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Sparse Macro Factors

Abstract

We use machine learning to estimate sparse principal components (PCs) for 120
monthly macro variables spanning 1960:02 to 2018:06 from the FRED-MD database.
For comparison, we also extract the first ten conventional PCs from the macro vari-
ables. Each of the conventional PCs is a linear combination of all the underlying macro
variables, making them difficult to interpret. In contrast, each of the sparse PCs is a
sparse linear combination, whose active weights allow for intuitive economic inter-
pretations of the sparse PCs. The first ten sparse PCs can be interpreted as yields,
inflation, production, housing, employment, yield spreads, wages, optimism, money,
and credit. Innovations to the conventional (sparse) PCs constitute a set of conven-
tional (sparse) macro factors. Robust tests indicate that only one of the conventional
macro factors earns a significant risk premium. In contrast, three of sparse macro
factors—corresponding to yields, housing, and optimism—earn significant risk pre-
mia. Compared to leading risk factors from the literature, mimicking portfolios for
the yields, housing, and optimism factors deliver sizable Sharpe ratios. A four-factor
model comprised of the market factor and mimicking portfolio returns for the yields,
housing, and optimism factors performs on par with or better than leading multifac-
tor models from the literature in accounting for numerous anomalies in cross-sectional
stock returns.

JEL classifications: C38, C58, G12

Key words: Sparse principal component analysis, FRED-MD, Risk premia, Factor mim-
icking portfolio, Three-pass regression, Multifactor models



1. Introduction

Modern finance theory posits that securities’ expected returns are proportional to risk pre-

mia, which represent compensation for exposure to systematic risk factors in the macroe-

conomy. In addition to the return on the market portfolio, the intertemporal capital as-

set pricing model (ICAPM, Merton 1973) predicts that innovations to state variables that

affect the “investment opportunity set” command risk premia for their exposure of in-

vestors to reinvestment risk. Because investors hold jobs and own houses and small busi-

nesses, risk premia can also originate from shocks to state variables that reflect labor and

housing market conditions, as well as the prospects for small businesses (Cochrane 2005,

p. 712). In general, innovations to any state variable that affects an investor’s marginal

utility of consumption potentially constitute a systematic risk factor that requires a risk

premium.

While theory admits numerous plausible state variables, the identification of relevant

systematic risk factors in security markets is ultimately an empirical issue. In their sem-

inal study, Chen et al. (1986) use the Fama and MacBeth (1973) two-pass regression pro-

cedure to test whether a set of common macro state variables earn risk premia. With

20 size-sorted equity portfolios serving as test assets, they find evidence of significant

risk premia associated with industrial production, default and term spreads, and infla-

tion. A number of subsequent studies report that a variety of theoretically motivated

state variables derived from individual macro series generate significant risk premia in

cross-sectional equity returns (e.g., Cochrane 1996; Jagannathan and Wang 1996; Lettau

and Ludvigson 2001; Vassalou 2003; Lustig and Nieurwerburgh 2005; Parker and Julliard

2005; Yogo 2006; Malloy et al. 2009). However, the evidence that existing “macro factors”

generate significant risk premia does not appear very robust, especially after accounting

for potential model misspecification (e.g., Shanken and Weinstein 2006; Kan et al. 2013;
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Giglio and Xiu 2018). As the literature now stands, there is still substantial uncertainty

surrounding what macro factors are the most relevant for asset pricing.

In this paper, we utilize advances in machine learning to compute sparse macro factors

from a large macroeconomic database (“big data”). Each of the existing macro factors

from the literature is typically constructed using only one or two macro variables. How-

ever, a larger number of variables are likely relevant for measuring something like labor

or housing market conditions, so that reliance on one or two individual variables poten-

tially ignores pertinent information. To incorporate information from numerous macro

variables in diverse categories, we use monthly data for 120 macro variables from the ex-

tensive FRED-MD database (McCracken and Ng 2016). The categories for the 120 macro

variables include output and income; the labor market; housing; consumption, orders,

and inventories; money and credit; yields and exchange rates; and inflation. The 120

variables represent manifold measures of a broad array of potentially relevant risks in the

macroeconomy. Employing machine learning tools, we compute sparse principal compo-

nents (Jolliffe et al. 2003; Zou et al. 2006; d’Aspremont et al. 2008; Shen and Huang 2008;

Sigg and Buhmann 2008; Johnstone and Lu 2009; Witten et al. 2009; Journée et al. 2010;

Berthet and Rigollet 2013) to capture the systematic risks represented by the entire set of

macro variables.

Conventional principal component analysis (PCA) owes its popularity to its ability to

parsimoniously capture much of the information in a large number of variables. How-

ever, this comes at the cost of interpretability, as conventional principal components (PCs)

are typically linear combinations of all the underlying variables. Sparse PCA restricts the

cardinality of the weight vectors for the PCs, so that the PCs are sparse linear combina-

tions of the underlying variables. By setting many weights to zero, sparse PCA facilitates

interpretation of the PCs. The aim of sparse PCA is to improve interpretability via spar-

sity without unduly sacrificing explanatory ability.
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For comparison, we begin by computing the first ten conventional PCs for the 120

macro variables. Each conventional PC is a linear combination of all 120 macro variables,

which makes the individual PCs difficult to interpret. We then use the approach of Sigg

and Buhmann (2008) to extract the first ten sparse PCs for the macro variables. We impose

substantive sparsity in the weight vectors for the sparse PCs: each vector is only allowed

to have at most twelve nonzero (or “active”) elements. The high degree of sparsity facil-

itates economic interpretation of the sparse PCs; specifically, we intepret the individual

sparse PCs as yields, inflation, production, housing, employment, yield spreads, wages,

optimism, money, and credit. Fortunately, the high degree of sparsity comes at relatively

little cost: the sparse PCs explain 51% of the total variation in the macro variables, com-

pared to 59% for the conventional PCs. Based on vector autoregressions fitted to the

conventional and sparse PCs (in turn), we compute innovations to the conventional and

sparse PCs. Innovations to the conventional (sparse) PCs constitute a set of conventional

(sparse) macro factors.

We estimate risk premia for each of the conventional and sparse macro factors us-

ing the robust three-pass methodology of Giglio and Xiu (2018), which accounts for the

omission of relevant risk factors and measurement error. In addition, we use the same

set of test assets as Giglio and Xiu (2018), which is comprised of 202 equity portfolios

from Kenneth French’s Data Library formed on a variety of firm characteristics. Based on

conventional PCA, only one of the macro factors earns a significant risk premium. How-

ever, based on sparse PCA, three of macro factors—corresponding to yields, housing, and

optimism—earn significant risk premia. The Giglio and Xiu (2018) three-pass methodol-

ogy can also be used to compute mimicking portfolio returns for the sparse macro factors.

Mimicking portfolios corresponding to the yields, housing, and optimism factors deliver

sizable Sharpe ratios compared to leading risk factors from the literature. A four-factor

model comprised of the market factor and mimicking portfolio returns for the yields,

housing, and optimism factors also performs on par with or better than leading multifac-
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tor models from the literature in explaining 63 anomalies, as well as industry portfolio

returns. Given that the sparse macro four-factor model has a straightforward economic

interpretation, it represents a valuable benchmark model for asset pricing tests.

Our results indicate that sparse PCA is a valuable machine learning tool for extracting

the relevant asset pricing information from a large set of macro variables. In our appli-

cation, compared to conventional PCA, sparse PCA provides substantial gains in term of

economic interpretation and has relatively little cost in terms of explaining the total varia-

tion in the macro variables. Moreover, sparse PCA provides important gains with respect

to asset pricing: while only one of the conventional macro factors earns a significant risk

premium in the cross section of equity returns, three of the sparse macro factors gener-

ate statistically and economically significant risk premia, even though the sparse PCs do

not directly incorporate information from cross-sectional returns in their construction. In

sum, sparse PCA appears better able than conventional PCA to filter the noise in macro

variables to more reliably identify the relevant asset pricing signals in macro variables.

The rest of the paper is organized as follows. Section 2 describes sparse PCA and re-

ports the results of conventional and sparse PCA applied to the 120 macro variables from

FRED-MD. Section 3 reports risk premia estimates based on the Giglio and Xiu (2018)

three-pass methodology. Section 4 compares a four-factor model comprised of the mar-

ket factor and mimicking portfolio returns for the yields, housing, and optimism factors

to leading multifactor models from the literature. Section 5 concludes.

2. Sparse PCA

Conventional PCA is a popular dimension-reduction technique.1 Suppose that we are

interested in reducing the dimension of the T × P data matrix X, whose columns con-

tain observations for P variables over T periods. We assume that the variables in X are

1See Hastie et al. (2015) for a textbook treatment of conventional and sparse PCA.
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standardized, so that each column of X has zero mean and unit variance. Consider the T-

dimensional column vector Xw1, where w1 is a P-dimensional column vector of weights.

The first PC can be computed in the context of the following optimization problem, which

entails maximizing the variance of Xw1 subject to a unit-norm constraint:

arg max
w1

w>1 Ĉw1 subject to ‖w1‖2 = 1, (2.1)

where Ĉ = X>X/T and ‖ · ‖2 is the `2 norm. The first PC is given by ẑ1 = Xŵ1, where ŵ1

is the solution to Equation (2.1).

The weight vector ŵ2 for second PC is found by maximizing the variance of Xw2

subject to ‖w2‖2 = 1 and w2 orthogonal to w1, while the second PC itself given by ẑ2 =

Xŵ2. Continuing in this manner, the first p̂ � P PCs are given by ẑp = Xŵp for p =

1, . . . , p̂, where
∥∥ŵp

∥∥
2 = 1 for p = 1, . . . , p̂ and ŵ>j ŵk = 0 for j 6= k. The PCs themselves

are also uncorrelated with each other. Intuitively, PCA uses the first p̂ “dominant” PCs to

reduce the dimension of the data from P to p̂, while still capturing much of the variation

in the data.

Because the elements of ŵp for p = 1, . . . , p̂ are all typically nonzero, the individual

PCs can be difficult to interpret.2 Sparse PCA harnesses machine learning tools to in-

duce sparsity in the weight vectors. The aim is to facilitate the interpretability of the PCs

without unduly sacrificing the ability of the PCs to capture the variation in the data.

We implement sparse PCA via the approach of Sigg and Buhmann (2008), which in-

duces sparsity by directly imposing the cardinality restriction
∥∥wp

∥∥
0 ≤ K on each weight

vector. Sigg and Buhmann (2008) develop a version of the expectation-maximization (EM)

algorithm (Dempster et al. 1977) based on a probabilistic expression of PCA to compute

2Of course, we can rotate the PCs using any full rank p̂× p̂ matrix H, and the rotated PCs and weights
will explain the same variation in X as the original PCs and weights. However, the individual rotated PCs
can still be difficult to interpret (e.g. Jolliffe 1995).
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sparse weight vectors and corresponding sparse PCs, which we denote by w̃p and z̃p,

respectively, for p = 1, . . . , p̂.3

We compute sparse PCs for 120 macro variables from the FRED-MD database (Mc-

Cracken and Ng 2016). FRED-MD is a comprehensive macro database of 134 monthly

U.S. variables compiled from the popular FRED database hosted by the Federal Reserve

Bank of St. Louis.4 We use 120 variables from the July 2018 vintage of FRED-MD that

are available continuously starting in 1960. The variables cover a wide array of categories

(output and income; labor market; housing; consumption, orders, and inventories; money

and credit; interest and exchange rates; prices); as such, they capture much of the macro

information available to investors.

Table 1 lists the 120 macro variables as defined by their FRED tickers and provides

variable descriptions based on the Updated Appendix for the FRED-MD database.5 Be-

fore conducting sparse PCA, we make two adjustments to the variables. First, where nec-

essary, we transform the variables to render them stationary, as indicated in the second

column of Table 1. Second, we adjust the variables for any lags in their reporting. Inter-

est rates, exchange rates, interest rate spreads, and oil prices are reported without delay,

so that no timing adjustment is needed for these variables. Nearly all of the remaining

variables are reported with a one-month delay. In this case, we lag each observation by

one month to account for the reporting delay. A few variables are reported with a two-

month delay; accordingly, we lag each observation by two months for these variables.

The timing adjustments better reflect the flow of information to investors. After making

the adjustments, our sample spans 1960:02 to 2018:06.

3Analogously to conventional PCA, Sigg and Buhmann (2008) compute successive sparse weight vectors
via iterative deflation, whereby w̃p is computed after projecting the data onto the orthogonal subspace
defined by the first p− 1 sparse PCs. Unlike conventional PCs, the individual sparse PCs are not necessarily
uncorrelated.

4FRED is available at https://fred.stlouisfed.org/; FRED-MD is available at Michael McCracken’s
webpage at https://research.stlouisfed.org/econ/mccracken/fred-databases/.

5The S&P 500 dividend yield (DIVYLD) is based on data from Robert Shiller’s webpage at
http://www.econ.yale.edu/ shiller/data.htm.
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For comparison, we also conduct conventional PCA for the 120 macro variables. Ta-

ble 2 reports weights for the first ten conventional PCs, while Figure 1 depicts the PCs

themselves.6 The first ten conventional PCs collectively explain 59% of the total variation

in the macro variables. The weights in Table 2 illustrate the difficulty in interpreting con-

ventionalPCs. All of the weights in Table 2 are nonzero, and the weights for individual

PCs are often sizable for variables across a variety of categories; for example, the first

PC evinces relatively large weights (in magnitude) for variables relating to employment,

housing, yields, yield spreads, and prices. Similarly, the conventional PCs in Figure 1 re-

flect influences from an amalgam of variables. In sum, conventional PCs extracted from

the 120 macro variables are difficult to interpret economically. Of course, conventional

PCA maximizes the total variation in the underlying variables that is explained by the

PCs, so that it is not designed to facilitate economic interpretation.

Table 3 and Figure 2 report sparse weights and PCs, respectively, computed using the

Sigg and Buhmann (2008) EM algorithm.7 We set K = 12, so that each weight vector only

contains up to 10% of the 120 macro variables. The substantive sparsity in each weight

vector enables us to intuitively interpret the ten sparse PCs as follows:

1. Yields. The second column of Table 3 shows that the first sparse PC is predominantly

a linear combination of the nominal interest rates included in FRED-MD, so that we

interpret the first sparse PC as “yields.” In accord with this interpretation, Panel A of

Figure 2 shows that the first sparse PC follows well-known fluctuations in nominal

interest rates over the postwar era.

2. Inflation. From the third column of Table 3, we see that the second sparse PC is

essentially a linear combination of various producer and consumer price indices and

personal consumption expenditure deflators. We thus label the second sparse PC as

“inflation.” Panel B of Figure 2 indicates that the second sparse PC displays the

6Considering a maximum of ten, the Bai and Ng (2002) PCp2 modified information criterion indicates
ten significant PCs (p̂ = 10).

7We estimate the sparse weights using the R package nsprcomp (Sigg 2018).
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well-known “Great Inflation” of the 1970s and early 1980s and subsequent “Great

Disinflation.”

3. Production. The third sparse PC is primarily a linear combination of the industrial

production measures in FRED-MD, as well as manufacturing employment (see the

fourth column of Table 3). We label the thrid sparse PC as “production.” It exhibits

downward spikes during business-cycle recessions in Panel C of Figure 2.

4. Housing. According to the fifth column of Table 3, the fourth sparse PC is predom-

inantly a linear combination of the housing start and new private housing permit

variables in FRED-MD, as well as real estate loans. We thus call this sparse PC

“housing.” The fourth sparse PC clearly depicts the housing market cycle in Panel

D of Figure 2, including the long bull market from the early 1990s to the mid 2000s,

followed by the housing market collapse corresponding to the Global Financial Cri-

sis.

5. Employment. As shown in the sixth column of Table 3, the weights for the fifth sparse

PC are concentrated in the unemployment and employment variables appearing in

FRED-MD. The fifth sparse PC, which we label as “employment,” exhibits clear

procyclical behavior in Panel E of Figure 2.

6. Yield spreads. The sixth sparse PC is predominantly a linear combination of the in-

terest rate spreads included in FRED-MD (see the seventh column of Table 3), so

that we label this sparse PC as “yield spreads.” The sixth sparse PC in Panel F of

Figure 2 displays the distinct countercyclical fluctuations that are known to charac-

terize yield spreads.

7. Wages. We refer to the seventh sparse PC as “wages,” as the active elements of its

weight vector include the various measures of average hourly earnings found in

FRED-MD (see the eighth column of Table 3). More generally, the seventh sparse
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PC appears to reflect drivers of costs for firms. This interpretation is reflected in

Panel G of Figure 2, where the seventh sparse PC evinces a secular increase from

the late 1960s to early 1980s, in line with the sharp increases in costs experienced by

firms during this period.

8. Optimism. From the ninth column of Table 3, it is evident that the eighth sparse PC

is a linear combination of variables from a variety of categories, including real per-

sonal income and consumption, retail sales, help wanted, overtime, and new orders

for durable goods. A common theme among these variables is that they reflect how

optimistic households and firms are about future economic conditions.8 We thus

label the eighth sparse PC as “optimism.” The eighth sparse PC experiences sharp

declines during recessions in Panel H of Figure 2, especially for the relatively deep

recessions of the mid 1970s and early 1990s, as well as the recent Great Recession.

9. Money. As can be seen from the tenth column of Table 3, the active weights for the

ninth sparse PC include all of the money stock measures in FRED-MD. Accordingly,

we label this sparse PC as “money.” The ninth sparse PC exhibits declines in the late

1970s and early 1980s in Panel I of Figure 2, corresponding to the “Volcker disinfla-

tion,” as well as sharp increases more recently during the Global Financial Crisis,

reflecting “quantitative easing” by the Fed.

10. Credit. The final sparse PC has relatively large loadings on credit variables from

FRED-MD, including commercial and industrial loans, total nonrevolving credit,

the credit-to-income ratio, consumer motor vehicle loans outstanding, and total con-

sumer loans and leases outstanding (see the eleventh column of Table 3). As shown

in Panel J of Figure 2, the tenth sparse PC tends to fall during recessions.

Comparing the results in Tables 2 and 3 and Figures 1 and 2, the substantive sparsity

imposed on the weight vectors greatly facilitates economic interpretation of the sparse
8For example, in line with consumption-smoothing logic, corresponding increases in income and con-

sumption indicate that households expect a persistent increase in income.
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vis-à-vis the conventional PCs. Fortunately, the increased interpretability of the sparse

PCs comes at relatively little cost in terms of explanatory ability: despite the high degree

of sparsity, the first ten sparse PCs still explain 51% of the total variation in the 120 macro

variables (compared to 59% for the first ten conventional PCs).

3. Risk Premia

As a first step in estimating risk premia, we fit first-order vector autoregressions to the

set of conventional and sparse PCs (in turn), and we use the fitted processes to compute

innovations to the conventional and sparse PCs. The innovations to the conventional

(sparse) PCs constitute our set of conventional (sparse) macro factors. Table 4 reports

correlations for the conventional and sparse macro factors. Although the conventional

PCs are uncorrelated by construction, the innovations to the conventional PCs in Panel

A are correlated. However, most of the correlations are relatively small in magnitude.

Similarly, the innovations to the sparse PCs are correlated in Panel B, but many of the

correlations are limited in magnitude. Of course, asset pricing tests do not require the

macro factors to be uncorrelated.

We estimate risk premia for the macro factors using the recently developed three-pass

methodology of Giglio and Xiu (2018). Their methodology has a number of attractive

features. Importantly, it can recover the risk premium for any observable factor, regard-

less of whether the model includes all of the relevant risk factors. The methodology is

also robust to measurement error. Furthermore, Giglio and Xiu (2018) show that their

methodology has an “ideal” mimicking portfolio interpretation. Indeed, as a byproduct

of their methodology, we can readily compute a mimicking portfolio return series for any

nontradable factor.

The first step of the three-pass methodology applies conventional PCA to the sample

covariance matrix for the test asset excess returns. We use the 202 portfolios from Giglio
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and Xiu (2018) as test assets, with data updated through 2018:06. The portfolios are all

available from Kenneth French’s Data Library,9 and they are formed by sorting on a va-

riety of firm characteristics, including size, book-to-market ratio, industry classification,

operating profitability, investment, variance, net issuance, accruals, betas, and momen-

tum. To help ensure that we span the relevant excess return space, we compute the first

ten PCs and corresponding loadings for the 202 test asset excess returns.10

The second step of the three-pass procedure estimates risk premia for the PCs from the

first step via a cross-sectional regression that relates the average excess returns for the test

assets to the loadings for the PCs from the first step. The R2
f statistic of 67.72% in Table 5

indicates that the loadings for the first ten PCs account for much of the cross-sectional

variation in expected excess returns for the test assets.

The final step of the three-pass methodology entails the estimation of a time-series

regression that relates an observed factor to the set of PCs estimated in the first step.

The risk premium for the observed factor is then estimated as the sum of the product

of each of the estimated slope coefficients in the third-step time-series regression and

their corresponding estimated risk premia in the second-step cross-sectional regression.

In addition, the fitted values for the time-series regression in the third step provide a

mimicking portfolio return series for the observed factor. Giglio and Xiu (2018) supply

expressions for the asymptotic variance of the estimated risk premium for the observed

factor. Simulations in Giglio and Xiu (2018) indicate that their three-pass methodology

makes reliable inferences in finite samples of sizes similar to ours.

The first five columns of Table 5 report three-pass regression results for the conven-

tional macro factors. The R2
g statistic in the fourth column is the goodness-of-fit measure

for the time-series regression in the third step, while the fifth column reports the annu-

alized Sharpe ratio for the factor mimicking portfolio. According to the t-statistics in the

9Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
The sample begins in 1963:07.

10Considering a maximum of ten, the Bai and Ng (2002) PCp2 modified information criterion indicates
ten significant PCs for the 202 test asset excess returns.
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third column of Table 5, only one of the conventional macro factors, corresponding to the

eighth conventional PC, earns a significant risk premium at the 5% level. Based on the

ninth column of Table 2 and Panel H of Figure 1, it is difficult to provide a straightforward

economic interpretation of this factor.

Three-pass regression results for the sparse macro factors are reported in the last five

columns of Table 5. There is more widespread evidence of statistically and economically

significant risk premia for the sparse macro factors. Specifically, the risk premia for the

yields and housing factors are significant at the 1% level in Table 5, while that for the

optimism factor is significant at the 5% level.11 The yields, housing, and optimism factors

deliver annualized Sharpe ratios ranging in magnitude from 0.53 to 1.02. These Sharpe

ratios are sizable relative to those for popular risk factors from the literature (e.g., market,

size, value, and momentum factors).

It is economically sensible that the yields, housing, and optimism factors earn signifi-

cant risk premia in Table 5. Merton (1973) identifies the interest rate as a candidate for a

state variable in the ICAPM, as changes in the interest rate affect the investment opportu-

nity set. The significant risk premium earned by the yields factor in our analysis accords

with Merton (1973) and further indicates that common fluctuations in multiple interest

rates are relevant for asset pricing. Because housing is the primary form of wealth for

many households, the significant risk premium earned by the housing factor in Table 5

is highly plausible. The optimism factor, which includes consumption growth, likely

captures key components of an investor’s marginal utility of consumption, so that its

significant risk premium in Table 5 is economically reasonable.

In sum, sparse PCA offers two key advantages over conventional PCA in our applica-

tion. First, by imposing substantive sparsity in the weight vectors, sparse PCA facilitates

the economic interpretation of the macro factors. Second, sparse PCA better captures

the information in macro variables that is relevant to investors. We find it interesting that

11The risk premium for the yield spreads factor is significant at the 10% level.
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sparse PCA proves superior to conventional PCA for identifying systematic risk factors in

the macroeconomy, as the construction of the sparse weight vectors does not directly in-

corporate information from cross-sectional equity returns. Our results indicate that spar-

sity is a powerful machine learning tool for identifying the relevant asset pricing signals

in macro variables.

4. Comparisons with Leading Multifactor Models

In this section, we analyze the performance of a sparse macro four-factor model com-

prised of the market factor and mimicking portfolio returns for the yields, housing, and

optimism factors. Similarly to Hou et al. (2015), we examine the ability of the sparse

macro four-factor model to account for a plethora of anomalies in cross-section equity

returns relative to leading multifactor models from the literature. The three models from

the literature are the Carhart (1997) four-factor, Fama and French (2015) five-factor, and

Hou et al. (2015) q-factor models. The first model augments the market, size, and value

factors from Fama and French (1993) with a momentum factor (Jegadeesh and Titman

1993), while the second model adds operating profitability and investment factors to the

three Fama and French (1993) factors. Finally, the q-factor model includes market, size,

investment, and profitability factors.12 We estimate pricing errors for each multifactor

model for two sets of test assets using the Gibbons et al. (1989) framework.

The first set of test assets is comprised of 63 spread portfolio returns for 1974:01 to

2016:12 from Huang et al. (2018) that represent numerous anomalies from the literature.

For each of the multifactor models, Panel A of Table 6 reports the average of the abso-

lute values of the alphas across the 63 portfolios, as well as the Gibbons et al. (1989) Wu

statistics for testing the null hypothesis that the alphas are jointly zero. The average mag-

nitude of the alphas is largest for the Carhart (1997) four-factor model (0.37%), followed

12Factor data for the Carhart (1997) four-factor and Fama and French (2015) five-factor models are from
Kenneth French’s Data Library. We thank Kewei Hou for providing data for the Hou et al. (2015) q factors.
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by the Fama and French (2015) five-factor model (0.28%). The average magnitude of the

alphas is lowest for the Hou et al. (2015) q-factor model (0.23%), while that for the sparse

macro four-factor model is nearly the same (0.24%). The null hypothesis that the alphas

are jointly zero is rejected at the 1% level for all four multifactor models, with the Carhart

(1997) four-factor and Fama and French (2015) five-factor models displaying the largest

test statistic values.

Following the recommendation of Lewellen et al. (2010), we also examine the ability of

the multifactor models to explain industry portfolio excess returns in Panel B of Table 6.

The test assets are 30 industry portfolios from Kenneth French’s Data Library, and the

sample period covers 1967:01 to 2016:12.13 The sparse macro four-factor model generates

the smallest average magnitude of the alphas (0.17%), followed closely by the Carhart

(1997) four-factor model (0.18%). The Hou et al. (2015) q-factor and Fama and French

(2015) five-factor models produce average alpha magnitudes of 0.20% and 0.24%, respec-

tively. As in Panel A, the Wu statistic is significant at the 1% level for all four models. The

test statistic takes the smallest value for the Hou et al. (2015) q-factor model, followed by

the sparse macro four-factor and Carhart (1997) four-factor models.

Overall, the sparse macro four-factor models performs on par with or better than lead-

ing multifactor models from the literature with respect to explaining challenging aspects

of cross-sectional equity returns. The sparse macro four-factor model has the added ben-

efit that its factors have a straightforward economic interpretation, so that the model con-

stitutes an informative benchmark for asset pricing tests.

5. Conclusion

In this paper, we extract macro risk factors from a comprehensive data set of 120 monthly

macro variables covering 1960:02 to 2018:06 from the FRED-MD database. We apply, for

13The sample period is based on data availability for the q factors.
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the first time in finance, sparse PCA to obtain macro factors as sparse linear combinations

of the underlying macro variables. Sparse PCA has two advantages relative to conven-

tional PCA. First, it allows for natural economic interpretation of the factors. Second,

it reduces the noise in irrelevant variables. Using a set of 202 portfolios formed from

a variety of firm characteristics as test assets, we find three major macro risk factors—

corresponding to yields, housing, and optimism—in the cross section of US stock re-

turns. The macro factors earn significant risk premia based the state-of-the-art three-pass

methodology of Giglio and Xiu (2018). Mimicking portfolios for the three macro factors

deliver large annualized Sharpe ratios (in magnitude). In addition, a four-factor model

comprised of the market factor and mimicking portfolio returns for the yields, housing,

and optimism factors generally performs as well as or better than leading multifactor

models from the literature in accounting for anomalies in cross-sectional equity returns.

With respect to future research, sparse PCA can be applied—potentially as widely as

conventional PCA—to assess macro risk factors not only for stocks, but also for bonds,

currencies, and other assets. In addition, the impact of other types of economic variables,

such as investor sentiment and news, can be analyzed using sparse PCA. Indeed, the

information in any type of “big data” in finance can be conveniently summarized by

sparse PCA. Our results suggest that sparse PCA is promising strategy for identifying the

most relevant information for investors in large data sets.
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Table 1
Macro variable descriptions

(1) (2) (3)

FRED ticker Transformation Description

RPI Log growth Real Personal Income

W875RX1 Log growth Real Personal Income Excluding Transfer Receipts

DPCERA3M086SBEA Log growth Real Personal Consumption Expenditures

CMRMTSPLx Log growth Real Manufacturing and Trade Industries Sales

RETAILx Log growth Retail and Food Services Sales

INDPRO Log growth Industrial Production Index

IPFPNSS Log growth Industrial Production Index: Final Products and Nonindustrial Supplies

IPFINAL Log growth Industrial Production Index: Final Products (Market Group)

IPCONGD Log growth Industrial Production Index: Consumer Goods

IPDCONGD Log growth Industrial Production Index: Durable Consumer Goods

IPNCONGD Log growth Industrial Production Index: Nondurable Consumer Goods

IPBUSEQ Log growth Industrial Production Index: Business Equipment

IPMAT Log growth Industrial Production Index: Materials

IPDMAT Log growth Industrial Production Index: Durable Materials

IPNMAT Log growth Industrial Production Index: Nondurable Materials

IPMANSICS Log growth Industrial Production Index: Manufacturing (SIC)

IPB51222S Log growth Industrial Production Index: Residential Utilities

IPFUELS Log growth Industrial Production Index: Fuels

CUMFNS Difference Capacity Utilization: Manufacturing

HWI Difference Help-Wanted Index for United States

HWIURATIO Difference Ratio of Help Wanted to Number Unemployed

CLF16OV Log growth Civilian Labor Force

CE16OV Log growth Civilian Employment

UNRATE Difference Civilian Unemployment Rate

UEMPMEAN Difference Average Duration of Unemployment (Weeks)

UEMPLT5 Log growth Civilians Unemployed—Less Than 5 Weeks

UEMP5TO14 Log growth Civilians Unemployed for 5–14 Weeks

UEMP15OV Log growth Civilians Unemployed—15 Weeks and Over

UEMP15T26 Log growth Civilians Unemployed for 15–26 Weeks

UEMP27OV Log growth Civilians Unemployed for 27 Weeks and Over

The table provides descriptions of 120 macro variables from the FRED-MD database. The first column identifies
the variable based on its FRED ticker. (DIVYLD is the S&P 500 dividend yield based on data from Robert Shiller’s
webpage.) The second column reports how the variable is transformed before computing the principal components; -
indicates that the variable is not transformed. The description in the third column is based on the FRED-MD Updated
Appendix.



Table 1 (continued)

(1) (2) (3)

FRED ticker Transformation Description

CLAIMSx Log growth Initial Claims

PAYEMS Log growth All Employees: Total Nonfarm

USGOOD Log growth All Employees: Goods-Producing Industries

CES1021000001 Log growth All Employees: Mining and Logging: Mining

USCONS Log growth All Employees: Construction

MANEMP Log growth All Employees: Manufacturing

DMANEMP Log growth All Employees: Durable Goods

NDMANEMP Log growth All Employees: Nondurable Goods

SRVPRD Log growth All Employees: Service-Providing Industries

USTPU Log growth All Employees: Trade, Transportation, and Utilities

USWTRADE Log growth All Employees: Wholesale Trade

USTRADE Log growth All Employees: Retail Trade

USFIRE Log growth All Employees: Financial Activities

USGOVT Log growth All Employees: Government

CES0600000007 Log growth Average Weekly Hours: Goods Producing

AWOTMAN Log growth Average Weekly Overtime Hours: Manufacturing

AWHMAN Log growth Average Weekly Hours: Manufacturing

HOUST Log Housing Starts: Total New Privately Owned

HOUSTNE Log Housing Starts: Total New Privately Owned, Northeast

HOUSTMW Log Housing Starts: Total New Privately Owned, Midwest

HOUSTS Log Housing Starts: Total New Privately Owned, South

HOUSTW Log Housing Starts: Total New Privately Owned, West

PERMIT Log New Private Housing Permits

PERMITNE Log New Private Housing Permits, Northeast

PERMITMW Log New Private Housing Permits, Midwest

PERMITS Log New Private Housing Permits, South

PERMITW Log New Private Housing Permits, West

AMDMNOx Log growth New Orders for Durable Goods

AMDMUOx Log growth Unfilled Orders for Durable Goods

BUSINVx Log growth Total Business Inventories



Table 1 (continued)

(1) (2) (3)

FRED ticker Transformation Description

ISRATIOx Difference Total Business: Inventories to Sales Ratio

M1SL Log growth M1 Money Stock

M2SL Log growth M2 Money Stock

M2REAL Log growth Real M2 Money Stock

AMBSL Log growth St. Louis Adjusted Monetary Base

TOTRESNS Log growth Total Reserves of Depository Institutions

NONBORRES Log growth Reserves Of Depository Institutions

BUSLOANS Log growth Commercial and Industrial Loans

REALLN Log growth Real Estate Loans at All Commercial Banks

NONREVSL Log growth Total Nonrevolving Credit

CONSPI Difference Ratio of Nonrevolving Consumer Credit to Personal Income

DIVYLD - S&P 500 Dividend Yield

FEDFUNDS - Effective Federal Funds Rate

CP3Mx - 3-Month AA Financial Commercial Paper Rate

TB3MS - 3-Month Treasury Bill Rate

TB6MS - 6-Month Treasury Bill Rate

GS1 - 1-Year Treasury Rate

GS5 - 5-Year Treasury Rate

GS10 - 10-Year Treasury Rate

AAA - Moody’s Seasoned Aaa Corporate Bond Yield

BAA - Moody’s Seasoned Baa Corporate Bond Yield

COMPAPFFx - CP3Mx Minus FEDFUNDS

TB3SMFFM - TB3MS Minus FEDFUNDS

TB6SMFFM - TB6MS Minus FEDFUNDS

T1YFFM - GS1 Minus FEDFUNDS

T5YFFM - GS5 Minus FEDFUNDS

T10YFFM - GS10 Minus FEDFUNDS

AAAFFM - AAA Minus FEDFUNDS

BAAFFM - BAA Minus FEDFUNDS

EXSZUSx Log growth Switzerland / U.S. Foreign Exchange Rate



Table 1 (continued)

(1) (2) (3)

FRED ticker Transformation Description

EXJPUSx Log growth Japan / U.S. Foreign Exchange Rate

EXUSUKx Log growth U.S. / U.K. Foreign Exchange Rate

EXCAUSx Log growth Canada / U.S. Foreign Exchange Rate

WPSFD49207 Log growth Producer Price Index: Finished Goods

WPSFD49502 Log growth Producer Price Index: Finished Consumer Goods

WPSID61 Log growth Producer Price Index: Intermediate Materials

WPSID62 Log growth Producer Price Index: Crude Materials

OILPRICEx Log growth Crude Oil, Spliced WTI and Cushing

PPICMM Log growth Producer Price Index: Metals and metal products

CPIAUCSL Log growth Consumer Price Index: All Items

CPIAPPSL Log growth Consumer Price Index: Apparel

CPITRNSL Log growth Consumer Price Index: Transportation

CPIMEDSL Log growth Consumer Price Index: Medical Care

CUSR0000SAC Log growth Consumer Price Index: Commodities

CUSR0000SAD Log growth Consumer Price Index: Durables

CUSR0000SAS Log growth Consumer Price Index: Services

CPIULFSL Log growth Consumer Price Index: All Items Less Food

CUSR0000SA0L2 Log growth Consumer Price Index: All items Less Shelter

CUSR0000SA0L5 Log growth Consumer Price Index: All Items Less Medical Care

PCEPI Log growth Personal Consumption Expenditures Deflator

DDURRG3M086SBEA Log growth Personal Consumption Expenditures Deflator: Durable Goods

DNDGRG3M086SBEA Log growth Personal Consumption Expenditures Deflator: Nondurable Goods

DSERRG3M086SBEA Log growth Personal Consumption Expenditures Deflator: Services

CES0600000008 Log growth Average Hourly Earnings: Goods Producing

CES2000000008 Log growth Average Hourly Earnings: Construction

CES3000000008 Log growth Average Hourly Earnings: Manufacturing

MZMSL Log growth MZM Money Stock

DTCOLNVHFNM Log growth Consumer Motor Vehicle Loans Outstanding

DTCTHFNM Log growth Total Consumer Loans and Leases Outstanding

INVEST Log growth Securities in Bank Credit at All Commercial Banks



Table 2
Principal component weights for 120 macro variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

RPI 0.01 −0.08 −0.07 0.05 −0.05 −0.01 0.01 0.02 0.24 −0.09

W875RX1 0.02 −0.10 −0.07 0.05 −0.06 −0.03 −0.01 0.01 0.23 −0.09

DPCERA3M086SBEA 0.01 −0.07 −0.04 0.04 0.03 0.01 0.04 0.15 0.05 −0.14

CMRMTSPLx 0.02 −0.07 0.01 −0.02 0.04 −0.06 −0.04 −0.16 −0.01 0.27

RETAILx 0.05 −0.05 0.05 0.02 0.06 −0.02 0.01 0.17 0.02 −0.22

INDPRO 0.06 −0.19 0.06 0.17 0.01 0.12 0.001 −0.01 −0.01 −0.01

IPFPNSS 0.07 −0.18 0.05 0.18 0.02 0.14 0.02 0.02 0.01 −0.05

IPFINAL 0.06 −0.16 0.05 0.19 0.01 0.16 0.03 0.004 0.02 −0.05

IPCONGD 0.04 −0.14 0.04 0.21 0.05 0.17 0.07 0.01 −0.003 −0.06

IPDCONGD 0.03 −0.13 0.05 0.19 0.05 0.12 0.005 −0.07 0.04 −0.06

IPNCONGD 0.03 −0.08 0.01 0.13 0.03 0.15 0.11 0.09 −0.04 −0.02

IPBUSEQ 0.07 −0.15 0.05 0.10 −0.05 0.10 −0.03 0.005 0.05 −0.01

IPMAT 0.04 −0.17 0.06 0.14 0.003 0.09 −0.02 −0.04 −0.02 0.03

IPDMAT 0.05 −0.17 0.08 0.12 0.02 0.08 −0.07 −0.08 0.03 0.03

IPNMAT 0.04 −0.12 0.04 0.09 0.03 0.05 0.02 0.04 −0.08 0.04

IPMANSICS 0.07 −0.19 0.07 0.16 0.03 0.10 −0.02 −0.01 0.001 −0.02

IPB51222S −0.005 0.004 −0.01 0.05 −0.01 0.13 0.10 0.01 −0.03 0.11

IPFUELS 0.002 −0.02 −0.003 0.04 0.01 0.04 0.05 0.04 −0.06 −0.04

CUMFNS 0.05 −0.18 0.08 0.18 0.05 0.09 −0.06 −0.03 −0.01 −0.03

HWI 0.01 −0.07 0.02 −0.01 −0.01 −0.06 0.01 −0.03 −0.13 0.24

HWIURATIO 0.01 −0.10 0.01 −0.02 −0.02 −0.07 0.001 −0.03 −0.12 0.25

CLF16OV 0.05 −0.02 −0.02 −0.03 0.005 −0.10 0.05 0.17 −0.02 −0.24

CE16OV 0.06 −0.10 −0.002 −0.03 −0.02 −0.16 −0.03 0.08 −0.08 −0.18

UNRATE −0.03 0.13 −0.03 −0.003 0.03 0.12 0.12 0.11 0.09 −0.06

UEMPMEAN −0.02 0.03 0.04 0.10 0.08 0.06 0.03 −0.03 0.16 −0.05

UEMPLT5 0.003 0.03 −0.02 −0.04 −0.03 −0.004 0.04 0.10 0.07 −0.03

UEMP5TO14 −0.01 0.07 −0.03 −0.01 −0.004 0.06 0.06 0.05 −0.04 −0.05

UEMP15OV −0.03 0.11 −0.004 0.07 0.10 0.14 0.13 0.05 0.16 −0.07

UEMP15T26 −0.02 0.08 −0.02 0.01 0.04 0.09 0.10 0.03 0.13 −0.03

UEMP27OV −0.02 0.08 0.01 0.09 0.10 0.12 0.09 0.03 0.10 −0.06

The table reports weights for the first eight principal components extracted from 120 macro variables (listed in Ta-
ble 1) from the FRED-MD database. The sample period is 1960:02 to 2018:06. The variable name in the first column
corresponds to its FRED ticker.



Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

CLAIMSx −0.01 0.10 −0.02 −0.09 −0.05 0.03 0.04 0.04 −0.01 0.005

PAYEMS 0.10 −0.18 0.01 −0.02 −0.08 −0.15 0.04 0.07 0.03 0.02

USGOOD 0.08 −0.19 0.04 −0.0005 −0.09 −0.11 −0.03 −0.01 −0.01 −0.03

CES1021000001 0.03 −0.01 0.05 −0.01 −0.06 −0.01 0.01 0.003 0.03 −0.07

USCONS 0.05 −0.13 −0.01 −0.05 −0.01 −0.10 −0.10 0.10 −0.03 −0.16

MANEMP 0.07 −0.18 0.06 0.04 −0.10 −0.10 0.02 −0.06 0.003 0.05

DMANEMP 0.07 −0.18 0.05 0.04 −0.10 −0.07 0.02 −0.08 0.02 0.04

NDMANEMP 0.06 −0.14 0.06 0.02 −0.08 −0.15 0.04 0.05 −0.05 0.07

SRVPRD 0.10 −0.12 −0.02 −0.05 −0.06 −0.17 0.12 0.13 0.07 0.06

USTPU 0.10 −0.13 0.01 −0.05 −0.06 −0.21 0.02 0.09 0.03 0.03

USWTRADE 0.11 −0.12 0.01 −0.07 −0.09 −0.14 0.04 0.04 0.02 0.04

USTRADE 0.09 −0.11 −0.005 −0.03 −0.02 −0.21 0.04 0.09 0.06 0.01

USFIRE 0.11 −0.08 −0.08 −0.05 −0.003 −0.09 0.10 0.02 0.02 0.02

USGOVT 0.03 −0.02 −0.05 −0.06 −0.02 0.004 0.27 0.11 0.10 0.09

CES0600000007 −0.05 −0.12 0.08 −0.10 −0.21 −0.01 −0.14 0.04 −0.06 −0.04

AWOTMAN 0.02 −0.07 0.05 0.09 0.05 0.06 −0.03 −0.07 0.01 0.03

AWHMAN −0.05 −0.12 0.09 −0.12 −0.20 0.01 −0.14 0.02 −0.06 −0.01

HOUST 0.13 −0.09 −0.17 −0.15 0.13 0.09 0.01 −0.01 −0.04 −0.02

HOUSTNE 0.11 −0.08 −0.14 −0.12 0.08 0.04 0.19 0.03 0.05 0.02

HOUSTMW 0.11 −0.08 −0.13 −0.13 0.12 0.09 0.14 0.02 0.02 0.01

HOUSTS 0.11 −0.09 −0.17 −0.13 0.11 0.09 −0.12 −0.05 −0.08 −0.05

HOUSTW 0.11 −0.08 −0.16 −0.15 0.15 0.09 −0.04 −0.01 −0.05 −0.01

PERMIT 0.10 −0.10 −0.16 −0.17 0.14 0.11 −0.09 −0.03 −0.08 −0.03

PERMITNE 0.10 −0.09 −0.14 −0.14 0.09 0.07 0.17 0.01 0.02 0.01

PERMITMW 0.10 −0.10 −0.13 −0.17 0.13 0.11 0.10 0.02 −0.02 −0.01

PERMITS 0.07 −0.07 −0.13 −0.13 0.10 0.10 −0.28 −0.06 −0.12 −0.06

PERMITW 0.11 −0.08 −0.16 −0.15 0.15 0.10 −0.06 −0.01 −0.07 −0.02

AMDMNOx 0.03 −0.07 0.04 0.07 0.02 0.04 −0.002 −0.02 0.01 −0.10

AMDMUOx 0.09 −0.07 0.02 −0.07 −0.12 0.01 0.03 −0.10 −0.03 −0.04

BUSINVx 0.11 −0.004 0.04 −0.05 −0.14 −0.06 0.07 0.10 0.08 −0.10



Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

ISRATIOx −0.05 0.05 −0.04 0.01 −0.11 0.02 0.05 0.23 0.04 −0.31

M1SL −0.02 0.02 −0.02 0.07 0.05 −0.19 0.02 −0.23 −0.07 −0.07

M2SL 0.00 0.003 −0.11 0.06 0.11 −0.15 0.12 −0.30 −0.08 −0.15

M2REAL −0.06 −0.06 −0.19 0.07 0.03 −0.10 0.08 −0.21 −0.05 −0.09

AMBSL −0.03 0.03 −0.08 0.08 −0.04 −0.09 0.05 −0.11 −0.01 0.00

TOTRESNS −0.03 0.03 −0.08 0.05 −0.04 −0.09 0.08 −0.15 −0.03 −0.09

NONBORRES 0.001 −0.0002 0.002 −0.005 0.005 0.01 −0.02 −0.02 −0.02 0.09

BUSLOANS 0.03 −0.03 −0.04 −0.08 −0.17 −0.05 0.06 −0.08 −0.05 −0.06

REALLN 0.05 −0.05 −0.15 −0.08 0.04 0.03 0.06 −0.05 −0.06 −0.03

NONREVSL 0.06 −0.06 −0.05 −0.10 −0.05 −0.05 −0.11 −0.18 0.38 0.02

CONSPI −0.03 −0.03 −0.03 −0.09 −0.04 −0.004 −0.13 −0.15 0.40 −0.02

DIVYLD 0.00 −0.004 0.02 −0.02 −0.07 −0.05 0.06 −0.09 −0.06 −0.05

FEDFUNDS 0.09 0.09 −0.10 0.09 −0.05 −0.01 −0.07 0.04 −0.01 0.03

CP3Mx 0.09 0.09 −0.10 0.10 −0.04 −0.02 −0.04 0.04 −0.01 0.03

TB3MS 0.08 0.08 −0.11 0.10 −0.03 −0.03 −0.07 0.05 −0.01 0.03

TB6MS 0.08 0.08 −0.11 0.10 −0.02 −0.04 −0.06 0.06 −0.005 0.03

GS1 0.08 0.08 −0.11 0.11 −0.01 −0.05 −0.07 0.06 −0.0001 0.04

GS5 0.08 0.08 −0.11 0.13 0.05 −0.08 −0.11 0.09 0.01 0.05

GS10 0.08 0.08 −0.11 0.15 0.07 −0.10 −0.14 0.09 0.02 0.06

AAA 0.09 0.09 −0.11 0.16 0.08 −0.10 −0.19 0.08 0.002 0.04

BAA 0.11 0.11 −0.11 0.17 0.09 −0.10 −0.19 0.07 −0.002 0.03

COMPAPFFx −0.07 −0.07 0.02 −0.04 0.13 −0.11 0.26 0.05 0.05 −0.02

TB3SMFFM −0.12 −0.12 0.04 −0.04 0.17 −0.10 0.08 0.04 0.03 0.01

TB6SMFFM −0.12 −0.12 0.03 −0.04 0.19 −0.13 0.10 0.06 0.04 0.01

T1YFFM −0.10 −0.10 −0.01 0.02 0.24 −0.19 0.05 0.11 0.06 0.04

T5YFFM −0.08 −0.08 0.01 0.05 0.26 −0.16 −0.05 0.11 0.06 0.05

T10YFFM −0.07 −0.07 0.04 0.04 0.24 −0.15 −0.08 0.08 0.06 0.04

AAAFFM −0.05 −0.05 0.05 0.03 0.21 −0.11 −0.12 0.04 0.03 0.01

BAAFFM −0.02 −0.02 0.03 0.07 0.22 −0.12 −0.14 0.03 0.02 −0.001

EXSZUSx 0.002 −0.003 0.003 0.05 −0.02 −0.05 −0.02 −0.13 −0.09 −0.27



Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

EXJPUSx 0.01 0.01 0.03 0.01 −0.04 −0.01 −0.02 −0.11 −0.05 −0.22

EXUSUKx 0.01 −0.01 0.03 −0.07 0.04 0.10 −0.02 0.13 0.12 0.26

EXCAUSx −0.001 0.003 −0.02 0.002 −0.03 −0.15 0.06 −0.09 −0.02 −0.17

WPSFD49207 0.11 0.05 0.20 −0.11 0.08 −0.004 −0.005 −0.07 0.002 −0.05

WPSFD49502 0.10 0.04 0.21 −0.12 0.09 0.004 −0.03 −0.06 −0.001 −0.05

WPSID61 0.12 0.03 0.20 −0.11 0.06 0.01 −0.03 −0.06 0.01 −0.04

WPSID62 0.06 −0.01 0.17 −0.09 0.09 0.03 −0.06 −0.04 0.005 −0.02

OILPRICEx 0.02 −0.001 0.04 −0.03 0.001 0.08 −0.04 0.02 −0.002 0.14

PPICMM 0.05 −0.04 0.09 −0.07 0.05 0.03 −0.07 −0.01 0.03 0.06

CPIAUCSL 0.16 0.09 0.16 −0.04 0.07 −0.02 0.01 −0.02 −0.01 −0.03

CPIAPPSL 0.08 0.03 0.06 0.05 −0.01 −0.06 0.11 −0.03 −0.02 0.09

CPITRNSL 0.10 0.04 0.23 −0.08 0.13 −0.01 −0.03 −0.01 0.02 −0.04

CPIMEDSL 0.10 0.10 −0.04 0.13 0.03 −0.05 0.03 0.05 −0.0003 0.02

CUSR0000SAC 0.13 0.06 0.22 −0.08 0.12 −0.01 0.01 −0.03 0.005 −0.04

CUSR0000SAD 0.12 0.07 0.04 0.11 0.04 −0.11 0.11 0.03 0.05 0.03

CUSR0000SAS 0.14 0.10 −0.003 0.05 −0.04 −0.02 0.04 0.001 0.005 0.01

CPIULFSL 0.15 0.09 0.16 −0.02 0.07 −0.02 0.01 −0.01 0.002 −0.02

CUSR0000SA0L2 0.15 0.07 0.19 −0.06 0.10 −0.02 0.01 −0.03 −0.004 −0.04

CUSR0000SA0L5 0.16 0.08 0.16 −0.05 0.07 −0.02 0.02 −0.03 −0.01 −0.04

PCEPI 0.17 0.09 0.13 −0.02 0.08 −0.04 0.04 −0.02 −0.02 −0.02

DDURRG3M086SBEA 0.12 0.07 0.01 0.08 0.03 −0.11 0.15 0.01 0.04 0.06

DNDGRG3M086SBEA 0.12 0.05 0.22 −0.11 0.11 0.01 0.0001 −0.04 −0.01 −0.06

DSERRG3M086SBEA 0.15 0.09 −0.01 0.07 0.04 −0.06 0.02 −0.003 −0.04 0.01

CES0600000008 0.10 0.03 −0.02 0.07 0.02 −0.02 0.19 −0.23 0.07 0.04

CES2000000008 0.03 0.05 −0.02 −0.01 −0.005 0.01 0.18 −0.19 0.07 0.13

CES3000000008 0.10 0.01 −0.004 0.11 0.03 0.01 0.15 −0.22 0.05 0.05

MZMSL −0.03 0.01 −0.09 0.07 0.14 −0.09 −0.04 −0.22 −0.11 −0.11

DTCOLNVHFNM 0.04 −0.0003 −0.04 −0.02 0.02 −0.02 −0.16 −0.13 0.29 −0.06

DTCTHFNM 0.05 −0.01 −0.06 −0.06 −0.01 −0.004 −0.16 −0.11 0.41 −0.01

INVEST −0.01 0.01 −0.02 0.07 0.15 0.002 0.02 −0.04 −0.06 −0.09



Table 3
Sparse principal component weights for 120 macro variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC7 SPC8 SPC9 SPC10

Yield
Variable Yields Inflation Production Housing Employment spreads Wages Optimism Money Credit

RPI - - - - - - - 0.33 - 0.11

W875RX1 - - - - - - - 0.35 - 0.13

DPCERA3M086SBEA - - - - - - - 0.34 - -

CMRMTSPLx - - - - - - - - - 0.10

RETAILx - - - - - - - 0.31 - -

INDPRO - - 0.32 - - - - - - -

IPFPNSS - - 0.32 - - - - - - -

IPFINAL - - 0.31 - - - - - - -

IPCONGD - - 0.27 - - - - - - -

IPDCONGD - - 0.27 - - - - - - -

IPNCONGD - - - - - - - 0.21 - -

IPBUSEQ - - 0.26 - - - - - - -

IPMAT - - 0.27 - - - - - - -

IPDMAT - - 0.29 - - - - - - -

IPNMAT - - - - - - - 0.32 - -

IPMANSICS - - 0.32 - - - - - - -

IPB51222S - - - - - - - - - -

IPFUELS - - - - - - - - - -

CUMFNS - - 0.32 - - - - - - -

HWI - - - - - - - 0.24 - -

HWIURATIO - - - - - - - 0.29 - -

CLF16OV - - - - - - - - - -

CE16OV - - - - 0.24 - - - - -

UNRATE - - - - −0.24 - - - - -

UEMPMEAN - - - - - - - - - -

UEMPLT5 - - - - - - - - - -

UEMP5TO14 - - - - - - - −0.22 - -

UEMP15OV - - - - −0.21 - - - - -

UEMP15T26 - - - - - - - - - -

UEMP27OV - - - - - - - - - −0.17

The table reports nonzero weights for ten sparse principal components extracted from 120 macro variables (listed in
Table 1) from the FRED-MD database. The sample period is 1960:02 to 2018:06. The variable name in the first column
corresponds to its FRED ticker. The column headings provide descriptions of the sparse principal components based on
the active elements of their weight vectors.



Table 3 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC7 SPC8 SPC9 SPC10

Yield
Variable Yields Inflation Production Housing Employment Spreads Wages Optimism Money Credit

CLAIMSx - - - - - - - −0.32 - -

PAYEMS - - - - 0.37 - - - - -

USGOOD - - - - 0.34 - - - - -

CES1021000001 - - - - - - - - - -

USCONS - - - - 0.25 - - - - -

MANEMP - - 0.25 - - - - - - -

DMANEMP - - 0.25 - - - - - - 0.09

NDMANEMP - - 0.08 - 0.29 - - - - −0.07

SRVPRD - - - - 0.32 - - - - -

USTPU - - - - 0.35 - - - - -

USWTRADE - - - - 0.31 - - - - -

USTRADE - - - - 0.30 - - - - -

USFIRE - - - 0.19 - - - - - -

USGOVT - - - - - - - - - -

CES0600000007 - - - - - - −0.37 - - -

AWOTMAN - - - - - - - 0.25 - -

AWHMAN - - - - - - −0.39 - - -

HOUST - - - 0.34 - - - - - -

HOUSTNE - - - 0.27 - - - - - -

HOUSTMW - - - 0.29 - - - - - -

HOUSTS - - - 0.31 - - - - - -

HOUSTW - - - 0.32 - - - - - -

PERMIT - - - 0.33 - - - - - -

PERMITNE - - - 0.28 - - - - - -

PERMITMW - - - 0.30 - - - - - -

PERMITS - - - 0.24 - - - - - -

PERMITW - - - 0.32 - - - - - -

AMDMNOx - - - - - - - 0.22 - -

AMDMUOx - - - - 0.18 - - - - -

BUSINVx - - - - - −0.20 - - −0.12 -



Table 3 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC7 SPC8 SPC9 SPC10

Yield
Variable Yields Inflation Production Housing Employment Spreads Wages Optimism Money Credit

ISRATIOx - - - - - - - - - -

M1SL - - - - - - - - 0.40 -

M2SL - - - - - - 0.17 - 0.44 -

M2REAL - −0.23 - - - - - - 0.30 -

AMBSL - - - - - - - - 0.33 -

TOTRESNS - - - - - - - - 0.36 -

NONBORRES - - - - - - - - - -

BUSLOANS - - - - - −0.20 - - - 0.12

REALLN - - - 0.22 - - - - - -

NONREVSL - - - - - - - - - 0.54

CONSPI - - - - - - - - - 0.48

DIVYLD - - - - - - - - - -

FEDFUNDS 0.31 - - - - - - - - -

CP3Mx 0.31 - - - - - - - - -

TB3MS 0.31 - - - - - - - - -

TB6MS 0.31 - - - - - - - - -

GS1 0.31 - - - - - - - - -

GS5 0.31 - - - - - - - - -

GS10 0.30 - - - - - - - - -

AAA 0.30 - - - - - - - - -

BAA 0.29 - - - - - - - - -

COMPAPFFx - - - - - 0.25 - - - -

TB3SMFFM −0.23 - - - - 0.16 - - - -

TB6SMFFM −0.22 - - - - 0.18 - - - -

T1YFFM - - - - - 0.35 - - - -

T5YFFM - - - - - 0.39 - - - -

T10YFFM - - - - - 0.39 - - - -

AAAFFM - - - - - 0.38 - - - -

BAAFFM - - - - - 0.36 - - - -

EXSZUSx - - - - - - - - - -



Table 3 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC7 SPC8 SPC9 SPC10

Yield
Variable Yields Inflation Production Housing Employment spreads Wages Optimism Money Credit

EXJPUSx - - - - - - - - - -

EXUSUKx - - - - - - - - −0.15 -

EXCAUSx - - - - - - - - - -

WPSFD49207 - 0.28 - - - - - - - -

WPSFD49502 - 0.27 - - - - - - - -

WPSID61 - 0.27 - - - - - - - -

WPSID62 - - - - - - - - −0.18 -

OILPRICEx - - - - - - - - - -

PPICMM - - - - - - - - −0.20 -

CPIAUCSL - 0.31 - - - - - - - -

CPIAPPSL - - - - - - 0.19 - - -

CPITRNSL - 0.28 - - - - - - - -

CPIMEDSL - - - - - - 0.33 - - -

CUSR0000SAC - 0.31 - - - - - - - -

CUSR0000SAD - - - - - - 0.35 - −0.13 -

CUSR0000SAS - - - - - −0.25 0.21 - - -

CPIULFSL - 0.29 - - - - - - - -

CUSR0000SA0L2 - 0.31 - - - - - - - -

CUSR0000SA0L5 - 0.31 - - - - - - - -

PCEPI - 0.29 - - - - 0.13 - - -

DDURRG3M086SBEA - - - - - −0.16 0.30 - - -

DNDGRG3M086SBEA - 0.31 - - - - - - - -

DSERRG3M086SBEA 0.23 - - - - - - - - -

CES0600000008 - - - - - - 0.35 - - -

CES2000000008 - - - - - - 0.20 - - -

CES3000000008 - - - - - - 0.32 - - -

MZMSL - - - - - - - - 0.41 -

DTCOLNVHFNM - - - - - - - - - 0.36

DTCTHFNM - - - - - - - - - 0.49

INVEST - - - - - - - - 0.16 −0.11



Table 4
Innovation correlations, 1960:03–2018:06

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Conventional PCA innovations

PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

PC2 −0.38

PC3 0.78 −0.06

PC4 0.13 −0.69 −0.08

PC5 0.25 0.24 0.51 −0.21

PC6 −0.02 −0.09 0.13 0.48 0.01

PC7 0.04 0.10 −0.02 0.18 −0.19 0.06

PC8 −0.09 −0.15 −0.05 −0.08 −0.12 0.04 −0.05

PC9 −0.03 −0.03 −0.11 −0.04 −0.08 0.05 0.08 −0.08

PC10 −0.19 0.20 −0.06 −0.11 −0.08 0.15 0.13 0.01 −0.02

Panel B: Sparse PCA innovations

Yield
Description Yields Inflation Production Housing Employment Spreads Wages Optimism Money

Inflation 0.18

Production 0.11 0.001

Housing 0.01 0.04 0.19

Employment 0.11 0.08 0.46 0.31

Yield spreads −0.58 −0.09 −0.14 0.13 −0.07

Wages 0.19 0.19 −0.03 −0.05 −0.13 −0.07

Optimism 0.10 −0.06 0.56 0.30 0.44 −0.05 −0.07

Money −0.11 −0.34 −0.09 0.05 −0.08 0.12 0.13 −0.08

Credit −0.004 −0.05 0.02 0.02 0.08 −0.05 −0.001 0.08 0.03

The table reports correlations for innovations to conventional and sparse principal components extracted from 120
macro variables (listed in Table 1) from the FRED-MD database. The innovations are computed by fitting a first-order
vector autoregression to each set of principal components. The row and column headings in Panel B provide descrip-
tions of the sparse principal components based on the active elements of their weight vectors.



Table 5
Three-pass regression results, 1963:07–2018:06

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Innovations to Innovations to
conventional PCA macro factors sparse PCA macro factors

Factor γ̂g t-stat. R2
g Sharpe Factor γ̂g t-stat. R2

g Sharpe

PC1 −0.001 −0.12 2.79% −0.38 Yields −0.008 −2.92∗∗ 6.95% −0.85

PC2 −0.014 −1.55 2.72% −0.51 Inflation −0.002 −0.21 1.18% 0.08

PC3 −0.001 −0.09 1.55% −0.03 Production 0.006 0.44 2.83% 0.14

PC4 −0.006 −0.61 2.48% −0.19 Housing 0.011 3.68∗∗ 3.53% 1.02

PC5 0.008 1.01 0.83% 0.55 Employment 0.003 0.33 2.79% 0.79

PC6 0.009 0.77 4.30% 0.19 Yield spreads 0.009 1.80 1.28% 0.11

PC7 −0.009 −1.24 0.89% −0.58 Wages −0.010 −1.40 1.66% −0.49

PC8 0.031 2.07∗ 3.59% 0.62 Optimism 0.032 2.29∗ 5.75% 0.53

PC9 0.014 1.13 1.26% 0.45 Money −0.015 −1.00 3.79% −0.33

PC10 −0.017 −1.08 5.04% −0.29 Credit 0.008 0.71 1.26% 0.28

R2
f 67.72%

The table reports three-pass regression results for innovations to conventional and sparse principal
components extracted from 120 macro variables (listed in Table 1) from the FRED-MD database. The
names in the sixth column provide descriptions of the sparse principal components based on the active
elements of their weight vectors. The risk premium estimates are computed via the three-pass method-
ology using 202 equity portfolios as test assets. The first step estimates ten principal components for
the excess return observations for the test assets. The second step estimates risk premia for the ten
principal components from the first step via a cross-sectional regression that relates the betas for the ten
principal components to the average excess returns of the test assets; R2

f is the R2 for the cross-sectional
regression. The third step estimates time-series regressions relating each innovation to the ten principal
components from the first step; R2

g is the goodness-of-fit measure for the time-series regression. γ̂g is
the estimated risk premium for the innovation, which is based on the estimated cross-sectional and
time-series slope coefficients in the second and third steps, respectively; t-statistics are computed using
Newey and West (1987) standard errors; ∗ and ∗∗ indicate significance at the 5% and 1% levels, respec-
tively. “Sharpe” is the annualized Sharpe ratio for the Giglio and Xiu (2018) factor mimicking portfolio
for the innovation.



Table 6
Pricing errors

(1) (2) (3)

Multifactor model Average absolute alpha GRS statistic

Panel A: 63 anomaly portfolios, 1974:01–2016:12

Carhart (1997) four-factor model 0.0037 2.85∗∗

Fama and French (2015) five-factor model 0.0028 2.61∗∗

Hou et al. (2015) q-factor model 0.0023 2.36∗∗

Sparse macro four-factor model 0.0024 2.53∗∗

Panel B: 30 industry portfolios, 1967:01–2016:12

Carhart (1997) four-factor model 0.0018 2.36∗∗

Fama and French (2015) five-factor model 0.0024 2.56∗∗

Hou et al. (2015) q-factor model 0.0020 2.11∗∗

Sparse macro four-factor model 0.0017 2.35∗∗

The table reports pricing errors for two sets of test assets and four multifactor models
based on the Gibbons et al. (1989) framework. The test assets in Panel A are 63 anomaly
portfolios from Huang et al. (2018), while those in Panel B are 30 industry portfolios from
Kenneth French’s Data Library. The sparse macro four-factor model includes the market
factor and mimicking portfolio returns for yields, housing, and optimism factors. The
second column reports the average of the absolute values of the alphas. The third column
reports the Gibbons et al. (1989) Wu statistic for testing the null hypothesis that the alphas
are jointly zero; ∗ and ∗∗ indicate significance at the 5% and 1% levels, respectively.
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Figure 1. Conventional principal components, 1960:02–2018:06.

The figure depicts the first ten conventional principal components extracted from 120 macro variables (listed in
Table 1) from the FRED-MD database. Each principal component is standardized to have zero mean and unit
variance. Vertical bars delineate recessions as dated by the National Bureau of Economic Research.
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Figure 2. Sparse principal components, 1960:02–2018:06.

The figure depicts ten sparse principal components extracted from 120 macro variables (listed in Table 1) from the
FRED-MD database. The panel headings provide descriptions of the sparse principal components based on the
active elements of their weight vectors. Each sparse principal component is standardized to have zero mean and
unit variance. Vertical bars delineate recessions as dated by the National Bureau of Economic Research.
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