Aggregate Labor Market Outcomes: The Role of Choice and Chance*

Per Krusell† Toshihiko Mukoyama‡ Richard Rogerson§ Ayşegül Şahin¶

August 2009

Abstract

Commonly used frictional models of the labor market imply that changes in frictions have large effects on steady state employment and unemployment. We use a model that features both frictions and an operative labor supply margin to examine the robustness of this feature to the inclusion of a empirically reasonable labor supply channel. The response of unemployment to changes in frictions is similar in both models. But the labor supply response present in our model greatly attenuates the effects of frictions on steady state employment relative to the simplest matching model, and two common extensions. We also find that the presence of empirically plausible frictions has virtually no impact on the response of aggregate employment to taxes.

Keywords: Labor Supply, Labor Market Frictions, Taxes

JEL Classifications: E24, J22, J64

*Some of the material in this paper was previously contained in our paper entitled “Labor Supply in a Frictional Labor Market”. We thank Nicola Pavoni and Naoki Shintoyo for useful comments as well as seminar participants at CEMFI, Columbia, Universitat Autonoma de Barcelona, USC, UCLA, the Atlanta Fed, Yale, UC Riverside, Queen’s, Georgetown, Wharton, Toronto, Ryerson, Western Ontario, Stockholm School of Economics, IIES, University of Oslo, Concordia, Northern Illinois, Yonsei University and Korea University, as well as conference participants at the Labor Markets Conference at the IFS (2008), the Winter Institute of Macroeconomics 2009 (Tokyo), the Bewley Conference at UT Austin, and the 2009 SED Conference. We thank Joe Song for excellent research assistance. Krusell and Rogerson acknowledge financial support from the NSF. The views expressed in this article are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System. Corresponding author: Richard Rogerson. Address for correspondence: Department of Economics, Arizona State University, Tempe, AZ 85287. Phone: 480-727-6671. Fax: 480-965-0748. Email: Richard.Rogerson@asu.edu

†IIES, CAERP, CEPR, and NBER
‡University of Virginia and CIREQ
§Arizona State University and NBER
¶Federal Reserve Bank of New York
1 Introduction

Two frameworks dominate analyses of aggregate employment—frictionless models that follow in the tradition of Kydland and Prescott (1982), and frictional models in the tradition of Mortensen and Pissarides (1994). While frictionless models necessarily imply that changes in employment entirely reflect changes in desired labor supply (i.e., choice), the simplest specifications of frictional models imply that changes in employment entirely reflect changes in the probability of receiving an offer (i.e., chance). It seems clear that both choice and chance influence individual employment outcomes in reality; that is, at any point in time some individuals are not employed by choice, while others are not employed by chance. There is good reason to believe that these two features could have interesting interactions, in that the presence of frictions may attenuate the labor supply responses in frictionless models, while the presence of an operative labor supply margin might similarly attenuate the effects of frictions. In this paper we assess the relative importance of these two forces in shaping aggregate steady state employment.

We carry out this analysis in the model of Krusell et al (2009). That paper built an empirically reasonable model that features both frictions and an operative labor supply margin. The claim to being empirically reasonable was based on the model’s ability to capture the key features of the flows of workers across all three labor market states: employment, unemployment and out of the labor force.

We use this model to ask two simple questions about the forces that influence steady
state employment and unemployment. The first question is how changes in frictions affect aggregate steady state outcomes. In the simplest matching model, the level of frictions (captured by both the offer arrival rate and the separation rate) critically affects the level of both aggregate employment and unemployment. We assess the extent to which this is altered when one embeds the frictional model in a context where individuals also solve a nondegenerate labor supply problem. Intuitively, if employment opportunities are harder to come by (or jobs do not last very long), individuals can adjust lifetime labor supply by extending the length of employment spells when employed, or by accepting more employment opportunities when not employed. In our calibrated model we find that the increase in unemployment is very similar to that implied by a simple matching model. In contrast, we find that labor supply responses greatly attenuate the direct effect of frictions on employment. Specifically, we find that a decrease in the arrival rate of employment opportunities leads to a large increase in the unemployment rate but only a small decrease in the employment rate. We conclude that while the role of frictions for steady state aggregate unemployment seems robust to adding a nondegenerate labor supply decision, the impact of frictions on steady state employment is probably significantly overstated in simple matching models. We show that this same result holds even in versions of the matching model in which match formation and match termination decisions are introduced.

Second, we use our model to assess the effects of increases in labor taxes used to fund lump-sum transfers. This question, recently examined in a frictionless model by Prescott
(2004), seems a simple and sharp example of how an operative labor supply margin influences steady state employment. We ask how these effects are altered by the presence of reasonable frictions. We find that the employment effects are effectively unchanged by the presence of frictions. This result holds not only for tax increases but also tax decreases, which is perhaps more interesting since it is more likely that frictions will interfere with the desire to increase the fraction of time spent in employment.\footnote{A similar result was found in Krusell et al (2008), but the calibrated model in that paper was not consistent with worker flows.} We conclude that frictions do not seem to be of first order importance in the determination of steady state employment. Interestingly, in our model with frictions, higher taxes lead to both higher unemployment and higher non-participation, even holding the level of frictions constant. So, although the aggregate effects on employment in our model are effectively those found in the frictionless version of the model, the analysis shows that this does not imply that there are not also effects on both the level and nature of unemployment.

There is one important qualification regarding the above results. A key feature of the calibrated model of Krusell et al (2009) is that the distribution of idiosyncratic shocks is continuous. It turns out that this assumption is potentially very important for our results regarding frictions and employment. In particular, we show that one can calibrate a model in which there are only two values for the idiosyncratic shocks, and do a reasonable job of matching the flow data, but with very different results than those mentioned above. Specifically, in such a model it is possible that increases in frictions have equally large (but opposite)
effects on employment and unemployment, and that taxes have no effect on employment. Key to these results is that the calibration is carried out so as to provide no scope for individuals to marginally adjust the amount of time that they spend in employment. Moreover, in such a model there is no scope for aggregate factors to influence participation rates. While this type of specification does deliver very different answers to the questions that we answer, we conclude that it does not seem to fit well with other observations.

Our paper is related to many papers in the literature. Merz (1995) and Andolfatto (1996) were the first to introduce frictions into an otherwise standard version of the growth model. A key feature of these models is that employment is completely determined by frictions, just as in simple frictional models. The model in Alvarez and Veracierto (1999) is closer to ours, since it features both a standard labor-leisure choice and frictions, but it cannot be calibrated to match worker flows since worker flows are indeterminate in their equilibrium. Moreover, they do not ask the question of how changes in frictions affect steady state outcomes. Ljungqvist and Sargent (2006, 2008) consider models that feature indivisible labor and frictions, but do not consider the impact of frictions on aggregate employment. Low et al (2008) consider a model with frictions and a nondegenerate labor supply decision. They consider a richer model of frictions and income support programs, but their analysis is partial equilibrium and they address very different issues than we do.

An outline of the paper follows. Section 2 describes the model. Section 3 describes the calibration of the model and presents the implications of the calibrated model for labor mar-
ket flows. Section 4 analyzes the effects of changes in frictions on steady state outcomes in a simple matching model, while Section 5 considers the same issue in some extensions of this model. Section 6 presents the results for analyzing tax and transfer programs. Section 7 discusses robustness issues regarding the nature of idiosyncratic shocks and Section 8 concludes.

2 Model

The economy is identical to that in Krusell et al (2009).2 The economy is populated by a continuum of workers with total mass equal to one. All workers have identical preferences over streams of consumption and time devoted to work given by:

$$\sum_{t=0}^{\infty} \beta^t \left[\log(c_t) - \alpha e_t \right]$$

where $c_t \geq 0$ is consumption in period t, $e_t \in \{0, 1\}$ is time devoted to work in period t, $0 < \beta < 1$ is the discount factor and $\alpha > 0$ is the disutility of work. Individuals are subject to idiosyncratic shocks that affect the static payoffs of work relative to not working. While many shocks may have this property, e.g., shocks to market opportunities, shocks to home production opportunities, health shocks, family shocks, preference shocks etc..., we represent the net effect of all of these shocks as a single shock, and model it as a shock to the return to market work. In particular, letting s_t denote the quantity of labor services that they

2Several papers have recently analyzed labor supply in models with idiosyncratic shocks and incomplete markets, including Floden and Linde (2001), Domeij and Floden (2006), Pijoan-Mas (2006), and Chang and Kim (2006, 2007). Relative to these papers the distinguishing feature of our model is the presence of frictions.
contribute if working, we assume an AR(1) stochastic process in logs:

\[
\log s_{t+1} = \rho \log s_t + \varepsilon_{t+1}
\]

where the innovation \(\varepsilon_t \) is a mean zero normally distributed random variable with standard deviation \(\sigma_\varepsilon \). This process is the same for all workers, but realizations are \textit{iid} across workers.

We formulate equilibrium recursively and focus solely on the steady state equilibrium. In each period there are markets for output, capital services and labor services, but there are no insurance markets, so individuals will (potentially) accumulate assets to self-insure. We normalize the price of output to equal one in all periods, and let \(r \) and \(w \) denote steady state rental rates for a unit of capital and a unit of labor services, respectively. If a worker with productivity \(s \) chooses to work then he or she would contribute \(s \) units of labor services and therefore earn \(ws \) in labor income. We assume that individual capital holdings must be nonnegative, or equivalently, that individuals are not allowed to borrow. There is a government that taxes labor income at constant rate \(\tau \) and uses the proceeds to finance a lump-sum transfer payment \(T \) subject to a period-by-period balanced budget constraint. In steady state, the period budget equation for an individual with \(k_t \) units of capital and productivity \(s_t \) is given by:

\[
c_t + k_{t+1} = rk_t + (1 - \tau)ws_t\varepsilon_t + (1 - \delta)k_t + T.
\]

The production technology is described by a Cobb-Douglas aggregate production function:

\[
Y_t = K_t^\theta L_t^{1-\theta}.
\]
K_t is aggregate input of capital services and L_t is aggregate input of labor services:

\begin{align*}
K_t &= \int k_{it}di \\
L_t &= \int e_{it}s_{it}di.
\end{align*}

Output can be used either as consumption or investment, and capital depreciates at rate δ.

Frictions in the labor market are captured by two parameters: λ_w and σ, where λ_w is the employment opportunity arrival rate and σ is the employment separation rate. Specifically, we assume there are two islands which we label as the production island and the leisure island. At the end of period $t-1$ an individual is either on the production island or the leisure island, depending upon whether they worked during the period. At the beginning of period t each individual will observe the realizations of several shocks. First, each worker receives a new realization for the value of their idiosyncratic productivity shock. Second, each individual on the production island observes the realization of an iid separation shock: with probability σ the individual is relocated to the leisure island. Third, each individual on the leisure island, including those that have been relocated on account of the separation shock, observes the realization of an iid employment opportunity shock: with probability λ_w an individual is relocated to the production island. In terms of connecting our model with the literature it is intuitive to think of σ as the exogenous job separation rate, and λ_w as the exogenous job arrival rate. Once the shocks have been realized, individuals make their labor supply and consumption decisions, though only workers with an employment opportunity can choose e equal to 1. An individual on the production island who chooses not to work
will then be relocated to the leisure island at the end of period t and will therefore not have
the opportunity to return to the production island until receiving a favorable employment
opportunity shock.

While it is not necessary to follow the results in subsequent sections, for completeness we
formally present the decision problems solved by individuals in the steady state equilibrium.

An individual’s state consists of his or her location at the time that the labor supply decision
needs to be made, the level of asset holdings, and productivity. Let $W(k, s)$ be the maximum
value for an individual who works and $N(k, s)$ be the maximum value for an individual who
does not work given that he or she has productivity s and capital holdings k. Define $V(k, s)$
by:

$$V(k, s) = \max \{W(k, s), N(k, s)\}.$$

The Bellman equations for W and N are given by:

$$W(k, s) = \max_{c, k'} \{\log(c) - \alpha + \beta E_{s'}[(1 - \sigma + \sigma \lambda_w) V(k', s') + \sigma (1 - \lambda_w) N(k', s')]\}$$

$$s.t. \quad c + k' = rk + (1 - \tau)ws + (1 - \delta)k + T$$

$c \geq 0, \quad k' \geq 0$

and

$$N(k, s) = \max_{c, k'} \{\log(c) + \beta E_{s'}[\lambda_w V(k', s') + (1 - \lambda_w) N(k', s')]\}$$
\[\text{s.t. } c + k' = rk + (1 - \delta)k + T \]

\[c \geq 0, \; k' \geq 0 \]

Let \(\mu(k, s, l) \) denote the measure of individuals over individual states after all of the idiosyncratic shocks have been realized and before any decisions have been taken, where \(l \) indexes location and can take on the two values 0 and 1, with \(l = 1 \) indicating the production island. There are three decision rules: one for \(c \), one for \(k' \), and one for \(e \) (which can only take on the values of 0 or 1).

3 Calibration

We calibrate the model as in Krusell et al (2009), and so refer the reader to that paper for more detailed analysis and discussion of the calibration. A key aspect of the calibration procedure is to choose parameters so that the distribution of workers across states and the flows of workers between states are similar to those in the US economy. In what follows we will use \(E \) to denote the employment state, \(U \) to denote the unemployment state, and \(N \) to denote the not in the labor force state. A necessary step is to take a stand on how to allocate the nonemployed workers in the model between the unemployed and out of the labor force states. As in Krusell et al (2009) we call a worker in the model unemployed if they did not work in period \(t \) but would have preferred to work if they had the opportunity. In order to
have a consistent definition in the model and the data, we use this same criterion to define unemployed workers in the data. Since our definition is somewhat broader than that used by the BLS, our unemployment rate is somewhat larger (8.3% versus 5.1%) and we also need to compute flows for our notion of unemployment. As a practical matter it turns out that this adjustment has very little effect on the flows.

Having described how we will measure flows across states in the data and the model, we now consider how to calibrate the model’s parameters. The model has nine parameters that need to be assigned: preference parameters β and α, production parameters θ and δ, idiosyncratic shock parameters ρ and σ_e, frictional parameters σ and λ_w, and the tax rate τ. The length of a period is set to one month. Because our model is a variation of the standard growth model, we can choose some of these parameter values using the same procedure that is typically used to calibrate versions of the growth model. The features of incomplete markets and uncertainty implies that we cannot derive analytic expressions for the steady state, and so cannot isolate the connection between certain parameters and target values. Nonetheless, it is still useful and intuitive to associate particular targets and parameter values. Specifically, given values for λ_w, σ, ρ, and σ_e, we choose $\theta = .3$ to target a capital share of $.3$, δ to achieve an investment to output ratio equal to $.2$, the discount factor β to target an annual real rate of return on capital equal to 4%. The other preference parameter α, which captures the disutility of working, is set so that the steady state value of employment is equal to $.632$. This is the value of the employment to population ratio for the population aged 16 and older.
for the period 1994 – 2007.³

The tax rate is set at \(\tau = .30 \). Following the work of Mendoza et al (1994) there are several papers which produce estimates of the average effective tax rate on labor income across countries. Examples include Prescott (2004) and McDaniel (2006). There are minor variations in methods across these studies, which do produce some small differences in the estimates, and the value .30 is chosen as representative of these estimates.⁴

It remains to choose values for the \(\lambda_w, \sigma, \rho \) and \(\sigma_\varepsilon \). We choose \(\lambda_w \) so that the steady state unemployment rate in our model (i.e., \(U/(E+U) \)) is equal to .083, which is the average value for our notion of the unemployment rate in the US data for the period 1994 – 2007. We choose \(\sigma \) to target the flow rate from employment to unemployment.

Krusell et al (2009) showed that the ability of the model to account for the flows between states remains relatively constant for a wide range of values of \(\rho \) and \(\sigma_\varepsilon \). What mattered most was that \(\rho \) was reasonably persistent (at least .5), but not too close to being a unit root (say less than .97), and that \(\sigma_\varepsilon \) was not too small. In their benchmark calibration they assumed \(\rho = .92 \) and \(\sigma_\varepsilon = .21 \) expressed on an annual basis. These values correspond to one set of estimates of idiosyncratic wage shocks for prime-aged working males, as reported in Floden and Linde (2001). A key issue for our quantitative exercises is the extent to which different specifications of the shock process influence our results, despite having relatively little impact.

³We calibrate to values for the period 1994-2007 because this is the period for which we have consistent measures of labor market flows.
⁴Note that Prescott (2004) makes an adjustment to the average labor tax rate to arrive at a marginal tax rate that is roughly 40%. For purposes of computing the effect of changes in taxes this adjustment plays no role.
on worker flows. It turns out that the results are relatively unaffected by considering different calibrated values for ρ and σ_ε, given that in each case we recalibrate the remaining parameters to continue to hit the same targets. As a result, we will only present results for this one set of values for ρ and σ_ε.

Table 1 shows our calibrated parameter values.

<table>
<thead>
<tr>
<th>θ</th>
<th>δ</th>
<th>β</th>
<th>α</th>
<th>ρ</th>
<th>σ_ε</th>
<th>λ_ω</th>
<th>σ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.0067</td>
<td>.9967</td>
<td>.547</td>
<td>.9931</td>
<td>.1017</td>
<td>.436</td>
<td>.039</td>
<td>.30</td>
</tr>
</tbody>
</table>

The labor market flows in our calibrated model and the data are displayed in Table 2.

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>U</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>0.960</td>
<td>0.021</td>
<td>0.018</td>
<td>0.947</td>
</tr>
<tr>
<td>0.248</td>
<td>0.517</td>
<td>0.235</td>
<td>0.407</td>
</tr>
<tr>
<td>0.036</td>
<td>0.045</td>
<td>0.919</td>
<td>0.034</td>
</tr>
</tbody>
</table>

A major discrepancy has to do with the flow of workers from U to N. As discussed in Krusell et al (2009), this discrepancy is much less if we consider male workers aged 21-65 instead of the whole population. Additionally, assuming some survey response error that causes spurious transitions between N and U also removes much of the discrepancy. While there is room for additional improvements relative to this simple model, we feel that the match is sufficiently close to justify using this model to revisit some basic questions about the forces that shape steady state employment and unemployment.

Survey response error also lowers the measured flow rate from U to E since some of the people counted in U are actually in N and therefore transition to E with much lower probability.
Even accounting for survey response error as noted above, the flow rate from U to E is somewhat high relative to the data. If one is concerned about the calibrated level of frictions being reasonable, this might be viewed as an important target. Krusell et al (2009) also presents an alternative calibration in which the flow rate from U to E is targeted instead of the stock of U. While we do not report any results for this alternative calibration, we note here that all of the results presented below are effectively identical for this alternative calibration.

4 Frictions and the Steady State I: A Benchmark Comparison

One of the defining features of the Pissarides matching model and its many variants is that the level of frictions play a key role in determining not only the level of aggregate unemployment but also in determining the level of aggregate employment.\footnote{See Pissarides (2000) for a variety of models that have this property.} Intuitively, labor supply considerations will attenuate the impact of changes in frictions on aggregate employment. The reason for this is that if it becomes harder to find employment opportunities, then workers will be more willing to continue with a job opportunity once they find it, or decide to accept employment at lower productivities. The goal of this section is to explore the quantitative importance of these effects in our model relative to standard frictional models.

We begin by exploring the impact of exogenous changes in the level of λ_w, that is, we evaluate the impact on the steady state of an exogenous change in the level of frictions. We are primarily interested in the extent to which the responses in our model are different than
those that would emerge in a benchmark version of the Pissarides matching model. In the simplest Pissarides model, the match separation rate is exogenous, but the job offer arrival rate is endogenously determined by the volume of vacancy posting. In this model all job offers are accepted, so the job offer arrival rate is also the probability that an unemployed worker becomes employed. If the match separation rate is σ and the job offer arrival rate is λ_w, and we assume that individuals can begin to work in the same period as receiving a job offer, then the law of motion for the unemployment rate is:

$$u_{t+1} = (1 - \lambda_w)u_t + \sigma(1 - \lambda_w)(1 - u_t).$$

It follows that the steady state employment rate is given by:

$$\bar{u} = \frac{\sigma(1 - \lambda_w)}{\lambda_w + \sigma(1 - \lambda_w)}.$$

We set $\sigma = .039$ as in our benchmark calibration, and then set λ_w so that the steady state unemployment rate is equal to .083, which was the same target that we matched in our calibration. The implied value of λ_w is .301. We will then consider equal proportional changes in the value of λ_w in the two models, i.e., we increase or decrease λ_w by the same percentage in the two models. Although the value of λ_w is endogenously determined in the Pissarides model, we do not model the source of this change. Rather, we focus simply on the consequences of such a change for employment and unemployment.

Table 3 shows the effects for the aggregate employment to population ratio (E/P) and the unemployment rate in the two models, for our benchmark calibration. We emphasize
that the predictions of our model are very similar for different values of ρ and σ_x, and for the alternative calibration procedure in which λ_w is targeted to match the E to U flow. In the interest of space we only report results for the benchmark calibration.

Table 3

<table>
<thead>
<tr>
<th>λ_w</th>
<th>E/P</th>
<th>$U/(U+E)$</th>
<th>λ_w</th>
<th>E/P</th>
<th>$U/(U+E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>63.5%</td>
<td>4.6%</td>
<td>0.414</td>
<td>94.8%</td>
<td>5.2%</td>
</tr>
<tr>
<td>0.436</td>
<td>63.2%</td>
<td>8.3%</td>
<td>0.301</td>
<td>91.7%</td>
<td>8.3%</td>
</tr>
<tr>
<td>0.4</td>
<td>63.0%</td>
<td>9.3%</td>
<td>0.276</td>
<td>90.7%</td>
<td>9.3%</td>
</tr>
<tr>
<td>0.2</td>
<td>61.0%</td>
<td>18.8%</td>
<td>0.138</td>
<td>80.4%</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

In reading this table each row represents the same percentage change in λ_w relative to the two benchmark calibrations, which by construction each have the same unemployment rate. A striking result emerges. If one looks at the responses of unemployment, one observes that the effects are very similar across the two different models. Moreover, the effects are large—when λ_w is decreased from the benchmark setting to the lowest value in the table, the unemployment rate roughly triples in both cases. But when one looks at the employment rate responses one sees dramatic differences. In the Pissarides model, changes in the unemployment rate and changes in the employment rate are necessarily mirror images of each other since by construction all workers are in the labor force. Hence, the Pissarides model also predicts large employment responses as a result of changes in λ_w. In sharp contrast, our model predicts very small changes in employment rates. The change in the employment rate in our model is only about one-sixth as large as the change in the Pissarides model. For example, when moving from the benchmark specification to the lowest value of λ_w in the table, the employment rate decreases by more than 10 percentage points in the Pissarides
model but only by about 2 percentage points in our model.

To see why the two models give such different employment responses it is instructive to examine the durations of employment and unemployment spells.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Effect of λ_w on Spell Durations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our model</td>
</tr>
<tr>
<td>$\lambda_w = 0.6$</td>
<td>19.9</td>
</tr>
<tr>
<td>$\lambda_w = 0.436$</td>
<td>18.7</td>
</tr>
<tr>
<td>$\lambda_w = 0.4$</td>
<td>18.7</td>
</tr>
<tr>
<td>$\lambda_w = 0.2$</td>
<td>20.0</td>
</tr>
</tbody>
</table>

In both models a decrease in λ_w leads to an increase in the duration of unemployment, and the proportional changes are very similar in the two models. But the changes in employment durations are actually opposite in the two models. In the Pissarides model a decrease in λ_w leads to a decrease in the duration of employment spells. The reason for this is that decreases in λ_w make it less likely that a separated worker finds a new job during the initial period of the separation, thereby preserving the employment spell. If we had instead assumed that workers necessarily spend one period out of employment following a separation, then we would have found that the duration of employment spells is constant. In contrast to either of these outcomes, in our model the duration of employment spells increases significantly in response to decreases in λ_w. In moving from the benchmark value of λ_w to the lowest value in the table, the duration of employment in our model increases by more than one third.

It is instructive to examine how the distribution of employment across productivity states is influenced by changes in λ_w. Figure 1 plots the mass of employment at each productivity level in the support of the distribution for various values of λ_w, as well as the mass of workers
Figure 1: Distribution of Employment by Productivity

with each productivity level.

As frictions increase, some mass from the employment distribution is shifted from the right tail to the left tail. Intuitively, if there are no frictions, then all workers with sufficiently high productivity will work, but in the presence of frictions, some of these workers are not able to work because they do not have an employment opportunity. But what is interesting to note is that even for a very large change in frictions, the increase in mass at the bottom of the productivity distribution is quite small, and it remains true that the lowest productivity workers do not work at all.\footnote{It is important to keep in mind that our model includes a government transfer program, so that individuals do receive some income even when not working.}

We can also repeat the above analysis to examine how the two different models respond to exogenous changes in σ, the separation shock. Proceeding as above, Table 5 presents the
effects on employment and unemployment.\(^8\)

Table 5

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>Our model</th>
<th>Pissarides model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E/P)</td>
<td>(U/(U+E))</td>
<td>(E/P)</td>
</tr>
<tr>
<td>(\sigma = 0.02)</td>
<td>63.7%</td>
<td>6.3%</td>
</tr>
<tr>
<td>(\sigma = 0.039)</td>
<td>63.2%</td>
<td>8.3%</td>
</tr>
<tr>
<td>(\sigma = 0.04)</td>
<td>63.2%</td>
<td>8.4%</td>
</tr>
<tr>
<td>(\sigma = 0.06)</td>
<td>62.6%</td>
<td>10.4%</td>
</tr>
</tbody>
</table>

Changes in unemployment rates in response to changes in \(\sigma\) are about one half as large in our model as in the Pissarides model. And the employment response is only about one-tenth as large in our model as in the Pissarides model. Table 6 shows that the reason for the large differences in employment rate responses has to do with a labor supply effect.

Table 6

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>Our model</th>
<th>Pissarides model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(U)</td>
<td>(E)</td>
</tr>
<tr>
<td>(\sigma = 0.02)</td>
<td>23.1</td>
<td>2.1</td>
</tr>
<tr>
<td>(\sigma = 0.039)</td>
<td>18.7</td>
<td>2.1</td>
</tr>
<tr>
<td>(\sigma = 0.04)</td>
<td>18.6</td>
<td>2.1</td>
</tr>
<tr>
<td>(\sigma = 0.06)</td>
<td>15.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

In the Pissarides model, changes in \(\sigma\) lead mechanically to changes in employment duration. The implication is that the large changes in \(\sigma\) are associated with large and proportional changes in employment duration. In contrast, in our model, decreases in \(\sigma\) lead to what in comparison are only very moderate increases in employment duration. The reason is due to the response in labor supply. When \(\sigma\) is high, it is less likely that an individual has an employment opportunity in any given period, and as a result they respond by being willing

\(^8\)Because the values of \(\sigma\) are the same in the two benchmark economies we now consider equal changes in the two economies.
to work at lower productivity levels. This in turn implies less "voluntary" separations. But when \(\sigma \) decreases, the reverse is true, and individuals become choosier about when to work, leading to more voluntary separations.

5 Frictions and the Steady State II: Extensions

One of the key findings in the previous section was that labor supply responses greatly attenuate the effect of frictions on steady state employment. Readers familiar with the matching literature might reasonably argue that this result is heavily influenced by our choice of the benchmark model. In particular, a key feature of the benchmark model is that given the level of frictions, there are no other margins of adjustment that work to at least partially offset the effect of frictions. But while this is a property of the benchmark model, simple and popular extensions of this model, including those in Pissarides (1985) and Mortensen and Pissarides (1994), do include an additional choice margin that might play the same role as the labor supply channel in our model.

In Pissarides (1985), when a meeting between a worker and a firm occurs, the pair receives a random draw of a permanent match quality. The optimal decision about whether to form a match is characterized by a reservation rule, i.e., proceed with forming the match if the draw for match quality is above some threshold. In this setting, steady state employment will depend on both the level of frictions and the reservation value. Intuitively, if frictions become more severe, workers will become less choosy about which matches to form, thereby giving rise to a force that can at least partially offset the direct effect of more severe frictions.
Similarly, in Mortensen and Pissarides, all matches start at the same high level for match quality, but this quality subsequently evolves stochastically. In this setting a key decision is when to terminate a match, which under fairly standard conditions will again be characterized by a reservation rule. In this setting an increase in frictions can lead to a lower reservation value, implying that match terminations will decrease. Once again, this creates an opposing effect on steady state employment relative to the direct effect.

The question that we ask in this section is whether our finding about the quantitative importance of the labor supply channel for employment responses remains when we compare our model with either of these extensions. We note at the outset that although one naturally expects these extensions to lessen the difference between our model and the benchmark Pissarides model, there is good reason to think that a significant difference will remain. This is due to the specification of linear utility in the matching literature. In a standard model of labor supply, including the model we are using in this paper, when a worker decreases the fraction of life spent in employment, average consumption decreases, which in turn increases the marginal utility of consumption and creates an incentive for the individual to increase the fraction of time spent in employment. In contrast, a decrease in average consumption in a model with linear utility does not increase the marginal utility of consumption, and therefore does not contain this force leading to higher employment.

In fact, we will find that our labor supply channel is a substantially more powerful offsetting force than the margins present in either of these extensions. We conclude that even
these extended versions of the basic matching model imply much larger effects of frictions on steady state employment than does our model. We proceed to describe in more detail each of the two extensions described above.

5.1 Extension 1: Adding a Match Formation Decision

In this subsection we analyze an extension to incorporate the match. In the spirit of our earlier calculation, we consider a continuum of workers, each of whom solves the same decision theoretic problem with the following features. Preferences are given by:

\[
\sum_{t=0}^{\infty} \beta^t [c_t - bh_t]
\]

where \(c_t\) is consumption in period \(t\), and \(h_t \in \{0, 1\}\) is time devoted to work. If the individual begins period \(t\) not employed, then he or she will receive a job offer with probability \(\lambda_w\).

Conditional on receiving a job offer, the wage associated with this offer is a random draw from the distribution with cdf \(F(w)\). The wage associated with this job will remain fixed for the duration of the match. If the worker decides to accept the offer, he or she will begin the job in the same period as the offer was made. As in our earlier models, any match that existed in period \(t - 1\) ends with probability \(\sigma\) at the beginning of period \(t\). In this case the individual is in the same situation as someone who began the period unemployed. Consumption in each period is equal to labor earnings. Letting \(V(w)\) be the value of employment at wage \(w\) and \(U\) be the value of being unemployed, the Bellman equations are:

\[
V(w) = w - b + \beta[(1 - \sigma)V(w) + \sigma U]
\]
and
\[U = (1 - \lambda_w) \beta U + \lambda_w \int \max(V(w), \beta U) dF(w), \]

It is easy to show that the optimal job acceptance decision for this worker is characterized by a reservation wage, which we denote by \(w^* \). One can also show that decreases in \(\lambda_w \) or increases in \(\sigma \) lead to decreases in the reservation wage. The dynamics of the employment rate, \(e_t \), is
\[e_{t+1} = (1 - \sigma)e_t + \lambda_w(1 - F(w^*))(1 - (1 - \sigma)e_t). \]

We focus on the steady state behavior of the unit mass of workers that each solve this problem, and in particular will ask how changes in the two frictional parameters \(\lambda_w \) and \(\sigma \) affect steady state employment. For our numerical calculations we consider a period to be a month, and set the values of \(\beta, \lambda_w \), and \(\sigma \) to be the same as in our calibrated model. An important consideration in comparing results across models is that one might expect the shape of the distribution characterizing the uncertainty, in particular in the vicinity of the reservation wage. With this in mind we we calibrate this model so that the cdf \(F(w) \) is the same as the cdf for the stationary distribution of the idiosyncratic shock process from our calibrated model. We then choose the value of \(b \) so that the steady state employment rate is the same as in our calibrated model, i.e., equal to .632.9 These last two choices imply that the distribution of wages is the same in the two settings, and that at least in an average

9We solve the model using value function iteration. We use a grid with 10000 points on \(w \) on the interval \([-2\sigma_w, 2\sigma_w]\), where \(\sigma_w \) is the standard deviation of the distribution described by \(F(w) \), and applied Tauchen’s (1986) method for the discrete approximation.
sense, the marginal decision is in the same place in the distribution.\footnote{This cannot hold exactly, since employment decisions in our model are determined by both productivity and assets.}

5.2 Extension 2: Adding a Match Termination Decision

The second extension is in the spirit of Mortensen and Pissarides (1994). Preferences are the same as in extension 1. As in extension 1, we continue to assume that if a worker receives an offer, the wage is drawn from a distribution with cdf $F(w)$. However, if the job is accepted, it will evolve stochastically in future periods, according to an AR(1) process:

$$
\log w_{t+1} = \rho \log w_t + \varepsilon_{t+1}
$$

where ε is an iid normally distributed random variable with mean zero and standard deviation σ_ε. The timing is as follows. For any worker who was employed in period $t-1$, at the beginning of $t-1$ they are subject to a separation probability that occurs with probability σ. If a separation does not occur, a new draw for ε is realized, at which point the worker decides whether to continue with the job. If not, they separate and are in the same position as a worker who started the period not employed, or who experienced a separation shock.

Letting $G(w' | w)$ denote the cdf for next period’s wage given this period’s wage is equal to w implied by the stochastic process for wages on the job, the Bellman equations are

$$
V(w) = w - b + \beta (1 - \sigma) \int \max(V(w'), U) dG(w' | w) + \sigma U
$$

and

$$
U = (1 - \lambda_w) \beta U + \lambda_w \int \max(V(w), \beta U) dF(w).
$$
Our timing assumptions imply that an optimal search strategy for this individual will be described by two reservation wages: one for which new offers to accept, which we denote by w_u^* and one for which jobs to separate from, which we denote by w_e^*.

Denote the measure of employed workers over wages by $M_t(w)$. Then the law of motion for the employment rate in this model is described by:

$$e_{t+1} = (1 - \sigma)(e_t - \int (1 - G(w_e^*|w))dM_t(w)) + \lambda_w (1 - F(w_e^*)) \left(1 - (1 - \sigma)e_t + \int (1 - G(w_e^*|w))dM_t(w)\right).$$

The evolution of $M_t(w)$ is described by:

$$M_{t+1}(w') = \lambda_w (1 - e_t) \max(F(w') - F(w_u^*), 0) + \sigma \lambda_w e_t \max(F(w') - F(w_e^*), 0) + (1 - \sigma) \int \max(G(w'|w) - G(w_u^*|w), 0)dM_t(w) + (1 - \sigma) \max(F(w') - F(w_u^*), 0) \int G(w_e^*|w)dM_t(w).$$

We calibrate this model in a similar fashion. In particular, we set β, λ_w, and σ as before. We choose the parameters ρ and σ_ε that describe the stochastic evolution of wages on the job to be the same as those in our original calibration, and choose the cdf $F(w)$ to correspond to that of the stationary distribution of the stochastic process on wages. We then choose b so that the steady state employment rate is equal to .632.

11 The reservation wage for accepting a new offer is strictly below b in this model, since it provides some option value on the new draw for next period, and the worker can always quit if the draw is not good. If we assumed that a worker who leaves a job voluntarily cannot search during the same period then the two reservation wages would be the same. We did not assume this in order to avoid asymmetric treatment of voluntary and involuntary separations. In any case, this is not important for the results.

12 Once again we solve the model using value function iteration. We use a grid with 300 values for w on the interval $[-2\sigma_w, 2\sigma_w]$ and applied Tauchen’s (1986) method for the discrete approximation of $F(w)$ and $G(w'|w)$. The computation of the steady-state e is more involved—we iterated over the discretized measures $M_t(w)$ and e_t using their transition equations until they converged.
5.3 Results

We now consider the effects of changes in frictions on steady state employment. Table 7 contains results for changes in λ_w.

<table>
<thead>
<tr>
<th></th>
<th>Our Model</th>
<th>Extension 1</th>
<th>Extension 2</th>
<th>Pissarides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_w = 0.6$</td>
<td>$63.5%$</td>
<td>$66.5%$</td>
<td>$68.4%$</td>
<td>$70.8%$</td>
</tr>
<tr>
<td>$\lambda_w = 0.436$</td>
<td>$63.2%$</td>
<td>$63.2%$</td>
<td>$63.2%$</td>
<td>$63.2%$</td>
</tr>
<tr>
<td>$\lambda_w = 0.4$</td>
<td>$63.0%$</td>
<td>$62.3%$</td>
<td>$61.7%$</td>
<td>$61.0%$</td>
</tr>
<tr>
<td>$\lambda_w = 0.2$</td>
<td>$61.0%$</td>
<td>$54.5%$</td>
<td>$50.1%$</td>
<td>$43.2%$</td>
</tr>
</tbody>
</table>

The first column repeats the results for our model that also appeared in Table 3. The next two columns report results for the two extensions just described. The final column shows results for the benchmark Pissarides model used in the previous section, except that we have now calibrated λ_w in this model so as to give a steady state employment rate of 0.632^{13}.

We begin by comparing the employment effects associated with a small decrease in λ_w, from the benchmark value of 0.436 to the value of 0.4. In our model, the drop in steady state employment is 0.2, while the corresponding numbers for extension 1, extension 1, and the Pissarides model are 0.9, 1.5 and 2.2. Two simple conclusions follow. First, both extensions serve to significantly dampen the steady state employment responses relative to the benchmark model. Extension 1, for example, has a response that is less than half as large. Second, however, the extent of this dampening is still very much less than what occurs in our model.

13 As we move from row to row we adjust the value of λ_w for this specification proportionately. Moving from the first row to the fourth row the values of λ_w for the Pissarides model are 0.086, 0.063, 0.058, and 0.029.

26
While Extension 1 yielded the smallest drop in steady state employment, but this drop is still more than four times larger than the corresponding drop in our model.

While we will not discuss the other values in Table 7 in any detail, we note that this factor four difference seems to apply equally well for large decreases in λ_w, as well as for increases.

Table 8 repeats this exercise for changes in the separation rate σ.

<table>
<thead>
<tr>
<th>σ</th>
<th>Our Model</th>
<th>Extension 1</th>
<th>Extension 2</th>
<th>Pissarides</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>63.7%</td>
<td>69.7%</td>
<td>69.4%</td>
<td>77.0%</td>
</tr>
<tr>
<td>0.039</td>
<td>63.2%</td>
<td>63.2%</td>
<td>63.2%</td>
<td>63.2%</td>
</tr>
<tr>
<td>0.04</td>
<td>63.2%</td>
<td>63.0%</td>
<td>62.8%</td>
<td>62.6%</td>
</tr>
<tr>
<td>0.06</td>
<td>62.6%</td>
<td>59.2%</td>
<td>57.7%</td>
<td>52.7%</td>
</tr>
</tbody>
</table>

The basic result is the same here as in Table 7. One again the two extensions do significantly dampen the responses relative to the benchmark Pissarides model. But these responses are still more than five times as large as the responses in our model.

We conclude that our key result about the role of frictions in determining steady state employment is robust to considering these extended versions of the benchmark Pissarides model. That is, in an empirically reasonable model that includes both frictions and an operative labor supply margin consistent with the neoclassical theory of labor supply, labor supply responses greatly attenuate the effect of changes in frictions on steady state employment. Put somewhat differently, the level of frictions does not seem to be a major determinant of steady state employment.
6 Taxes and the Steady State

In this section we analyze what our model predicts regarding the labor market effects of increases in the size of the tax and transfer program.14 Prescott (2004) argued that differences in the scale of tax and transfer programs could account for the bulk of the observed differences in hours worked between the US and several European countries. His analysis assumed no frictions and abstracted from the issue of how workers are distributed across labor market states. In a steady state setting, these tax calculations are one of the sharpest examples of how labor supply (i.e., choice) influences aggregate employment. It therefore is an interesting calculation to revisit in our model that features both choice and chance.

We assess the importance of frictions for this exercise by comparing the results in our benchmark calibrated economy with the results that emerge from the case in which λ_w is set equal to 1, and the model is calibrated without targeting the unemployment rate. In the results that we report below we consider a change in τ holding all other parameters constant, including the two frictional parameters σ and λ_w. Models of the sort considered by Mortensen and Pissarides (1994) imply that the levels of these frictions will also respond to changes in such things as tax rates. However, in view of the results from the previous section, we know that from the perspective of the effects on steady state employment, the effects associated with changes in frictions will be of second order.

14Krusell et al (2008) carry out this analysis in a model without idiosyncratic shocks. Krusell et al (2009) show that such a model does not do a good job of accounting for worker flows. Moreover, that paper did not distinguish between unemployment and nonparticipation and so could not be used to assess the consequences for these variables and statistics such as the duration of unemployment.
Table 9 shows the results for the case of no frictions and our benchmark calibration. To also show how the results are influenced by having even higher levels of frictions, we also report results for the case of $\lambda_w = .2$.\(^\text{15}\)

<table>
<thead>
<tr>
<th>τ</th>
<th>$\tau = 0.00$</th>
<th>$\tau = 0.15$</th>
<th>$\tau = 0.30$</th>
<th>$\tau = 0.45$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_w = 1.0$</td>
<td>.880</td>
<td>.799</td>
<td>.632</td>
<td>.482</td>
</tr>
<tr>
<td>$\lambda_w = .436$</td>
<td>.854</td>
<td>.779</td>
<td>.632</td>
<td>.486</td>
</tr>
<tr>
<td>$\lambda_w = .2$</td>
<td>.829</td>
<td>.763</td>
<td>.632</td>
<td>.492</td>
</tr>
</tbody>
</table>

The striking result from this table is that the presence of frictions has virtually no effect on the impact of tax increases on employment. For the case of tax decreases, the presence of frictions does have some effect, but even when $\lambda_w = .2$ the effect of frictions is relatively small compared to the overall change. For example, when taxes are reduced to zero, the employment rate increases by roughly 25 percentage points when there are no frictions, and by roughly 22 percentage points when $\lambda_w = .2$. It follows that for evaluating the steady state effects of tax changes, the presence of reasonable frictions has little impact on the aggregate response of employment.

Table 10 shows the implications of tax changes for the unemployment rate for the same three cases considered in Table 9. Once again, we emphasize that we are holding the levels of frictions constant in this experiment. If changes in taxes do lead to associated changes in frictions, there would potentially be additional important effects on unemployment.

\(^{15}\)Once again, in this case all parameters of the model are recalibrated to match the same targets, but we are not requiring that the model match the level of unemployment.
An interesting result emerges. Given that the results with frictions are virtually identical to results without frictions (especially for the case of tax increases), one might expect that the changes in the employment rate will be reflected mostly in changes in the participation rate rather than the unemployment rate. But the table shows that changes in taxes do affect the measured unemployment rate in the models with frictions. In particular, when taxes are increased from .30 to .45, and the employment rate drops from .63 to .49, we see that the unemployment rate increases from .08 to .10 and from .16 to .18 for the cases of $\lambda_w = .436$ and .20 respectively. Moreover, it is also the case the spell durations are also affected, as shown in Table 11.

Some interesting patterns emerge. Specifically, an increase in taxes leads to shorter durations of employment and unemployment spells, and longer durations of nonparticipation. The reason for the decrease in unemployment spell durations is that when taxes are high individuals have a higher reservation productivity level for a given value of assets, and this means that unemployed workers are more likely to experience a negative productivity shock.
and transition to out of the labor force.16

To summarize, the main finding of this section is that for reasonably calibrated frictions, the aggregate employment effects of the model with frictions is essentially identical to that of the model without frictions. However, in the model with frictions, changes in taxes do impact on statistics such as the unemployment rate and the duration of employment and unemployment spells. In this sense the model with frictions has a richer set of predictions for the effect of tax changes than the model without frictions. Some researchers argue against the importance of the labor supply channel emphasized in the frictionless model in some contexts by suggesting that it is inconsistent with responses in the unemployment rate. This analysis shows that such a general critique is not compelling in the context of a model with both a nondegenerate labor supply decision and frictions. More generally, if changes in taxes were accompanied by changes in the level of frictions, as implied by standard matching models, then our model implies that one could generate different changes in the unemployment rate without having any significant effect on the employment effects that we found.

7 A Contrasting View

The results of the last two sections suggest a very simple characterization of how our hybrid model compares with the standard frictionless and frictional models used in the literature. From the perspective of predicting changes in steady state employment, our hybrid model behaves very closely to frictionless models. But from the perspective of making predictions

16It is important to note that we have not included an unemployment insurance system in our model, and that in reality a more generous system may well influence the distribution of individuals between U and N.
about changes in steady state unemployment, our model behaves very closely to the standard
frictional models. The striking and important finding is that the one-to-one inverse mapping
between employment and unemployment that is implicit in standard frictional models does
not at all hold in terms of steady state outcomes in our model.

In this section we discuss one implicit assumption of our specification that is of particular
relevance in producing these findings. In particular, by assuming an AR(1) process for
the idiosyncratic shock process with normal innovations we have implicitly assumed that
the invariant distribution describing the idiosyncratic productivities is continuous. As an
extreme but simple alternative, we could have specified the idiosyncratic shock process so
that it has support on only two points, one of which corresponds to zero productivity and
the other which has some positive level of productivity. In this setting individuals will never
want to work if they have zero productivity. There is one further assumption of interest: the
probability of the high productivity state could be sufficiently low that individuals always
want to work if they have high productivity, or it could be sufficiently high that individuals
do not necessarily always want to work when productivity is high. If one were to adopt
the former specification, then the model ceases to have an operative labor supply margin.
And not surprisingly, this model will not have any of the labor supply effects that we have
emphasized earlier. It would follow that taxes have very little effect on employment and that
frictions have large effects on employment.\footnote{These results hold for changes that are not too large. If taxes increase sufficiently, for example, then individuals might not want to work all of the time even in the high productivity state.} In contrast, if one adopts the latter specification
then the model will behave very much like a model in which all workers are identical, and the labor supply responses will be even somewhat more powerful than in our earlier analysis.\footnote{In our benchmark model, an individual who suffers an involuntary spell of nonemployment during a high productivity period can only make up for the lost income by working in the future in some less productive states. The lower productivity of these states reduces somewhat the ability of the individual to substitute between voluntary and involuntary nonemployment spells.}

An important issue is whether our criterion of asking the model to match observed labor market flows documented in Table 2 allows us to distinguish between these two different specifications. The answer is basically no, though there are some subtle issues. In particular, one can specify the two-state Markov model so as to generate each of the above properties and still have the resulting flows be similar to those that we found for our benchmark calibration. In particular, it can do an equally good job in matching the E to E, N to N, U to E, E to N and N to E flows as our benchmark calibration. The one subtle issue has to do with matching the U to N flow. As was also the case for our benchmark specification, this two-state model cannot match the U to N flow from the data. However, the extent of mismatch is in some sense worse in the two-state specification. If individuals always want to work when in the productive state, then the E to N flow is identical to the U to N flow. In our benchmark model the U to N flow does not match its value in the data, but at the same time the U to N flow is still roughly twice as large as the E to N flow. For the case in which individuals do not always want to work in the high productivity state, then the flow from E to N is necessarily larger than the flow from U to N, making the issue even more severe.

We conclude from this that our results are not robust to very different specifications of
the innovations to the shock process, in the sense that there are specifications that could match the flows reasonably well and give very different implications for the effects of changes in frictions and changes in taxes. One reason for not considering the two state specification in which individuals always work in the good state is that this specification has no operative labor supply margin, and one of the motivations for the development of our hybrid model is that one can easily see situations in which the labor supply decision is operative. What the above result implies however, is that one cannot dismiss the model that does not feature an operative labor supply margin purely on the basis of matching the labor market flows.

However, we believe there is alternative evidence that one can bring to bear on the issue which gives us reason to prefer the continuous distribution specification over the (two-state) discrete distribution case in which individuals always want to work if the productivity is high. If the distribution has all of its mass on two points and optimal behavior dictates wanting to always work whenever the idiosyncratic productivity is high, there is no scope for any aggregate changes to influence participation except via the idiosyncratic shock process. Such a specification seems hard to square with the fact that participation rates vary significantly across countries, and that participation rates have changed smoothly for various groups in the US over time, and often in different directions. These observations suggest to us that it is preferable to adopt a specification in which at each point in time there are some individuals for whom the participation decision has a continuous component that is affected at the margin by aggregate changes.
Perhaps a more interesting case would be one in which the idiosyncratic shocks allow for a positive mass at the zero productivity state. This would reflect the possibility that for many individuals their idiosyncratic shocks are such that working is not a possibility. This might be relevant in thinking about certain types of health shocks, for example. An examination of Figure 1 suggests that our results are likely to be quite robust to introducing this feature. Figure 1 shows that in our benchmark specification there is no work done by those in roughly the bottom decile of the productivity distribution. Even in the case of a dramatic increase in frictions (from the benchmark value of .436 to the value of .2, resulting in an increase in the unemployment rate of roughly 19 percentage points), there is still virtually no work being done by those in the bottom decile of the distribution. It follows that adding even a sizeable mass point at the bottom of the distribution would not have any impact on the extent to which labor supply responses are able to compensate for increases in frictions.

8 Conclusion

We use an empirically reasonable three state model of the labor market to address two questions regarding the determination of steady state employment and unemployment at the aggregate level. The first concerns the effect of changes in frictions on aggregate employment. We find that changes in either the job loss rate of the job finding rate do not have large effects on aggregate employment, though they do have sizable effects on unemployment. In particular, the labor supply response present in our model greatly attenuates the employment response relative to the simplest matching model as well as common extensions. We conclude
that choice plays a much larger role than chance in the determination of aggregate steady state employment. In contrast, chance plays a dominant role in the determination of aggregate steady state unemployment. The second issue is the effect of tax and transfer programs on aggregate employment. We find that the presence of frictions has virtually no impact on the response of aggregate employment, but the model also predicts that higher taxes lead to higher unemployment and lower participation.

A key message for quantitative analysis of steady state labor market outcomes is that including an operative extensive labor supply margin consistent with neoclassical models of labor supply is important. Although frictions by themselves can exert a large direct effect on steady state employment, these effects are largely offset by labor supply responses.

While our analysis in this paper has focused solely on the determination of steady state labor market outcomes, it is obviously of interest to examine how the forces of choice and chance interact in contexts where transition dynamics are critical, such as when the economy is subjected to shocks. In particular, what are the responses of employment and unemployment when there are shocks to the level of frictions, either to the offer arrival rate or the separation rate? How does the presence of a labor supply channel affect the propagation of these shocks? While the framework that we have used in this paper is well suited to the analysis of this question, we think it is important to emphasize that there is no reason to conjecture that our results about the dampening effect of labor supply on the effects of frictions will continue to hold in the case of shocks to frictions.
References

