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1 Introduction

Misinformation has become an increasingly more pressing issue in society with the rapid
rise of information distribution and sharing technology (like social media). The spread of
misinformation has created real, tangible effects both on the economy and society. In the
United States misinformation surrounding the COVID-19 vaccine slowed its admistration
rate and resulted in lower economic activity [8] [11]. There are many other examples of
the harms of misinformation; the insurrection on January 6th at the United States captiol
is widely attributed to the misinformation surrounding the 2020 United States presidential
election.

This misinformation spreads on social media sites such as Facebook and X (formerly
Twitter). Peer-to-peer information exchange and individual decision making has been well-
studied by the information aggregation literature both in market and non-market settings.
Information aggregation traditionally has been studied with agents who are all incentivized
to reveal their partial information truthfully either through an incentive compatible market
structure or other mechanism. However, an extension of this method for heterogeneous
agents, specifically with agents who are incentivized to act deceptively, has been far less
developed. The agents acting in this specific manner in the world has become increasingly
more relevant and widespread as the power of misinformation and its effects mount.

The study of malicious agents in a distributed system, especially with regards to informa-
tion, is becoming more a necessity than just an area of interesting research. With the rise in
popularity of the use of multiple social media platforms, the existence and regulation of the
industry requires the guidance of research for effective policy design. Being able to protect
social media users from misinformation is an issue that policymakers are currently facing.
Experiments lend itself well as a methodology in studying misinformation since the truth is
often subjective and relative. This would make it difficult to pin down and properly observe
how “close” the system can get to the truth when looking at information aggregation from
a general standpoint.
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2 Literature Review

2.1 Malice

Malice is not precisely defined in the existing economics literature; most works refer to
malicious agents as those who erode the efficiency of the system, some times defined in terms
of Pareto efficiency.

The Price of Malice (PoM) is defined as the measure of to what degree the introduction
of malicious agents to a distributed system will negatively impact the efficiency [15]. Using a
virus inoculation game as their scenario and a peer-to-peer network, the authors established
several game theoretic results namely the malicious Nash equilibrium and, the previously
mentioned, PoM. Malicious Nash equilibrium (MNE) is when no non-malicious players can
decrease their perceived cost by unilateral deviation; the perceived individual cost is the cost
that individual players expects to incur given their knowledge of malicious players. They
explore two main settings: one in which the non-malicious players are not aware of malicious
players (oblivious) and one in which they are aware (non-oblivious). In the second setting,
players are knowledgeable of the number of malicious nodes in the network but not their
locations or strategies. The price of malice is defined as ratio between the price of anarchy
in the case with zero and b malicious players in problem instance I.

PoM(I, b) =
PoA(I, b)

PoA(I, 0)

The social costs increase monotonically with the number of malicious nodes in the network
under the oblivious model, whereas in the non-oblivious model the knowledge of malicious
players in the system encourages the other players to cooperate and push the price of malice
below 1.

It is important to note that the previously discussed model with virus diffusion only
deals with two types of agents: selfish, those who act in to maximize their own utility,
and malicious, those who act to increase the overall social cost. We are interested in how
information disseminates among individuals in a system, which is modeled more closely using
a pairwise network and informational updating [1]. Rather than malicious agents as defined
by Moscibroda, et al, this theoretic model employs ”forceful” agents who do not deriving
utility from increasing social cost, but simply do not update their beliefs when introduced
to new information. They use a similar measure of malicious intervention by evaluating
the efficiency of the informational aggregation in the system with and without these kinds
of agents. The main results of their model are that the effect of misinformation can be
greatly limited when the number and impact of forceful agents is small and that the spread
of misinformation is sensitive to the location of the forceful agents.

Both works discussed above focus on the theoretical framework when malicious agents
are involved; they focus on efficiency of the system to obtain a (social) optimum. In practice,
this social optimum can be described with Pareto efficiency [3]. Now examining malice (and
envy) under a more behavioral lens, malice can be defined as an individual blocking a Pareto
superior allocation, if they are not the one increasing their utility and the one who would
increase is lower than them at the current allocation. Beckman, et al experimentally verifies
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that the presence of both malicious and envious behaviors can pull the resulting allocation
from the social optimum.

We want to treat malice as defined in the theoretical bodies of work; malicious agents are
those who derive utility from increasing the overall social cost and their impact evaluated
by a measure of distance from the social optimum (PoM).

2.2 Information Aggregation

Information aggregation has been widely studied, particularly as it applies to asset and
financial markets where the traders have differing partial information. The rational expec-
tations (RE) model fundamentally states that the traders in a market will condition their
beliefs on the market prices; this model has experimental support [13]. Additionally, the
experimental support explored some robustness in market mechanisms, explicitly testing in
trading Arrow-Debreu securities and double auction trading [14]. However, they showed that
the market may fail under some conditions experimentally. Jointly sufficient conditions for
successful convergence to the RE equilibrium are trading experience and common knowledge
of dividends [10].

With information aggregation experimentally well-tested under the rational expectations
model, its performance under more realistic conditions becomes the more important ques-
tion. This spurred a study conducted at Hewlett-Packard (HP) where they implemented
an information aggregation mechanism (IAM) to show that the IAM out-performs tradition
business forecasting techniques [12]. The IAM used in their study was closely related to the
existing theoretical and experimental literature stated above as to draw conclusions on the
business applicability. The experiment was conducted with participants from different areas
within the HP business operation to increase the likelihood of information heterogeneity
among them. Their task was to buy and sell Arrow-Debreu securities based on predicted
sales levels through a double auction with the payoff determined by actual realization of
sales by the company. In the end, they were able to show, broadly speaking, that IAM
performed better forecasting than the traditional methods of collecting information (like
business meetings).

A substantial portion of the literature regarding information aggregation falls within the
market paradigm. However, from the examples illustrated in the introduction, information
aggregation extends beyond the scope of just markets. By tuning down the market setting
and focusing on a more simplistic game, the information aggregation mechanism itself and
the way that the individuals process that information can be more closely examined; the
behavior the market or other IAM can be model with the micro foundations of how each
individuals process and utilizes new information.

2.3 Behavioral Elements in Distributed System

Understanding the micro foundations of how each individual processes new information
and signals will allow the study of information aggregation to extend past just markets.
However, when changing the approach to a microlevel, the behavioral elements of each
individual involved in the aggregation and other possible influx of information must be
accounted for. An individual’s understanding of a stochastic process (their beliefs) can
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be modeled as a distribution and can be updated with Bayes rule. Risk attitudes of the
individuals can affect the performance of the IAM but can be correct in the prediction
when using a non-linear aggregation that takes into account their risk behavior; this requires
that their risk behaviors are truthfully revealed via incentive compatible means [4]. Public
knowledge can also bias the IAM predictions but, again, can be accounted by using a non-
linear aggregation system that corrects the bias in a two-stage game that first reveals that
bias truthfully [5].

When studying information aggregation from the bottom-up, individual issues and biases
become more apparent, but also lends better towards finer changes to the system to mirror
reality. A realistic change to the existing literature is the addition of heterogeneous utility
for agents; the introduction malicious agents to study how they may affect the efficiency of
the information aggregation system.

3 Theory

3.1 Environment

� set of players I = {1, ..., N}

� set of player types Θ = {Truthful,Deceitful}

� set of possible states of nature Ω where Ω = {A,B}.

� the set of actions for each player type is:

– truthful players is ATruthful = Ω× Ω (they choose a message and a guess).

– deceitful players is ADeceitful = [0, 1] (they choose the probabilty in they send a
dishonest message).

� probablity distribution over types is (pT , pD) corresponding to Θ = {Truthful,Deceitful}
where pT + pD = 1.

� probability distribution over the true states p(ω) > 0,∀ω ∈ Ω where
∑

ω∈Ω p(ω) = 1.

� the payoff for each player type is:

– truthful players is uTruthful
i : AG ×Θ× Ω → R

– deceitful players is uDeceitful
i : AB ×Θ× Ω → R

Consider the following game:

1. Nature randomly determines the true state ω̄ according to P (ω̄ = A) = P (ω̄ = B) = 1
2
.

The distribution from which the players receive their signals is dependent from the
realization of the true state. The true state is not known to Truthful players, but is
known to Deceitful players.

2. Nature randomly determines the type of each player according to the probabilty dis-
tribution over types.
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3. Each player recieves one signal randomly drawn from the distribution Fω denoted as
si. We impose that the probablity of observing the the true state ω̄ in a signal is higher
than the other state.

Fω̄(ω̄) > Fω̄(ω),∀ω ̸= ω̄

4. Each player chooses a message mi : Ω → Ω.

5. Every player observes the vector of all messages M =
N⋃
i=1

mi.

6. Each Truthful player chooses xi : Ω×Ωn(M)−1 → Ω (they use their signals and messages
to make their guess).

7. Players of type θi = Truthful receive payoffs according to the function:

uTruthful
i (x) =

∑
i 1{xi = ω̄ and θi = Truthful}∑

i 1{θi = Truthful}

All Truthful players will recieve the same payoff; they get the fraction of Truthful
players that choose the true state correctly.

8. Players of type θi = Deceitful receive payoffs according to the function:

uDeceitful
i (x) = 1− uT

j (x) where θj = Truthful

All Deceitful players will recieve the same payoff; they get the fraction of Truthful
players that choose the true state incorrectly.

9. We treat the last step as ”voting” where the truthful players vote on which state they
believe is the true one to evaluate the performance of the system.

3.2 Two States, Two Players with Symmetric Distributions

3.2.1 Set-Up

In this setting, we set N = 2 and FT = FA(A) = FB(B) > FNT | = FA(B) = FB(A) with
PA = PB = 1

2
.

3.2.2 Bayesian Equilibrium

At equilibrium, we expect both players to maximize their payoff according to their beliefs
on the true state. In the case with one signal and one messages, we can make some simplifying
assumptions. First, we assume that the strategy is symmetric for all deceitful players and,
second, that truthful players will tell the truth all the time (from rational expectation model).
The truthful player’s expect value looks like

E[ūT
i (xi)|si,m−i] =

P (ω̄ = xi)Fxi
(si)[pTFxi

(m−i) + pDP (m−i|ω̄ = xi, θ−i = D)]∑
ω∈Ω

P (ω̄ = ω)Fω(si)[pTFω(m−i) + pDP (m−i|ω̄ = ω, θi = D)]
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Since player i of type Truthful will choose xi to maximize their expected utility, we have

x∗
i (si,m−i) =


A if E[uT

i (xi = A)|si,m−i] > E[uT
i (xi = B)|si,m−i]

[A,B] if E[uT
i (xi = A)|si,m−i] = E[uT

i (xi = B)|si,m−i]

B if E[uT
i (xi = A)|si,m−i] < E[uT

i (xi = B)|si,m−i]

We set it so that if the expect value of each choice is equal, they will mix over the states
with any probability distribution. We can evaluate the inequality explicitly.

FA(si)[pTFA(m−i) + pDpA(m−i)]□FB(si)[pTFB(m−i) + pDpB(m−i)]

FA(si)[pTFA(m−i) + pDpA(m−i)]□FB(si)[pTFB(m−i) + pD(1− pA(m−i))]

where pxi
(mi) = P (m−i|ω̄ = xi, θ−i = D). Then, for the deceitful player to maximize their

utility, they will minimize the probability that the truthful player chooses the correct state.

max
P (mi=B)

P (x−i = B) = max
P (mi=B)

P
(
E[uT

i (xi = A)|si,m−i] ≤ E[uT
i (xi = B)|si,m−i]

)
3.2.3 Truthful Player Best Response

Since the utility of the truthful players depend on other truthful players correctly choosing
the true state, we assume that they will always reveal their information truthfully, mT

i (si) =
si and P (mT

i (si)) = Fω̄(si). The utility of truthful players is separable in xi, then since we
hold all other xi′ , i

′ ̸= i fixed, we can just evaluate the term in the uT
i that varies with xi

since constant shifts are irrelevant in the comparison between expect utility between choices
of xi. Thus, we will evaluate:

ūT
i (xi) =

{
1 if xi = ω̄

0 if xi ̸= ω̄

The best response maps to {A,B} if the expected value of the two choices are equivalent
since the player will be indifferent to each choice and any mixture over the two options will
be the best response. Otherwise, the player will always have a pure strategy.

3.2.4 Deceitful Player Best Response

Deceitful players seeks to minimize the utility of the truthful players in order to maximize
their own; they want to send messages that would increase the chances that the truthful
players choose the true state incorrectly. However, the deceitful players can only do this
through their message which they send before observing all other messages. They will have
to expect the expected utility of truthful players over all possible signals and message sets.

When N = 2, the deceitful player does not know if there is another deceitful player
but we have assumed that they will choose the same probability of lying regardless. Their
objective function is to maximize the probability that the expected utility of the incorrect
state is higher than the expected utility of the true state for the truthful players. Since again
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we have assumed homogeneity in the truthful players, maximizing the probability of one of
them will be the same for all of them.

max
P (mi=ω),∀ω∈Ω

P (x−i ̸= ω̄)

Since in our setting, we only have two possible states of nature {A,B}, the objective
function can be written more explicitly. We let ω̄ = A (without loss of generality) and with
only two possible states, let p = P (mi = B) which is the probability of lying. Furthermore,
we simplify our setting more by setting FA(A) = FB(B) = FT and FA(B) = FB(A) = FNT ;
that is, the probability distribution is symmetric between for either state being true. The
deceitful player objective function is

max
P (mi=B)

P (x−i = B) = max
P (mi=B)

P
(
E[uT

i (xi = A)|si,m−i] ≤ E[uT
i (xi = B)|si,m−i]

)
Claim 3.1. The objective function of the deceitful player can be written as

QD(p) = max
p

(1− p)FA(A)EAA(p) + pFA(A)EAB(p) + (1− p)FA(B)EBA(p) + pFA(B)EBB(p)

where p = P (mi = B|θi = D).

Proof. We have that the deceitful player objective function is

QD(p) = max
p

P
(
E[uT

i (xi = A)|si,m−i] ≤ E[uT
i (xi = B)|si,m−i]

)
We can see that there are 4 possible realizations of the E[uT

i (xi = A)|si,m−i] ≤ E[uT
i (xi =

B)|si,m−i], which will correspond to the realizations of (si,mi) ∈ Ω× Ω. The 4 cases have
the following probabilities

P (si = A,m−i = A) = FA(A)P (m−i = A|θ−i = D) = FA(A)(1− p)

P (si = A,m−i = B) = FA(A)P (m−i = B|θ−i = D) = FA(A)p

P (si = B,m−i = A) = FA(B)P (m−i = A|θ−i = D) = FA(B)(1− p)

P (si = B,m−i = B) = FA(B)P (m−i = B|θ−i = D) = FA(B)p
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and corresponding to the events:

EAA(p) =


1 if E[uT

i (xi = A)|si = A,m−i = A] < E[uT
i (xi = B)|si = A,m−i = A]

1/2 if E[uT
i (xi = A)|si = A,m−i = A] = E[uT

i (xi = B)|si = A,m−i = A]

0 if E[uT
i (xi = A)|si = A,m−i = A] > E[uT

i (xi = B)|si = A,m−i = A]

EAB(p) =


1 if E[uT

i (xi = A)|si = A,m−i = B] < E[uT
i (xi = B)|si = A,m−i = B]

1/2 if E[uT
i (xi = A)|si = A,m−i = B] = E[uT

i (xi = B)|si = A,m−i = B]

0 if E[uT
i (xi = A)|si = A,m−i = B] > E[uT

i (xi = B)|si = A,m−i = B]

EBA(p) =


1 if E[uT

i (xi = A)|si = B,m−i = A] < E[uT
i (xi = B)|si = B,m−i = A]

1/2 if E[uT
i (xi = A)|si = B,m−i = A] = E[uT

i (xi = B)|si = B,m−i = A]

0 if E[uT
i (xi = A)|si = B,m−i = A] > E[uT

i (xi = B)|si = B,m−i = A]

EBB(p) =


1 if E[uT

i (xi = A)|si = B,m−i = B] < E[uT
i (xi = B)|si = B,m−i = B]

1/2 if E[uT
i (xi = A)|si = B,m−i = B] = E[uT

i (xi = B)|si = B,m−i = B]

0 if E[uT
i (xi = A)|si = B,m−i = B] > E[uT

i (xi = B)|si = B,m−i = B]

Then, we can write

QD(p) = max
p

(1− p)FA(A)EAA(p) + pFA(A)EAB(p) + (1− p)FA(B)EBA(p) + pFA(B)EBB(p)

Each of these events is dependent on p, so the objective of the deceitful player is to
choose p such that the summation of satisfied events’ probabilities are the highest. To
simplify the notation, we set the bounds of p for each event which can be simplified using
FA(A) = FB(B) = FT and FA(B) = FB(A) = FNT :

Claim 3.2. The solution to the optimization problem the deceitful player is indifferent among
the set of p∗ ∈ [FNT , FT + pT

pD
(2FT − 1) with an objective function value of FNT .
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Proof. With some algebra, we find that the p which satisfies the events are:

EAA(p) =


1 if FT + pT

pD
(2FT − 1) < p ≤ 1 and FT−FNT

FT
< pD ≤ 1

1/2 if p = FT + pT
pD

(2FT − 1) and

{
FT−FNT

FT
≤ pD ≤ 1

pT = 0

0 otherwise (including pT = 1)

EAB(p) =


1 if 0 ≤ p < FNT

1/2 if

{
0 ≤ p ≤ 1 and pD = 0

p = FNT and 0 ≤ pT < 1

0 otherwise

EBA(p) =


1 if FNT < p ≤ 1

1/2 if

{
0 ≤ p ≤ 1 and pD = 0

p = FNT and 0 ≤ pT < 1

0 otherwise

EBB(p) =



1 if

{
0 ≤ p ≤ 1 and 0 ≤ pD ≤ FT−FNT

FT

0 ≤ p < FT + pT
pD

(2FT − 1) and FT−FNT

FT
≤ pD ≤ 1

1/2 if p = FT + pT
pD

(2FT − 1) and

{
pT = 0

0 < pT < 1 and FT ≤ 1
1+pT

0 otherwise

Now, the optimal p can be solved for with this explicit optimization. Each event has some
bounds for p in which they are > 0. We will call these bounds

C1 = FT +
pT
pD

(2FT − 1) and C2 = FNT

and we have that C1 > C2. Thus, we can evaluate the Deceitful player’s objective function
based on the region of p.

� p∗1 = arg max
C1<p≤1

(1− p)FT + (1− p)FNT = C1 + ε

� p∗2 = argmax
p=C1

(1− p)FT/2 + (1− p)FNT + pFNT/2 = C1

� p∗3 = arg max
C2<p<C1

(1− p)FNT + pFNT = (C2, C1)

� p∗4 = argmax
p=C2

pFT/2 + (1− p)FNT/2 + pFNT = C2

� p∗5 = arg max
0≤p<C2

pFT + pFNT = C2 − ε
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where ε > 0. We have the value of the objective function at these points to be

QD(p
∗
1) = 1− (C1 + ε)

= 1− FT − pT
pD

(2FT − 1)− ε

QD(p
∗
2) = (1− C1)FT/2 + (1− C1)FNT + C1FNT/2

=
1

2
(1− C1)

QD(p
∗
3) = C2 = FNT

QD(p
∗
4) = C2FT/2 + (1− C2)FNT/2 + C2FNT

= C2

QD(p
∗
5) = C2 = FNT − ε

We find that QD(p
∗
3) = QD(p

∗
4) > QD(p

∗
1) > QD(p

∗
2) > QD(p

∗
5) so the solution is p∗ ∈

[C2, C1).

We see that the expected value of the p∗ ∈ [C2, C1) is FNT , the probability of the false
state. Meaning that even with C1 > p > FNT (slightly lying), the deceitful player still cannot
do better than not lying at all. Since Q(p∗) = FNT , the best response of the deceitful player
is not increase their expected value past just the chance of the truthful player listening to
their signal.

Let us consider two different tie breaker scenarios: one where the truthful player will
simply choose A and one where they will simply choose B. First we examine if they choose
A in a tie, the truthful players will choose with

xA∗
i (si,m−i) =

{
A if E[uT

i (xi = A)|si,m−i] ≥ E[uT
i (xi = B)|si,m−i]

B if E[uT
i (xi = A)|si,m−i] < E[uT

i (xi = B)|si,m−i]

The deceitful player best response analysis will be the same until we evaluate the regions
of the objective function. Now, all the event functions we had will be zero at indifference
rather than 1/2. Then, the solution will be (C2, C1) losing inclusion of the lower bound in
the solution. Conversely, if the truthful player will choose B in a tie,

xB∗
i (si,m−i) =

{
A if E[uT

i (xi = A)|si,m−i] > E[uT
i (xi = B)|si,m−i]

B if E[uT
i (xi = A)|si,m−i] ≤ E[uT

i (xi = B)|si,m−i]

Again, the deceitful player best response analysis is very similar, but now yielding p∗ = C2.
In summary, in the N = 2 case the deceitful player is unable to sway the truthful player

at all; therefore their best strategy is just trying to make sure they do not give away too much
information in their signal accidentally. This theoretical result would align with intuition
since they should trust their own signal more than a single message which could be a lie.
However, this leads into whether or not multiple messages (which have some probability of
being lies) may override a truthful player’s own signal.
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3.3 General N and Two States

Now, extending our N = 2 model to a general number of N is fairly straightforward;
there are three major changes when generalizing the number of players. The first is that the
truthful player expected value must include updating from all the additional players all of
which also have the possibility of being deceitful.

E[ūT
i (xi)|si,m−i] =

P (ω̄ = xi)Fxi
(si)

∏
m∈m−i

[pTFxi
(m) + pDP (m|ω̄ = xi, θ−i = D)]∑

ω∈Ω
P (ω̄ = ω)Fω(si)

∏
m∈m−i

[pTFω(m−i) + pDP (m−i|ω̄ = ω, θi = D)]

It can be observed that the probability of each message is simply raised to the N − 1.

Claim 3.3. Every truthful player will have si = mi.

Proof. Each truthful player’s utility is a function of all other truthful player’s choice of xi;
specifically, they receive a higher payoff for each truthful player that guesses the true state
correctly. Since, all truthful players are homogeneous, we can take a pair of two truthful
agents that would be representative of an interaction between any pair of them (WLOG we
will denote them as i = 1, i = 2).

They each will have a signal before they send their messages, s1 and s2. When player
1 receives their signal, by Bayes rule, we will have E[ūT

1 (x1 = s1)|s1] > E[ūT
1 (x1 ̸= s1)|s1]

since the prior is uniform; player 1 believes that s1 is the most likely true state. Player 1
will receive a higher payoff if player 2 chooses the correct state and their message m1 will
influence that choice. So, player 1 will choose a message that increases the probability that
player 2 will choose s1 since at this stage player 1 believes s1 is the most likely true state.

After receiving signal s1, let player 1 choose their message m1 = s1 with probability q.
When q = 1 player 1 send s1 for sure and when q = 0 they will not send s1 at all. We just
add one more possibility to truthful player signal branch and we get that player 2’s expect
value of choose x2 = s1 with q from player 1’s perspective is

P (ω̄ = s1)Fs1(s2)
∏

m∈m−i/m1

[pTFs1(m) + pDp(m)]× [pT (Fs1(s1)q + (1− Fs1(s1))(1− q)) + pDp(m1)]∑
ω∈Ω

P (ω̄ = ω)Fω(s2)
∏

m∈m−i/m1

[pTFω(m) + pDp(m)]× [pT (Fω(s1)q + (1− Fω(s1))(1− q)) + pDp(m1)]

P (ω̄ = s1)Fs1(s2)
∏

m∈m−i/m1

[pTFs1(m) + pDp(m)]× [pT ((2Fs1(s1)− 1)q + 1− Fs1(s1)) + pDp(m1)]∑
ω∈Ω

P (ω̄ = ω)Fω(s2)
∏

m∈m−i/m1

[pTFω(m) + pDp(m)]× [pT ((2Fω(s1)− 1)q + 1− Fω(s1)) + pDp(m1)]

This expression is very complicated but we are only interested in the behavior with respect
to q, so we can rewrite this expectation as

φs1q + As1∑
ω∈Ω(φωq + Aω)
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where

φω = P (ω̄ = ω)Fω(s2)
∏

m∈m−i/m1

[pTFω(m) + pDp(m)]× pT ((2Fω(s1)− 1)

Aω = P (ω̄ = ω)Fω(s2)
∏

m∈m−i/m1

[pTFω(m) + pDp(m)]× [pT (1− Fω(s1)) + pDp(m1)]

and has first order condition

(
∑

ω∈Ω φωq + Aω)φs1 − (φs1q + As1)(
∑

ω∈Ω φω)

(
∑

ω∈Ω φωq + Aω)2
=

(
∑

ω∈Ω Aω)φs1 − As1(
∑

ω∈Ω φω)

(
∑

ω∈Ω φωq + Aω)2

=
(
∑

ω∈Ω Aω)φs1 − As1(
∑

ω∈Ω φω)

(
∑

ω∈Ω φωq + Aω)2
> 0

since
∑

ω∈Ω(1− Fω(s1)) = 1 and
∑

ω∈Ω(2Fω(s1)− 1) = 0. Then, the first order condition is
always greater than 0, so the corner solution q = 1 maximizes the utility under the s1 signal
and truth telling is the equilibrium action.

Using these beliefs, the optimal x∗ choice remains the same. Since player i of type
Truthful will choose xi to maximize their expected utility, we have

x∗
i (si,m−i) =


A if E[uT

i (xi = A)|si,m−i] > E[uT
i (xi = B)|si,m−i]

[A,B] if E[uT
i (xi = A)|si,m−i] = E[uT

i (xi = B)|si,m−i]

B if E[uT
i (xi = A)|si,m−i] < E[uT

i (xi = B)|si,m−i]

Second, the deceitful player must still expect over all possible message and signal states but
must also additionally expect over the possible player types; in the case when N = 3, they
do not know if the third additional player is truthful or deceitful. Furthermore, since the
deceitful players know for sure their own type and the case in which all players are deceitful
is irrelevant, we shrink the possible player type combinations only to those consisting of
when the deceitful player is deceitful and at least one other player is truthful.

QD(p) =
∑

θ∈ΘN−2

P (θ ∈ ΘN−2)

(∑
ω∈Ω

P (ω)

( ∏
m∈ΩN−1

P (mi|θi)× Eωm

))

where

Eωm =


1 if E[uT

i (xi = ω̄)|si = ω,m−i = m] < E[uT
i (xi = ωn)|si = ω,m−i = m]

1/2 if E[uT
i (xi = ω̄)|si = ω,m−i = m] = E[uT

i (xi = ωn)|si = ω,m−i = m]

0 if E[uT
i (xi = ω̄)|si = ω,m−i = m] > E[uT

i (xi = ωn)|si = ω,m−i = m]

with ωn used to denote the non-true state. It is important to bear in mind P (ω) is known
to the deceitful player since they are aware of the true state. Third, our formulation implies
that we are only solving for the symmetric equilibrium, which must exist given this is a
finite symmetric game. The game becomes more and more difficult to solve with increasing
N since the truthful player’s expected value function will be of order N − 1 with respect to
p, the probability of the deceitful player lying. So, we turn to a numerical solution.
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4 Numerical Results

4.1 Numerical Equilibrium

The parameters are set to pD = 0.3 and FT = 0.60. First, we can look at an example.
We can plot the expected values of the deceitful player with respect to their action choice
p in Figure 1. From Figure 1, we can see that this expect utility function is discontinuous

Figure 1: A plot of the deceitful player(s) expected utility when N = 8.

with respect to p. The discontinuities occur when p reaches a sufficiently high level where
the representative truthful player will no longer choose the incorrect state in a particular
signal-message realization. For example, if a truthfuly player sees 5 messages out of 7 going
against their own signal. Without deception in the messages, they would choose to go
with the messages. However, if deception is sufficiently high they would instead choose to
disregard the messages and go with their own signal. As p increases, more of the choices in
these signal-message realization flip. In our example illustrated in Figure 1, we have that in
N = 8 the best strategy is to choose p∗ = 0.6208652. Lying above 1 − Fω̄(ω̄) means that
the deceptive players are indeed introducing more noise into the messages. In this discrete
message distribution, the deceptive player will always shade a discontinuity be ϵ > 0.

Figure 2 shows how the information aggregation (IA) efficiency degrades as the probabil-
ity of a player is deceitful increases. This efficiency is calculated ex-ante to the signals and
messages (similarly to how the deceptive players take the expectation of all possible signals
and messages) and measures the probability of any truthful player deducing the correct state
when the deceptive players are lying optimally.

efficiency =
∑

θ∈ΘN−1

P (θ ∈ ΘN−1)

(∑
ω∈Ω

Fω̄(ω)

( ∏
m∈ΩN−1

P (mi|θi)× E(ω,m)

))
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where

E(s,m) = 1
{
E[ūT

i (ω̄)|si = ω,m−i = m] ≥ E[ūT
i (Ω/ω̄)|si = ω,m−i = m]

}
Essentially, the efficiency tells us, ex-ante to any information exchange while being lied to
optimally, how often a representative truthful player will be able to guess the true state.
In the case worst case scenerio, the representative truthful player will only be able to rely
on their own signal; thus, the efficiency will be bounded below by Fω̄(ω̄). Furthermore, IA
efficiency tends to increase when pD = 0 and N increases since there will be more information
in the system. As pD increases, the IA efficiency will decreases towards its lower bound.

Figure 2: The information aggregation efficiency decreases as the presence of deceptive
players increases.

While these expected utiltiy functions accurately reflect our setting, the discontinuities
make evaluation, calculation, and interpretation more difficult. So, what if we wanted some-
thing that was smoother and more continuous.
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4.2 Continuous Message Distribution

Let us characterize the messages recieved by a truthful player as how many messages A
they will get: mA. Currently, mA follows a binomial distribution (with A as 1 and B as 0).
This distribution only has support over {0, ...M} which makes sense since you cannot have
fractional messages. But this results in a discontinous expected utility function for deceitful
players. So, we can replace the that message m distribution with one that is support over
[0,M ] and we can mimic a continuous version of a binomial distribtution with a trucated
normal approximation. That is a normal approximation only supported over [0,M ] with
µ = Np and σ =

√
Npq. This approximation ends up being fairly good even at low N and

while this is an approximation right now, this analysis can be generalized to any continuous
distribution.

Now that fractional messages are allowed and mA is continuous between 0 and M , the
truthful player expected utility is smooth and continous with respect to mA. In Figure 3,
we can see the expected utilities of choosing x = A and x = B under the signal s = A.
From the truthful player’s perspective, they will always choose x = B so long as EUT (x =

Figure 3: The plot of the expected value of a truthful player choosing x = A (in black)
and x = B (in red) after already recieving a signal s = A with repsect to increasing the
number of A messages received. The black and red points are the expected utilties under
the binomial distribution for mA for x = A and x = B, respectively.

B) > EUT (x = A). In the discrete version, we can see from Figure 3, that they will choose
x = B, until there are at least 4 messages are A (in this N = 10, M = 9 example). In
the continuous version, we get a little more granularity. Let us define the value of mA such
that EUT (x = B) = EUT (x = A) as c. Thus, every mA to the left of c, the truthful player
chooses x = B and every mA to the right of c, they choose x = A.

Once, we have these ”cutoff” points c where the truthful player will switch their choice,
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we can use them to assemble the expected utility of the deceitful players. If you recall, the
deceitful players maximize the probability that the truthful players choose x = B. If we can
define the probability distribution of the A messages from the perspective of the deceitful
player, then we can use the cutoff c to add up all the probabilities that will result in a choice
x = B. A numerical calcuation of this continuous distribution compared to the discrete case
can be seen in Figure 4.

Figure 4: The plot of the probability density distribution of the messages seen by the truthful
player from the deceitful player’s persective. The points on the plot are the probabilities
from the discrete case where the red and blue points are when the truthful player will choose
B and A, respectively. The vertical dashed line is the cutoff c where EU(A) = EU(B) in
the continuous case.

In Figure 4, the red points and the blue points represent choosing B and A, respectively.
The vertical dashed line is the cutoff c that shows where the truthful player will switch from
x = B to x = A. If this is the case, this vertical dashed line should always divide the red
points from the blue points, which it does. Just as in the original model, we would sum over
all the red points (all the points where the truthful player would choose x = B). We can
integrate the PDF up c to capture the probabilties of all the mA in which the truthful player
chooses x = B. By assembling the expected utility of the deceitful player in this fashion, we
can plot it against the discrete version in Figure 5.

Figure 5 shows us a very nicely smoothed version of the deceitful player’s expected utilities
without the discontinuities. However, the true benefits are when we observed the expected
utility plot for several values of N which show that the reason that the optimal lying value
jumps around for N is that it finds the closest discontinuity to the optimal lying value in
the smoothed version (these plots are included at the end).
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Figure 5: The plot of expected utility of the deceiful player over different levels of lying (p).
The red and black lines describe the discrete and continuous versions, respectively, while the
dashed lines are their optimal values.

And now, Figure 6, shows the relationship between optimal lying and N is now strictly
monotonic non-decreasing in N for both the discrete and continuous cases. The optimal lying
seems to jump around with a lot of noise but roughly following the very apparent increasing
trend in optimal lying of the continuous model. This seemingly noisy pattern stems of the
discontinuities in the expected utility induced by the discrete nature of the messages. The
continuous case does not suffer from this issue.
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Figure 6: The plot of optimal lying (p) on the y-axis against the number of group members
(N) on the x-axis with the red line as the model with continuous messages and the black
line as the model with discrete messages.

4.3 Hypotheses

We form the following hypotheses based on our theoretical model:

1. Information aggregation efficiency decreases when deceptive agents are introduced
(when pD = 0 to pD = 0.3), the percentage of truthful player who correctly choose the
true state will decrease).

2. Information aggregation efficiency stays about the same when pD = 0.3 but N increases
from 4 to 8.

3. As the group size (N) increases, the optimal level lying for deceptive players increases
(under the smoothed message probability).

4. As the group size increases from N = 4 to N = 8, the optimal level lying for deceptive
players will stay the same (under discrete message probabilties).

The first two hypotheses are directly testing features of our model while the last two test
differences between our continuous and discrete messaging models.

5 Experimental Investigation

5.1 Method

The experiment will be run at the Interdisciplinary Experimental Laboratory at Indiana
University Bloomington (IU). Subects will be recruit via Online Recruitment System for

18



Economic Experiments (ORSEE) from a pool of opt-in college students enrolled at IU.
Subjects will be taken through the instructions and take a comprehension quiz before being
allowed to proceed to the experiment.

5.2 Design

The experiment consistents of several rounds with rematched groups between every round.
Subjects will be assigned a player type (either truthful or deceitful) at the beginning of the
experiment according the parameter pD. Their player types do not change. The subjects
participated in the following experiment:

In each decision round, the computer will randomly choose one of two bags with equal
chance, an ‘up’ bag and a ‘down’ bag. Each bag contains 100 balls that are labelled either
‘up’ or ‘down’. The ‘up’ has FT × 100 balls labelled ‘up’ and (1 − FT ) × 100 balls labelled
‘down’. The ‘down’ bag follows a similar pattern such that it is more likely to draw a ball
matching the label of the bag.

After a bag has been selected, the deceitful players will be told which bag has been
selected with the truthful players will only get to observe a single ball randomly drawn (with
replacement) out of the bag. Then, each player will send one message (either ‘up’ or ‘down’)
to all other players.

Truthful players will then observe all messages sent by their fellow players and choose
which bag they believe to have been selected by the computer. Truthful players will receive
a higher payoff the more truthful players that guess correctly (including themselves while
deceitful players will recieve a higher payoff the less truthful players that guess correctly.

5.3 Treatments

To test our hypotheses, we have the following treatments holding FT = 0.60 constant:

N = 4 N = 8
pD = 0 N = 4, pD = 0 N = 8, pD = 0
pD = 0.3 N = 4, pD = 0.3 N = 8, pD = 0.3

6 Behavioral Model

6.1 Re-weighted Updating Process

As previous derived, the updating process for a Bayesian agent will have expected value
as

E[ūT
i (xi)|si,m−i] =

P (ω̄ = xi)Fxi
(si)

∏
m′∈m−i

[pTFxi
(m) + pDpxi

(m′)]∑
ω∈Ω

P (ω̄ = ω)Fω(si)
∏

m′∈m−i

[pTFω(m−i) + pDpω(m′)]
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which can be augmented to

E[ūT
i (xi)|si,m−i] =

P (ω̄ = xi)Fxi
(si)

1+α
∏

m′∈m−i

[pTFxi
(m) + pDpxi

(m′)]1+β∑
ω∈Ω

P (ω̄ = ω)Fω(si)1+α
∏

m′∈m−i

[pTFω(m−i) + pDpω(m′)]1+β

By construction, α augments the weight of the signals while β augments the weight of the
messages. The values of β have the following interpretations:

� α, β > 0: information is weighted more than Bayesian benchmark

� α, β = 0: equivalent to Bayesian benchmark

� α, β < 0: information is weighted less than Bayesian benchmark

So, when β is positive, the subject would be over-weighting the messages and believing them
more than they should. However, if β is negative they discount the messages too much and
disregard the information that the messages could provide. α has a similar interpretation for
the signal. We put a separate distortion parameters on the signal (private information) and
the messages (public information) since there may be reaction to second-hand information.
The identification of the two parameter comes when in the data the signals and messages go
in opposing directions and how that ultimately influnces the choice made.

7 Conclusion

Still working on it.
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