An introduction to Sequential Monte Carlo Techniques

CAEPR Joint Macro-Econometrics Minicourse

Gianni Amisano (FRB, UTS)

CAEPR Joint Macro-Econometrics Minicourse, IU

2015/09/23

2015/09/23

1Views expressed here are not those of the Federal Reserve System
Nonlinear state space model

Dynamic system

(measurement equation) \(y_t^O = G(x_t, v_t, \theta) \) \hspace{1cm} (1)

(state equation) \(x_t = H(x_{t-1}, w_t, \theta) \) \hspace{1cm} (2)
Filtering problem

- projection

\[p(x_{t+1}|y^o_t, \theta) = \int p(x_{t+1}|x_t, \theta)p(x_t|y^o_t, \theta) dx_t \]

- update

\[p(x_{t+1}|y^o_{t+1}, \theta) = \frac{p(x_{t+1}|y^o_t, \theta)p(y^o_{t+1}|x_{t+1}, \theta)}{p(y^o_{t+1}|y^o_t, \theta)} \]

\[p(y^o_{t+1}|y^o_t, \theta) = \int p(x_{t+1}|y^o_t, \theta)p(y^o_{t+1}|x_{t+1}, \theta) dx_{t+1} \]

Integration steps easy only under very special circumstances (KF, Hamilton filter are examples)
Sequential Monte Carlo (SMC) methods

- Arulampalam *et al.* (2002), IEEE
- Doucet *et al.* (2001)
- Fernandez-Villaverde and Rubio-Ramirez (2007)
- An and Schorfheide (2007)
- Durbin and Koopman (2010)
- Durham and Geweke (2014)

⇒ Filtering by simulation.
Simplest way: Particle Filter (PF)
Intuition of the PF

compute the likelihood \(p(y_{t+1}^o | y_t^o, \theta) \) by:

1. drawing large number of realisations from distribution of \(x_{t+1} \) conditioned on \(y_t^o \)
2. assigning them weight determined by their "distance" from (compatibility with) \(y_{t+1}^o \).

For Bayesians:
\[
p(x_{t+1} | y_t^o, \theta) = \text{prior distribution (prior to observing } y_{t+1}^o)\]
\[
p(y_{t+1}^o | x_{t+1}, \theta) = \text{"likelihood"},
\]
\(\Rightarrow \) doing posterior simulation drawing from prior and using likelihood as weights.
Suppose we have N draws to approximate $p(x_t|y^o_t, \theta)$ (swarm of particles):

$$
\left(x_t^{(i)}, w_t^{(i)} \right), \ i = 1, 2, \ldots, N
$$

(6)

Weight $w_t^{(i)}$ in case $x_t^{(i)}$ drawn from $q(x_t)$ (Importance sampling):

$$
w_t^{(i)} = \frac{p(x_t^{(i)}|y^o_t, \theta)}{q(x_t^{(i)})}
$$

(7)
Two ways to compute expected value of any function f of x_t:

- **direct Importance Sampling (IS):**

 $$E \left[f(x_t^{(i)}) \mid y_{t}, \theta \right] \approx \frac{\sum_{i=1}^{N} w_t^{(i)} f(x_t^{(i)})}{\sum_{i=1}^{N} w_t^{(i)}} \quad (8)$$

- **Resample** $x_t^{(i)}$ drawing N times from empirical distribution of the $x_t^{(i)}$, with probabilities $w_t^{(i)}$ ⇒

 $$\left(x_t^{(j)}, 1 \right), j = 1, 2, \ldots, N \quad (9)$$

 $$E \left[f(x_t^{(i)}) \mid y_{t}, \theta \right] \approx \frac{\sum_{j=1}^{N} f(x_t^{(j)})}{N} \quad (10)$$
Filtering, I

Assuming to have a swarm of particles with perfectly even weights ($w_t^{(j)} = 1, j = 1, 2, ..., N$):

- projection

\[
p(x_{t+1}|y_{t+1}^o, \theta) \approx \frac{1}{N} \sum_{j=1}^{N} p(x_{t+1}|x_t^{(j)})
\]

(11)

Empirically performed by drawing $x_{t+1}^{(j)}$ from

\[
p(x_{t+1}|x_t^{(j)}, \theta)
\]

(12)

(i.e. simulate state equation) \(\left(x_{t+1}^{(j)}, 1 \right), j = 1, 2, ..., N \)
Filtering, II

Update: drawn from $p(x_{t+1} | y_{t}^{o}, \theta)$ but wanted to draw from $p(x_{t+1} | y_{t+1}^{o}, \theta) \Rightarrow$ assign weights proportional to $p(y_{t+1}^{o} | x_{t+1}^{(j)}, \theta)$.

Updated distribution $p(x_{t+1} | y_{t+1}^{o}, \theta)$ is approximated by the sample

$$\left(x_{t+1}^{(j)}, w_{t+1}^{(j)} \right), j = 1, 2, ..., N,$$

$$w_{t+1}^{(j)} = p(y_{t+1}^{o} | x_{t+1}^{(j)}, \theta)$$ (14)

This sample can be resampled using the weights $w_{t+1}^{(j)}$ as probabilities.
Resample or not resample? I

If not resampling at each step, then weights will accumulate

$$
\prod_{i=0}^{t-1} w_{t-i}^{(j)} = \prod_{i=0}^{t-1} p(y_{t-i}^o | x_{t-i}^{(j)})
$$

After a while (at some t) weight assigned to the particle even marginally most compatible with the observable data will be 1 and all the others will be zero \Rightarrow numerical accuracy of the filter quickly deteriorates.
Resample or not resample? II

In any case, better to watch your weights!

NEFF, (i.e. numerical efficiency index):

\[NEFF_t = \sum_{i=1}^{N} \left(w_t^{(i)} \right)^2 \] \hspace{0.5cm} (16)

\(\approx \) Herfindhal-Hirschmann index. Has to be safely far from 1 and as close as possible to \(1/N \)
Computation of the likelihood

Sample mean of unnormalised weights (14) is t^{th} observation likelihood conditional on past values of observables:

$$\frac{1}{N} \sum_{j=1}^{N} p(y_{t+1}^{o}|x_{t+1}^{(j)}, \theta)$$

$$\approx \int \int p(y_{t+1}^{o}|x_{t+1}, \theta) p(x_{t+1}|x_{t}, \theta) p(x_{t}|y_{t}^{o}, \theta) dx_{t+1} dx_{t} =$$

$$= p(y_{t+1}^{o}|y_{t}^{o}, \theta)$$

(17)

\Rightarrow Likelihood based inference (Bayesian or not)

Inference on unobservables (smoothed or filtered)
Importance function q should be more spread out than target distribution p: bounded weights $w_t^{(i)} = \frac{p_i}{q_i}$.
But if IS distribution too spread out, large number of draws given negligible weights \Rightarrow poor numerical accuracy properties.
\Rightarrow PF is based on a blind proposal
Figure 1: first particle will be killed either by reweighting or by resampling.
Importance sampling (IS) interpretation, II

Figure 1
Sensitivity to outliers

see Figure 2: particle 3 will get a unit weight
No or low measurement error

\[p(y_{t+1}^o|x_{t+1}^{(j)}, \theta) \] to compute weights, but if no measurement error this becomes degenerate.
Simplest way: use SMC to produce likelihood

- to be maximised or
- to be combined with prior to obtain posterior, via MCMC (Metropolis-Hastings)
MH algorithm

random walk Metropolis Hastings algorithm (see Chib, 2001) which works by sequentially repeating the following steps:

- draw $\theta^{(i)}$ from a candidate distribution $q_V(\theta^{(i-1)})$;
- compute the solution of the DSGE model and the implied state space form;
- carry out the simulation filter which will produce also the likelihood of the model

$$p(y^o_T | \theta^{(i)}) = \prod_{t=1}^{T-1} p(y^o_{t+1} | y^o_t, \theta^{(i)});$$

- accept $\theta^{(i)}$ with probability

$$\frac{p(\theta^{(i)}) p(y^o_T | \theta^{(i)})}{p(\theta^{(i-1)}) p(y^o_T | \theta^{(i-1)})}$$ (18)

if the draw is not accepted the MH simulator sets $\theta^{(i)} = \theta^{(i-1)}$.

Papers to read

- Durham and Geweke (2014)
- Herbsts and Schorfheide (2012), (2016 forthcoming)

(So far used with models where likelihood is available analytically)
A simple example: dynamic pooling of models

- Del Negro, Hasegawa, Schorfheide (2015)
- Amisano and Geweke (2013, 2015)
A simple example of SMC at work

Forecasting combination

- 3 models (DFM, DSGE and VAR), producing predictive densities
 \[p(y_{t+1}|y_{1:t}, M_i), \ i = 1, 2, 3 \]

- Model combination
 \[p(y_{t+1}|y_{1:t}) = \sum_{i=1}^{3} p(y_{t+1}|y_{1:t}, M_i) w_t \]
Density forecasting combination

- Focus on density forecasts
- Produce density forecast based on model combination, formula
- A possibility is to use Bayesian Model Averaging, with weights proportional to the posterior
- Problem: this approach assumes that one of the combined model is true
- Asymptotically, least wrong model is selected with weight equal to one
- This asymptotic tends to kick in quite fast
An alternative: Optimal pooling (I)

- Use optimal weights
- Use weights to maximise log predictive density of linear combination of model predictive densities

\[
wt_{t-1} = \arg \max \sum_{s=1}^{t-1} \ln \left[\sum_{i=1}^{n} w_i p(y_s | y_{1:s-1}, M_i) \right]
\]

- Originally proposed by Hall and Mitchell (2007), as way to find minimum KL distance to unknown DGP.
- Way to address misspecification
An alternative: optimal pooling (II)

- Sensible way of combining models when none is true
- Model value: drop model j from the pool and compute difference in log scores of the combination
- This can be decomposed period by period (each month) or by subperiods (recessions/expansions)
- measure also contribution during different recessions: not all recessions are driven by financial factors
Problems with optimal pooling

• Optimal weights are imprecisely estimated

• We might want to have a method capable of dynamically giving more weights to models that might be particularly suited for certain circumstances (eg. crisis and its immediate aftermath)

 • Analogy with stockpicking techniques

• Very difficult to beat equal weights (1/N), if N number of models
A simple example of SMC at work

The method in the DHS paper (I)

- 3 models producing predictive densities

\[p(y_t | y_{1:t-1}, M_i), i = 1, 3 \]

- Combine them with weight \(w_t \) (here scalar, just two models) evolving in time as

\[
\zeta_t = \rho \zeta_{t-1} + \sqrt{(1 - \rho^2)} \times e_t, \quad e_t \sim NID(0, I_3), \tag{19}
\]

\[
\omega_{it} = \frac{\exp(\zeta_{it})}{\sum_{j=1}^m \exp(\zeta_{jt})}, \quad i = 1, 2, 3. \tag{20}
\]

- Neat:
 - when \(\rho = 1 \), we are back to static weights
 - prior for the weights is uniform on \([0,1]\)
 - Other approaches much more complicated
The method in the DHS paper (II)

- Use Sequential Monte Carlo (particle filter) to simulate the densities

\[p(\xi_t | y_{1:t}) \] (filtered)
\[p(\xi_t | y_{1:t-1}) \] (predictive)

- Use these to combine models
- In particular, use predictive weights for real time evaluations of pools
Out of sample approach

All RT approaches are constructed by using recursively information up to t-1 to compute performance at t. The algorithm works as follows

- For t=1,2,..., T compute
 \[p(y_{1:t} | \rho_r) = \prod_{t=1}^{T} p(y_t | \Omega_{t-1}, \rho_r), \ r = 1, 2, .., R \]
 for a fine grid of values of \(\rho \)
- identify \(\rho_{r^*,t} \)
- compute
 \[p(y_{1:t} | \Omega_0, \rho_{r^*,t-1}) = \prod_{t=1}^{T} p(y_t | \Omega_{t-1}, \rho_{r^*,t-1}), \ r = 1, 2, .., R \]
Results

A simple example of SMC at work

Figure: Real time optimal pool weights using dynamic pooling