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Exponential Utility & the TAS Utility Function

The Exponential Discounting Model (infinite horizon, discrete time)
aka the familiar TAS Utility is:

∞

∑
t=1

δt−1u (ct ) ,

where 0 < δ < 1 and u is a bounded, continuous, and concave
(differentiable) function on R+ = [0,∞). Usual Inada conditions
apply (e.g. 0 ≤ u (c) = arctan

(√
c
)
≤ (π/2)).

Discounted Optimal Growth Model w/One Sector: Euler Equation:

u′ (ct ) = δf ′ (kt ) u′ (ct+1) each t.

Steady state condition: δf ′ (k∗) = 1 – independent of the form of u.
Dynamic Nonsubstitution Theorem: Steady state depends on
technology and pure rate of time preference (δ = 1/ (1+ ρ) with
ρ > 0).
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TAS and the Impatience Problem

Impatience Problem —one example where the exponential
discounting model produces an extreme result.
RB’s papers on “Ramsey Equilibria.”Only most patient household
holds capital: IF 2 households and:

1 > δ1 > δ2 > 0,

then
δ2f ′ (k∗) < δ1f ′ (k∗) = 1.

Impossible for both to hold capital in a steady state.
Recursive Utility functions create alternative specifications for
an infinitely-lived household’s “lifetime” utility function where
the stationary equilibrium discount factor depends on the
underlying consumption sequence. Are more robust results
available than w/TAS?
Need ways to describe recursive utility functions and some of their
economic properties. Focus today: The description of recursive
utility functions via aggregators.
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Recursive Property of the TAS Utility

U (C ) =
T

∑
t=1

δt−1u (ct ) + δT
∞

∑
t=1

δt−1u (ct+T ) .

Let STC = (cT+1, cT+2, . . .). The decision maker’s behavior over the
infinite horizon is guided by the behavior over the tail horizon
t = T + 1,T + 2, . . . for each T that is hidden inside the original
horizon. Recursivity is a self-referential property.
Recursive Utility functions abstract this self-referential property
in order to relax the fixed discount factor assumption and maintain
the preference structure to derive time consistent decision rules in
stationary infinite horizon optimization problems.

Non-Recursive Example: Quasi-Geometric Utility (behavioral theory):
0 < β < 1, β 6= δ,

U (C ) = u (c1) + β
∞

∑
t=2

δt−1u (ct )
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Recursive Utility Background

Recursive Utility Generalizes TAS Time Stationarity and Time
Consistency Properties
Koopmans (1960s) axiomatic approach: preference structures induce
utility representations of the form:

U (C ) = W (c1,U (SC )) , (1)

where C = {ct}∞
t=1 ∈ `+∞ – the positive cone of `∞ with its sup

norm topology is the commodity space and S is the shift operator:

SC = {c2, c3, . . .} .

The function W is the aggregator and has two arguments: x –
present consumption; y – future utility. Write W (x , y) for the
aggregator. W has a 2-period Fisherian Interpretation.
A recursive utility function satisfies (1) – the aggregator is
derived from an axiomatization of the preference ordering.
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Classic Aggregators

Example
Time Additive Utility (TAS): u ≥ 0 & bounded, has the aggregator

W (x , y) = u (x) + δy with 0 < δ < 1 and utility function,

∞

∑
t=1

δt−1u (ct ) := U (C ) .

Example
The Koopmans, Diamond and Williamson (KDW) aggregator is

W (x , y) =
δ

d
ln
(
1+ axb + dy

)
; a, b, d , δ > 0. (2)

Assume b < 1 and δ < 1. Then W is concave and a Lipschitz condition
obtains: 0 ≤ supy W2 (x , y) < 1.
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Blackwell Aggregators and Partial Summation

Lucas and Stokey’s (1984) idea is to let aggregators be the primitive
concept: given W find U satisfying (1). Fisherian “two-period
interpretation" motivation.
Consider the TAS aggregator: Successive approximations initiated
from θ (C ) = 0 (input “no information”about U) yields the sequence
of partial sums :

U1 (C ) = u (c1) = W (c1, θ (SC )) = W (c1, 0)

U2 (C ) = u (c1) + δu (c2) = W (c1,W (c2, 0))
...

UN (C ) =
N

∑
t=1

δt−1 (ct ) = W (c1,W (c2,W (c3,... . . . ,W (cN , 0)) .

Clearly UN (C )↗ ∑∞
t=1 δt−1 (ct ). Each partial sum UN (C )

approximates ∑∞
t=1 δt−1 (ct ) from below.

Abstract partial summation method in today’s LFP construction.
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Introduce the Koopmans operator, denoted TW , and defined by:

TW U (C ) = W (c1,U (SC )) .

A recursive utility function is a fixed point of this operator:

TW U = U.

The RECOVERY PROBLEM is to show that this operator equation
has at least one solution.

The UNIQUENESS PROBLEM is to show there is at most one
solution.
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Contraction Mappings

Banach’s Contraction Mapping Theorem, when applicable, resolves
the Recovery (or, Existence) Problem and the Uniqueness Problem at
once (and contains a successive approximations construction of the
solution).

X 6= ∅. Define
B (X ) = {f such that f : X → R and ‖f ‖∞ = supx∈X |f (x)| < ∞}.
This is a complete metric space when B (X ) is assigned its norm
topology.

Pointwise order: f ≥ g if and only if f (x) ≥ g (x) for each x ∈ X .

Definition
An operator T : B (X )→ B (X ) is a contraction mapping with
modulus δ ∈ (0, 1) if for each f , g ∈ B (X ):

‖Tf − Tg‖∞ ≤ δ ‖f − g‖∞ .
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Blackwell’s Suffi cient Condition for A Contraction Mapping

Theorem
(Banach) If T : B (X )→ B (X ) is a contraction mapping with modulus
δ ∈ (0, 1), then there is a unique f ∗ ∈ B (X ) such that Tf ∗ = f ∗.

Theorem
(Blackwell (1965) Let T : B (X )→ B (X ) be an operator satisfying:

(M) f ≥ g =⇒ Tf ≥ Tg – Monotonicity;
(D) There exists some δ ∈ (0, 1) such that

[T (f + a)] (x) ≤ (Tf ) (x) + δa

for each nonnegative scalar a, each f ∈ B (X ), and each
x ∈ X – Discounting.
Then, T is a contraction with modulus δ.

Here: (f + a) (x) = f (x) + a for each x ∈ X .
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We look today at a new class of aggregators known as Thompson
Aggregators. The Blackwell aggregator Lipschitz/discounting
condition fails in this scenario.

Marinacci and Montrucchio (MM) (JET 2010) introduced this
family and gave suffi cient conditions for Recovery and Uniqueness
Theorems. Blackwell’s Suffi cient Condition for Contraction Maps
fails, but Monotonicity holds.
We emphasize constructive methods for Recovery Theory
(successive approximations – partial summation methods) and
focus on Least Fixed Point (LFP) construction by Monotone
Operator methods only. Defer a discussion of uniqueness theory for
our second paper (see references).

Need this foundation to infer qualitative properties of extremal fixed
points (e.g. concavity and continuity).

The LFP corresponds to Kantorovich’s (1939) Principal Fixed
Point (Principal Solution). We discuss why this might be a
reasonable interpretation of LFP.
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Thompson Aggregators: Two Examples

Example

KDW is Thompson whenever δ ≥ 1. Is jointly concave in (x , y) and
unbounded (above). It is Lipschitz in y , but TW is NOT a contraction
mapping.

Example
Constant Elasticity of Substitution (CES) aggregators have the form:

W (x , y) = (1− β) xρ + βy ρ (3)

where 0 < β < 1 and 0 < ρ < 1 implying the elasticity of substitution,
1/ (1− ρ) > 1. This W is Thompson & jointly concave in (x , y). It fails
the Blackwell Lipschitz condition and is unbounded (above).

A Thompson aggregator jointly concave in (x , y) is a concave
Thompson aggregator.

RAB (IUB) & JPRZ (U. Carlos III de Madrid) (IUB & Carlos III de Madrid)Slides - Thompson Aggregators November 2, 2018 12 / 41



Graph of W (x , y) = (1− β) xρ + βy ρ for β = ρ = 1/2 as y varies
for a fixed value of x = 1: ∀x ≥ 0 ∃! yx ≥ 0 such that
W (x , yx ) = yx .
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Graph of W (1, y) = 1
2 (1+

√
y).
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The Weight Function

Define a weight function on the commodity space `+∞, ϕγ, by the
formula

ϕγ (C ) = (1+ ‖C‖∞)
1/γ . (4)

This function is uniformly continuous on `+∞ with respect to the sup
norm topology.

Clearly ϕγ (C ) ≥ 1 for each C .
γ > 0 is a subhomogeniety parameter. It comes from the formal
Thompson aggregator assumptions.

Thompson KDW has γ = b−1;

Thompson CES aggregators has γ = 1.
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Setup for the Utility Function Space

U : `+∞ → R is ϕγ − bounded provided

‖U‖γ := sup
C∈`+∞

|U (C )|
(1+ ‖C‖∞)

1/γ
< +∞. (5)

B =
{
U : `+∞ → R : U is ϕγ − bounded

}
.

Provide B with the pointwise ordering: the positive cone is defined by
U ∈ B+ if and only if U ≥ θ pointwise; i.e., U (C ) ≥ θ (C ) = 0 for
each C ∈ `+∞.
Define the standard pointwise lattice operations, ∨ (sup) and ∧ (inf).
B is a Dedekind complete Riesz space & Banach lattice with the
norm, ‖U‖γ, and order unit, ϕγ.

The positive cone is B+ is a norm-closed, convex set and has a
nonempty norm interior.
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Monotone Koopmans Operator

If W is a Thompson aggregator, then TW is a monotone self-map
on B+, i.e. U ≥ V ∈ B+ implies TW U ≥ TW V . In particular,
TW θ ≥ θ.

Define UT ∈ B+ (pointwise) by the formula

UT (C ) = W (1, y ∗) ϕγ (C ) (6)

where
y ∗ > 0 is the unique solution to W (1, y) = y .

Define the order interval
〈
θ,UT

〉
⊂ B+.〈

θ,UT
〉
is a complete lattice (in the induced partial order) contained

in B+.

MM prove TW :
〈
θ,UT

〉
→
〈
θ,UT

〉
.
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MM’s Recovery Theorem

fix(TW ) is the set of fixed points of the Koopmans operator
restricted to the domain

〈
θ,UT

〉
.

Theorem
(MM 2010) Suppose W is a Thompson aggregator. Then there are
functions U∞ ≤ U∞ such that each is a fixed point of the Koopmans
operator. Moreover,

1 fix (TW ) ⊆ 〈U∞,U∞〉 ⊂
〈
θ,UT

〉
;

2 fix (TW ) is a complete lattice in the induced order;

U∞ & U∞ are the extremal fixed points of TW .
U∞ is the Least Fixed Point (LFP) & U∞ the Greatest Fixed
Point (GFP).
MM’s proof rests on the “non-constructive”Tarski FPT.
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Tarski-Kantorovich FPT.

Kantorovich (1939) proved a “constructive”FPT applicable to
Dedekind complete Riesz spaces. The so-called Tarski-Kantorovich
(TK) FPT (Granas and Dugundji (2003)) extends this result.

TK FPT weakens the the operator’s domain and adds a “continuity”
property to monotonicity for the operator in comparison to Tarski’s
FPT.

The interpretation and implementation of “continuity”underlies
today’s main LFP theme. There turn out to be 2 interesting
interpretations for LFP theory! Only focus on 1 case today.
We follow the TK FPT developed by Balbus, Dziewulski, Reffett, and
Wózny, Int. J. Game Th. (2015).

Show blackboard illustrations for F : [0, 1]→ [0, 1] .
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Theorem
(Tarski-Kantorovich). Suppose that X is a countably chain complete
partially ordered set with the least element, x and the greatest element, x̄ .
Let F be a monotone self-map on X .

1 if F is monotonically sup-preserving; then
∨
FN (x) is the least fixed

point of F , denoted x∞.
2 If F is monotonically inf-preserving; then

∧
FN (x̄) is the greatest

fixed point of F , denoted x∞;

3 fix(F ) is a nonempty countably chain complete poset in X .

F is monotonically sup-inf preserving if it is both sup and
inf-preserving.

Primary focus on Least Fixed Point Theory and monotonic sup
preservation.

RAB (IUB) & JPRZ (U. Carlos III de Madrid) (IUB & Carlos III de Madrid)Slides - Thompson Aggregators November 2, 2018 19 / 41



MM’s Theorem and our Order Theoretic Construction

We prove that TW is monotonically sup-inf preserving. This
continuity property rests only on order theoretic structures available in
the commodity and utility spaces.

Constructive means that the fixed points are found by iteration of
TW with an initial seed U, and denoted by TNW U = TW

(
TN−1W U

)
for

T 0W U = U. The 2 interesting initial seeds are: θ and UT .

We show TNW θ ↗ U∞ is the least fixed point of TW .
Likewise, TNW U

T ↘ U∞ is the greatest fixed point of TW .
fix(TW ) is a countably chain complete poset in

〈
θ,UT

〉
.
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Approximations and Properties of the Extremal Fixed
Points
Why Focus on the Least Fixed Point? Answer: Desirable Economic & Math Properties

The LFP partial sum method (successive approximations)
approximates U∞ from below (starting with no information. . . ):

TNW θ (C ) = W (c1,W (c2,W (c3,... . . . ,W (cN , 0))↗ U∞.

U∞ is norm LSC on `+∞. It is also monotone and concave on that
domain. Concavity requires a concave Thompson aggregator (as
is the case with our examples).
Concavity implies U∞ is norm continuous on the interior of its
effective domain, which is the interior of `+∞, denoted by `++∞ .
Concavity also implies U∞ is weakly (and product) continuous (for
the dual pair (`∞, ba)) on each closed convex subset of `++∞ .
U∞ is norm USC on `+∞ and monotone. Our iterative methods
alone do not imply U∞ is a concave function as the input function
UT is a convex function! And, INPUTS ALL component of C vs a
finitely many in for LFP approximations.
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Monotonic Sup-Preservation, Order Continuity and the
Least FP{

TNW θ
}
is a monotone (isotone or nondecreasing) sequence. First,

define

lim inf
N
TNW θ ≡ sup

N

(
inf
K≥N

TKW θ

)
=
∨
N

TNW θ, (7)

and note the supremum and infima exist in
〈
θ,UT

〉
as it is an order

bounded subset of the Dedekind complete lattice defining the utility
function space.
Monotonic sup-preservation for sequences means:

TW

(
lim inf

N
TNW θ

)
= lim inf

N
TNW θ, or

TW

(∨
N

TNW θ

)
=

∨
N

TNW θ.

This implies TW (U∞) = U∞ when ∨NTNW θ ≡ U∞.
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Monotonic sup-preservation for sequences is the order
continuity condition needed to construct the least fixed point in
the TK FPT.
It is an order theoretic concept based on the Dedekind complete order
structure of the Riesz space of possible utility functions. It is a NOT
A TOPOLOGICAL CONTINUITY notion.
This condition, suitably abstracted in the Scott topology, underlies
the LFP construction combining topological and order theoretic
methods covered in the paper. It is EXTREMELY
TECHNICAL.
Austrian Capital Theory Idea: TW is Scott continuous provides an
alternative, more roundabout (capital intensive), constructive
method than the TK FPT for proving a LFP exists. Scott continuity
for TW supports the proposition that U∞ is the principal solution of
the Koopmans equation. This topological method does NOT
construct the GFP!
See our paper for details of this second interpretation of order
continuity.
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Monotonic Sup-Preservation

Recall this means: for the monotonic (isotonic) sequence
{
TNW θ

}∞
N=1,

it follows that:

TW

(∨
N

TNW θ

)
=
∨
N

TNW θ. (8)

This equality can be broken up into two inequalities:

TW

(∨
N

TNW θ

)
≤
∨
N

TNW θ; (9)

and

TW

(∨
N

TNW θ

)
≥
∨
N

TNW θ. (10)

An analogous condition to (8) holds for monotone (antitone)
sequences and inf-preservation.
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Monotonic Sup/Inf Preservation Theorem

Theorem
The Koopmans operator is a monotonic sup/inf preserving self map on the
order interval

〈
θ,UT

〉
.

Provide a heuristic interpretation of why we expect (8) to obtain.
NOTE: TW monotone and

{
TNW θ

}∞
N=1 monotonic (nondecreasing

pointwise) imply (10).∨
N

TNW θ ≥ TKW θ for each K ∈N;

TW

(∨
N

TNW θ

)
≥ TW

(
TKW θ

)
= TK+1W θ.

Taking the sup on the RHS (above); Re-indexing with N:

TW

(∨
N
TNW θ

)
≥ ∨

N
TNW θ.
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Heuristic Argument for Inequality(9) After Vickers (1989).

Goal: Show the monotonic sup-preservation property is a reasonable
requirement!

TNW θ (C ) ≤ TN+1W θ (C ) for each C if and only if

W (c1,W (c2, . . . ,W (cN , 0) · · · )) ≤ W (c1,W (c2, . . . ,W (cN+1, 0) · · · )).

That is, more information about the utility value U∞ (C ) is given
by TN+1W θ (C ) than TNW θ (C ). If we interpret
∨NTNW θ (C ) = lim infN TNW θ (C ) = U∞ (C ) as a notion of maximal
information about U∞ (C ), then it stands to reason we cannot
deduce additional information by applying TW to lim infN TNW θ (C )
again! That is, pointwise,

TW

(
lim inf

N
TNW θ

)
≤ lim inf

N
TNW θ

should hold for the monotonic sequence
{
TNW θ

}
. But this is just (9).
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Continuation: Heuristics for (9).

Suppose TW
(
lim infN TNW θ

)
contained more information about U∞

than lim infN TNW θ, i.e.

lim inf
N
TNW θ < TW

(
lim inf

N
TNW θ

)
.

Information contained in RHS becomes known to us at Vickers’
ominous Crack of Doom – the time when ALL infinite computations
are completed! And, that time comes TOO LATE!!

Hence TW
(
lim infN TNW θ

)
≤ lim infN TNW θ holds. Inequality (9) is

the critical property of
{
TNW θ

}
for LFP Theory —extends to the Scott

Topology continuity case.

Remark: This is NOT the Theorem’s FORMAL PROOF – see the
paper!

Caveat: This interpretation does NOT apply to monotonic
inf-preservation and GFP construction.
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A Constructive Least Fixed Point Theorem

Theorem
(Least Fixed Point Existence and Construction Theorem) The monotonic
sup-preserving Koopmans operator has a least fixed point, U∞. Moreover,
U∞ = ∨NTNW θ and it is constructed by successive approximations indexed
on the natural numbers.

Proof.
The existence and construction of U∞ follows from the Tarski-Kantorovich
Theorem since TW preserves the supremum of the monotonic sequence{
TNW θ

}
. Hence, U∞ = ∨NTNW θ = TW U∞ and U∞ ∈fix(TW ).

Suppose that U ∈fix(TW ). Then θ ≤ U and TW monotone implies
TW θ ≤ TW U = U. Iterate this to yield the inequality TNW θ ≤ U. Hence,
passing to the limit we find U∞ ≤ U and U∞ is the least fixed point of the
Koopmans operator acting on

〈
θ,UT

〉
.
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Concluding Comments

Absent a uniqueness theorem the Koopmans operator may have many
fixed points.

We present reasons why the least fixed point should be singled out as
the principal fixed point (Kantorovich).
We give economic properties, mathematical features, and theoretical
computational advantages belonging to the Least Fixed Point in
support of our favoring U∞ over U∞.

Of course, an adequate uniqueness theory would make this distinction
among the possibly multiple fixed points an “academic exercise.”

However, we know from counterexamples that uniqueness cannot hold
for all consumption sequences in the domain `+∞, hence the prospect
of spurious solutions to the Koopmans equation may be partially
ameliorated by concentration on the Least Fixed Point, U∞. Put
differently, treat the LFP as a selection criteria to choose one solution
from the possible ones in fix(TW ).
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Annex 1: Blackwell Literature Comments

Both the Recovery and Uniqueness Problems require a domain of
functions for the Koopmans operator to act on as a self-map.

The class of aggregators for which this approach applies (under
suitable restrictions) forms the Blackwell aggregator class.

The TAS and KDW cases shown above are Blackwell aggregators.

Becker and Boyd’s (1997) book covers the theory up to their
publication date and focus exclusively on the Blackwell cases.

Recent work by Rincón-Zapatero and Rodriquez-Palmero,
Martins-Da-Rocha and Vailakis, extends this work to a number of
previously uncovered Blackwell aggregators using a range of local
contraction arguments. Le Van and Vailakis examine partial sum
methods for aggregators that are unbounded. Their examples include
many Blackwell aggregators.
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Annex 2: Thompson Aggregators: Defining Assumptions

Definition
W : R2

+ → R is said to be a Thompson aggregator if it satisfies
properties (T1) — (T4):

(T1) W ≥ 0, continuous, and monotone: (x , y) ≤ (x ′, y ′) implies
W (x , y) ≤ W (x ′, y ′);

(T2) W (x , y) = y has at least one nonnegative solution for each
x ≥ 0;

(T3) W (x , •) is concave at 0 for each x ≥ 0, that is

W (x , µy) ≥ µW (x , y) + (1− µ)W (x , 0)

for each µ ∈ [0, 1] and each (x , y) ∈ R2
+;

(T4) W (x , 0) > 0 for each x > 0.
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Additional MM Aggregator Assumptions

MM assume Thompson aggregators satisfy (T5) &(T6) below.

(T5) W is γ− subhomogeneous – there is some γ > 0 such that:

W (µγx , µy) ≥ µW (x , y)

for each µ ∈ (0, 1] and each (x , y) ∈ R2
+.

Thompson KDW satisfies (T5) with γ = b−1;

Thompson CES aggregators satisfy (T5) with γ = 1.

RAB (IUB) & JPRZ (U. Carlos III de Madrid) (IUB & Carlos III de Madrid)Slides - Thompson Aggregators November 2, 2018 32 / 41



MM also assume:

(T6) W satisfies the MM-Limit Condition: for each α ≥ 1 and
γ > 0,

lim
t→∞

W (1, t)
t

< α−1/γ, (11)

with t > 0.

The parameter α in (T6) is the economy’s maximum long-run
possible consumption growth factor.

We set α = 1 (no long-run growth) today and note (T6) holds
whenever the LHS of 11 is less than 1.

Parameter γ is taken from (T5).

KDW, CES and Quasi-Linear aggregators satisfy (T6).
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Annex 3: The Commodity Space Setup

Commodity Space: `+∞ with sup norm with ‖C‖∞ = supt |ct |
whenever C ∈ `∞. The zero sequence is 0.

Commodity spaces admitting exponential growth are admissible in the
paper’s more general setup. Focus on this special case of bounded
growth in today’s talk.

Imagine “bounded”production possibilities —e.g. diminishing returns
to capital & one-sector model.

The commodity space `∞ is a Banach lattice with the usual pointwise
partial order. The positive cone is `+∞.

It is also an AM - space with unit given by e = (1, 1, . . .). This fact
implies: the sup norm interior of `+∞ is non-empty. Denote the positive
cone’s interior by `++∞ ; thus, `+∞ is a solid cone. Clearly e ∈ `++∞ .
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Annex 4: Industrial Strength Version of Blackwell’s
Theorem

The basic Blackwell aggregator theory in Becker and Boyd (1997) rests on
the following mathematical theorem:
Monotone Contraction Mapping Theorem for Ideals: Let Aω be a
principal Riesz ideal of the Riesz space E that is complete in the
associated lattice norm. Suppose that T : Aω → E obeys:

1 Tx ≤ Ty whenever x ≤ y ;
2 T θ ∈ Aω;

3 T (x + λω) ≤ Tx + λδω with 0 ≤ δ < 1 and λ > 0.

Then T is a strict contraction and has a unique fixed point.
FOCUS TODAY: T is a monotone operator.
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Fix the vector ω ∈ E – an order unit in the norm interior of E.
Aω is the subset of E defined by:

x ∈ Aω iff |x | ≤ λω for some scalar λ ≥ 0.

Here: |x | = sup (x ,−x) .
Lattice Norm: |x | ≤ y ⇒ ‖x‖ ≤ ‖y‖ where
‖x‖ = inf {λ > 0 : |x | ≤ λω} for x ∈ E & ω > 0 an order unit.
Example: Let E be the space of real sequences & ω = (1, 1, 1, . . .). Then
Aω = `∞.
Example: Suppose for α ≥ 1, ω =

(
α, α2, α3, . . .

)
. Aω contains sequences

that grow exponentially.
Example: The space B introduced below is a Principal Ideal: The order
unit is the weight function ϕγ.

RAB (IUB) & JPRZ (U. Carlos III de Madrid) (IUB & Carlos III de Madrid)Slides - Thompson Aggregators November 2, 2018 36 / 41



Charalmbos D. Aliprantis and Kim C. Border, Infinite Dimensional
Analysis: A Hitchhiker’s Guide, 3rd -Edition, Springer, New York, 2006.

Łukasz Balbus, Kevin Reffett, and Łukasz Wózny, “Time Consistent
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