.2831 0.2858 0.2718

10000 0.4373 0.2494 0.2152 0.1369 0.0708 0.0628 0.2494 0.3155 0.2855 0.2813 0.2835 0.2718

Notes: KPB, RFP, and RF represent the kernelized probit, the proposed random forests probit, and the original Brieman’s

random forests with the Gini index, respectively. True denotes the misclassification error rate using the true CCP.

17

5 Conclusion

In this paper, we propose a new estimation procedure for nonparametric BCMs using ran-

dom forests, which makes use of the negative log-likelihood function instead of the impurity

measures that are used in the traditional random forests, such as the Gini index and cross-

entropy. The parameters in the latent utility function are estimated using the recursive

partitioning maximum likelihood estimation. Simulation studies suggest that the modified

random forests estimator works well in finite samples, and it performs better than the ker-

nelized probit approach in estimating discontinuous or nearly discontinuous functions. A

natural extension in future research is to allow for a fully nonparametric model, without the

assumption that the distribution function of the error component is known. Another way

to go is to estimate BCMs with boosting trees, another popular tree-based machine-learning

method. A deeper understanding of fundamental programming languages such as C and

C++ is essential to reduce computational burden.

References

Amit, Y. and D. Geman (1997). Shape quantization and recognition with randomized trees.

Neural computation 9 (7), 1545–1588.

Athey, S. and G. W. Imbens (2019). Machine learning methods that economists should know

about. Annual Review of Economics 11, 685–725.

Bhattacharya, D. (2021). The empirical content of binary choice models. Economet-

rica 89 (1), 457–474.

Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning

Research 13 (1), 1063–1095.

Biau, G. and E. Scornet (2016). A random forest guided tour. Test 25, 197–227.

Breiman, L. (2001). Random forests. Machine learning 45, 5–32.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and

regression trees. Pacific Grove, Wadsworth.

18

Bühlmann, P. and B. Yu (2002). Analyzing bagging. The annals of Statistics 30 (4), 927–961.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and

J. Robins (2018). Double/debiased machine learning for treatment and structural pa-

rameters.

Chi, C.-M., P. Vossler, Y. Fan, and J. Lv (2022). Asymptotic properties of high-dimensional

random forests. The Annals of Statistics 50 (6), 3415–3438.

Cortes, C. and V. Vapnik (1995). Support-vector networks. Machine learning 20, 273–297.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine learning 40,

139–157.

Farrell, M. H., T. Liang, and S. Misra (2021). Deep neural networks for estimation and

inference. Econometrica 89 (1), 181–213.

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of computer and system sciences 55 (1), 119–139.

Genuer, R., J.-M. Poggi, and C. Tuleau (2008). Random forests: some methodological

insights. arXiv preprint arXiv:0811.3619 .

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The elements of

statistical learning: data mining, inference, and prediction, Volume 2. Springer.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE

transactions on pattern analysis and machine intelligence 20 (8), 832–844.

Lechner, M. and G. Okasa (2019). Random forest estimation of the ordered choice model.

arXiv preprint arXiv:1907.02436 .

Ljumović, M. and M. Klar (2015). Estimating expected error rates of random forest classi-

fiers: A comparison of cross-validation and bootstrap. In 2015 4th Mediterranean Confer-

ence on Embedded Computing (MECO), pp. 212–215. IEEE.

19

Matzkin, R. L. (1992). Nonparametric and distribution-free estimation of the binary thresh-

old crossing and the binary choice models. Econometrica: Journal of the Econometric

Society , 239–270.

Mullainathan, S. and J. Spiess (2017). Machine learning: an applied econometric approach.

Journal of Economic Perspectives 31 (2), 87–106.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspec-

tives 28 (2), 3–28.

Wager, S. and S. Athey (2018). Estimation and inference of heterogeneous treatment effects

using random forests. Journal of the American Statistical Association 113 (523), 1228–

1242.

Yan, G. (2023). Three Essays on the Econometrics of Machine Learning. Indiana University.

Appendix

A. Implementation of L1 Regularization

In this section, we propose a simple and automatic way of implementing L1 regularization

in problem (8), which does not require the coordinate descent algorithm. In particular, we

deal with

max
βL

{n1L ln(F (βL)) + n0L ln(1− F (βL))− λn|βL|}+max
βR

{n1R ln(F (βR)) + n0R ln(1− F (βR))− λn|βR|}

(13)

Note that if n1L > n0L, then lnF (β̂L) should be larger than ln(1 − F (β̂L)), which in turn

requires F (β̂L) to be greater than 1
2
and thus β̂L > 0. To see this, suppose n1L > n0L but

lnF (β̃L) < ln(1 − F (β̃L)) and β̃L < 0. Then, we can simply select β̂L = −β̃L to improve

n1L ln(F (βL))+n0L ln(1−F (βL)) while keeping the penalty term unchanged, indicating that

such β̃L cannot be optimal. Similarly, if n1L > n0L, then β̂L < 0. Finally, for the case when

n1L = n0L, β̂L = 0 since ln(F (βL))+ ln(1−F (βL)) attain its global maximum at F (βL) =
1
2
,

or βL = 0.

20

The reasoning for βR follows the same logic as outlined above. Consequently, |βL|+ |βR|

can be replaced by

sgn

(
1

2
− pL

)
βL + sgn

(
1

2
− pR

)
βR (14)

where pL := n1L

nL
and pL := n1R

nR
. The problem now can be solved by computing the gradient

and applying the first-order conditions as usual. Our simulations indicate that both L1 and

L2 regularizations produce comparable outcomes, with the execution speeds of the algorithms

being nearly identical.

B. Relation to Cross-Entropy

It should be noted that if the regularization term is omitted from (8), then the problem can

be solved analytically, yielding solutions given by β̂L = F−1(pL) and β̂R = F−1(pR), where

pL := n1L/nL and pR := n1R/nR represent the proportions of label 1 in the left and right

child nodes, respectively. A straightforward computation reveals that after the substitution

of optimal solutions in the inner maximization problem, the criterion for splitting simplifies

to

max
j∈Θ,c

{nL(pL ln(pL) + (1− pL) ln(1− pL)) + nR(pR ln(pR) + (1− pR) ln(1− pR))} (15)

which essentially is the sample CART-split criterion employing cross-entropy as the impurity

measure, as given in (1). However, to effectively estimate the coefficients in the systematic

component G under the framework of BCM, it is crucial to introduce a regularization term

into the split criterion. Primarily, this helps prevent the estimates β̂L and β̂R from becoming

infinite when a node consists solely of one class, as pL or pR would be either 1 or 0. Secondly,

it ensures that the estimates do not become exceedingly large in almost pure nodes. Beyond

bootstrap aggregation, adding a penalty term serves as another mechanism for stabilizing the

estimates. Our simulations suggest that applying this regularization technique consistently

throughout the entire process of recursive partitioning yields better outcomes than applying

it only to completely pure child nodes.

With the introduction of the regularization term, the problem no longer possesses closed-

form solutions, and (8) diverges from the penalized sample CART-split criterion with cross-

entropy impurity measure.

21

C. Variable Importance and Average Partial Effects

As tree-based approaches, random forests have their interpretability in the relative impor-

tance of the covariates. There are many ways of measuring variable importance and we

defer the exploration of their comparisons to future research questions. We present the one

that is introduced in Hastie et al. (2009), which makes use of the OOB samples to measure

the prediction strength of each covariate. For covariate j, when the b-th tree is grown, the

prediction accuracy of the OOB samples is recorded. Then the values for the j-th covariate

are randomly permuted in the OOB samples, and the prediction accuracy is computed again.

Then the decrease in accuracy for the b-th tree can be calculated. The importance of the

j-th covariate is the average decrease in accuracy computed in this way, over all B trees.

Intuitively, the variables with higher predicting power will have larger variable importance

since a random permutation will cause a greater loss in prediction accuracy.

Another way of interpretation that is more interesting to economists is the analysis of

average partial effects of the conditional choice probability p0(X) = F (G(X)). Since the

estimates using random forests are simple functions, the average partial effect with respect

to j-th covariate is simply given by E∆F (G(Xj, X−j)), where ∆ denotes the difference. Its

sample analog is given by 1
n

∑n
i=1(F (Ĝ(X1

j , Xi,−j)) − F (Ĝ(X0
j , Xi,−j))), where X0

j and X1
j

denote the values before and after the change, respectively.

22

