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Abstract

We study when choices among lotteries are monotonic (with respect to some or-

der) in an expected-utility agent’s preference parameter or type. The requisite property

turns out to be that the expected utility difference between any pair of lotteries is single-

crossing in the agent’s type. We characterize the set of utility functions that have this

property; we identify the orders over lotteries that generate choice monotonicity for

any such utility function. We discuss applications to cheap-talk games, costly signal-

ing games, and collective choice problems. Our analysis provides some new results on

monotone comparative statics and aggregating single-crossing functions.
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1. Introduction

1.1. Overview

Motivation. Single-crossing properties and their resulting monotone comparative statics
are at the heart of many economic models (Milgrom and Shannon, 1994). A limitation of the
typical approach is that, either implicitly or explicitly, choices are restricted to deterministic
outcomes when it is desirable to accommodate lotteries. For example:

1. In signaling models á la Spence (1973), workers with ability θ ∈ R choose education
e ∈ R to signal ability and garner a higher wage w ∈ R. It is assumed—either directly
or indirectly—that, in equilibrium, there is a deterministic mapping from education
to wage. This assumption underlies the fundamental result that, in any equilibrium,
workers with higher ability obtain more education if the workers’ utility function
v(w, e, θ) satisfies the Milgrom and Shannon (1994) single-crossing property in wage-
education pairs (w, e) and ability θ. More realistically, for any choice of education,
workers face a lottery over wages due to aggregate and idiosyncratic uncertainty.

2. In voting models, a voter indexed by θ has preferences over outcomes a given by the
utility function v(a, θ). A single-crossing property of v(a, θ) in a and θ guarantees that
the majority-preference is well-behaved (Gans and Smart, 1996), and the existence of
a Condorcet winner. This result is central to various political competition models á la
Downs (1957). But the presumption there is that voters or political candidates choose
directly among final outcomes. More realistically, the relevant choice is only among
some set of policies whose outcomes are uncertain at the time of voting.

In many applications it is not clear what a priori restrictions are reasonable on the set of
lotteries facing the agent (e.g., various forms of stochastic dominance). For example, in the
Spencian setting, higher education choices may well induce wage lotteries that have both
higher mean and higher variance; or, in the voting context, the economic and political out-
comes are multi-dimensional and so the set of lotteries is unlikely to comply with standard
orders. Moreover, these lotteries may be the result of still further interactions—e.g., they
may represent continuations in dynamic strategic problems—which would be intractable
to structure without severe assumptions.

One is thus naturally led to seek the following property: an agent’s expected utility dif-
ference between any pair of lotteries over outcomes should be single crossing in the agent’s
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type or preference parameter.1 The purpose of this paper is to completely characterize the
utility functions that have this property, which we term single-crossing expectational differ-
ences, or SCED. We also establish that SCED is not only sufficient but also necessary for
certain monotone comparative statics: roughly, no matter the choice set, the set of types
that choose any lottery is an interval. We demonstrate the use of these results in applica-
tions such as those mentioned earlier.

Summary. Let v(a, θ) be an agent’s utility over outcomes a ∈ A when her type is θ ∈
Θ. The set A is arbitrary while Θ is an arbitrary “doubly-directed” partially-ordered set.
Theorem 1 establishes that v has SCED if and only if

v(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + c(θ), (1)

where f1 and f2 are single-crossing functions that satisfy a ratio-ordering property we intro-
duce in Subsection 2.1. Roughly speaking, ratio ordering requires that the relative impor-
tance placed on g1(a) versus g2(a) changes monotonically with type.2 The idea is transpar-
ent when Θ ⊂ R with a minimum θ and a maximum θ. v having SCED is then equivalent
to the existence of a (type-dependent) representation ṽ(a, θ) that satisfies

ṽ(a, θ) = λ(θ)ṽ(a, θ) + (1− λ(θ))ṽ(a, θ),

where λ : Θ → [0, 1] is increasing (Proposition 1). In other words, SCED is equivalent to
each type’s preferences being representable by a utility function that is a convex combina-
tion of those of the extreme types, with higher types putting more weight on the highest
type’s utility.

SCED is satisfied by some canonical functional forms: in mechanism design and screen-
ing, v((q, t), θ) = θq − t (where q ∈ R is quantity, t ∈ R is a transfer, and θ ∈ R is the
agent’s marginal rate of substitution); in optimal delegation without transfers, v((q, t), θ) =

θq+g(q)−t (where q ∈ R is the allocation, t ∈ R+ is money burning, and θ ∈ R is the agent’s
type; cf. Amador and Bagwell (2013)); in communication and voting, v(a, θ) = −(a− θ)2 =

2θa− a2− θ2 (where a ∈ R is an outcome and θ ∈ R is the agent’s bliss point). On the other
hand, our characterization also makes clear that SCED is quite restrictive. For example,

1 Throughout this paper, we restrict attention to preferences over lotteries that have an expected utility
representation (von Neumann and Morgenstern, 1944). A real-valued function defined on a partially-ordered
set is single crossing if its sign is monotonic.

2 More generally, Lemma 1 establishes that ratio ordering is necessary and sufficient for all linear combi-
nations of two single-crossing functions to be single crossing.
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within the class of power loss functions, only the quadratic loss function satisfies SCED
(Corollary 1).

Theorem 3 establishes that SCED is necessary and sufficient for a form of monotone com-
parative statics of choices among lotteries. We require choice monotonicity—for all subsets
of lotteries the agent may be faced with—in the sense of the strong set order with respect to
some order over lotteries. It suffices to highlight here that a failure of SCED is equivalent to
the existence of three types, θ1 < θ2 < θ3, and two lotteries P,Q ∈ ∆A such that θ2 prefers
P to Q while θ1 and θ3 both prefer Q to P , with either the former or the latter two’s prefer-
ences strict. Put differently, a failure of SCED is equivalent to the existence of a choice set
in which some lottery is chosen by a “non-interval” set of types. Guaranteeing “interval
choices” is an important desideratum in applications, as we illustrate in Section 3. Fur-
thermore, SCED—without reference to an order—is also the key to guaranteeing that local
incentive compatibility implies global incentive compatibility (Carroll, 2012, Proposition
4).3 We note that for applications in which one seeks choice monotonicity with respect to
a particular order, SCED can be combined with other assumptions on preferences; Claim 5
in Subsection 3.3 illustrates.

Section 4 discusses some additional general results: a strengthening of SCED to mono-
tone expectational differences; and a relaxation of SCED to a restricted set of lotteries, mo-
tivated by the context of choice among signal structures (e.g., Kamenica and Gentzkow,
2011).

An intuition. A key step towards our main result is establishing that under SCED, every
type’s utility function over actions is a linear combination of two (type-independent) func-
tions: Equation 1. We can provide a succinct intuition. Suppose Θ ⊂ R with a minimum θ

and a maximum θ. It suffices to show that there are three actions, a1, a2, and a3, such that
any type θ’s utility from any action a satisfies

v(a, θ) = v(a1, θ)λ1(a) + v(a2, θ)λ2(a) + v(a3, θ)λ3(a), (2)

for some λ(a) ≡ (λ1(a), λ2(a), λ3(a)) with
∑3

i=1 λi(a) = 1. (Equation 1 follows by setting,
for i = 1, 2, fi(θ) = v(ai, θ)− v(a3, θ), gi(a) = λi(a), and c(θ) = v(a3, θ).) The desired λ(a) is

3 More precisely, Carroll’s result implies that local incentive compatibility is sufficient for global incentive
compatibility if there is strict single crossing differences as we define it (Definition 6).
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the solution to v(a, θ)

v(a, θ)

1

 =

v(a1, θ) v(a2, θ) v(a3, θ)

v(a1, θ) v(a2, θ) v(a3, θ)

1 1 1


λ1(a)

λ2(a)

λ3(a)

 ,
which exists at least when there are three actions for which the 3 × 3 matrix on the right-
hand side is invertible. The interpretation of this matrix equation is that one can find two
distinct lotteries over {a1, a2, a3, a} such that the lowest and highest types are both indiffer-
ent between them.4 It follows from SCED that all types must be indifferent between these
two lotteries, which amounts to Equation 2.

1.2. Related Literature

Our paper views an agent’s choice as a lottery over outcomes. Quah and Strulovici
(2012) (QS), on the other hand, consider an agent making choices with uncertainty about
her preferences. Specifically, they consider an agent with utility u(x, θ, t), where x ∈ R is
the choice variable, θ is the type, and t is an unobserved payoff parameter. They character-
ize when the agent’s expected utility has the Milgrom and Shannon (1994) single-crossing
property in (x, θ) for every distribution of t that is independent of x and θ.5 In a nutshell,
their sufficient condition is signed-ratio monotonicity of certain pairs of functions of θ.

While QS’s approach could, in principle, be applied for some problems we are interested
in, it would be unwieldy. Consider an agent with utility function v(a, θ) choosing an action
x that leads, perhaps through some strategic interaction, to an outcome function a∗(x, t),
where t is an independent random realization. Let u(x, θ, t) ≡ v(a∗(x, t), θ). To ensure
monotonicity of choices, QS’s approach would require checking that u(x, θ, t) − u(x′, θ, t)

and u(x, θ, t′) − u(x′, θ, t′) have signed-ratio monotonicity for every t, t′, x > x′, and candi-
date functions a∗(·). This is daunting, particularly when the set of a∗(·) is large and/or a
priori difficult to characterize.

Our SCED approach instead views actions x and x′ as each inducing arbitrary lotteries
over outcomes a, and demands single-crossing differences directly on the lottery space.
While this is conceptually more demanding—and leads to our stringent characterization—
it provides a condition directly on v(a, θ) that can be easier to check; moreover, SCED is

4 Take one lottery to be the uniform distribution P = (1/4, 1/4, 1/4, 1/4) on {a1, a2, a3, a} and the other
lottery to be P + (1/M)(λ1(a), λ2(a), λ3(a),−1), with any sufficiently large M > 0.

5 Athey (2002) considers an agent with utility û(x, t), who receives a signal θ about the unobservable t.
Athey asks when Et[û(x, t)|θ] has the single-crossing property in (x, θ). QS’s approach is also sufficient for
this problem because one can take u(x, θ, t) = û(x, t) Pr(t|θ) so that Et[û(x, t)|θ] ∝

∫
u(x, θ, t)dt.

6



in fact necessary when the set of a∗(·) functions is sufficiently rich, as in our cheap-talk
application in Subsection 3.1. We also note that sufficient conditions for any problem á la
QS concerning u(x, θ, t) can be approached by defining a ≡ (x, t), v(a, t) ≡ u(x, θ, t) and
checking for SCED (or imposing assumptions guaranteeing it).6

When Θ ⊆ R, the utility specification v(a, θ) = θg1(a) + g2(a) has SCED; indeed, the
expected utility difference between any two lotteries is monotonic in θ. The usefulness of
this utility specification (or slight variants) to structure choices over arbitrary lotteries has
been highlighted by Duggan (2014), Celik (2015), and Kushnir and Liu (2017). We pro-
vide in Subsection 4.1 a detailed connection of our work with these authors’. For now,
we only note that, modulo some details, Celik (2015) defines the monotonicity property as
“extended single-crossing” and mentions the utility specification, while Kushnir and Liu
(2017) define the monotonicity property as “increasing differences over distributions” and
provide a functional characterization. The substantive focus of both those papers is on
issues in mechanism design. Duggan (2014), on the other hand, uses the specification in
the context of collective choice over lotteries; he observes that what is essential is single-
crossing, and discusses why it might be difficult to go beyond positive affine transforma-
tions of the specification.

We recently became aware that in the operations research literature, there has been in-
terest in functional forms for “multi-attribute utility functions”, i.e., when outcomes are
multi-dimensional.7 For example, when there are two attributes, x and y, Fishburn (1977)
suggested the form u(x, y) = f1(x)g2(y) + f2(x)g2(y). Abbas and Bell (2011) discuss a “one-
switch condition” that more or less amounts to requiring that, for any two lotteries over
attribute x, the expected utility difference as a function of attribute y must be single cross-
ing. They claim a characterization that is related to our Theorem 1, within a more restrictive
environment (e.g., the set of y is linearly ordered). They do not focus on the relationship
between ratio ordering and the aggregation of single-crossing functions, a monotone com-
parative statics characterization of SCED, or economic applications.

Finally, there is a connection between our results and the famous theorem of Harsanyi
(1955) concerning utilitarianism. Consider a set of three individuals, Θ = {θ, S, θ} endowed
with the order θ < S < θ, and utility functions v(a, θ). Here, SCED is equivalent to S (which
stands for society) satisfying a Pareto principle with respect to θ’s and θ’s preferences over

6 From a mathematical perspective, both QS’ and our results hinge on ensuring that aggregations (i.e.,
linear combinations) of single-crossing functions remain single crossing. The results differ because of differ-
ences in the domains of the functions and the set of aggregations considered. Choi and Smith (2016) observe
that QS’ results can be related to those of Karlin (1968). We elaborate on these connections after Lemma 1 in
Subsection 2.1.

7 We are grateful to Daniele Pennesi for directing us to this literature after seeing our 2017 working paper.
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lotteries (specifically, the conjunction of Weak Pareto and Pareto-weak preference, in the
terminology of De Meyer and Mongin (1995)). A version of Harsanyi’s theorem (De Meyer
and Mongin, 1995, Proposition 2) implies that for some κ ∈ R+ and µ ∈ R, κv(·, S) −
µ is a convex combination of v(·, θ) and v(·, θ); this result is also an implication of our
Theorem 1, as seen from Proposition 1. More generally, the monotonicity identified in
Proposition 1 owes to SCED’s inter-type restrictions, and there are cases—either because
of the structure of Θ or the utility function v(·)—in which the ratio ordering of Theorem 1
cannot be simplified.8

2. Main Results

Let A be an arbitrary set and ∆A the set of probability distributions with finite support.9

Let (Θ,≤) be a (partially) ordered set containing upper and lower bounds for its pairs.10

We often refer to elements of Θ as types. Let v : A × Θ → R be a (type-dependent) utility
function. Define the expected utility V : ∆A×Θ→ R as

V (P, θ) ≡
∫
A

v(a, θ)dP.

For any two probability distributions, also referred to as lotteries, P ∈ ∆A and Q ∈ ∆A,

DP,Q(θ) ≡ V (P, θ)− V (Q, θ)

is the expectational difference.

2.1. Single-Crossing Expectational Differences

2.1.1. The Characterization

Our goal is to characterize when the expectational difference between arbitrary proba-
bility distributions is single crossing in the following sense.

8 The latter issue has some connection with the question of signing the aggregation coefficients in
Harsanyi’s theorem.

9 We restrict attention to finite-support distributions throughout the paper for ease of exposition, as it
guarantees that expected utility is well defined for all utility functions. We could alternatively restrict atten-
tion to bounded utility functions. More generally, our results apply so long as the requirement of SCED is
restricted to those distributions for which expected utility is well defined for all types.

10 A partial order—hereafter, also referred to as just an order—is a binary relation that is reflexive, anti-
symmetric, and transitive (but not necessarily complete). An upper (resp., lower) bound of Θ0 ⊆ Θ is θ ∈ Θ
(resp., θ ∈ Θ) such that θ ≤ θ (resp., θ ≤ θ) for all θ ∈ Θ0. While none of our results require any assumptions
on the cardinality of Θ, the results in Subsection 2.1 are trivial when |Θ| < 3. Appendix H discusses how our
results extend when (Θ,≤) is only a pre-ordered set, i.e., when ≤ does not satisfy anti-symmetry.
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Definition 1. A function f : Θ→ R is single crossing (resp., single crossing from below or
from above) if sign[f ] is monotonic (resp., increasing or decreasing).11

Definition 2. Given any set X , a function f : X ×Θ→ R has Single-Crossing Differences
(SCD) if ∀x, x′ ∈ X , the difference f(x, θ)− f(x′, θ) is single crossing in θ.

Definition 3. The utility function v : A × Θ → R has Single-Crossing Expectational Dif-
ferences (SCED) if the expected utility function V : ∆A×Θ→ R has SCD.

Our definition of SCD is related to but different from Milgrom (2004), who stipulates
that f : X ×Θ→ R has single-crossing differences given an order � on X if for all x′ � x′′

(where � is the strict component of �), f(x′, θ)− f(x′′, θ) is single crossing from below. We
use a different notion because, in applications that involve choice among lotteries, there is
not always an obvious exogenous order. In Subsection 2.3 we define an order on ∆A and
justify our definition of SCD (Theorem 3).

Remark 1. If A = {a1, a2}, then for any two distributions P,Q ∈ ∆A with probability mass
functions p and q, DP,Q(θ) = (p(a1)− q(a1)) (v(a1, θ)− v(a2, θ)). It follows that v has SCED
if and only if v(a1, θ)− v(a2, θ) is single crossing, i.e., if and only if v has SCD. �

However, the following example shows that when |A| > 2, SCED is not implied by SCD,
or even supermodularity.

Example 1. Let Θ = [0, 2] and A = {a0, a1, a2} with a0 < a1 < a2. Define v : A× Θ → R by
v(a0, θ) = 0, v(a1, θ) = −(2 − θ)3 + 9, and v(a2, θ) = 12θ + 4. The function v not only has
SCD, but is supermodular: for any i > j, v(ai, θ) − v(aj, θ) is increasing in θ. Consider the
probability distributions P,Q ∈ ∆A with respective probability mass functions p(a1) = 1

and q(a0) = q(a2) = 1/2. See Figure 1, in which the red dot-dashed curve is
∫
A
v(a, θ)dQ

while the others depict v(ai, θ) for i = {0, 1, 2}. DP,Q(θ) is not single crossing, and so v does
not have SCED. �

Our characterization of SCED (Theorem 1) uses the following definition.

Definition 4. Let f1, f2 : Θ→ R each be single crossing.

1. f1 ratio dominates f2 if

(∀θl < θh) f1(θl)f2(θh) ≤ f1(θh)f2(θl), and (3)

(∀θl < θm < θh) f1(θl)f2(θh) = f1(θh)f2(θl) ⇐⇒

{
f1(θl)f2(θm) = f1(θm)f2(θl),

f1(θm)f2(θh) = f1(θh)f2(θm).
(4)

11 For x ∈ R, sign[x] = 1 if x > 0, sign[x] = 0 if x = 0, and sign[x] = −1 if x < 0. A function h : Θ → R is
increasing (resp., decreasing) if θ′ > θ =⇒ h(θ′) ≥ h(θ) (resp., h(θ′) ≤ h(θ)).
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Figure 1: Single-crossing differences does not imply single-crossing expectational differences.

2. f1 and f2 are ratio ordered if either f1 ratio dominates f2 or f2 ratio dominates f1.

Condition (3) contains the essential idea of ratio dominance; Condition (4) only rules
out some special cases, which we explain later.

Since ratio dominance involves weak inequalities, f1 can ratio dominate f2 and vice-
versa even when f1 6= f2: consider f1 = −f2. We use the terminology “ratio dominance” be-
cause when f2 is a strictly positive function, (3) is the requirement that the ratio f1(θ)/f2(θ)

must be (weakly) increasing in θ. Indeed, if both f1 and f2 are probability densities of ran-
dom variables Y1 and Y2, then (3) says that Y1 stochastically dominates Y2 in the sense of
likelihood ratios.12

Condition (3) is a natural generalization of the increasing ratio property to functions that
may change sign. To get a geometric intuition, suppose f1 “strictly” ratio dominates f2 in
the sense that (3) holds with strict inequality. For any θ, let f(θ) ≡ (f1(θ), f2(θ)). For every
θl < θh, f1(θl)f2(θh)− f1(θh)f2(θl) < 0 implies that the vector f(θl) moves to f(θh) through a
rescaling of magnitude and a clockwise—rather than counterclockwise—rotation (through-
out our paper, a “rotation” must be no more than 180 degrees); see Figure 2.13

12 From the viewpoint of information economics, think of θ as a signal of a state s ∈ {1, 2}, drawn from the
density f(θ|s) ≡ fs(θ). Condition (3) is Milgrom’s (1981) monotone likelihood-ratio property for f(θ|s).

13 To confirm this point, recall that from the definition of cross product,

(f1(θl), f2(θl), 0)× (f1(θh), f2(θh), 0) = ‖f(θl)‖‖f(θh)‖ sin(r)e3

= (f1(θl)f2(θh)− f1(θh)f2(θl)) e3,

where r is the counterclockwise angle from f(θl) to f(θh), e3 ≡ (0, 0, 1), × is the cross product, and ‖·‖ is
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Figure 2: Geometric representation of Condition (3) for two points θl < θh.

Hence, f1 and f2 are ratio ordered only if f(θ) rotates monotonically as θ increases, either
always clockwise or always counterclockwise.14 It follows that the set {f(θ) : θ ∈ Θ} must
be contained in a closed half-space of R2 defined by a hyperplane that passes through the
origin: otherwise, there will be two pairs of vectors such that an increase in θ corresponds
to a clockwise rotation in one pair and a counterclockwise rotation in the other. When f1

and f2 are both strictly positive functions, monotonic rotation of f(θ) and ratio ordering
are equivalent to monotonicity of the ratio f1(θ)/f2(θ).

We impose Condition (4) to rule out cases in which, for some θl < θm < θh, either (i)
f(θl) and f(θh) are collinear in opposite directions while f(θm) is not, or (ii) f(θl) and f(θh)

are non-zero vectors while f(θm) is not. See Figure 3, wherein panel (a) depicts case (i) and
panel (b) depicts case (ii). Note that Condition (3) is satisfied in both panels.

Our main result is:

Theorem 1. The function v : A×Θ→ R has SCED if and only if it takes the form

v(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + c(θ), (5)

the Euclidean norm. If sin(r) < 0 (resp., sin(r) > 0), then f(θl) moves to f(θh) through a clockwise (resp.,
counterclockwise) rotation.

14 The preceding discussion establishes this point under the presumption that Condition (3) holds strictly;
however, because of the hypothesis in Definition 4 that f1 and f2 are single crossing and because of Condition
(4), the conclusion holds without that presumption. Furthermore, it can be confirmed that a monotonic
rotation of f(·) implies ratio ordering if there are no θ′ and θ′′ such that f(θ′) and f(θ′′) are collinear.
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(a) Failure of =⇒ . (b) Failure of ⇐= .

Figure 3: f1 and f2 are not ratio ordered because Condition (4) fails for θl < θm < θh.

with f1, f2 : Θ→ R each single crossing and ratio ordered, g1, g2 : A→ R, and c : Θ→ R.

A number of observations help interpret Theorem 1. First, the Theorem says that for v
to have SCED, it must be possible to write it in the form (5). Notice that given (5), for any
a0, a ∈ A, the function v(a, ·) − v(a0, ·) is a linear combination of f1(·) and f2(·). Therefore,
to rule out the possibility of the form (5), it is sufficient to find a0, a1, a2, a3 ∈ A and θl <

θm < θh such that the 3 × 3 matrix M ≡ [v(ai, θj) − v(a0, θj)]i∈{1,2,3},j∈{l,m,h} is invertible.
This procedure is often useful to reject SCED, as illustrated by the next corollary, which
identifies quadratic loss as the unique power loss function that satisfies SCED.

Corollary 1. Let A = R and Θ ⊆ R with |Θ| ≥ 3, with the interpretation that a is a decision or
policy and θ parameterizes the agent’s bliss point. A loss function of the form v(a, θ) = −|a− θ|z

with z > 0 has SCED if and only if z = 2.

Under quadratic loss, preferences over lotteries are summarized by the first and second
moments of lotteries. The sufficiency of two statistics is a general property under SCED;
given (5), the relevant statistics for any lottery P ∈ ∆A are

∫
A
g1(a)dP and

∫
A
g2(a)dP .

The form (5) is not enough for SCED, however: the component f1 and f2 functions
must be single crossing and ratio ordered. Example 1 illustrates. Take c(θ) = 0, f1(θ) =

−(2 − θ)3 + 9, f2(θ) = 12θ + 4, and for each i ∈ {1, 2}, gi(a) = 11{a=i}, where 11{·} is the
indicator function. The Example then satisfies (5), with f1 and f2 each single crossing. But
since f1 and f2 are both strictly positive while f1/f2 is not monotonic, they are not ratio
ordered. Indeed, the requirement of ratio ordering underlies the following corollary.

12



Corollary 2. Let A ⊆ R2 with a ≡ (q, t) and Θ ⊆ R, with the interpretation that q is a quantity
or allocation, t is money, and θ parameterizes the agent’s marginal rate of substitution.

1. v((q, t), θ) = g(q)f(θ)− t (as in mechanism design and screening), where g is not constant,
has SCED if and only if f is monotonic.

2. v((q, t), θ) = qθ + g(q) − t (as in delegation with money burning; cf. Amador and Bagwell
(2013)) has SCED.

An asymmetry between a and θ in the functional form (5) bears noting: the function
c : Θ → R does not have a counterpart function A 7→ R. The reason is that whether the
expectational difference between a pair of lotteries is single crossing or not could be altered
by adding a function of a alone to the utility function v(a, θ). On the other hand, adding a
function of θ alone to v(a, θ) has no effect on expectational differences. Indeed, SCED is an
ordinal property of preferences over lotteries that is invariant to (type-dependent) positive
affine transformations of v(a, θ): if v(a, θ) has SCED, then so does b(θ)v(a, θ) + c(θ) for any
b : Θ→ R++ and c : Θ→ R.

If v(a, θ) has the form (5) with strictly positive functions f1 and f2, then up to a positive
affine transformation (viz., subtracting c(θ) and dividing by f1(θ)+f2(θ)), any type’s utility
becomes a convex combination of two type-independent utility functions over actions, g1

and g2. Theorem 1’s ratio ordering requirement then simply says that the relative weight on
g1 and g2 changes monotonically with the agent’s type. This idea underlies the following
proposition.

Proposition 1. If Θ has both a minimum and a maximum (i.e., ∃ θ, θ ∈ Θ such that (∀θ) θ ≤ θ ≤
θ), then v : A×Θ→ R has SCED if and only if v has a positive affine transformation ṽ satisfying

ṽ(a, θ) = λ(θ)ṽ(a, θ) + (1− λ(θ))ṽ(a, θ), (6)

with λ : Θ→ [0, 1] increasing.

The remainder of this subsection explains the logic behind Theorem 1. As expected util-
ity differences correspond to linear combinations of utilities, the central issue turns out to
be when arbitrary such aggregations are single crossing. Lemma 1 below shows that ra-
tio ordering is the characterizing property when aggregating two functions; Proposition 2
then establishes that when aggregating more than two functions, no more than two can be
linearly independent, which leads to the form (5).15

15 Real-valued functions f1, f2, . . . , fn are linearly independent if (∀λ ∈ Rn\{0})
∑n
i=1 λifi is not a zero

function, i.e., is not everywhere zero.
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2.1.2. Aggregating Single-Crossing Functions

Lemma 1. Let f1, f2 : Θ → R. The linear combination α1f1(θ) + α2f2(θ) is single crossing
∀α ∈ R2 if and only if f1 and f2 are (i) each single crossing and (ii) ratio ordered.

Lemma 1 is related to Quah and Strulovici (2012, Proposition 1). They establish that
for any two functions f1 and f2 that are each single crossing from below, α1f1 + α2f2 is
single crossing from below for all α ∈ R2

+ if and only if f1 and f2 satisfy a condition they
call signed-ratio monotonicity. In general, the two conditions are not comparable because
we consider a different problem from Quah and Strulovici: (i) the input functions may
be single crossing in either direction; (ii) the linear combinations involve coefficients of
arbitrary sign; and (iii) the resulting combination can be single crossing in either direction.
Example 1 highlights the importance of point (ii): both f1(θ) = −(2 − θ)3 + 9 and f2(θ) =

12θ+ 4 are positive functions (hence, single crossing from below), and so all positive linear
combinations are also positive functions, but 2f1−f2 is not single crossing because f1 and f2

are not ratio ordered. If the input functions in Lemma 1 are restricted to be single crossing
from below, then ratio ordering implies signed-ratio monotonicity.

Lemma 1 implies a characterization of likelihood-ratio ordering for random variables
with single-crossing densities, e.g., those with strictly positive densities. While this likelihood-
ratio ordering characterization is not well-known among economists (to our knowledge),
it is a special case of Karlin’s (1968) results on the variation diminishing property of totally
positive functions. More generally, however, we believe the full force of Lemma 1 cannot
be derived from the variation diminishing property. See Appendix G for further discussion
of Quah and Strulovici (2012) and Karlin (1968).

Here is Lemma 1’s intuition. For sufficiency of Condition (3) of ratio ordering, con-
sider any linear combination α1f1 + α2f2. Assume α ∈ R2\{0}, as otherwise the lin-
ear combination is trivially single crossing. The vector α defines two open half spaces
R2
α,− ≡ {x ∈ R2 : α · x < 0} and R2

α,+ ≡ {x ∈ R2 : α · x > 0}, where · is the dot product; see
Figure 4(a). Ratio ordering of f1 and f2 implies that the vector f(θ) ≡ (f1(θ), f2(θ)) rotates
monotonically as θ increases. If the rotation occurs from R2

α,− to R2
α,+ (resp., from R2

α,+ to
R2
α,−), then α · f ≡ α1f1 + α2f2 is single crossing only from below (resp., only from above).

If
⋃
θ∈Θ f(θ) ⊆ R2

α,− or
⋃
θ∈Θ f(θ) ⊆ R2

α,+, then α · f is single crossing both from below and
above. Other cases are similar.

To see why Condition (3) of ratio ordering is necessary, suppose the vector f(θ) does not
rotate monotonically. Figure 4(b) illustrates a case in which, for θl < θm < θh, f(θl) rotates
counterclockwise to f(θm), but f(θm) rotates clockwise to f(θh). As shown in the Figure,
one can find α ∈ R2 such that f(θm) ∈ R2

α,− while both f(θl), f(θh) ∈ R2
α,+, which implies

14



(a) Sufficiency of ratio ordering. (b) Necessity of ratio ordering, with θl < θm < θh.

Figure 4: Ratio ordering and single crossing of all linear combinations.

that α · f is not single crossing. The necessity of Condition (4) can be seen by returning to
Figure 3. In panel (a), (f1 + f2)(θl) = (f1 + f2)(θh) = 0 while (f1 + f2)(θm) < 0; in panel (b),
(f1 + f2)(θl) > 0 and (f1 + f2)(θh) > 0 while (f1 + f2)(θm) = 0.

Theorem 1 requires an extension of Lemma 1 to more than two functions. Consider
any set X and f : X × Θ → R. We say that f is linear combinations SC-preserving if∑

x∈X f(x, θ)µ(x) is single-crossing in θ for every function µ : X → Rwith finite support.

Proposition 2. Let f : X × Θ → R for some set X . The function f is linear combinations
SC-preserving if and only if there exist x1, x2 ∈ X and λ1, λ2 : X → R such that

1. f(x1, ·) : Θ→ R and f(x2, ·) : Θ→ R are (i) each single crossing and (ii) ratio ordered, and

2. (∀x) f(x, ·) = λ1(x)f(x1, ·) + λ2(x)f(x2, ·).

Proposition 2 says that a family of single-crossing functions {f(x, ·)}x∈X preserves single
crossing of all finite linear combinations if and only if the family is “linearly generated” by
two single-crossing functions that are ratio ordered. In particular, given any three single-
crossing functions, f1, f2, and f3, all their linear combinations will be single crossing if and
only if there is a linear dependence in the triple, say λ1f1 + λ2f2 = f3 for some λ ∈ R2, and
f1 and f2 are ratio ordered.
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The sufficiency direction of Proposition 2 follows from Lemma 1, as does necessity of
the “generating functions” being ratio ordered. The intuition for the necessity of lin-
ear dependence is as follows. Assume Θ is completely ordered. For any θ, let f(θ) ≡
(f1(θ), f2(θ), f3(θ)). If {f1, f2, f3} is linearly independent, then there exist θl < θm < θh such
that {f(θl), f(θm), f(θh)} spans R3. Take any α ∈ R3 \ {0} that is orthogonal to the plane
Sθl,θh that is spanned by f(θl) and f(θh), as illustrated in Figure 5. The linear combination
α · f is not single crossing because (α · f)(θl) = (α · f)(θh) = 0 while (α · f)(θm) 6= 0.

Figure 5: The necessity of linear dependence in Proposition 2.

While the necessity portion of Proposition 2 only asserts ratio ordering of the “gen-
erating functions”, Lemma 1 implies that if f : X × Θ → R is linear combinations SC-
preserving, then for all x, x′ ∈ X , the pair f(x, ·) : Θ→ R and f(x′, ·) : Θ→ Rmust be ratio
ordered.

2.1.3. Proof Sketch of Theorem 1

We can now sketch the argument for Theorem 1. That its characterization is sufficient
for SCED is straightforward from Lemma 1. For necessity, suppose, as a simplification,
A = {a0, . . . , an} and v : A × Θ → R is such that (∀θ) v(a0, θ) = 0.16 For any (λ0, . . . , λn),
we build on the Hahn-Jordan decomposition of (λ1, . . . , λn) to write the linear combination∑n

i=0 λiv(ai, θ) as M
∑n

i=0(p(ai) − q(ai))v(ai, θ), where p and q are probability mass func-
tions on A, and M is a scalar.17 (Unless

∑n
i=1 λi = 0, we have

∑n
i=1 p(ai) 6=

∑n
i=1 q(ai);

16 The latter is a normalization, since v(a, θ) has SCED if and only if ṽ(a, θ) ≡ v(a, θ)− v(a0, θ) has SCED.
17 Let L ≡

∑n
i=1 λi. For i > 0, set p′(ai) ≡ max{λi, 0} and q′(ai) ≡ −min{λi, 0}. If L ≥ 0, set p′(a0) = 0 and

q′(a0) ≡ L; if L < 0, set p′(a0) ≡ −L and q′(a0) ≡ 0. Let M ≡
∑n
i=0 p

′(ai) =
∑n
i=0 q

′(ai). Finally, for all a ∈ A,
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the assumption that v(a0, ·) = 0 permits us to assign all the “excess difference” to a0, as
detailed in fn. 17.) Since v has SCED, every such linear combination is single crossing, and
so Proposition 2 guarantees a′ and a′′ such that for all a, v(a, ·) = g1(a)v(a′, ·) + g2(a)v(a′′, ·),
with v(a′, ·) and v(a′′, ·) each single crossing and ratio ordered.

2.2. Strict Single-Crossing Expectational Differences

Towards an analog of the standard monotone selection theorem (Milgrom and Shannon,
1994, Theorem 4’), this subsection provides a “strict variant” of Theorem 1. We now assume
the existence of a strictly increasing real-valued function on (Θ,≤).18 This requirement is
satisfied, for example, when Θ is finite, or Θ ⊆ Rn is endowed with the usual order.

Definition 5. A function f : Θ→ R is strictly single crossing (resp., strictly single crossing
from below or from above) if it is single crossing (resp., from below or from above) and
there are no θ′ < θ′′ such that f(θ′) = f(θ′′) = 0.

Definition 6. Given any set X , a function f : X × Θ → R has Strict Single-Crossing
Differences (SSCD) if ∀x, x′ ∈ X , the difference f(x, θ)−f(x′, θ) is either a zero function or
strictly single crossing in θ. The utility function v : A × Θ → R has Strict Single-Crossing
Expectational Differences (SSCED) if the expected utility function V : ∆A × Θ → R has
SSCD.

The zero-function possibility in the above definition cannot be avoided even if we re-
stricted attention to distinct distributions P and Q; for example, DP,Q is a zero function
whenever P and Q have the same expectation and v is linear in a.

Definition 7. A function f1 : Θ → R strictly ratio dominates f2 : Θ → R if Condition
(3) holds with strict inequality; f1 and f2 are strictly ratio ordered if either f1 strictly ratio
dominates f2 or vice-versa.

The definition of strict ratio dominance does not make reference to Condition (4) because
that condition is vacuous when Condition (3) holds with strict inequality.

Theorem 2. The function v : A × Θ → R has SSCED if and only if it takes the form (5), with
f1, f2 : Θ→ R strictly ratio ordered, g1, g2 : A→ R, and c : Θ→ R.

set p(a) ≡ p′(a)/M and q(a) ≡ q′(a)/M .
18 That is, we assume ∃h : Θ → R such that θ < θ =⇒ h(θ) < h(θ). This requirement is related to utility

representations for possibly incomplete preferences (Ok, 2007, Chapter B.4.3). A sufficient condition is that Θ
has a countable order dense subset, i.e., if there exists a countable set Θ0 ⊆ Θ such that (∀θ, θ ∈ Θ \Θ0) θ <
θ =⇒ ∃θ0 ∈ Θ0 s.t. θ < θ0 < θ (Jaffray, 1975, Corollary 1).
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2.3. Monotone Comparative Statics

There is a sense in which SCED is necessary and sufficient for monotone comparative
statics, while SSCED guarantees that any selection of choices is monotonic. A precise state-
ment requires monotonicity theorems (Theorem 3 and Proposition 3 below) related to, but
distinct from, the influential Theorem 4 and Theorem 4’ of Milgrom and Shannon (1994).

Choice Monotonicity. Throughout this subsection, we consider an ordered set of alterna-
tives, (X,�), and, as earlier, an ordered set of types, (Θ,≤). We maintain the assumption
that Θ contains upper and lower bounds for every pair of its elements. Neither � nor ≤
need be complete. We are interested in comparative statics for a function f : X × Θ → R.
We assume the set X is minimal (with respect to f ) in the sense that

(∀x 6= x′)(∃θ) f(x, θ) 6= f(x′, θ).

For any x, y ∈ X , let x ∨ y and x ∧ y denote the usual join and meet respectively.19 In
general, neither need exist. Given any Y, Z ⊆ X , we say that Y dominates Z in the strong
set order, denoted Y �SSO Z, if for every y ∈ Y and z ∈ Z, (i) y ∨ z and y ∧ z exist, and (ii)
y ∨ z ∈ Y and y ∧ z ∈ Z.

Remark 2. The strong set order is neither reflexive nor transitive: for any S ⊆ X , it holds
that S �SSO ∅ and ∅ �SSO S, whereas S �SSO S if and only if (S,�) is a lattice (i.e., each
pair of elements in S has a join and meet in S). However, the strong set order is transitive
on non-empty subsets of (X,�). While this transitivity is well-known when (X,�) is a
lattice, it can be shown to be a general property.

Definition 8. f : X ×Θ→ R has Monotone Comparative Statics (MCS) on (X,�) if

(∀S ⊆ X) and (∀θ ≤ θ′) : arg max
s∈S

f(s, θ′) �SSO arg max
s∈S

f(s, θ).

Our definition of MCS is closely related to but not the same as Milgrom and Shannon
(1994). We take (X,�) to be any ordered set while they require a lattice. We focus only on
monotonicity of choice in θ but require the monotonicity to hold for every subset S ⊆ X ;
Milgrom and Shannon require monotonicity of choice jointly in the pair (θ, S), but this
implicitly only requires choice monotonicity in θ to hold for every sub-lattice S ⊆ X .

19 z ∈ X is the the join (or supremum) of {x, y} if (i) z � x and z � y, and (ii) if w � x and w � y, then
w � z. The meet (or infimum) of {x, y} is defined analogously.
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Define binary relations�SCD and�SCD onX as follows: x �SCD x′ ifDx,x′(θ) ≡ f(x, θ)−
f(x′, θ) is single crossing only from below; x �SCD x′ if either x �SCD x′ or x = x′. It is clear
that �SCD is reflexive and anti-symmetric. If f : X × Θ → R has SCD, then �SCD is also
transitive.20

Given two orders � and �′ on X , the order �′ is a refinement of � if

(∀x, x′ ∈ X) x � x′ =⇒ x �′ x′.

Theorem 3. f : X×Θ→ R has monotone comparative statics on (X,�) if and only if f has SCD
and � is a refinement of �SCD.

Our definition of SCD does not require an order on the set of alternatives, whereas MCS
does. Theorem 3 says that SCD is necessary and sufficient for there to exist an order that
yields MCS. Moreover, the Theorem justifies viewing �SCD as the prominent order for
MCS: MCS does not hold with any order that either coarsens �SCD or reverses a ranking
by �SCD. The argument for necessity in Theorem 3 only makes use of binary choice sets.
If SCD fails, then there is no order � for which there is choice monotonicity for all binary
choice sets. If SCD holds, then choice monotonicity on all binary choice sets requires � to
refine �SCD.

Regarding sufficiency, for each S ⊆ X , let C(S) ≡
⋃
θ∈Θ arg maxx∈S f(x, θ). Given that

f has SCD and X is minimal, the set C(S) is completely ordered by �SCD (as elaborated
in the proof of Theorem 3). Since � is a refinement of �SCD, � coincides with �SCD on
C(S), and the strong set orders generated by � and �SCD on the collection of all subsets
of C(S) also coincide. By definition of �SCD, f satisfies Milgrom and Shannon’s (1994)
single-crossing property in (x, θ) with respect to �SCD and ≤ . It follows from Milgrom
and Shannon (1994, Theorem 4) that ∀θ ≤ θ′,

arg max
s∈S

f(s, θ′) = arg max
s∈C(S)

f(s, θ′) �SSO arg max
s∈C(S)

f(s, θ) = arg max
s∈S

f(s, θ).

A stronger notion of choice monotonicity is given by the next definition.

Definition 9. f : X × Θ → R has Monotone Selection (MS) on (X,�) if for any S ⊆ X ,
every selection s∗(θ) from arg maxs∈S f(s, θ) is increasing in θ.

20 To confirm transitivity, take x, y, z ∈ X such that x �SCD y and y �SCD z. If x = y or y = z, it is trivial
that x �SCD z. If x 6= y and y 6= z, then x �SCD y and y �SCD z. Since f has SCD, Dx,z is single crossing.
As both Dx,y and Dy,z are single crossing only from below, Dx,z = Dx,y + Dy,z is single crossing only from
below. Thus, x �SCD z.
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Define binary relations �SSCD and �SSCD on X as follows: x �SSCD x′ if Dx,x′ is strictly
single crossing only from below; x �SSCD x′ if either x �SSCD x′ or x = x′. As before, if
f : X ×Θ→ R has SSCD, then �SSCD is an order.

Proposition 3. If f : X×Θ→ R has SSCD and� is a refinement of�SSCD, then f has monotone
selection on (X,�).

Remark 3. If f : X × Θ → R has SCD (resp., SSCD), then a complete refinement � of �SCD
(resp., �SSCD) exists, and f has MCS (resp., MS) on (X,�). To construct one example of a
completion of �SCD, define �dom on X as follows: x �dom x′ if (∀θ) f(x, θ) > f(x′, θ). Given
that f has SCD, a pair x, x′ ∈ X is related by �dom if and only if it is not related by �SCD.
The relation�≡�SCD ∪ �dom is thus complete, reflexive, and anti-symmetric; it is not hard
to check that � is also transitive.

Choice Monotonicity over Lotteries. We apply Theorem 3 and Proposition 3 to our con-
text of choice among lotteries. To get a minimal space of lotteries, we treat any pair
P,Q ∈ ∆A that are utility-indistinguishable (i.e., DP,Q(θ) = 0 for all θ) as in an equiva-
lence class. Let ∆̃A denote the resulting partition of ∆A. For readability, we abuse notation
and treat elements of ∆̃A as lotteries rather than equivalence classes.

Let �SCED and �SCED be the �SCD and �SCD relations defined on ∆̃A, with respect to
the expected utility function V . That is, for P,Q ∈ ∆̃A, P �SCED Q ifDP,Q is single crossing
only from below, and P �SCED Q if P �SCED Q or P = Q. If v has SCED, then the expected
utility function V has SCD and (∆̃A,�SCED) is an ordered set.

Corollary 3. V has monotone comparative statics on (∆̃A,�) if and only if v has SCED and � is
a refinement of �SCED. If v has SCED, then there is a complete order with respect to which V has
monotone comparative statics.

Analogous to the discussion preceding Corollary 3, we define �SSCED and �SSCED as
the�SSCD and�SSCD relations defined on ∆̃A, with respect to the expected utility function
V . That is, for P,Q ∈ ∆̃A, P �SSCED Q if DP,Q is strictly single crossing only from below,
and P �SSCED Q if P �SSCED Q or P = Q. If v has SSCED, then the expected utility
function V has SSCD and (∆̃A,�SSCED) is an ordered set.

Corollary 4. If v has SSCED and � is a refinement of �SSCED, then V has monotone selection on
(∆̃A,�). If v has SSCED, then there is a complete refinement of �SSCED with respect to which V
has monotone selection.
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3. Applications

This section illustrates the usefulness of our results in three applications.

3.1. Cheap Talk with Uncertain Receiver Preferences

There are two players, a sender (S) and a receiver (R). The sender’s type is θ ∈ Θ, where
Θ is ordered by ≤. After learning his type, S chooses a payoff-irrelevant message m ∈ M ,
where |M | > 1. After observing m but not θ, R takes an action a ∈ A. The sender’s von
Neumann-Morgenstern utility function is v(a, θ); the receiver’s is u(a, θ, ψ), where ψ ∈ Ψ

is a preference parameter that is unknown to S when choosing m, and known to R when
choosing a. Note that ψ does not affect the sender’s preferences. The variables θ and ψ are
independently drawn from commonly-known probability distributions.

An example is Θ = [0, 1], A = R, ψ ∈ Ψ ⊆ R2, v(a, θ) = −(a − θ)2 and u(a, θ, ψ) =

−(a−ψ1−ψ2θ)
2. Here the variable ψ1 captures the receiver’s “type-independent bias” and

ψ2 captures the relative “sensitivity” to the sender’s type. If ψ were commonly known and
θ uniformly distributed, this would be the model of Melumad and Shibano (1991), which
itself generalizes the canonical example from Crawford and Sobel (1982) that obtains when
ψ1 6= 0 and ψ2 = 1.

We focus on (weak Perfect Bayesian) equilibria in which S uses a pure strategy, µ : Θ→
M , and R plays a possibly-mixed strategy, α : M ×Ψ→ ∆A.21 Given any α, every message
m induces some lottery over actions from the sender’s viewpoint, Pα(m). An equilibrium
(µ, α) is: (i) an interval equilibrium if every message is used by an interval of sender types,
i.e., if θl < θm < θh and µ(θl) = µ(θh), then µ(θm) = µ(θl); and (ii) sender minimal if for all
on-the-equilibrium-path m 6= m′, ∃θ : V (Pα(m), θ) 6= V (Pα(m′), θ). Sender minimality rules
out all sender types being indifferent between two distinct on-path messages.22

Claim 1. If v has the form stated in Theorem 2, and hence has SSCED, then every sender-minimal
equilibrium is an interval equilibrium.

Proof. Assume v has SSCED and take a sender-minimal equilibrium (µ∗, α∗). Suppose, to
contradiction, there are θl < θm < θh such that m′ ≡ µ∗(θl) = µ∗(θh) 6= µ∗(θm) ≡ m′′. Let
P ′ and P ′′ denote the equilibrium distributions of the receiver’s actions induced by the

21 Our notion of equilibrium requires optimal play for every (not just almost every) type of sender. The
restriction to pure strategies for the sender is for expositional simplicity.

22 In Crawford and Sobel (1982) and Melumad and Shibano (1991), all equilibria are outcome equivalent to
sender-minimal equilibria. More generally, all equilibria are sender-minimal when there is a complete order
over messages under which higher messages are infinitesimally more costly for all sender types.
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messages m′ and m′′ respectively, from the viewpoint of the sender. Both P ′ and P ′′ are
independent of θ because ψ and θ are independent. By Theorem 2, DP ′,P ′′ is either (i) a zero
function, or (ii) strictly single crossing only from below, or (iii) strictly single crossing only
from above. Case (i) contradicts sender minimality of the equilibrium; case (ii) contradicts
m′ being optimal for θl and m′′ being optimal for θm; case (iii) contradicts m′′ being optimal
for θm and m′ being optimal for θh. Q.E.D.

The result relates to Seidmann (1990), who first considered an extension of Crawford
and Sobel (1982) to sender uncertainty about the receiver’s preferences. His goal was to
illustrate how such uncertainty could facilitate informative communication even when the
sender always strictly prefers higher actions. Example 2 in Seidmann (1990) constructs a
non-interval and sender-minimal equilibrium that is informative. Claim 1 clarifies that the
key is a failure of (S)SCED.

The strict single crossing property in standard cheap-talk models (e.g., Crawford and
Sobel (1982) and Melumad and Shibano (1991)) not only yields interval equilibria, but it
also implies that local incentive compatibility is sufficient for global incentive compatibility.
This additional tractability also holds under SSCED. Let Θ = N for convenience, and P :

Θ→ ∆A be a candidate equilibrium allocation (i.e., the distribution of receiver actions that
each sender type induces in equilibrium). Under SSCED, it is sufficient for sender incentive
compatibility that (∀i ∈ N) V (P (θi), θi) ≥ max{V (P (θi−1), θi), V (P (θi+1), θi)}.

Besides being sufficient, (S)SCED is also necessary to guarantee interval cheap-talk equi-
libria so long as the environment—specifically, the receiver utility function u and the dis-
tribution of his preference parameter ψ—is rich enough to generate appropriate pairs of
lotteries. Say that v strictly violates SCED if there are P,Q ∈ ∆A and θl < θm < θh such that
min{DP,Q(θl), DP,Q(θh)} > 0 > DP,Q(θm).

Claim 2. Let Θ ⊆ R, A = R, Ψ ⊆ R2, and u(a, θ, ψ) ≡ −(a − ψ1 − ψ2θ)
2. If v strictly violates

SCED, then for some pair of distributions of θ and ψ there is a non-interval equilibrium in which
each sender type plays its unique best response.

Proof. Assume v strictly violates SCED and let P and Q be the distributions and θl < θm <

θh the types in that definition. Let M ≡ {m′,m′′} and consider the sender’s strategy

µ(θ) =

m′ if θ ∈ {θl, θh}

m′′ if θ = θm.

Let Fθ be any probability distribution with support {θl, θm, θh} and θ′ ≡ EFθ [θ|θ ∈
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{θl, θh}] 6= θm. Then, the unique best response against µ for a receiver of type ψ = (ψ1, ψ2)

is
α(m′, ψ) = ψ1 + ψ2θ

′ and α(m′′, ψ) = ψ1 + ψ2θm.

It can be verified that there is a distribution Fψ such that, from the sender’s viewpoint, the
message m′ leads to the distribution P and the message m′′ leads to the distribution Q, and
so µ is the sender’s unique best response.23 Q.E.D.

The particular specification of u in Claim 2 is not critical; what is important, as sug-
gested earlier, is that there be enough flexibility to generate appropriate distributions of
actions from the sender’s viewpoint using best responses for the receiver. For example,
the result would also hold—more straightforwardly, but less interestingly—if the receiver
were totally indifferent over all actions for some preference realization. On the other hand,
if ψ ∈ R and u(a, θ, ψ) ≡ −(a − θ − ψ)2, then SCED is not necessary, because any pair of
lotteries that the sender may face are ranked by first order stochastic dominance. Strict
supermodularity of v(a, θ) then guarantees that all sender-minimal equilibria are interval
equilibria; however, strict supermodularity does not imply SCED, as noted in Example 1.

In our cheap-talk application it is uncertainty about the receiver’s preferences that leads
to the sender effectively choosing among lotteries over the receiver’s action. Similar results
could also be obtained when the receiver’s preferences are known but communication is
noisy, á la Blume, Board, and Kawamura (2007).

3.2. Collective Choice

Collective choice over lotteries arises naturally in many contexts. For example, in elec-
tions there is uncertainty about what policies some politicians will implement if elected;
when hiring a CEO, a board of directors may view each candidate as a probability distribu-
tion over earnings. Zeckhauser (1969) first pointed out that pairwise-majority comparisons
in these settings can be cyclical, even when comparisons over deterministic outcomes are
not. Our results shed light on when such difficulties do not arise.

23 Let x and y be random variables with distributions P and Q, respectively. Let Fψ be the distribution of a
random vector ψ = (ψ1, ψ2) defined by [

ψ1

ψ2

]
≡
[
1 θ′

1 θm

]−1 [
x
y

]
.

As ψ ∼ Fψ , [
1 θ′

1 θm

] [
ψ1

ψ2

]
=

[
ψ1 + ψ2θ

′

ψ1 + ψ2θm

]
is stochastically equivalent to (x, y). Thus, α(m′, ψ) = ψ1 + ψ2θ

′ ∼ P and α(m′′, ψ) = ψ1 + ψ2θm ∼ Q.
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Consider a finite group of individuals indexed by i ∈ {1, 2, . . . , N}. The group must
choose from a set of lotteries,A ⊆ ∆A, where A is the space of outcomes (political policies,
earnings, etc.) with generic element a. Each individual i has von Neumann-Morgenstern
utility function v(a, θi), where θi ∈ Θ is a preference parameter or i’s type. We assume Θ is
completely ordered; without further loss of generality, let Θ ⊂ R and θ1 ≤ · · · ≤ θN . The
expected utility for an individual of type θ from lottery P ∈ A is V (P, θ) ≡

∫
A
v(a, θ)dP .

Define the group’s preference relation, �maj , over lotteries P,Q ∈ A by majority rule:

P �maj Q if |{i : V (P, θi) ≥ V (Q, θi)}| ≥ N/2.

The relation �maj is said to be quasi-transitive if the corresponding strict relation is tran-
sitive. Quasi-transitivity of �maj is the key requirement for collective choice to be “ratio-
nal”: it ensures—given completeness, which �maj obviously satisfies—that a preference-
maximizing choice (equivalently, a Condorcet Winner) exists for the group under standard
conditions on the choice set, e.g., if A is finite. We say there is a unique median if either (i)
N is odd, in which case we define M ≡ (N + 1)/2 or (ii) N is even and θN/2 = θN/2+1, in
which case M ≡ N/2.

Claim 3. If v has the form stated in Theorem 1, and hence has SCED, then the group’s preference
relation is quasi-transitive. If v has the form stated in Theorem 2 and hence has SSCED, and there
is a unique median, then the group’s preference relation is transitive and is represented by V (·, θM).

Proof. Suppose v has SCED. Define the minimal space Ã from A by not distinguishing
lotteries that give the same expected utility to all types. We work with Ã instead of A in
order to invoke a result from Gans and Smart (1996) that assumes a completely ordered set.
Corollary 3 implies there is a complete order � on Ã, which refines �SCED, such that

(∀P � Q, ∀θ′ > θ) V (P, θ) ≥ V (Q, θ) =⇒ V (P, θ′) ≥ V (Q, θ′), (7)

(∀P � Q, ∀θ′ > θ) V (P, θ) > V (Q, θ) =⇒ V (P, θ′) > V (Q, θ′). (8)

Conditions (7) and (8) imply that Gans and Smart’s (1996) “single-crossing condition” is
satisfied on Ã; their Corollary 1 implies the group’s preference relation is quasi-transitive
on Ã. Since A differs from Ã only by distinguishing lotteries that all individuals are indif-
ferent among, it follows that �maj is quasi-transitive on A.

The claim’s second statement follows similarly from Corollary 4 and Gans and Smart’s
(1996) Corollary 2. Q.E.D.
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Claim 3 can be applied to a well-known problem in political economy (Shepsle, 1972).
The policy space is a finite set A ⊂ R (for simplicity) and there are an odd N number
of voters ordered by their ideal points in R, θ1 ≤ · · · ≤ θN (i.e., for each voter i, {θi} =

arg maxa∈R v(a, θi)). Let M ≡ (N + 1)/2. There are two office-motivated candidates, L and
R; each j ∈ {L,R} can commit to any lottery from some given set Aj ⊆ ∆A. A restricted
set Aj may capture various kinds of constraints; for example, Shepsle (1972) assumed the
incumbent candidate could only choose degenerate lotteries. In our setting, what ensures
the existence of an equilibrium, and which policy lotteries are offered in an equilibrium?24

Claim 3 implies that if voters’ utility functions v have SSCED, and if voter M is indif-
ferent between her most-preferred lottery in AL and in AR (e.g., if AL = AR and they are
compact sets, or if both sets contain the degenerate lottery on θM , denoted δθM hereafter),
then there is a unique equilibrium: each candidate offers the best lottery for voter M ; in
particular, both candidates converge to δθM if that is feasible for both. A special case is
when v(a, θ) = −(a − θ)2 and δθM ∈ AL ∩ AR. It bears emphasis, however, that there will
be policy convergence at the median ideal point (so long as δθM ∈ AL ∩ AR) given SSCED
not because all voters need be globally “risk averse”; rather, it is because SSCED ensures
the existence of a decisive voter whose most-preferred lottery is degenerate.25

There is a sense in which (S)SCED is necessary to guarantee that each candidate j will of-
fer the median ideal-point voter’s most-preferred lottery from the feasible set Aj . Suppose
v(a, θ) strictly violates SCED, as defined in Subsection 3.1 before Claim 2. That is, there are
P,Q ∈ ∆A and θl < θm < θh such that min{DP,Q(θl), DP,Q(θh)} > 0 > DP,Q(θm). Then, if the
population of voters is just {l,m, h} and AL = AR = {P,Q}, the unique equilibrium is for
both candidates to offer lottery P , which is voter m’s less preferred lottery.

3.3. Costly Signaling

Consider a version of Spence’s (1973) signaling model. A worker is privately informed
of his type θ that is drawn from some distribution with support Θ ⊆ R and then chooses
education e ∈ R+. There is a reduced-form market that observes e (but not θ) and allocates
wage, or some other statistic of job characteristics, w ∈ R to the worker. The worker’s von
Neumann-Morgenstern payoff is given by v(w, e, θ). It is convenient to let a ≡ (w, e), so

24 More precisely: the two candidates simultaneously choose their lotteries, and each voter then votes for
his preferred candidate (assuming, for concreteness, that a voter randomizes between the candidates with
equal probability if indifferent). A candidate wins if he receives a majority of the votes. Candidates maximize
the probability of winning. We seek a Nash equilibrium of the game between the two candidates.

25 An example may be helpful. Let A = [−1, 1], Θ = {−1, 0, 1}, and v(a, θ) = aθ + 1/(|a| + 1) + 1. The
corresponding functions f1(θ) = θ and f2(θ) = 1 are each strictly single crossing from below and strictly
ratio ordered. For all θ, v(·, θ) : A→ R is maximized at a = θ but convex on some sub-interval of A.
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that we can also write v(a, θ).

In the standard model, (i) w is an exogenously-given strictly increasing function of the
market’s expectation E[θ|e], (ii) v(w, e, θ) is strictly increasing in w and strictly decreasing
in e, and (iii) v(w, e, θ) has a strict single-crossing property in ((w, e), θ).26

Our results allow us to generalize some central conclusions about education signaling to
settings in which there is uncertainty about what wage the worker will receive, even con-
ditional on the market belief about his type. Such uncertainty is, of course, plausible for
many reasons, e.g., economic fluctuations during the course of one’s education. Accord-
ingly, in our specification, we allow for w ∼ Fµ, i.e., w is drawn from an exogenously-given
cumulative distribution F that depends on µ, the market belief about (i.e., probability dis-
tribution over) θ. Let V (F, e, θ) ≡

∫
w
v(w, e, θ)dF and F ≡ {Fµ}µ be the family of feasible

wage distributions. We assume that for any two beliefs µ and µ′, if µ (strictly) support-
dominates µ′ (i.e., inf Supp[µ] ≥ (>) sup Supp[µ′]), then (∀e, θ) V (Fµ, e, θ) ≥ (>)V (Fµ′ , e, θ).
This is a weak sense in which the worker wants to convince the market that his type is
higher. We also assume that v(w, e, θ) is strictly decreasing in e.

A (weak Perfect Bayesian) equilibrium is described by a pair of functions σ∗(·) and µ∗(·),
where for each θ, σ∗(θ) is type θ’s probability distribution over education, and for each
education level e, µ∗(e) is the market belief about the worker’s type when that education is
observed. For notational and technical simplicity, we will restrict attention to equilibria in
which for all θ, σ∗(θ) has countable support. When the equilibrium is pure we write e∗(θ)
instead of σ∗(θ). A pure-strategy equilibrium exists: all types pool on e = 0 and off-path
beliefs are the same as the prior.

A fundamental conclusion of the standard model is that in any equilibrium higher types
acquire more education. Our results deliver this conclusion in our specification (see Liu
and Pei (2017) for related work). We say that a strategy σ is increasing if for all θ < θ, σ(θ)

support-dominates σ(θ). In other words, a strategy is increasing if a higher type never
acquires (with positive probability) strictly less education than a lower type.

Claim 4. Assume v(a, θ) ≡ v(w, e, θ) has the form stated in Theorem 2, and hence has SSCED. If

F,G ∈ F , e 6= e =⇒ (∃θ) V (F, e, θ) 6= V (G, e, θ), (9)

then in any equilibrium σ∗(θ) is increasing.

The role of SSCED in the claim is to ensure that every equilibrium is monotonic (either

26 Given point (ii), point (iii) is implied by the Spence-Mirlees single crossing condition: vw/ve is increasing
in θ, where a subscript on v denotes a partial derivative (assuming differentiability).

26



increasing or decreasing). The fact that equilibria must then be increasing essentially stems
from our assumptions that more education is more costly and higher beliefs are preferred.
Condition (9) is a mild richness condition; in particular, given SSCED, it is automatically
satisfied if the worker’s utility is separable in wage and education.27

Proof of Claim 4. Suppose, to contradiction, that σ∗(θ) is not increasing. Then there exist
θ < θ and e < e such that min{σ∗(e|θ), σ∗(e|θ)} > 0. Let F and F be the wage distributions
resulting from e and e respectively. By Corollary 4, the minimal space of lotteries over
wage and education pairs has a complete order, �, with respect to which V has monotone
selection. Condition (9) implies that (F , e) � (F , e), so it must be either (F , e) � (F , e) or
(F , e) � (F , e). As (F , e) � (F , e) would contradict optimality of e for θ and e for θ (by
monotone selection), it holds that (F , e) � (F , e).

Monotone selection now implies that σ∗(e|θ) > 0 =⇒ (∀θ′ > θ) σ∗(e|θ′) = 0. Con-
sequently, µ∗(e) support-dominates µ∗(e). Given the support-dominance, type θ can prof-
itably deviate from switching mass from e to e, because the reduction in education is strictly
preferred and the change in market belief is weakly preferred, a contradiction. Q.E.D.

We can also study when there is a separating equilibrium. Let Fθ denote the wage dis-
tribution when the market puts probability one on θ.

Claim 5. Let Θ ≡ {θ1, θ2, . . .}, either finite or infinite. If v(a, θ) ≡ v((w, e), θ) has the form stated
in Theorem 1 and hence has SCED, and in addition:

1. v(w, e, θ) is continuous in e,

2. lim
e→∞

V (Fθn , e, θn−1) = −∞ for all n > 1, and

3. for all n > 1 and e > e:

V (Fθn , e, θn−1) = V (Fθn−1 , e, θn−1) =⇒ V (Fθn , e, θn) ≥ V (Fθn−1 , e, θn), (10)

then there is a pure-strategy equilibrium in which e∗(θ) is strictly increasing.

The conditions in the result above are related to those in Cho and Sobel (1990). Part 2 of
the Claim merely requires that no type θn (n > 1) would acquire arbitrarily high education

27 Suppose v has SSCED and is separable in w and e, so that it has the form v(w, e, θ) = g1(w)f1(θ) +
g2(e)f2(θ)+c(θ). Fix anyF,G ∈ F and e 6= e. We compute the expectational difference V (F, e, θ)−V (G, e, θ) =[∫
g1(w)dF −

∫
g1(w)dG

]
f1(θ)+[g2(e)− g2(e)] f2(θ). The maintained assumption that v is strictly decreasing

in e implies g2(e) − g2(e) 6= 0. As strict ratio ordering of f1 and f2 implies they are linearly independent, it
follows that the expectational difference is non-zero for some θ.
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to shift the market’s belief from probability one on θn−1 to probability one on θn. Despite
a resemblance, Condition (10) is not by itself a single-crossing condition. Rather, loosely
speaking, it ensures that the SCED order over wage distribution and education pairs goes
in the “right direction”; the proof below clarifies.

Proof of Claim 5. Set e1 = 0. For n > 1, inductively construct en as the solution to

V (Fθn , en, θn−1) = V (Fθn−1 , en−1, θn−1). (11)

Our assumptions ensure there is a unique solution and that en > en−1 for all n > 1.

We claim (∀n) e∗(θn) = en can be supported as an equilibrium. To see this, first note that
by Corollary 3, the minimal space of wage distribution and education pairs has a complete
order, �, with respect to which V has monotone comparative statics. It follows that for
∀n > 1, (10) and (11) imply (Fθn , en) � (Fθn−1 , en−1). Hence, no type can profitably deviate
to any on-path e ∈ {e1, e2, . . . }; off-path deviations can be deterred by simply setting off-
path beliefs to put probability one on θ1. Q.E.D.

4. Extensions

4.1. Single Crossing vs. Monotonicity

We have characterized when v : A× Θ → R has SCED. Viewing ∆A as a choice set and
Θ as a parameter set, SCED is an ordinal property. Analogous to supermodularity on an
ordered space, one might also be interested in a stronger cardinal property in our setting,
which we call Monotonic Expectational Differences (MED):

(∀P,Q ∈ ∆A) DP,Q(θ) is monotonic in θ.

To study which functions have MED, we begin with the following analog of Lemma 1.

Lemma 2. Let f1, f2 : Θ→ R be monotonic functions. The linear combination α1f1(θ) + α2f2(θ)

is monotonic ∀α ∈ R2 if and only if either f1 or f2 is an affine transformation of the other, i.e., there
exists λ ∈ R2 such that either f2 = λ1f1 + λ2 or f1 = λ1f2 + λ2.

We say that f : X×Θ→ R is linear combinations monotonicity-preserving if
∑

x∈X f(x, θ)µ(x)

is a monotonic function of θ for every function µ : X → Rwith finite support.

Proposition 4. Let f : X × Θ → R for some set X . The function f is linear combinations
monotonicity-preserving if and only if there exist x′ ∈ X and λ1, λ2 : X → R such that (i) f(x′, ·)
is monotonic, and (ii) (∀x) f(x, ·) = λ1(x)f(x′, ·) + λ2(x).
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Theorem 4. The function v : A×Θ→ R has MED if and only if it takes the form

v(a, θ) = g1(a)f1(θ) + g2(a) + c(θ), (12)

where f1 : Θ→ R is monotonic, g1, g2 : A→ R, and c : Θ→ R.

The proof of Theorem 4 in the Appendix uses Proposition 4, exhibiting a parallel with
Proposition 2 and Theorem 1. There is, however, a simple intuition for Theorem 4 based
on the von Neumann-Morgenstern expected utility theorem. Suppose Θ = [θ, θ] ⊂ R and
vθ(a, θ), the partial derivative of v(a, θ) with respect to θ, exists and is continuous. Con-
sider the following strengthening of MED: (∀P,Q ∈ ∆A) DP,Q(θ) is either a zero function
or strictly monotonic in θ. Then, for any P and Q, sign

[∫
A
vθ(a, θ)dP −

∫
A
vθ(a, θ)dQ

]
is

independent of θ. In other words, for all θ, vθ(·, θ) is a von Neumann-Morgenstern repre-
sentation of the same preferences over lotteries. The conclusion of Theorem 4 follows from
the expected utility theorem’s implication that for any θ′, θ′′ ∈ Θ, vθ(·, θ′) must be a positive
affine transformation of vθ(·, θ′′).28 We are not aware of any related argument for the SCED
characterization, Theorem 1.

Comparing Theorem 1 and Theorem 4, we see that a function v with MED is a special
case of a function v with SCED, in which the function f2 in (5) is identically equal to one.
Note that when this is the case, f1 and f2 being ratio ordered is equivalent to f1 being mono-
tonic. SCED is more general than MED; for example, given a function v(a, θ) of the form
(12) with f1(·) > 0 and domain Θ ⊆ R++, the function ṽ(a, θ) ≡ θv(a, θ) will satisfy SCED
but generally violate MED. The generality translates into preferences: the set of preferences
with SCED representations is larger than that with MED representations; see Example 2 in
Appendix E. Proposition 7 in Appendix E characterizes exactly when preferences with an
SCED representation have an MED representation. It is when (a) there is a pair of types
that do not share the same strict preference over every pair of lotteries, or (b) there is a pair
of lotteries over which all types share the same strict preference (e.g., lotteries over money).

The MED characterization in Theorem 4 has largely been obtained by Kushnir and Liu
(2017). They restrict attention to Θ ⊆ R, A ⊂ Rk, and functions v that have some smooth-
ness. Modulo minor differences, Kushnir and Liu establish that for their environment,
a strict version of MED (in fact the strengthening discussed in the paragraph after The-
orem 4) is equivalent to the characterization in Theorem 4 with f1 strictly monotonic.29

28 Pick any θ∗ ∈ Θ. The expected utility theorem implies that for some F1 : Θ → R++ and C : Θ → R,
(∀a, θ) vθ(a, θ) = vθ(a, θ

∗)F1(θ) + C(θ). Equation 12 follows from integrating up θ at each a, as v(a, θ) =∫ θ
θ
vθ(a, t)dt+ v(a, θ).

29 The statement in Proposition 3 of their paper is that f1 is strictly increasing; monotonicity vs. increasing
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Kushnir and Liu’s focus is on the equivalence between Bayesian and dominant-strategy
implementation. Their methodology requires certain functions to have MED rather than
SCED, and they do not study the relationship between MED and SCED.

Theorem 4 and the foregoing discussion support suggestions put forward by Duggan
(2014). Although his setting is formulated a little differently and he does not obtain a nec-
essary condition, Duggan (2014, Section 4) discusses the difficulties of finding preferences
that are not representable in the form of Theorem 4 and yet satisfy MED/SCED.

4.2. Information Design

In this subsection, we derive an extension of SCED when there is a restricted set of dis-
tributions over the set A.30 The restriction we study is motivated by the recent literature on
Bayesian persuasion (Kamenica and Gentzkow, 2011) or, more broadly, information design
(Bergemann and Morris, 2017). Take A to be the set of beliefs about some random variable
ω. When beliefs or posteriors about ω are generated by Bayesian updating, it is well known
that every feasible distribution of posteriors has the same expectation: the prior distribu-
tion of ω. Hence, choices among experiments—distribution of posteriors—only involve
those subsets of ∆A whose elements have the same expectation. Plainly, given any func-
tion v(a, θ) that satisfies SCED, the function v(a, θ)+f(a, θ) with f(·, θ) linear for each θ will
satisfy a weaker form of SCED that only considers the aforementioned subsets of ∆A. We
establish below (Proposition 5) that this is essentially the only change to Theorem 1. At the
end of the subsection, we mention applications of the result.

Formally, let Ω be an arbitrary set. We refer to ∆Ω as the set of beliefs or posteriors with
finite support and ∆∆Ω as the set of experiments with finite support. Let p denote a generic
posterior and Q denote a generic experiment. We write δω and δp for a degenerate belief on
ω and a degenerate experiment on p as usual. The average of an experiment Q ∈ ∆∆Ω is
the posterior Q ∈ ∆Ω defined by Q ≡

∫
∆Ω

pdQ.

Let v : ∆Ω × Θ → R denote a utility function, where for each θ, v(·, θ) captures type θ’s
preferences over posteriors in a reduced form. Note that v(·, θ) is convex when induced
by a single-person decision problem, while it can have arbitrary shape when induced by
strategic settings such as those in Kamenica and Gentzkow (2011). Let V : ∆∆Ω × Θ → R
be the expected utility function corresponding to v.

Definition 10. The utility function v : ∆Ω×Θ→ R has Single-Crossing Expectational Dif-
ferences over Experiments (SCED-X) if for every Q,R ∈ ∆∆Ω with Q = R, the expected

is immaterial, as the direction of monotonicity can be reversed by flipping the sign of the function g1.
30 Smith (2011) provides sufficient conditions for a single-crossing property of the expectational difference

between lotteries and their certainty equivalents.
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utility difference DQ,R(θ) ≡ V (Q, θ)− V (R, θ) is single crossing in θ.

The above definition of SCED-X is simply the analog of SCED specialized to the current
setting of experiments, with the twist that one only considers expected utility differences
between experiments with the same average.

Proposition 5. The function v : ∆Ω×Θ→ R has SCED-X if and only if

v(p, θ) = g1(p)f1(θ) + g2(p)f2(θ) +
∑
ω∈Ω

v(δω, θ)p(ω), (13)

for some f1, f2 : Θ→ R each single crossing and ratio ordered, and g1, g2 : ∆Ω→ R.

Proposition 5 parallels Theorem 1. The c(θ) term from Equation 5 is subsumed into
the summation term in Equation 13 because each p is a posterior. This summation term,
being linear in the posterior, does not affect the expected utility difference between any
two experiments with the same average. This means that if v has SCED-X, then insofar as
comparisons between pairs of experiments with the same average goes, there is a represen-
tation of preferences that has SCED. The heart of Proposition 5, then, is in establishing that
the restriction to only comparing experiments with the same average introduces no further
flexibility into the form of v.

As mentioned earlier, when there is a prior on Ω, say p∗, Bayesian updating restricts
the agent’s choice among experiments to (subsets of) those with average p∗. To capture
this point, one would require the difference DQ,R(θ) to be single crossing only when Q =

R = p∗; call this requirement SCED-X with prior p∗. It is clear that SCED-X implies SCED-
X with any prior. If Supp[p∗] = Ω, then the converse also holds: the characterization in
Proposition 5 is necessary for SCED-X with prior p∗. For an intuition, take any experiments
Q and R with average p 6= p∗. Since p∗ has full support, p∗ = αp+ (1−α)q for some q ∈ ∆Ω

and α ∈ (0, 1). The mixture experiments Q∗ = αQ+ (1−α)δq and R∗ = αR+ (1−α)δq have
average p∗, and hence the difference DQ,R(θ) = DQ∗,R∗(θ)/α is single crossing.

The logic behind Proposition 5 generalizes to other kinds of linear restrictions on pairs
of distributions. Let v : A×Θ→ R and h : A→ Rk. Consider the requirement that DP,Q(θ)

be single crossing for all pairs P,Q ∈ ∆A such that
∫
A
h(a)dP =

∫
A
h(a)dQ. (For instance,

A ⊆ R and h(a) = a2 impose the equality of second moments.) It can be shown that this
requirement holds if and only if

v(a, θ) = u(a, θ) + h(a) · f̃(θ),
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with u satisfying SCED, f̃ : Θ → Rk, and · being the dot product. Moreover, this charac-
terization also holds when the requirement is weakened to only consider pairs P,Q ∈ ∆A

such that
∫
A
h(a)dP =

∫
A
h(a)dQ = ϕ, for any fixed ϕ ∈ Rk that is in the relative interior

of the convex hull of
⋃
a∈A h(a). When A = ∆Ω and h(a) = a these requirements reduce to

SCED-X and SCED-X with a fixed full-support prior, respectively.

To illustrate the use of Proposition 5, consider the leading prosecutor-judge example
from Kamenica and Gentzkow (2011). Let θ ∈ [0, 1] denote the judge’s threshold belief for
conviction (or more pertinently, the prosecutor’s view about this threshold). The prose-
cutor’s von Neumann-Morgenstern utility is v(p, θ) = 11{p≥θ}, where p ∈ [0, 1] is the prob-
ability that the defendant is guilty. It is not hard to verify that this function cannot be
written in the form (13), and hence does not have SCED-X.31 Using the arguments from
Subsection 2.3, monotone comparative statics fail with respect to any order over exper-
iments. That is, there will be choice problems—the prosecutor must choose from some
given subset of experiments—in which two types of the prosecutor, say θ1 and θ3, will both
optimally choose one experiment, while an intermediate type θ2 ∈ (θ1, θ3) will choose a
different experiment. The failure of SCED-X in this example is also at the core of Silbert
(2018).

On the other hand, consider a different example in which |Ω| = 2 (for simplicity, so we
can again view posteriors as p ∈ [0, 1]), Θ ⊆ R, and v(p, θ) = θg1(p) +g2(p) +f(θ)p, for some
g1, g2 : [0, 1] → R and f : Θ → R. For instance, an agent chooses an experiment whose
realization will be observed by two parties each of whom takes an action that depends on
the posterior; the agent’s weighted utility from each party’s action is captured by each of
the first two terms of v. The third, linear term captures the agent’s own action-independent
preference over states (e.g., anticipatory utility over health or election outcomes). In gen-
eral, this specification will not satisfy SCED but, by Proposition 5, it does satisfy SCED-X.
Monotone comparative statics implies that, no matter the feasible set of experiments, the
set of agent types that choose any experiment will be an interval.

31 Consider four posteriors p1, p2, p3, p4 and three types θ1, θ2, θ3. Analogous to the discussion in the para-
graph after Theorem 1, v cannot be written in the form (13) if there is an invertible 4 × 4 matrix M with

elements Mi,j ≡

{
pj if i = 1

v(pj , θi−1)− v(0, θi−1) if i ≥ 2
. In the current example, for any 0 < p1 < θ1 < p2 < θ2 <

p3 < θ3 < p4, this matrix is 
p1 p2 p3 p4
0 1 1 1
0 0 1 1
0 0 0 1

 ,
which is invertible because it is upper triangular with a non-zero diagonal. We note that because of the
simplicity of this example, it is also straightforward to directly find experiments such that the expected utility
difference is not single-crossing in type.
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5. Conclusion

The main result of this paper is a full characterization of which von Neumann-Morgenstern
utility functions of outcome and type satisfy single-crossing expectational differences (SCED):
the difference in expected utility between every pair of probability distributions on out-
comes is single crossing in type (Theorem 1). We have established that this property is nec-
essary and sufficient for a form of monotone comparative statics when an agent chooses
among distributions over outcomes (Theorem 3).

We close by highlighting aspects of our analysis that suggest directions for future re-
search.

Theorem 1’s characterization leans on the requirement that the expectational difference
must be single crossing for all pairs of distributions over outcomes. While a “sufficiently
rich” set of pairs would suffice, as seen in our cheap-talk application (Subsection 3.1), there
is a fundamental tradeoff. Requiring single crossing for only a subset of distributions
would expand the set of utility functions satisfying the requirement—as seen in our ex-
tension to information design (Subsection 4.2)—but applications must then have enough
stochastic structure to validate the restriction on distributions. Another possibility would
be to weaken or alter the expected utility hypothesis.

Our results have direct bearing on problems in which all types of an agent face the same
choice set of distributions. Such situations arise naturally, as illustrated in Section 3. But
consider a variation of the cheap-talk application (Subsection 3.1) in which the sender’s
type is correlated with the receiver’s type. Even though the receiver’s type does not affect
the sender’s payoff, different sender types will generally have different beliefs about the
distribution of the receiver’s action that any message induces in equilibrium. Effectively,
different sender types will be choosing from different sets of distributions. An approach
that synthesizes the current paper’s with that of, for example, Athey’s (2002) may be useful
for such problems.
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Appendices

Appendix A contains proofs for our core results on single crossing and SCED (Subsec-
tion 2.1); Appendix B proofs for strict single crossing and SSCED (Subsection 2.2); Ap-
pendix C for monotone comparative statics (Subsection 2.3); and Appendix D for MED
(Subsection 4.1). Additional connections between SCED and MED are then provided in
Appendix E. The proof of Proposition 5 on information design follows in Appendix F. We
elaborate on some related literature in Appendix G. Finally, Appendix H explains how our
results can be extended to settings in which the type set is equipped with a pre-order rather
than an order (i.e., relaxing anti-symmetry).

A. Proofs for Single Crossing (Subsection 2.1)

A.1. Proof of Lemma 1

When |Θ| ≤ 2, the proof is trivial as all functions are single crossing and every pair of
functions are ratio ordered. Hereafter, we assume |Θ| ≥ 3.

( =⇒ ) It is clear that each function f1 and f2 is single crossing. We must show that f1 and
f2 are ratio ordered.

To prove (3), we suppose towards contradiction that

(∃θl < θh) f1(θl)f2(θh) < f1(θh)f2(θl), and

(∃θ′ < θ′′) f1(θ′)f2(θ′′) > f1(θ′′)f2(θ′).
(14)

Take any upper bound θ of {θl, θh, θ′, θ′′}.

First, let αl ≡ (f2(θl),−f1(θl)). Then (αl · f)(θl) = (f2(θl),−f1(θl)) · (f1(θl), f2(θl)) = 0, and
(αl · f)(θh) > 0. Thus, αl · f is single crossing from below and (αl · f)(θ) > 0.

Second, let α′ ≡ (f2(θ′),−f1(θ′)). Then (α′ · f)(θ′) = 0 and (α′ · f)(θ′′) < 0. Thus, α′ · f is
single crossing from above and (α′ · f)(θ) < 0.

Let α = (f2(θ),−f1(θ)). It follows that

(α · f)(θl) = (f2(θ),−f1(θ)) · (f1(θl), f2(θl)) = −(αl · f)(θ) < 0,

(α · f)(θ′) = −(α′ · f)(θ) > 0, and

(α · f)(θ) = 0.
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Therefore, α · f is not single crossing, a contradiction.

To prove (4), take any θl < θm < θh.

First, we show that f1(θl)f2(θh) = f1(θh)f2(θl) implies f1(θm)f2(θh) = f1(θh)f2(θm) and
f1(θm)f2(θl) = f1(θl)f2(θm). Assume f1 is not a zero function on {θl, θm, θh}, as otherwise
the proof is trivial. Since f1 is single crossing, either f1(θl) 6= 0 or f1(θh) 6= 0. We con-
sider the case of f1(θh) 6= 0 (and omit the proof for the other case, as it is analogous). Let
αh ≡ (f2(θh),−f1(θh)). Since αh · f is single crossing and (αh · f)(θ) = 0 for θ = θl, θh,
it holds that (αh · f)(θm) = f2(θh)f1(θm) − f1(θh)f2(θm) = 0. It follows immediately that
f1(θm)f2(θh) = f1(θh)f2(θm). As (f1(θm), f2(θm)) and (f1(θh), f2(θh)) are linearly dependent
and (f1(θh), f2(θh)) is a non-zero vector, there exists λ ∈ R such that fi(θm) = λfi(θh) for
i = 1, 2. Thus,

f1(θl)f2(θm) = λf1(θl)f2(θh) = λf2(θl)f1(θh) = f2(θl)f1(θm).

Next, we show that if f1(θl)f2(θm) = f1(θm)f2(θl) and f1(θm)f2(θh) = f1(θh)f2(θm), then
f1(θl)f2(θh) = f1(θh)f2(θl). Let α ≡ (f2(θl)− f2(θh),−f1(θl) + f1(θh)). It follows that

(α · f)(θl) = (f2(θl)− f2(θh)) f1(θl)− (f1(θl)− f1(θh)) f2(θl) = f1(θh)f2(θl)− f1(θl)f2(θh),

(α · f)(θh) = (f2(θl)− f2(θh)) f1(θh)− (f1(θl)− f1(θh)) f2(θh) = f1(θh)f2(θl)− f1(θl)f2(θh), and

(α · f)(θm) = (f2(θl)− f2(θh)) f1(θm)− (f1(θl)− f1(θh)) f2(θm) = 0.

As α · f is single crossing, it follows that (α · f)(θl) = (α · f)(θh) = 0, as we wanted to show.

( ⇐= ) Assume that f1 and f2 are each single crossing. We provide a proof for the case
in which f1 ratio dominates f2, and omit the other case’s analogous proof. For any α ∈ R2,
we prove that α · f is single crossing. We may assume that α 6= 0, as the result is trivial
otherwise.

Suppose, towards contradiction, that α · f is not single crossing. We require the follow-
ing:

Claim 6. There exist θl < θm < θh such that

sign[(α · f)(θl)] < sign[(α · f)(θm)] and sign[(α · f)(θm)] > sign[(α · f)(θh)], or (15)

sign[(α · f)(θl)] > sign[(α · f)(θm)] and sign[(α · f)(θm)] < sign[(α · f)(θh)]. (16)

Note that the claim is obvious when (Θ,≤) is a completely ordered set.
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Proof of Claim 6. Since α · f is single crossing neither from below nor from above:

(∃θ1 < θ2) sign[(α · f)(θ1)] < sign[(α · f)(θ2)], and

(∃θ3 < θ4) sign[(α · f)(θ3)] > sign[(α · f)(θ4)].

Let Θ0 ≡ {θ1, θ2, θ3, θ4} and θ and θ be an upper and lower bound of Θ0. If (α · f)(θ) =

(α ·f)(θ) = 0, then (θl, θm, θh) = (θ, θ0, θ) for some θ0 ∈ Θ0 with (α ·f)(θ0) 6= 0 satisfies either
(15) or (16). So assume (α · f)(θ) 6= 0, with a similar argument applying for (α · f)(θ) 6= 0.
If (α · f)(θ) < 0, then (θl, θm, θh) = (θ1, θ2, θ) satisfies (15). If (α · f)(θ) > 0, then (θl, θm, θh) =

(θ3, θ4, θ) satisfies (16). Q.E.D.

First, we consider the case in which f(θ) ≡ (f1(θ), f2(θ)) for all θ ∈ {θl, θm, θh} are non-
zero vectors. Take any θ1, θ2 ∈ {θl, θm, θh} such that θ1 < θ2. As f1 ratio dominates f2, by
Condition (3), f(θ1) moves to f(θ2) in a clockwise rotation with an angle less than or equal
to 180 degrees. Let r12 be the clockwise angle from f(θ1) to f(θ2). The vector α 6= 0 defines
a partition of R2 into R2

α,+ ≡ {x ∈ R2 : α · x > 0}, R2
α,0 ≡ {x ∈ R2 : α · x = 0}, and

R2
α,− ≡ {x ∈ R2 : α · x < 0}. In both cases (15) and (16), both f(θl) and f(θh) are not in the

same part of the partition that f(θm) belongs to. Thus, rlm > 0 and rmh > 0. On the other
hand, both f(θl) and f(θh) are in the same closed half-space, eitherR2

α,+∪R2
α,0 orR2

α,−∪R2
α,0,

and f(θm) is in the other closed half-space, either R2
α,− ∪ R2

α,0 or R2
α,+ ∪ R2

α,0, respectively.
Thus, rlh ≥ 180. Since Condition (3) implies rlh ≤ 180, it follows that rlh = 180. Hence,
f(θl) and f(θm) are linearly independent (0 < rlm < 180), and similarly for f(θm) and f(θh).
However, f(θl) and f(θh) are linearly dependent (rlh = 180). This contradicts (4).

Second, suppose either f(θl) = 0 or f(θh) = 0. We provide the argument assuming
f(θl) = 0; it is analogous if f(θh) = 0. Under either (15) or (16), f(θm) 6= 0. By Condition
(4), f(θm) and f(θh) are linearly dependent. In particular, because f(θm) 6= 0, there exists a
unique λ ∈ R such that f(θh) = λf(θm). Under either (15) or (16), λ ≤ 0, which contradicts
the hypothesis that f1 and f2 are single crossing.

Last, suppose f(θl) 6= 0, f(θm) = 0, and f(θh) 6= 0. By Condition (4), f(θl) and f(θh) are
linearly dependent. Hence, there exists a unique λ ∈ R such that f(θl) = λf(θh). Under
either (15) or (16), λ > 0, which contradicts the hypothesis that f1 and f2 are single crossing.

A.2. Proof of Proposition 2

The result is trivial if |X| = 1 and it is equivalent to Lemma 1 if |X| = 2, so we may
assume |X| ≥ 3. The proof is also straightforward if all functions f(x, ·) : Θ → R are
multiples of one function f(x1, ·), i.e., if there is x1 such that (∃λ : X → R)(∀x)f(x, ·) =
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λ(x)f(x1, ·). Thus, we further assume there exist x′, x′′ such that f(x′, ·) : Θ → R and
f(x′′, ·) : Θ→ R are linearly independent.

( ⇐= ) Assume f(x1, ·) and f(x2, ·) are (i) each single crossing and (ii) ratio ordered, and
that there are functions λ1, λ2 : X → R such that (∀x) f(x, ·) = λ1(x)f(x1, ·) + λ2(x)f(x2, ·).
Then, for any function µ : X → Rwith finite support,∫

X

f(x, θ)dµ =

∫
X

λ1(x)f(x1, θ) + λ2(x)f(x2, θ)dµ =
∑
i=1,2

(∫
X

λi(x)dµ

)
f(xi, θ),

which is single crossing in θ by Lemma 1.

( =⇒ ) Take any x1, x2 ∈ X such that f1(·) ≡ f(x1, ·) and f2(·) ≡ f(x2, ·) are linearly
independent. Then, by Lemma 1, f1 and f2 are each single crossing and ratio ordered, as
their linear combinations are all single crossing.

For every θ′, θ′′, let

Mθ′,θ′′ ≡

[
f1(θ′) f2(θ′)

f1(θ′′) f2(θ′′)

]
.

We first prove the following claim:

Claim 7. There exists θl < θh such that rank[Mθl,θh ] = 2.

Proof of Claim 7. As f1 and f2 are linearly independent, there exists θ0 such that f2(θ0) 6= 0.
Let λ ≡ −f1(θ0)

f2(θ0)
. Then, for some θλ, f1(θλ) + λf2(θλ) 6= 0 and rank[Mθ0,θλ ] = 2.

The proof is complete if θ0 > θλ or θ0 < θλ. If not, take a lower and upper bound, θ and θ,
of {θ0, θλ}. Then rank[Mθ,θ] = 2. For otherwise, there exists α ∈ R2\{0} such that Mθ,θα = 0.
As θ0 and θλ are between θ and θ, and α1f1 + α2f2 is single crossing, we have Mθ0,θλα = 0,
which contradicts rank[Mθ0,θλ ] = 2. Q.E.D.

Now take any x ∈ X , the function fx(·) ≡ f(x, ·), and θl, θh in Claim 7. As rank[Mθl,θh ] = 2,
the system [

fx(θl)

fx(θh)

]
=

[
f1(θl) f2(θl)

f1(θh) f2(θh)

][
λ1

λ2

]
(17)

has a unique solution λ ∈ R2. We will show that fx = λ1f1 + λ2f2.

Suppose, towards contradiction, there exists θλ such that

fx(θλ) 6= λ1f1(θλ) + λ2f2(θλ). (18)
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Let θ and θ respectively be a lower and an upper bound of {θl, θh, θλ}. If rank[Mθ,θ] < 2,
there is λ′ ∈ R2\{0} such that λ′1f1(θ) + λ′2f2(θ) = 0 for θ = θ, θ. As λ′1f1 + λ′2f2 is single
crossing, we have λ′1f1(θ) + λ′2f2(θ) = 0 for θ = θl, θh, which contradicts rank[Mθl,θh ] = 2.32

If, on the other hand, rank[Mθ,θ] = 2, the system[
fx(θ)

fx(θ)

]
=

[
f1(θ) f2(θ)

f1(θ) f2(θ)

][
λ′1

λ′2

]

has a unique solution λ′ ∈ R2. As fx − λ′1f1 − λ′2f2 is single crossing,

fx(θl) = λ′1f1(θl) + λ′2f2(θl) and fx(θh) = λ′1f1(θh) + λ′2f2(θh), and (19)

fx(θλ) = λ′1f1(θλ) + λ′2f2(θλ). (20)

(19) implies that λ′ solves (17). As the unique solution to (17) was λ, it follows that λ′ = λ.
But then (18) and (20) are in contradiction. Therefore, there exist λ1, λ2 : X → R such that

(∀x, θ) f(x, θ) = λ1(x)f(x1, θ) + λ2(x)f(x2, θ).

A.3. Proof of Theorem 1

( ⇐= ) Suppose v(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + c(θ), with f1, f2 : Θ → R each single
crossing and ratio ordered. Then, for any P,Q ∈ ∆A,

DP,Q(θ) =

[∫
A

g1(a)dP −
∫
A

g1(a)dQ

]
f1(θ) +

[∫
A

g2(a)dP −
∫
A

g2(a)dQ

]
f2(θ),

which is single crossing by Lemma 1.

( =⇒ ) Assume, without loss of generality, that |A| ≥ 2. Take any a0 ∈ A, and define
A′ ≡ A \ {a0}. Define f : A × Θ → R as f(a, θ) ≡ v(a, θ) − v(a0, θ). It is clear that
(∀a ∈ A′) f(a, ·) is single crossing: consider the expectational difference with probability
distributions that put probability one on a and a0 respectively.

We will show that, in some sense, every function µ′ : A′ → R can be represented as
a multiple of the difference between two probability distributions P,Q ∈ ∆A, and then
apply Proposition 2.

32 The function λ′1f1 + λ′2f2 must be single crossing because we can consider µ : X → R such that µ(x1) =
λ′1, µ(x2) = λ′2, and µ(x) = 0 for any x 6= x1, x2. We use similar reasoning subsequently.
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For any function µ′ : A′ → R, we define a function µ : A→ R as an extension of µ′:

µ(a0) ≡ −
∑
a∈A′

µ′(a), and (∀a ∈ A′) µ(a) ≡ µ′(a).

In a sense, we let a0 absorb the function values on A′. In particular, note that∑
a∈A

µ(a) = µ(a0) +
∑
a∈A′

µ(a) = 0.

We construct the Hahn-Jordan decomposition (µ+, µ−) of µ. That is, we define functions
µ+, µ− : A → R+ by (∀a ∈ A) µ+(a) ≡ max{µ(a), 0} and µ−(a) ≡ −min{µ(a), 0}. Then,
µ+ and µ− are two positive functions with finite support such that µ = µ+ − µ−. Let
M ≡

∑
a∈A µ+(a) =

∑
a∈A µ−(a). If M = 0, pick an arbitrary P ∈ ∆A and let Q = P . If

M > 0, define P,Q ∈ ∆A with probability mass functions p, q such that for any a ∈ A,

p(a) =
µ+(a)

M
and q(a) =

µ−(a)

M
.

Note that P and Q are probability distributions in ∆A: both are induced by positive real-
valued functions µ+ and µ− with finite support, and

∑
a∈A p(a) =

∑
a∈A p(a) = 1.

It follows that∫
A′
f(a, θ)dµ′ =

∫
A

f(a, θ)dµ (because f(a0, θ) = 0)

=

∫
A

v(a, θ)dµ− v(a0, θ)µ(A)

=

∫
A

v(a, θ)dµ+ −
∫
A

v(a, θ)dµ− (as µ(A) = 0)

= MDP,Q(θ).

Thus, if v has SCED, then f : A′×Θ→ R is linear combinations SC-preserving. By Propo-
sition 2, there exist a1, a2 ∈ A′ and λ1, λ2 : A′ → R such that (i) f(a1, θ) and f(a2, θ) are each
single crossing and ratio ordered, and (ii) (∀a ∈ A′) f(a, ·) = λ1(a)f(a1, ·) + λ2(a)f(a2, ·).
Hence, there exist functions g1, g2 : A → R with g1(a0) = g2(a0) = 0 such that (∀a ∈ A)

f(a, ·) = g1(a)f(a1, ·) + g2(a)f(a2, ·), or equivalently,

(∀a, θ) v(a, θ) = g1(a)f(a1, θ) + g2(a)f(a2, θ) + v(a0, θ).
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A.4. Proof of Proposition 1

If |Θ| ≤ 2, then the proof is trivial, so assume |Θ| ≥ 3. The “if” direction of the result
follows directly from Theorem 1: if v has a positive affine transformation v̂ of the form (6),
then v, as a positive affine transformation of v̂, has SCED.

For the “only if” direction, take any v that has SCED. Following the form given in The-
orem 1, a positive affine transformation of v is

v̂(a, θ) = g1(a)f1(θ) + g2(a)f2(θ),

where f1, f2 : Θ→ R are each single crossing and ratio ordered.

First, we consider the case in which f(θ) and f(θ) are linearly dependent. Assume, with
a positive affine transformation of v̂, that the length of the vector f(θ) ≡ (f1(θ), f2(θ)) in
R2 is either 0 or 1 for every θ. If f(θ) = f(θ) = 0, then because f1 and f2 are each single
crossing, we have (∀θ) f1(θ) = f2(θ) = 0 and (∀a, θ) v̂(a, θ) = 0. We can easily now rewrite
v̂ in the form (6), with λ : Θ→ [0, 1] increasing.

Suppose f(θ) 6= 0; we omit the analogous proof for the case of f(θ) 6= 0. By Condition
(4) of ratio ordering, for every θ, the vector f(θ) ∈ R2 is linearly dependent of f(θ). As
(∀θ) ‖f(θ)‖ ∈ {0, 1}, there exists λ : Θ → {−1, 0, 1} such that (∀θ) f(θ) = λ(θ)f(θ). Note
that λ is increasing because f1 and f2 are each single crossing. If either λ(θ) = 0 (and so
(∀a) v̂(a, θ) = 0) or λ(θ) = 1 (and so (∀θ) λ(θ) = 1), then

v̂(a, θ) = λ(θ)v̂(a, θ) + (1− λ(θ))v̂(a, θ),

with the last term equal to zero. If, on the other hand, λ(θ) = −1, then

v̂(a, θ) = λ(θ)v̂(a, θ) =
λ(θ) + 1

2
v̂(a, θ) +

λ(θ)− 1

2
(−v̂(a, θ))

=
λ(θ) + 1

2
v̂(a, θ) +

(
1− λ(θ) + 1

2

)
v̂(a, θ).

Next, suppose that the vectors f(θ), f(θ) ∈ R2 are linearly independent, so the angle
between the vectors is strictly less than 180 degrees. As f1 and f2 are ratio ordered, for each
θ there exists α(θ), β(θ) ∈ R+ such that

f(θ) = α(θ)f(θ) + β(θ)f(θ),
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or equivalently,
v̂(a, θ) = α(θ)v̂(a, θ) + β(θ)v̂(a, θ).

By Condition (4), f(θ) 6= 0, which implies that α(θ)+β(θ) > 0. A positive affine transforma-
tion of dividing v̂(·, θ) by α(θ) + β(θ) results in the form (6), where λ(θ) ≡ α(θ)

α(θ)+β(θ)
∈ [0, 1].

To prove that the function λ is increasing, take θ1, θ2 such that θ ≤ θ1 ≤ θ2 ≤ θ. To
reduce notation below, let αi ≡ α(θi) and βi ≡ β(θi) for i = 1, 2. We must show that
α1

α1+β1
≤ α2

α2+β2
, or equivalently that α1β2 ≤ α2β1. Suppose f1 ratio dominates f2; the other

case is analogous. Then f1(θ1)f2(θ2) ≤ f1(θ2)f2(θ1), and hence

(
α1f1(θ) + β1f1(θ)

) (
α2f2(θ) + β2f2(θ)

)
≤
(
α2f1(θ) + β2f1(θ)

) (
α1f2(θ) + β1f2(θ)

)
,

or equivalently,
(α1β2 − α2β1)

(
f1(θ)f2(θ)− f1(θ)f2(θ)

)
≤ 0.

Note that f1(θ)f2(θ) − f1(θ)f2(θ) > 0 because f1 ratio dominates f2, and f(θ) and f(θ) are
linearly independent. Hence, α1β2 ≤ α2β1.

A.5. Proof of Corollary 1

It is clear from Theorem 1 that v(a, θ) = −|a−θ|2 = −a2+2aθ−θ2 has SCED, as f1(θ) = −1

and f2(θ) = 2θ are each single crossing and ratio ordered, and we take g1(a) = a2, g2(a) = a,
and c(θ) = −θ2.

For the converse, it is sufficient to prove the following claim.

Claim 8. If there exist g1, g2 : R→ R and f1, f2, c : Θ→ R such that

v(a, θ) ≡ −|a− θ|z = g1(a)f1(θ) + g2(a)f2(θ) + c(θ),

then z = 2.

Proof of Claim 8. Fix a0 ∈ R and define ṽ(a, θ) ≡ v(a, θ) − v(a0, θ) = g̃1(a)f1(θ) + g̃2f2(θ),

where g̃1(a) ≡ g1(a) − g1(a0) and g̃2 ≡ g2(a) − g2(a0). Fix any θl < θm < θh. There exists
(λl, λm, λh) ∈ R3\{0} such that

[
f1(θl) f1(θm) f1(θh)

f2(θl) f2(θm) f2(θh)

] λlλm
λh

 =

[
0

0

]
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Hence, for every a ∈ R,

h(a) ≡ λlṽ(a, θl) + λmṽ(a, θm) + λhṽ(a, θh)

=
[
g̃1(a) g̃2(a)

] [f1(θl) f1(θm) f1(θh)

f2(θl) f2(θm) f2(θh)

] λlλm
λh

 = 0.

We hereafter consider λl 6= 0 (and omit the proofs for the other two cases, λm 6= 0 and
λh 6= 0, which are analogous). The previous equation implies that for any a ∈ R,

ṽ(a, θl) = −λm
λl
ṽ(a, θm)− λh

λl
ṽ(a, θh). (21)

At any a < θ, ṽ(a, θ) = −(θ − a)z − v(a0, θ) is differentiable in a, and hence (21) im-
plies that the partial derivative ṽa(a, θl) exists at a = θl. Thus, the right partial derivative
limε↓0

ṽ(θl+ε,θl)−ṽ(θl,θl)
ε

= − limε↓0 ε
z−1 must equal the left partial derivative limε↓0

ṽ(θl−ε,θl)−ṽ(θl,θl)
−ε =

limε↓0 ε
z−1, which implies limε↓0 ε

z−1 = 0, and thus z > 1.

Now suppose to contradiction that z 6= 2. At any a > θh, (21) and ṽ(a, θ) = −(a − θ)z −
v(a0, θ) imply

−λl(a− θl)z = λm(a− θm)z + λh(a− θh)z + (λm + λh − λl)v(a0, θ),

and hence, differentiating with respect to a and simplifying using z > 1 and z 6= 2:

−λl(a− θl)z−1 = λm(a− θm)z−1 + λh(a− θh)z−1, (22)

−λl(a− θl)z−2 = λm(a− θm)z−2 + λh(a− θh)z−2, (23)

−λl(a− θl)z−3 = λm(a− θm)z−3 + λh(a− θh)z−3. (24)

It follows that λmλh 6= 0: if, for example, λm = 0, then (22) implies λh 6= 0 (as λl 6= 0),
and then (22) and (23) imply a − θl = a − θh for all a > θh, contradicting θl < θh. Since
((a− θl)z−2)

2
= (a − θl)

z−1(a − θl)
z−3, we manipulate the right-hand sides of (22)–(24) to

obtain

2λmλh(a− θm)z−2(a− θh)z−2 = λmλh
(
(a− θm)z−1(a− θh)z−3 + (a− θm)z−3(a− θh)z−1

)
,

which simplifies, using λmλh 6= 0, to

2 =
a− θh
a− θm

+
a− θm
a− θh

.
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Therefore, a− θh = a− θm for all a > θh, contradicting θm < θh. Q.E.D.

A.6. Proof of Corollary 2

We only prove part (1) of the corollary, as it implies part (2).

If f is monotonic, it ratio dominates any positive constant function. It follows from
Theorem 1 that v((q, t), θ) has SCED.

To prove the converse, suppose, towards contradiction, that f is not monotonic. Then
there exist θl < θm < θh such that either f(θm) > max{f(θl), f(θh)} or f(θm) < min{f(θl), f(θh)}.
Let us assume the first of these two cases; the argument is analogous for the other case. Take
any z ∈ R such that f(θm) > z > max{f(θl), f(θh)}, any q1, q2 ∈ R such that g(q1)−g(q2) > 0,
and t1, t2 ∈ R such that (g(q1)−g(q2))z− (t1− t2) = 0. The expectational difference between
degenerate lotteries on a1 = (q1, t1) and a2 = (q2, t2),

D1,2(θ) ≡ v(a1, θ)− v(a2, θ) = (g(q1)− g(q2))f(θ)− (t1 − t2)

is not single crossing as D1,2(θm) > 0 > max{D1,2(θl), D1,2(θh)}.

B. Proofs for Strict Single Crossing (Subsection 2.2)

Similar to the proof of Theorem 1, our proof of Theorem 2 requires conditions ensuring
that arbitrary linear combinations of functions are strictly single crossing. We state and
discuss the analogs of Lemma 1 and Proposition 2 in Appendix B.1; their proofs are in
Appendix B.2 and Appendix B.3 respectively. The proof of Theorem 2 then follows in
Appendix B.4.

B.1. Aggregating Strictly Single-Crossing Functions

Lemma 3. Let f1, f2 : Θ→ R. The linear combination α1f1(θ) + α2f2(θ) is strictly single crossing
∀α ∈ R2\{0} if and only if f1 and f2 are strictly ratio ordered.

Besides the change to strict single crossing and, correspondingly, strict ratio ordering,
Lemma 3 has two other differences from Lemma 1. First, we rule out (α1, α2) = 0; this
is unavoidable because a zero function is not strictly single crossing. Second, and more
important, there is no explicit mention in Lemma 3 that f1 and f2 are each strictly single
crossing. It turns out—as elaborated in the Lemma’s proof—that when two functions are
strictly ratio ordered, each of them must be strictly single crossing.
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To extend Lemma 3 to more than two functions, we say that f : X × Θ → R is lin-
ear combinations SSC-preserving if

∫
X
f(x, θ)dµ is either a zero function or strictly single

crossing in θ for every function µ : X → Rwith finite support. Parallel to Proposition 2:

Proposition 6. Let f : X × Θ → R for some set X , and assume there exist x1, x2 ∈ X such
that f(x1, ·) : Θ → R and f(x2, ·) : Θ → R are linearly independent. The function f is linear
combinations SSC-preserving if and only if there exist λ1, λ2 : X → R such that

1. f(x1, ·) : Θ→ R and f(x2, ·) : Θ→ R are strictly ratio ordered, and

2. (∀x) f(x, ·) = λ1(x)f(x1, ·) + λ2(x)f(x2, ·).

For the “if” direction of Proposition 6, the existence of a pair of linearly independent
functions need not be assumed, because strict ratio ordering implies linear independence.
However, without that hypothesis, the “only if” direction would fail: given X = {x1, x2},
and f(x1, ·) = 2f(x2, ·) with f(x1, ·) strictly single crossing, the function f is linear combi-
nations SSC-preserving even though f(x1, ·) and f(x2, ·) are not strictly ratio ordered.

B.2. Proof of Lemma 3

When |Θ| ≤ 2.

If |Θ| = 1, the proof is trivial as all functions are strictly single crossing and every pair
of f1, f2 satisfy strict ratio ordering. So assume |Θ| = 2 and denote Θ = {θl, θh}; without
loss, we may assume θh > θl because of our maintained assumption that upper and lower
bounds exist for all pairs.

( =⇒ ) Either (f1(θl), f2(θl)) 6= 0 or (f1(θh), f2(θh)) 6= 0: otherwise, for every α ∈ R2\{0},
(α · f)(θl) = (α · f)(θh) = 0, and hence α · f is a zero function, which is not strictly single
crossing. Assume (f1(θl), f2(θl)) 6= 0; the proof for the other case is analogous. Let αl ≡
(f2(θl),−f1(θl)) and consider (αl · f)(θ) = f2(θl)f1(θ) − f1(θl)f2(θ). We have (αl · f)(θl) = 0

and, by strict single crossing of αl · f , (αl · f)(θh) 6= 0. That is, f2(θl)f1(θh) 6= f1(θl)f2(θh),
which means that f1 and f2 are strictly ratio ordered.

( ⇐= ) For any α ∈ R2\{0}, α · f is not strictly single crossing if and only if (α · f)(θl) =

(α · f)(θh) = 0. This implies α1f1(θl) = −α2f2(θl) and α1f1(θh) = −α2f2(θh), and hence

α1f1(θl)f2(θh) = −α2f2(θl)f2(θh) = α1f1(θh)f2(θl) and

α2f1(θl)f2(θh) = −α1f1(θl)f1(θh) = α2f1(θh)f2(θl).

As (α1, α2) 6= 0, f1(θl)f2(θh) = f1(θh)f2(θl), contradicting strict ratio ordering of f1 and f2.
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When |Θ| ≥ 3.

( =⇒ ) Suppose, towards contradiction, that f1 and f2 are not strictly ratio ordered:

(∃θl < θh) f1(θl)f2(θh) ≤ f1(θh)f2(θl) and

(∃θ′ < θ′′) f1(θ′)f2(θ′′) ≥ f1(θ′′)f2(θ′).
(25)

Take any upper bound θ of {θl, θh, θ′, θ′′}. Letting αl ≡ (f2(θl),−f1(θl)), it holds that αl · f
is strictly single crossing only from below, as (αl ·f)(θl) = (f2(θl),−f1(θl))·(f1(θl), f2(θl)) = 0

and by (25), (αl ·f)(θh) ≥ 0. Hence (αl ·f)(θ) ≥ 0. Analogously, letting α′ ≡ (f2(θ′),−f1(θ′)),
we conclude that (α′ · f)(θ) ≤ 0. Now let α ≡ (f2(θ),−f1(θ)). It follows that

(α · f)(θl) = (f2(θ),−f1(θ)) · (f1(θl), f2(θl)) = −(αl · f)(θ) ≤ 0,

(α · f)(θ′) = (f2(θ′),−f1(θ′)) · (f1(θ′), f2(θ′)) = −(α′ · f)(θ) ≥ 0, and

(α · f)(θ) = 0.

Therefore, α · f is not strictly single crossing.

( ⇐= ) We provide a proof for the case in which f1 strictly ratio dominates f2, and omit
the other case’s analogous proof. For any α ∈ R2\{0}, we prove that α · f is single crossing.
The argument is very similar to that used in proving Lemma 1, but note that here we do
not assume that f1 and f2 are each strictly single crossing.

As f1 strictly ratio dominates f2,

(∀θl < θh) f1(θl)f2(θh) < f1(θh)f2(θl). (26)

Suppose, towards contradiction, that α · f is not strictly single crossing.

Claim: There exist θl, θm, θh with θl < θm < θh such that

(α · f)(θl) ≤ 0, (α · f)(θm) ≥ 0, and (α · f)(θh) ≤ 0, or (27)

(α · f)(θl) ≥ 0, (α · f)(θm) ≤ 0, and (α · f)(θh) ≥ 0. (28)

Proof of claim: Since α · f is not strictly single crossing either from below or from above,

(∃θ1 < θ2) (α · f)(θ1) ≥ 0 ≥ (α · f)(θ2), and

(∃θ3 < θ4) (α · f)(θ3) ≤ 0 ≤ (α · f)(θ4).
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Let Θ0 ≡ {θ1, θ2, θ3, θ4} and let θ and θ be an upper and lower bound of Θ0, respectively.
Either (α · f)(θ) 6= 0 or (α · f)(θ) 6= 0, as otherwise f1(θ)f2(θ) = f2(θ)f1(θ), contradicting
(26). Suppose (α · f)(θ) 6= 0. If (α · f)(θ) < 0, then we choose (θl, θm, θh) = (θ3, θ4, θ), which
satisfies (27). If (α · f)(θ) > 0, then we choose (θl, θm, θh) = (θ1, θ2, θ), which satisfies (28). A
similar argument applies when (α · f)(θ) 6= 0. ‖

Condition (26) implies that f(θ) ≡ (f1(θ), f2(θ)) 6= 0 for all θ ∈ {θl, θm, θh}. Take any
θ1, θ2 ∈ {θl, θm, θh} such that θ1 < θ2. By (26), f(θ1) moves to f(θ2) in a clockwise rotation
with an angle r12 ∈ (0, 180). Suppose (27) holds; the argument is analogous if (28) holds. It
follows from 0 < rlh < 180, (α·f)(θl) ≤ 0, and (α·f)(θh) ≤ 0 that {f(θl), f(θh)} ⊆ R2

α,−∪R2
α,0

with {f(θl), f(θh)} 6⊆ R2
α,0.33 This, together with rlm > 0 and rmh > 0, implies f(θm) ∈ R2

α,−,
which contradicts (27).

B.3. Proof of Proposition 6

Appendix A.2 proved Proposition 2 assuming certain functions are linearly indepen-
dent. Essentially the same proof can be used for Proposition 6, replacing statements in-
volving “single crossing” with “either a zero function or strictly single crossing”.

B.4. Proof of Theorem 2

Most statements in the proof of Theorem 1 go through with strict single crossing when
we replace “single crossing” with “either a zero function or strictly single crossing”. We
need only to rewrite the proof of the “only if” part in the following two special cases:

1. (∀a′, a′′)(∀θ) v(a′, θ) = v(a′′, θ), or

2. (∃a′, a′′) such that (i) v(a′′, θ)− v(a′, θ) is not a zero function of θ, and (ii) (∀a) v(a, θ)−
v(a′, θ) and v(a′′, θ)− v(a′, θ) are linearly dependent functions of θ.

In the first case, we can write v(a, θ) in form of (5) where g1, g2 are zero functions, c(θ) ≡
v(a0, θ) for any a0, (∀θ) f1(θ) = 1, and f2(θ) is any strictly decreasing function of θ. Then,

(∀θl < θh) f1(θl)f2(θh) = f2(θh) < f2(θl) = f1(θh)f2(θl).

In the second case, for every a, there exists λ ∈ R2\{0} such that λ1 (v(a, ·)− v(a′, ·)) +

λ2 (v(a′′, ·)− v(a′, ·)) is a zero function. Note that λ1 6= 0, as otherwise v(a′′, ·) − v(a′, ·)

33 Recall that R2
α,+ ≡ {x ∈ R2 : α · x > 0}, R2

α,0 ≡ {x ∈ R2 : α · x = 0}, and R2
α,− ≡ {x ∈ R2 : α · x < 0}.
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would be a zero function. It follows that there exists λ : A→ R such that

(∀a, θ) v(a, θ)− v(a′, θ) = λ(a) (v(a′′, θ)− v(a′, θ)) ,

or equivalently,

(∀a, θ) v(a, θ) = λ(a) (v(a′′, θ)− v(a′, θ)) + v(a′, θ).

Note that v(a′′, θ) − v(a′, θ) is a strictly single-crossing function of θ: consider the expecta-
tional difference with distributions that put probability one on a′′ and a′ respectively. If the
difference is strictly single crossing from below, we can write v(a, θ) in the form of (5) where
g1(a) = λ(a), g2(a) = 0, f1(θ) = v(a′′, θ) − v(a′, θ), and c(θ) = v(a′, θ). If the difference is
strictly single crossing only from above, we let g1(a) = −λ(a) and f1(θ) = v(a′, θ)− v(a′′, θ).
Now take any strictly increasing function h : Θ→ R and define

ĥ(θ) ≡

{
−eh(θ) if f1(θ) ≤ 0

e−h(θ) otherwise
and f2(θ) ≡

{
ĥ(θ)f1(θ) if f1(θ) 6= 0

1 otherwise.

To verify that f1 and f2 are strictly ratio ordered, take any θl < θh. There are three possibil-
ities to consider:

1. If f1(θl)f1(θh) > 0, then

f1(θl)f2(θh) = f1(θl)f1(θh)ĥ(θh) < f1(θl)f1(θh)ĥ(θl) = f1(θh)f2(θl),

as ĥ(θ) is strictly decreasing over {θ | f1(θ) < 0} and {θ | f1(θ) > 0}.

2. If f1(θl)f1(θh) < 0, then as f1(θ) is strictly single crossing from below, we have f1(θl) <

0 < f1(θh). Hence,

f1(θl)f2(θh) = f1(θl)f1(θh)ĥ(θh) < 0 < f1(θl)f1(θh)ĥ(θl) = f1(θh)f2(θl).

3. If f1(θl)f1(θh) = 0, then because f1 is strictly single crossing from below, we have
either (i) f1(θl) < 0 = f1(θh), which results in f1(θl)f2(θh) = f1(θl) < 0 = f1(θh)f2(θl),

or (ii) f1(θl) = 0 < f1(θh), which results in f1(θl)f2(θh) = 0 < f1(θh) = f1(θh)f2(θl).
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C. Proofs for Monotone Comparative Statics (Subsection 2.3)

C.1. Proof of Theorem 3

( =⇒ ) Suppose f : X × Θ → R has MCS on X with some order �. We first prove the
following claim.

Claim 9. For every x, x′ ∈ X , if ∃θl < θh such that sign[Dx,x′(θl)] < sign[Dx,x′(θh)], then x � x′.

Proof. Consider S = {x, x′}. Since sign[Dx,x′(θl)] 6= sign[Dx,x′(θh)], we have

arg max
s∈S

f(s, θl) 6= arg max
s∈S

f(s, θh).

Thus, either (i) x ∈ arg maxs∈S f(s, θl) and x′ ∈ arg maxs∈S f(s, θh), or (ii) x′ ∈ arg maxs∈S f(s, θl)

and x ∈ arg maxs∈S f(s, θh). Since f has MCS on (X,�), we have arg maxs∈S f(s, θh) �SSO
arg maxs∈S f(s, θl). Therefore, x ∧ x′ ∈ arg maxs∈S f(s, θl) and x ∨ x′ ∈ arg maxs∈S f(s, θh),
which implies that either x � x′ or x′ � x. Since x′ 6= x, we have either x � x′ or x′ � x. If
x′ � x, then x′ = x ∨ x′ ∈ arg maxs∈S f(s, θh), contradicting sign[Dx,x′(θl)] < sign[Dx,x′(θh)].
Thus, x � x′. Q.E.D.

To show that f has SCD on X , suppose not, per contra. Then there exist x, x′ ∈ X and
θl < θm < θh such that either,34

sign[Dx,x′(θl)] < sign[Dx,x′(θm)] and sign[Dx,x′(θm)] > sign[Dx,x′(θh)], or (29)

sign[Dx,x′(θl)] > sign[Dx,x′(θm)] and sign[Dx,x′(θm)] < sign[Dx,x′(θh)]. (30)

Given either (29) or (30), Claim 9 implies x � x′ and x′ � x, a contradiction.

To show that � is a refinement of �SCD, it suffices to show that

(∀x, x′ ∈ X) x �SCD x′ =⇒ x � x′, (31)

because both � and �SCD are anti-symmetric. Take any x, x′ ∈ X such that x �SCD x′. As
Dx,x′ is single crossing only from below, ∃θl < θh such that sign[Dx,x′(θl)] < sign[Dx,x′(θh)].
Claim 9 implies x � x′, which proves (31).

34 The existence of such θl, θm, θh is immediate if (Θ,≤) is a completely ordered set. More generally, the
existence of θl, θm, θh follows from our maintained assumption that every pair in Θ has upper and lower
bounds; see Appendix A.1.
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( ⇐= ) Suppose that f : X × Θ → R has SCD, and � is a refinement of �SCD. For any
S ⊆ X , define C(S) ≡

⋃
θ∈Θ arg maxs∈S f(s, θ). It is clear that

(∀θ) arg max
s∈S

f(s, θ) = arg max
s∈C(S)

f(s, θ).

We claim that C(S) is completely ordered by �SCD. To see why, take any pair x′, x′′ ∈
C(S) with x′ 6= x′′. As f has SCD, Dx′,x′′ is single crossing in θ. As X is minimal, Dx′,x′′ is
not a zero function. Also, as x′, x′′ ∈ C(S), sign[Dx′,x′′ ] is not a constant function with value
either 1 or -1. Thus, Dx′,x′′ is single crossing either only from below, or only from above. It
follows that x′ �SCD x′′ or x′′ �SCD x′.

Since � is a refinement of �SCD, � coincides with �SCD on C(S), and the strong set
orders generated by � and �SCD on the collection of all subsets of C(S) also coincide. By
definition of �SCD, f satisfies Milgrom and Shannon’s single-crossing property in (x, θ)

with respect to �SCD and ≤.35 It follows from Milgrom and Shannon (1994, Theorem 4)
that ∀θl < θh,

arg max
s∈S

f(s, θh) = arg max
s∈C(S)

f(s, θh) �SSO arg max
s∈C(S)

f(s, θl) = arg max
s∈S

f(s, θl).
36

C.2. Proof of Proposition 3

The proof is similar to the proof of sufficiency for Theorem 3 in Appendix C.1.

For any S ⊆ X , define C(S) ≡
⋃
θ∈Θ arg maxs∈S f(s, θ). First, we claim that C(S) is

completely ordered by�SSCD. To see this, take any pair x′, x′′ ∈ C(S) with x′ 6= x′′. As f has
SSCD and X is minimal, Dx′,x′′ is strictly single crossing in θ. As x′, x′′ ∈ C(S), sign[Dx′,x′′ ]

is not a constant function with value either 1 or -1. Thus, Dx′,x′′ is strictly single crossing
either only from below or only from above. It follows that x′ �SSCD x′′ or x′′ �SSCD x′.
Next, since � is a refinement of �SSCD, � coincides with �SSCD on C(S). By definition
of �SSCD, f satisfies Milgrom and Shannon’s strict single-crossing property in (x, θ) with

35 Given (X,�) that is completely ordered, (Θ,≤) that is (partially) ordered, and f : X ×Θ→ R, Milgrom
and Shannon’s single-crossing property in (x, θ) is equivalent to

(∀x′ � x′′)(∀θl < θh) f(x′, θl) ≥ (>)f(x′′, θl) =⇒ f(x′, θh) ≥ (>)f(x′′, θh).

36 Milgrom and Shannon (1994, Theorem 4) identify their single-crossing property and quasi-
supermodularity as jointly necessary and sufficient for their monotone comparative statics. (On a lattice
(X,�), h : X → R is quasisupermodular if h(x) ≥ (>)h(x ∧ x′) =⇒ h(x ∨ x′) ≥ (>)h(x′).) When the choice
set is completely ordered, the quasi-supermodularity holds trivially.
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respect to �SSCD and ≤.37 It follows from Milgrom and Shannon (1994, Theorem 4’) that
any selection x∗(θ) from arg maxs∈C(S) f(s, θ)(= arg maxs∈S f(s, θ)) is increasing in θ.

D. Proofs for Monotonic Expectational Differences (Subsec-

tion 4.1)

D.1. Proof of Lemma 2

(⇐= ) Suppose there exist λ ∈ R2 such that f2 = λ1f1 + λ2. Then, for any α ∈ R2,

(α · f)(θ) = α1f1(θ) + α2(λ1f1(θ) + λ2) = (α1 + α2λ1)f1(θ) + λ2,

which is monotonic.

( =⇒ ) The proof is trivial if both f1 and f2 are constant functions. So we suppose that at
least one function, say f1, is not constant:

(∃θ′, θ′′) f1(θ′) 6= f1(θ′′). (32)

This implies that rank[Mθ′,θ′′ ] = 2, where

Mθ′,θ′′ ≡

[
f1(θ′) 1

f1(θ′′) 1

]
.

Hence, the system [
f2(θ′)

f2(θ′′)

]
=

[
f1(θ′) 1

f1(θ′′) 1

][
λ1

λ2

]
(33)

has a unique solution λ∗ ∈ R2. We will show that f2 = λ∗1f1 + λ∗2.

Suppose, towards contradiction, there exists θ∗ such that

f2(θ∗) 6= λ∗1f1(θ∗) + λ∗2. (34)

Let θ and θ be a lower and upper bound of {θ′, θ′′, θ∗}. If rank[Mθ,θ] < 2, then f1(θ) = f1(θ).

37 Given (X,�) that is completely ordered, (Θ,≤) that is (partially) ordered, and f : X ×Θ→ R, Milgrom
and Shannon’s strict single-crossing property in (x, θ) is equivalent to

(∀x′ � x′′)(∀θl < θh) f(x′, θl) ≥ f(x′′, θl) =⇒ f(x′, θh) > f(x′′, θh).
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As θ′ and θ′′ are in between θ and θ and f1 is monotonic, we have f1(θ′) = f1(θ′′), which
contradicts (32). If, on the other hand, rank[Mθ,θ] = 2, then the system[

f2(θ)

f2(θ)

]
=

[
f1(θ) 1

f1(θ) 1

][
λ′1

λ′2

]

has a unique solution λ′ ∈ R2. As θ′, θ′′, and θ∗ are in between θ and θ and f2 − λ′1f1 is
monotonic, we have [

f2(θ′)

f2(θ′′)

]
=

[
f1(θ′) 1

f1(θ′′) 1

][
λ′1

λ′2

]
and (35)

f2(θ∗) = λ′1f1(θ∗) + λ′2. (36)

Equation 35 implies that λ′ solves (33). As the unique solution to (33) was λ∗, it follows that
λ′ = λ∗. But then (34) and (36) are in contradiction.

D.2. Proof of Proposition 4

(⇐= ) We omit the proof as it is similar to the proof of Proposition 2 in Appendix A.2.

( =⇒ ) For the proof of necessity, if (∀x) f(x, θ) is a constant function of θ, then we let
λ1(x) = 0 and λ2(x) = f(x, θ). If there exists x′ ∈ X such that f(x′, θ) is not a constant func-
tion of θ, then Lemma 2 implies (∀x, θ) f(x, θ) = λ1(x)f(x′, θ) + λ2(x), with λ1, λ2 : X → R.

D.3. Proof of Theorem 4

(⇐= ) We omit the proof as it is similar to the proof of Theorem 1 in Appendix A.3.

( =⇒ ) The proof is trivial if (∀a, θ) v(a, θ) = 0, so assume there exists a0 such that v(a0, ·) :

Θ → R is not a zero function. Define f : A × Θ → R by f(a, θ) ≡ v(a, θ) − v(a0, θ). Note
that (∀a) f(a, θ) is a monotonic function of θ: consider the expectational difference with
distributions that put probability one on a and a0 respectively.

Let A′ ≡ A\{a0}. As in the proof of Theorem 1 in Appendix A.3, for every real-valued
function µ′ over A′ with finite support, there exist P,Q ∈ ∆A such that

∫
A′
f(a, θ)dµ′ is

monotonic if and only if DP,Q is monotonic. By Proposition 4, there exist a′ ∈ A\a0 and
λ1, λ2 : A\{a0} → R such that (∀a, θ) f(a, θ) = λ1(a)f(a′, θ) + λ2(a). Hence, there exist
functions g1, g2 : A→ R with g1(a0) = g2(a0) = 0 such that f(a, θ) = g1(a)f(a′, θ) + g2(a), or
equivalently, v(a, θ) = g1(a)f(a′, θ) + g2(a) + v(a0, θ).
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E. Further Results Comparing MED and SCED

This appendix identifies when the preferences defined by a utility function with SCED
also have a utility representation satisfying MED. Appendix E.1 states and discusses the
characterization result, Proposition 7; the proof is provided in Appendix E.2; and Appendix
E.3 applies the characterization.

E.1. SCED and MED Representations

Let �Θ≡ {�θ : θ ∈ Θ} be a family of type-dependent preferences (i.e., complete, reflex-
ive, and transitive binary relations) over ∆A. We say that v : A×Θ→ R represents �Θ (in
the expected utility form) if

(∀θ)(∀P,Q ∈ ∆A) P �θ Q ⇐⇒
∫
A

v(a, θ)dP ≥
∫
A

v(a, θ)dQ. (37)

For any v : A×Θ→ R and�Θ defined by (37), a function v′ : A×Θ→ R is a positive affine
transformation of v if and only if v′ represents �Θ.

Proposition 7. Let v : A×Θ→ R have SCED:

v(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + c(θ),

where f1, f2 : Θ → R are each single crossing and ratio ordered, g1, g2 : A → R, and c : Θ → R.
Let �Θ be the family of preferences over ∆A defined by (37). Then, �Θ can be represented by a
function with MED if and only if (i) either g1 is an affine transformation of g2 or vice-versa, or (ii)
f1 and f2 are linearly dependent, or (iii) there exists λ ∈ R2\{0} such that (∀θ) (λ · f)(θ) > 0.

We can interpret Proposition 7 as follows: given �Θ with an SCED representation, there
is an MED representation if and only if either

(a) there is a pair of types that do not share the same strict preference over any pair of
lotteries (i.e., (∃θ′, θ′′) (∀P,Q ∈ ∆A) DP,Q(θ′)DP,Q(θ′′) ≤ 0), or

(b) there is a pair of lotteries over which all types share the same strict preference (i.e.,
(∃P,Q ∈ ∆A) (∀θ) DP,Q(θ) > 0).

To see this interpretation, suppose Case (i) or (ii) holds in Proposition 7. Then, there are
functions ĝ1, f̂1, and ĉ such that v(a, θ) = ĝ1(a)f̂1(θ) + ĉ(θ), with f̂1 single crossing. If ĝ1 is
constant or f̂1 is a zero function, every type is indifferent across all lotteries, and (a) holds.
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Suppose ĝ1 is not constant. If f̂1 > 0 (or < 0), then (b) holds.38 If f̂1(θ) is single crossing
only from below or only from above, then for some θ′ and θ′′, f̂1(θ′)f̂1(θ′′) ≤ 0; the pair θ′

and θ′′ does not share the same strict preference over any two lotteries, and so (a) holds.
On the other hand, if Proposition 7’s Case (iii) applies and Case (i) does not, then (b) holds,
because (∃P,Q ∈ ∆A,M ∈ R++) (∀θ) MDP,Q(θ) = (λ · f)(θ) > 0; see (38).39

Here is some geometric intuition for the “if” direction of Proposition 7. For Case (i) or
(ii), v(a, θ) = ĝ1(a)f̂1(θ)+ ĉ(θ) with f̂1 single crossing, as already noted. We can rescale f̂1(θ)

using a function b : Θ → R++ such that b(θ)f̂1(θ) is monotonic. Thus, v′(a, θ) ≡ b(θ)v(a, θ)

represents �Θ and has MED. For Case (iii), assume without loss of generality that ‖λ‖ = 1.
Let b(θ) ≡ 1

(λ·f)(θ)
. It follows that (∀θ) (λ · (bf))(θ) = 1, i.e., the function b adjusts the lengths

of vectors {f(θ) ∈ R2 : θ ∈ Θ}while maintaining their directions, as illustrated in Figure 6.
The vector (bf)(θ) rotates monotonically as θ increases, while staying on the hyperplane
{x ∈ R2 |λ · x = 1}. Let e1 ≡ (1, 0) and e2 ≡ (0, 1). Suppose {e1, λ} is a basis for R2

(an analogous argument would hold if instead {e2, λ} were a basis). Then, for every θ,
the vector (bf)(θ) is represented as (b(θ)f1(θ), 1) with respect to the new basis. We define
f̃1(θ) ≡ b(θ)f1(θ) and

v′(a, θ) ≡ b(θ)v(a, θ) = g̃1(a)f̃1(θ) + g̃2(a) + b(θ)c(θ),

with appropriately defined functions g̃1 and g̃2. Since (bf)(θ) rotates monotonically, f̃1(θ) is
monotonic. It follows that v′ has MED.

E.2. Proof of Proposition 7

( ⇐= ) First we prove that if either (i) or (ii) holds, then we can write v as v(a, θ) =

ĝ1(a)f̂1(θ) + ĉ(θ), with f̂1 single crossing.

Suppose (i) holds; without loss, assume (∃d ∈ R2) (∀a) g2(a) = d1g1(a) + d2. Then,
ĝ1(a) = g1(a), f̂1(θ) = f1(θ) + d1f2(θ), and ĉ(θ) = d2f2(θ) + c(θ). Next suppose (ii) holds;
without loss, assume (∃d ∈ R) (∀θ) f2(θ) = df1(θ). Then, ĝ1(a) = g1(a)+dg2(a), f̂1(θ) = f1(θ),
and ĉ(θ) = c(θ). In either case, f̂1 is a linear combination of f1 and f2, so it is single crossing.

38 Consider two degenerate lotteries over a′ and a′′ such that ĝ1(a′) 6= ĝ2(a′′).
39 Conversely, (a) implies either Case (i) or (ii) of Proposition 7. If g1 and g2 are affinely independent (i.e., a

violation of (i)), then (∀λ ∈ R2\{0}) (∃P,Q ∈ ∆A,M ∈ R++) (∀θ) (λ · f)(θ) = MDP,Q(θ); see (38). Then, (a)
implies that for some θ′, θ′′ and for some β ≤ 0, f(θ′) = βf(θ′′), which, together with Condition (4) of ratio
ordering, implies that f1 and f2 are linearly dependent. Moreover, (b) implies Case (iii) of the Proposition:
letting λi =

∫
A
gi(a)d[P −Q] for i = 1, 2, it holds that λ1f1(θ) + λ2f2(θ) = DP,Q(θ) > 0 for all θ.
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Figure 6: A geometric intuition for sufficiency of (iii) in Proposition 7.

Define

b(θ) ≡

{
1

|f̂1(θ)| if f̂1(θ) 6= 0,

1 otherwise.

Since (∀θ) b(θ) > 0, v′(a, θ) ≡ b(θ)v(a, θ) = ĝ1(a)b(θ)f̂1(θ) + b(θ)ĉ(θ) is a positive affine
transformation of v, and hence it also represents �Θ. As f̂1 is single crossing, b(θ)f̂1(θ) =

sign[f̂1(θ)] is monotonic, and v′ has MED.

Now suppose (iii) holds: (∃λ ∈ R2\{0}) (∀θ) (λ · f)(θ) > 0. Define b(θ) ≡ 1
(λ·f)(θ)

. Then
(λ · (bf))(θ) = 1, so that either (bf1)(θ) is an affine transformation of (bf2)(θ), or vice-versa:
(∃γ, ω ∈ R) such that either b(θ)f1(θ) = γb(θ)f2(θ) + ω or b(θ)f2(θ) = γb(θ)f1(θ) + ω.

We consider the case in which b(θ)f2(θ) = γb(θ)f1(θ) + ω and omit the other case’s anal-
ogous proof. If λ2 ≥ (≤)0, then as f1 ratio dominates f2,

(∀θ′ < θ′′) f1(θ′)f2(θ′′) ≤ f1(θ′′)f2(θ′)

=⇒ λ1f1(θ′)f1(θ′′) + λ2f1(θ′)f2(θ′′) ≤ (≥)λ1f1(θ′)f1(θ′′) + λ2f1(θ′′)f2(θ′)

=⇒ f1(θ′)(λ · f)(θ′′) ≤ (≥)f1(θ′′)(λ · f)(θ′)

=⇒ b(θ′)f1(θ′) ≤ (≥)b(θ′′)f1(θ′′).
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Thus, regardless of whether λ2 ≥ 0 or λ2 ≤ 0, (bf1)(θ) is monotonic in θ. It follows that

v′(a, θ) ≡ b(θ)v(a, θ) = g1(a)b(θ)f1(θ) + g2(a)b(θ)f2(θ) + b(θ)c(θ)

= g1(a)b(θ)f1(θ) + g2(a)(γb(θ)f1(θ) + ω) + b(θ)c(θ)

= (g1(a) + γg2(a))b(θ)f1(θ) + ωg2(a) + b(θ)c(θ)

has MED.

( =⇒ ) We prove that if neither (i) or (ii) holds, then (iii) holds.

We first show that when (i) does not hold,

(∀λ ∈ R2\{0}) (∃P,Q ∈ ∆A,M ∈ R++)(∀θ) (λ · f)(θ) = MDP,Q(θ). (38)

As (i) does not hold, the three functions g1, g2, and 1 (where 1 represents the constant
function whose value is 1) are linearly independent. For otherwise, either g1 and g2 are
linearly dependent, or (∃α ∈ R2\{0}) (∀a) α1g1(a) + α2g2(a) = 1; in either case, either g1

would be an affine transformation of g2 or vice-versa.

By the aforementioned linear independence, there exist a0, a1, a2 ∈ A such that

rank

g1(a0) g1(a1) g1(a2)

g2(a0) g2(a1) g2(a2)

1 1 1

 = 3.

It follows that for any λ ∈ R2\{0} there exists (d0, d1, d2) ∈ R3 such thatg1(a0) g1(a1) g1(a2)

g2(a0) g2(a1) g2(a2)

1 1 1


d0

d1

d2

 =

λ1

λ2

0

 .
Take a sufficiently large M ∈ R++ such that |di| ≤M/3 for i = 0, 1, 2, and define P,Q ∈ ∆A

with probability mass functions p, q such that p(ai) = 1/3 and q(ai) = 1/3 − di/M for
i = 0, 1, 2. Then, both P and Q are probability distributions on {a0, a1, a2}, and

(λ · f)(θ) = (d0g1(a0) + d1g1(a1) + d2g1(a2)) f1(θ) + (d0g2(a0) + d1g2(a1) + d2g2(a2)) f2(θ)

=
∑

i∈{0,1,2}

di (g1(ai)f1(θ) + g2(ai)f2(θ))

= MDP,Q(θ).
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Suppose �Θ is represented by a function v′ : A × Θ → R with MED. As both v and
v′ represent �Θ in the expected utility form, v′ is a positive affine transformation of v. It
follows that there exist b : Θ→ R++ and d : Θ→ R such that

v′(a, θ) = b(θ)v(a, θ) + d(θ) = g1(a)f̂1(θ) + g2(a)f̂2(θ) + ĉ(θ),

where f̂1(θ) = b(θ)f1(θ), f̂2(θ) = b(θ)f2(θ), and ĉ(θ) = b(θ)c(θ) + d(θ).

Given (38), for any λ ∈ R2\{0}, there exist P,Q ∈ ∆A and M ∈ R++ such that

(λ · f̂)(θ) = b(θ)(λ · f)(θ) = b(θ)MDP,Q(θ) = M

∫
A

v′(a, θ)d[P −Q],

which is monotonic.

We find λ ∈ R2\{0} such that (∀θ) (λ · f̂)(θ) = 1. For any θ′, θ′′, let

Mθ′θ′′ ≡

[
f1(θ′) f1(θ′′)

f2(θ′) f2(θ′′)

]
and M̂θ′θ′′ ≡

[
f̂1(θ′) f̂1(θ′′)

f̂2(θ′) f̂2(θ′′)

]
.

As f1 and f2 are linearly independent, there exist θ1, θ2 such that rank[Mθ1,θ2 ] = 2, which
implies that rank[M̂θ1,θ2 ] = 2. Let λ∗ ∈ R2\{0} be the unique solution of M̂θ1,θ2λ = (1, 1).
Take any θ0, and let θ and θ be a lower and upper bound of {θ0, θ1, θ2}. It must be that
rank[M̂θ,θ] = 2. If otherwise, there exists λ ∈ R2\{0} such that (λ · f̂)(θ) = (λ · f̂)(θ) = 0. By
(38), λ · f̂ is monotonic, so (λ · f̂)(θ1) = (λ · f̂)(θ2) = 0, which contradicts rank[M̂θ1,θ2 ] = 2. Let
λ∗∗ be the unique solution of M̂θ,θλ = (1, 1). By monotonicity of λ∗∗ · f̂ , M̂θ1,θ2λ

∗∗ = (1, 1),
which implies that λ∗∗ = λ∗. It follows that (λ∗ · f̂)(θ0) = 1. As θ0 is arbitrary, we have (∀θ)
(λ∗ · f̂)(θ) = 1.

Finally, (∀θ) (λ∗ · f)(θ) = (λ∗·f̂)(θ)
b(θ)

> 0.

E.3. An Example of SCED-but-not-MED Preferences

We can use Proposition 7 to provide an example of type-dependent preferences repre-
sentable by an SCED function that are not representable by any MED function.

Example 2. Let Θ ≡ (−1, 1] ⊂ R and A ≡ {a0, a
′, a′′}. Consider v(a, θ) = g1(a)f1(θ) +

g2(a)f2(θ), with

1. g1(a0) = g2(a0) = 0, g1(a′) = g2(a′) = 1, g1(a′′) = 2, g2(a′′) = 3, and

2. f1(θ) = θ, f2(θ) = 1− θ2.
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Observe that f1 ratio dominates f2: if θ′ < θ′′, then θ′θ′′ < 1, and hence f1(θ′)f2(θ′′) <

f1(θ′′)f2(θ′). It follows that v has SCED.

We claim the family of type-dependent preferences �Θ represented by v is not repre-
sentable by any MED function. It is easy to verify that neither g1 is an affine transformation
of g2 nor vice-versa, and that f1 and f2 are linearly independent. By Proposition 7, it suf-
fices to show that @λ ∈ R2 such that (∀θ) (λ · f)(θ) > 0. Take any λ ∈ R2\{0}. If λ1 = 0,
then (λ · f)(1) = 0. If, on the other hand, λ1 6= 0, then sign[(λ · f)(1)] = sign[λ1] and
limθ→−1 sign[(λ · f)(θ)] = − sign[λ1], and so (∃θ)(λ · f)(θ) < 0. �

F. Proof for Information Design (Subsection 4.2)
This appendix proves Proposition 5.

(⇐= ) For any Q ∈ ∆∆Ω,

V (Q, θ) =

(∫
∆Ω

g1(p)dQ

)
f1(θ) +

(∫
∆Ω

g2(p)dQ

)
f2(θ) +

∫
∆Ω

(∑
ω∈Ω

v(δω, θ)p(ω)

)
dQ.

The last term on the right-hand side is equal to

∑
ω∈Ω

v(δω, θ)

(∫
∆Ω

p(w)dQ

)
=
∑
ω∈Ω

v(δω, θ)Q(ω).

Thus, for any Q,R ∈ ∆∆Ω with Q = R,

DQ,R(θ) =

(∫
∆Ω

g1(p)dQ−
∫

∆Ω

g1(p)dR

)
f1(θ) +

(∫
∆Ω

g2(p)dQ−
∫

∆Ω

g2(p)dR

)
f2(θ),

which is single crossing in θ by Lemma 1.

( =⇒ ) For each posterior p ∈ ∆Ω, consider two experiments: δp ∈ ∆∆Ω yields p with
certainty, and Qp ∈ ∆∆Ω yields each degenerate posterior δω ∈ ∆Ω with probability p(ω).
For every θ,

V (δp, θ) = v(p, θ) and V (Qp, θ) =
∑
ω∈Ω

v(δω, θ)p(ω).

The average of both experiments is the posterior p: (∀ω) δp(ω) = Qp(ω) = p(ω). Thus,

f(p, θ) ≡ V (δp, θ)− V (Qp, θ) = v(p, θ)−
∑
ω∈Ω

v(δω, θ)p(ω)
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is single crossing in θ.

The remaining part of the proof is similar to the proof of Proposition 2 in Appendix A.2.
If there exists p1 ∈ ∆Ω such that

(∃λ : ∆Ω→ R)(∀p, θ) f(p, θ) = λ(p)f(p1, θ),

then v is in the form of (13) with f1(θ) = f(p1, θ), f2(θ) = 0, g1(p) = λ(p), and g2(p) = 0.
Otherwise, there exist p1 and p2 such that f(p1, ·), f(p2, ·) : Θ→ R are linearly independent.
The following claim, together with Lemma 1, then implies that f(p1, ·) and f(p2, ·) are ratio
ordered.

Claim 10. For all α ∈ R2, the linear combination α1f(p1, θ) + α2f(p2, θ) is single crossing in θ.

Proof. Assume that α ∈ R2\{0}; otherwise the linear combination is a zero function, which
is clearly single crossing. Moreover, without loss assume that α1 > 0. (If α1 < 0, multiply
the linear combination by −1, while if α1 = 0, swap indices i = 1, 2; neither modification
affects whether the linear combination is single crossing or not.)

If α2 ≥ 0, let M ≡ α1 + α2 and define R1, R2 ∈ ∆∆Ω by

R1 ≡
α1

M
δp1 +

α2

M
δp2 , and R2 ≡

α1

M
Qp1 +

α2

M
Qp2 .

Note that R1 = R2 = α1

M
p1 + α2

M
p2. Thus,

α1f(p1, θ) + α2f(p2, θ) = α1 (V (δp1 , θ)− V (Qp1 , θ)) + α2 (V (δp2 , θ)− V (Qp2 , θ))

= M (V (R1, θ)− V (R2, θ))

is single crossing in θ.

If, on the other hand, α2 < 0, let M ≡ α1 − α2 and define R1, R2 ∈ ∆∆Ω by

R1 ≡
α1

M
δp1 −

α2

M
Qp2 , and R2 ≡

α1

M
Qp1 −

α2

M
δp2 .

As before, R1 = R2, and

α1f(p1, θ) + α2f(p2, θ) = M (V (R1, θ)− V (R2, θ))

is single crossing in θ. Q.E.D.

We can now follow the proof of Proposition 2 in Appendix A.2 and show that there exist
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λ1, λ2 : ∆Ω→ R such that (∀p) f(p, ·) = λ1(p)f(p1, ·) + λ2(p)f(p2, ·). By definition of f(p, θ),
the function v satisfies (13).

G. Relationship to Signed-Ratio Monotonicity and the Vari-

ation Diminishing Property

G.1. Signed-Ratio Monotonicity

Quah and Strulovici (2012) establish that for any two functions f1 : Θ→ R and f2 : Θ→
R that are each single crossing from below, α1f1 +α2f2 is single crossing from below for all
α ∈ R2

+ if and only if f1 and f2 satisfy signed-ratio monotonicity: for all i, j ∈ {1, 2},

(∀θl < θh) fj(θl) < 0 < fi(θl) =⇒ fi(θh)fj(θl) ≤ fi(θl)fj(θh). (39)

Given our discussion in Subsection 2.1.1 of a graphical interpretation of ratio ordering,
one can see that Condition (39) implies that the vector f(θ) ≡ (f1(θ), f2(θ)) rotates clockwise
as θ increases within the upper-left quadrant (i.e., when f1(·) < 0 < f2(·)), while it rotates
counterclockwise within the lower-right quadrant (i.e., when f1(·) > 0 > f2(·)); there are
no restrictions in the other two quadrants.40 The dashed curve with arrowheads in Figure 7
provides a depiction. Note that if f1 and f2 are both single crossing from below (or both
from above), then there cannot exist θl < θh such that one of f(θl) and f(θh) is in the upper-
left quadrant and the other in the lower-right quadrant. It follows that if f1 and f2 are both
single crossing from below, then ratio ordering implies signed-ratio monotonicity; more
generally, however, the implication is not valid.

Figure 7 also illustrates Quah and Strulovici’s (2012) result, analogous to Figure 4 for
Lemma 1. Any linear combination α ∈ R2

+\{0} defines two open half spaces, R2
α,− ≡

{x ∈ R2 : α · x < 0} and R2
α,+ ≡ {x ∈ R2 : α · x > 0}, as indicated in Figure 7. If the vector

f(θ) rotates monotonically as θ increases from R2
α,− to R2

α,+, or either half space contains
the vector f(θ) for all θ, then α · f ≡ α1f1 + α2f2 is single crossing from below. Conversely,
if f(θ) does not rotate monotonically in the upper-left or lower-right quadrant, then there
exists α ∈ R2

+\{0} such that α · f is not single crossing from below.

G.2. Variation Diminishing Property

Karlin (1968) assumes a completely ordered domain, so consider a completely ordered
Θ, with |Θ| ≥ 3 to avoid trivialities. Let K(i, θ) ≡ Ki(θ) for i = 1, 2 and some functions

40 To be precise: by “quadrant” we mean the interiors, i.e., excluding the axes.
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Figure 7: Signed-ratio monotonicity and single crossing of a convex combination.

Ki : Θ → R. The function K is said to be totally positive of order two, abbreviated TP2,
if K1 and K2 are both non-negative functions and (∀θl < θh) K1(θl)K2(θh) ≤ K1(θh)K2(θl).
The variation diminishing property of Karlin (1968, Theorem 3.1 in Chapter 5) implies that
if—and, more or less, only if—K is TP2, then any linear combination of K1 and K2 is single
crossing. There are, however, single-crossing functions f1 and f2 that are ratio ordered such
that there is no TP2 function K with

{α1f1 + α2f2 : α ∈ R2} = {α1K1 + α2K2 : α ∈ R2}. (40)

When f1 and f2 are each single crossing, ratio ordered, and linearly independent, a TP2

function K satisfying (40) exists if and only if the set {f(θ) : θ ∈ Θ} lies in an open half
space of R2 defined by a hyperplane that passes through the origin. (A proof is available
from the authors on request.) Ratio ordering does imply that the set lies in a half space, as
noted earlier, but the half space need not be open.

H. Relaxing Anti-Symmetry

This appendix shows how anti-symmetry of ≤ over Θ can be dropped by appropriately
generalizing the definition of single crossing. This extension is useful, for example, because
rankings over Θ based on norms (say, when Θ ⊆ Rn) generally violate anti-symmetry.

Assume (Θ,≤) is a preordered set, i.e., ≤ is a binary relation that is reflexive and transi-
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tive, but not necessarily anti-symmetric. We write θ′ ∼= θ′′ when θ′ ≥ θ′′ and θ′ ≤ θ′′.

Definition 11. When (Θ,≤) is a preordered set, a function f : Θ → R is single crossing
(resp., single crossing from below or from above) if sign[f ] is monotonic (resp., increasing
or decreasing) and

(∀θ′ ∼= θ′′) sign[f(θ′)] = sign[f(θ′′)]. (41)

Definition 11 reduces to Definition 1 when (Θ,≤) is a partially-ordered set, because in
that case θ′ ∼= θ′′ ⇐⇒ θ′ = θ′′.

Lemma 4. Let (Θ,≤) be a preordered set and f1, f2 : Θ → R. The linear combination α1f1(θ) +

α2f2(θ) is single crossing ∀α ∈ R2 if and only if f1 and f2 are (i) each single crossing and (ii) ratio
ordered.

The rest of our main results (Proposition 2, Theorem 1, and Theorem 3) and their proofs
remain the same.

The proof of Lemma 4 consists of establishing Claim 11 and Claim 12 below.

Claim 11. For any α ∈ R2,

either (∀θ′ < θ′′) sign[(α · f)(θ′)] ≤ sign[(α · f)(θ′′)],

or (∀θ′ < θ′′) sign[(α · f)(θ′)] ≥ sign[(α · f)(θ′′)]

if and only if (i) sign[f1] and sign[f2] are monotonic, and (ii) for either i = 1 and j = 2, or vice-versa,

(∀θl < θh) fi(θl)fj(θh) ≤ fi(θh)fj(θl) and

(∀θl < θm < θh) fi(θl)fj(θh) = fi(θh)fj(θl) ⇐⇒

{
fi(θl)fj(θm) = fi(θm)fj(θl),

fi(θm)fj(θh) = fi(θh)fj(θm).

Proof. The proof is the same as the proof of Lemma 1, as that proof does not use anti-
symmetry of ≤ over Θ. Q.E.D.

Claim 12. For any α ∈ R2,

(∀θ′ ∼= θ′′) sign[(α · f)(θ′)] = sign[(α · f)(θ′′)] (42)

if and only if (i) f1 and f2 each satisfy (41), and (ii) (∀θ′ ∼= θ′′) f1(θ′)f2(θ′′) = f1(θ′′)f2(θ′).

Proof. ( =⇒ ) Part (i) holds trivially: consider α = (1, 0) or α = (0, 1). For Part (ii),
suppose, towards contradiction, that (∃θ′ ∼= θ′′) f1(θ′)f2(θ′′) 6= f1(θ′′)f2(θ′). Then, α′ ≡
(−f2(θ′), f1(θ′)) 6= 0. It follows that (α′ · f)(θ′) = 0 6= (α′ · f)(θ′′), contradicting (42).
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( ⇐= ) Take any α ∈ R2 and θ′ ∼= θ′′. If f1(θ′)f2(θ′′) = f1(θ′′)f2(θ′) 6= 0, then all four
function values are non-zero. Thus,

sign[(α · f)(θ′)] = sign

[
f1(θ′′)

f1(θ′)
(α1f1(θ′) + α2f2(θ′))

]
(because sign[f1(θ′)] = sign[f1(θ′′)] 6= 0)

= sign [α1f1(θ′′) + α2f2(θ′′)] (using f2(θ′′) = f2(θ′)f1(θ′′)/f1(θ′))

= sign[(α · f)(θ′′)].

If, on the other hand, f1(θ′)f2(θ′′) = f1(θ′′)f2(θ′) = 0, then at least one function value, say
f1(θ′), equals zero. It follows from (41) that f1(θ′) = f1(θ′′) = 0. Thus,

sign[(α · f)(θ′)] = sign[α2f2(θ′)] = sign[α2f2(θ′′)] = sign[(α · f)(θ′′)]. Q.E.D.
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