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Exponential Utility & the TAS Utility Function

@ The Exponential Discounting Model (infinite horizon, discrete time)
aka the familiar TAS Utility is:

(o]

Zét_lu(ct),

t=1

where 0 < 6 < 1 and u is a bounded, continuous, and concave
(differentiable) function on R4 = [0, 00). Usual Inada conditions
apply (e.g. 0 < u(c) = arctan (y/c) < (71/2)).

e Discounted Optimal Growth Model w/One Sector: Euler Equation:

U (ct) = 8f' (k) u' (ce11) each t.

e Steady state condition: é6f’ (k*) = 1 — independent of the form of wu.
o Dynamic Nonsubstitution Theorem: Steady state depends on

technology and pure rate of time preference (6 = 1/ (14 p) with
p > 0).
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TAS and the Impatience Problem

o Impatience Problem — one example where the exponential
discounting model produces an extreme result.

@ RB's papers on “Ramsey Equilibria.” Only most patient household
holds capital: IF 2 households and:

1>61 >0, >0,

then
Sof' (k*) < 61f (k*) = 1.
Impossible for both to hold capital in a steady state.

o Recursive Utility functions create alternative specifications for
an infinitely-lived household’s “lifetime” utility function where
the stationary equilibrium discount factor depends on the
underlying consumption sequence. Are more robust results
available than w/TAS?

@ Need ways to describe recursive utility functions and some of their
economic properties. Focus today: The description of recursive

utility functions via aggregators.
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Recursive Property of the TAS Utility

T )
U(C)=Y 6" u(c)+6" Y 6" u(err).
t=1 t=1

o Let STC = (cT41,¢T42,--.). The decision maker's behavior over the
infinite horizon is guided by the behavior over the tail horizon
t=T+1,T+2,...foreach T that is hidden inside the original
horizon. Recursivity is a self-referential property.

@ Recursive Utility functions abstract this self-referential property
in order to relax the fixed discount factor assumption and maintain
the preference structure to derive time consistent decision rules in
stationary infinite horizon optimization problems.

Non-Recursive Example: Quasi-Geometric Utility (behavioral theory):

0<B<1B#96,

U(C)=u(c)+p iﬁt_lu(ct)
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Recursive Utility Background

@ Recursive Utility Generalizes TAS Time Stationarity and Time
Consistency Properties

e Koopmans (1960s) axiomatic approach: preference structures induce
utility representations of the form:

U(C) = W (e, U(SC)), (1)

where C = {c:}72.; € {L, — the positive cone of { with its sup
norm topology is the commodity space and S is the shift operator:

SC = {CQ,C3,...}.

@ The function W is the aggregator and has two arguments: x —
present consumption; y — future utility. Write W (x, y) for the
aggregator. W has a 2-period Fisherian Interpretation.

@ A recursive utility function satisfies (1) — the aggregator is
derived from an axiomatization of the preference ordering.
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Classic Aggregators

Time Additive Utility (TAS): u > 0 & bounded, has the aggregator

W (x,y) = u(x)+dy with 0 < § < 1 and utility function,

Y 6 u(c) == U(C).

t=1

The Koopmans, Diamond and Williamson (KDW) aggregator is

W(X,y)zgln<1+axb+dy>;a,b,d,5>0. (2)

Assume b < 1 and § < 1. Then W is concave and a Lipschitz condition
obtains: 0 < sup, W> (x,y) < 1.
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Blackwell Aggregators and Partial Summation

@ Lucas and Stokey's (1984) idea is to let aggregators be the primitive
concept: given W find U satisfying (1). Fisherian “two-period
interpretation” motivation.

o Consider the TAS aggregator: Successive approximations initiated
from 6 (C) = 0 (input “no information” about U) yields the sequence

of partial sums :
Ui(C) = u(a)=W(c,0(5C))=W(c,0)
U (C) = u(a)+du(a)=W/(ca, W(c,0)

U/\/ (C) = iétl (Ct) = W(Cl, W(CQ, W(C3,m ey W(CN,O)).

o Clearly Uy (C) / ¥, 6" (¢;). Each partial sum Uy (C)
approximates Y ; 5! (¢;) from below.
o Abstract partial summation method in today’s LFP construction.
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@ Introduce the Koopmans operator, denoted Ty, and defined by:
TwU(C)=W(a,U(S0)).
A recursive utility function is a fixed point of this operator:
TwU = U.

o The RECOVERY PROBLEM is to show that this operator equation
has at least one solution.

@ The UNIQUENESS PROBLEM is to show there is at most one
solution.
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Contraction Mappings

@ Banach’s Contraction Mapping Theorem, when applicable, resolves
the Recovery (or, Existence) Problem and the Uniqueness Problem at
once (and contains a successive approximations construction of the
solution).

e X # . Define
B (X) = {f such that f : X — R and ||f||, = supyex |f (x)| < co}.

@ This is a complete metric space when B (X) is assigned its norm
topology.

e Pointwise order: f > g if and only if f (x) > g (x) for each x € X.

Definition

An operator T : B(X) — B(X) is a contraction mapping with
modulus ¢ € (0,1) if for each f, g € B (X):
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Blackwell’s Sufficient Condition for A Contraction Mapping

Theorem

(Banach) If T : B(X) — B (X) is a contraction mapping with modulus
0 € (0,1), then there is a unique f* € B (X) such that Tf* = f*.

Theorem

(Blackwell (1965) Let T : B(X) — B (X) be an operator satisfying:
(M) f > g = Tf > Tg — Monotonicity;
(D) There exists some 6 € (0,1) such that

[T (f+a)](x) < (Tf)(x)+da

for each nonnegative scalar a, each f € B (X), and each
x € X — Discounting.

Then, T is a contraction with modulus 6.

.

e Here: (f +a) (x) = f (x) + a for each x € X.
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We look today at a new class of aggregators known as Thompson
Aggregators. The Blackwell aggregator Lipschitz/discounting
condition fails in this scenario.

e Marinacci and Montrucchio (MM) (JET 2010) introduced this
family and gave sufficient conditions for Recovery and Uniqueness
Theorems. Blackwell's Sufficient Condition for Contraction Maps
fails, but Monotonicity holds.

@ We emphasize constructive methods for Recovery Theory
(successive approximations — partial summation methods) and
focus on Least Fixed Point (LFP) construction by Monotone
Operator methods only. Defer a discussion of uniqueness theory for
our second paper (see references).

@ Need this foundation to infer qualitative properties of extremal fixed
points (e.g. concavity and continuity).
@ The LFP corresponds to Kantorovich’s (1939) Principal Fixed

Point (Principal Solution). We discuss why this might be a
reasonable interpretation of LFP.
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Thompson Aggregators: Two Examples

Example

KDW is Thompson whenever § > 1. Is jointly concave in (x, y) and
unbounded (above). It is Lipschitz in y, but Ty is NOT a contraction

mapping.

| \

Example
Constant Elasticity of Substitution (CES) aggregators have the form:

W(x,y)=(1—B)x" + By’ 3)

where 0 < B < 1 and 0 < p < 1 implying the elasticity of substitution,
1/(1—p) > 1. This W is Thompson & jointly concave in (x, y). It fails
the Blackwell Lipschitz condition and is unbounded (above).

e A Thompson aggregator jointly concave in (x, y) is a concave
Thompson aggregator.
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e Graph of W (x,y) = (1 —B) x° + By for p = p = 1/2 as y varies
for a fixed value of x =1: ¥Vx > 0 3! y, > 0 such that
W(vax) = Yx-

wxy) *°T
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The Weight Function

Define a weight function on the commodity space 7, (O by the
formula

1/
9, (C)=(1+]Cllo)"" (4)
@ This function is uniformly continuous on % with respect to the sup
norm topology.
Clearly ¢, (C) > 1 for each C.

v > 0 is a subhomogeniety parameter. It comes from the formal
Thompson aggregator assumptions.

Thompson KDW has ¢ = b1
Thompson CES aggregators has v = 1.
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Setup for the Utility Function Space

o U:tf — Ris ¢, — bounded provided

joll, = sup — 1O o (5)
cetz (1+[Clle)™”
° B:{U:E;—JR:Uis¢7—bounded}.

Provide B with the pointwise ordering: the positive cone is defined by
U € BT if and only if U > 6 pointwise; i.e., U(C) > 6 (C) =0 for
each C € /%,

Define the standard pointwise lattice operations, V (sup) and A (inf).

B is a Dedekind complete Riesz space & Banach lattice with the
norm, [|U|[.,, and order unit, ¢.,.

@ The positive cone is BT is a norm-closed, convex set and has a
nonempty norm interior.
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Monotone Koopmans Operator

o If W is a Thompson aggregator, then Ty is a monotone self-map
on BT, i.e. U>V € Bt implies TyyU > Ty V. In particular,

Two > 6.
o Define UT € B* (pointwise) by the formula
Ut (C)=w(Ly") ¢,(C) (6)
where

y* > 0 is the unique solution to W (1,y) = y.
@ Define the order interval <9, UT> C Bt.

° <9, UT> is a complete lattice (in the induced partial order) contained
in BT.
e MM prove Ty : <9, UT> — <9, UT>.
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MM's Recovery Theorem

e fix( Ty ) is the set of fixed points of the Koopmans operator
restricted to the domain (6, UT ).

(MM 2010) Suppose W is a Thompson aggregator. Then there are
functions Usx, < U such that each is a fixed point of the Koopmans
operator. Moreover,

Q fix(Tw) C (U, U®) C (6, UT);
@ fix (Tw) is a complete lattice in the induced order;

@ U & U are the extremal fixed points of Tyy.

@ U is the Least Fixed Point (LFP) & U® the Greatest Fixed
Point (GFP).

@ MM'’s proof rests on the “non-constructive” Tarski FPT.
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Tarski-Kantorovich FPT.

e Kantorovich (1939) proved a “constructive” FPT applicable to
Dedekind complete Riesz spaces. The so-called Tarski-Kantorovich
(TK) FPT (Granas and Dugundji (2003)) extends this result.

@ TK FPT weakens the the operator’'s domain and adds a “continuity”
property to monotonicity for the operator in comparison to Tarski's
FPT.

@ The interpretation and implementation of “continuity” underlies
today’s main LFP theme. There turn out to be 2 interesting
interpretations for LFP theory! Only focus on 1 case today.

o We follow the TK FPT developed by Balbus, Dziewulski, Reffett, and
Wozny, Int. J. Game Th. (2015).

Show blackboard illustrations for F : [0,1] — [0, 1].
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( Tarski-Kantorovich). Suppose that X is a countably chain complete
partially ordered set with the least element, x and the greatest element, X.
Let F be a monotone self-map on X.

Q if F is monotonically sup-preserving; then \/ F"(x) is the least fixed
point of F, denoted .

@ If F is monotonically inf-preserving; then /\ FN(x) is the greatest
fixed point of F, denoted x°°;

© fix(F) is a nonempty countably chain complete poset in X.

@ F is monotonically sup-inf preserving if it is both sup and
inf-preserving.

@ Primary focus on Least Fixed Point Theory and monotonic sup
preservation.
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MM'’s Theorem and our Order Theoretic Construction

@ We prove that Ty, is monotonically sup-inf preserving. This

continuity property rests only on order theoretic structures available in
the commodity and utility spaces.

@ Constructive means that the fixed points are found by iteration of
Tw with an initial seed U, and denoted by T, U = Ty (TV’\"/’lU) for
TSVU = U. The 2 interesting initial seeds are: # and UT.

o We show T‘%G /" U is the least fixed point of Ty .
o Likewise, TV’\{, UT N\, U is the greatest fixed point of T}y .
e fix(Tw) is a countably chain complete poset in (6, UT>.
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Approximations and Properties of the Extremal Fixed

Points
Why Focus on the Least Fixed Point? Answer: Desirable Economic & Math Properties

@ The LFP partial sum method (successive approximations)
approximates U from below (starting with no information. . .):

THO(C) =W (a1, W(c, W(cs,...... W (cn.0)) /" Uso.

@ U is norm LSC on /Z. It is also monotone and concave on that
domain. Concavity requires a concave Thompson aggregator (as
is the case with our examples).

@ Concavity implies U is norm continuous on the interior of its
effective domain, which is the interior of £, denoted by /1.

e Concavity also implies Us is weakly (and product) continuous (for
the dual pair (£, ba)) on each closed convex subset of £L7.

@ U® is norm USC on /% and monotone. Our iterative methods
alone do not imply U® is a concave function as the input function
UT is a convex function! And, INPUTS ALL component of C vs a
finitely many in for LFP approximations.
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Monotonic Sup-Preservation, Order Continuity and the

Least FP

o {T}6} is a monotone (isotone or nondecreasing) sequence. First,
define

c TN : Ko\ — N
lim ”/c/f Two = sxlp (Klr;fN TWO) = \,\{ Two, (7)

and note the supremum and infima exist in <9, UT> as it is an order
bounded subset of the Dedekind complete lattice defining the utility
function space.

@ Monotonic sup-preservation for sequences means:

Tw (Iiminf TVNVQ) = liminf T}L0, or
N N
Tw (\/ TV%) = \/ Twe.
N N

This implies Ty (Ux) = Uss when VyTNO = Us.
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o Monotonic sup-preservation for sequences is the order
continuity condition needed to construct the least fixed point in
the TK FPT.

@ It is an order theoretic concept based on the Dedekind complete order
structure of the Riesz space of possible utility functions. It is a NOT
A TOPOLOGICAL CONTINUITY notion.

@ This condition, suitably abstracted in the Scott topology, underlies
the LFP construction combining topological and order theoretic
methods covered in the paper. It is EXTREMELY
TECHNICAL.

o Austrian Capital Theory Idea: Ty is Scott continuous provides an
alternative, more roundabout (capital intensive), constructive
method than the TK FPT for proving a LFP exists. Scott continuity
for Ty supports the proposition that Uy is the principal solution of
the Koopmans equation. This topological method does NOT
construct the GFP!

@ See our paper for details of this second interpretation of order
continuity.
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Monotonic Sup-Preservation

@ Recall this means: for the monotonic (isotonic) sequence { TV O} _,.

it follows that:
Tw (\/ T%G) =\/ Tweo. (8)
N N

This equality can be broken up into two inequalities:

Tw <\/ T,%@) <\/ Two;: (9)
N N
and
Tw (\/ T%@) >\/ To. (10)
N N

@ An analogous condition to (8) holds for monotone (antitone)
sequences and inf-preservation.
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Monotonic Sup/Inf Preservation Theorem

The Koopmans operator is a monotonic sup/inf preserving self map on the
order interval (6, UT).

@ Provide a heuristic interpretation of why we expect (8) to obtain.
e NOTE: Ty monotone and {TV’Y/G}TVOZI monotonic (nondecreasing
pointwise) imply (10).

\/ TWO > TW6 foreach K € N;
N

v

Tw (\/ T%G) Tw (The) = T+,

N

Taking the sup on the RHS (above); Re-indexing with N:
Tw (v TV"|§9> >\ The.
N N
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Heuristic Argument for Inequality(9) After Vickers (1989).

@ Goal: Show the monotonic sup-preservation property is a reasonable
requirement!

o TNO(C) < THT0(C) for each C if and only if
W (e, W(ca, ..., W (cn,0) ) < W (e, W(cp, ..., W (cny41,0) - -+

That is, more information about the utility value Uy (C) is given
by T/ 720 (C) than T}.6 (C). If we interpret

VT8 (C) = liminfy TN (C) = Us (C) as a notion of maximal
information about Uy (C), then it stands to reason we cannot
deduce additional information by applying Ty to liminfy TN6 (C)
again! That is, pointwise,

Tw <Iimi?Vf T,%@) < lim inf The

should hold for the monotonic sequence{ T},6}. But this is just (9).
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Continuation: Heuristics for (9).

e Suppose Ty (liminfy T),6) contained more information about U
than liminfy TV’\\’/G, i.e.

lim inf NG < Tw <|imirAmlf T,%@) :

@ Information contained in RHS becomes known to us at Vickers’
ominous Crack of Doom — the time when ALL infinite computations
are completed! And, that time comes TOO LATE!

@ Hence Ty (Iim infp T‘%Q) < liminfy TV’\lﬂG holds. Inequality (9) is
the critical property of {TV’Y/G} for LFP Theory — extends to the Scott
Topology continuity case.

@ Remark: This is NOT the Theorem's FORMAL PROOF — see the
paper!

o Caveat: This interpretation does NOT apply to monotonic
inf-preservation and GFP construction.
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A Constructive Least Fixed Point Theorem

(Least Fixed Point Existence and Construction Theorem) The monotonic

sup-preserving Koopmans operator has a least fixed point, Us. Moreover,
U = Vy T‘%G and it is constructed by successive approximations indexed
on the natural numbers.

Proof.

The existence and construction of U follows from the Tarski-Kantorovich
Theorem since Ty preserves the supremum of the monotonic sequence
{TV'\,}G}. Hence, U, = Vy T‘%G = Tw U and U €fix(Tw).

Suppose that U €fix(Tw ). Then 8 < U and Ty monotone implies

TwO < TywU = U. lterate this to yield the inequality TQ’/Q < U. Hence,
passing to the limit we find U < U and Uy is the least fixed point of the
Koopmans operator acting on <9, UT>. ]

v
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Concluding Comments

@ Absent a uniqueness theorem the Koopmans operator may have many
fixed points.

@ We present reasons why the least fixed point should be singled out as
the principal fixed point (Kantorovich).

o We give economic properties, mathematical features, and theoretical
computational advantages belonging to the Least Fixed Point in
support of our favoring U over U*.

@ Of course, an adequate uniqueness theory would make this distinction
among the possibly multiple fixed points an “academic exercise.”

@ However, we know from counterexamples that uniqueness cannot hold
for all consumption sequences in the domain /%, hence the prospect
of spurious solutions to the Koopmans equation may be partially
ameliorated by concentration on the Least Fixed Point, Us. Put
differently, treat the LFP as a selection criteria to choose one solution
from the possible ones in fix( Ty ).
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Annex 1: Blackwell Literature Comments

@ Both the Recovery and Uniqueness Problems require a domain of
functions for the Koopmans operator to act on as a self-map.

@ The class of aggregators for which this approach applies (under
suitable restrictions) forms the Blackwell aggregator class.

@ The TAS and KDW cases shown above are Blackwell aggregators.

@ Becker and Boyd's (1997) book covers the theory up to their
publication date and focus exclusively on the Blackwell cases.

@ Recent work by Rincén-Zapatero and Rodriquez-Palmero,
Martins-Da-Rocha and Vailakis, extends this work to a number of
previously uncovered Blackwell aggregators using a range of local
contraction arguments. Le Van and Vailakis examine partial sum
methods for aggregators that are unbounded. Their examples include
many Blackwell aggregators.
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Annex 2: Thompson Aggregators: Defining Assumptions

W ]R%r — IR is said to be a Thompson aggregator if it satisfies
properties (T1) — (T4):

(T1) W >0, continuous, and monotone: (x,y) < (x/,y’) implies
Wixy) < W'y

(T2) W (x,y) =y has at least one nonnegative solution for each
x > 0;

(T3) W (x,e) is concave at 0 for each x > 0, that is
W (x, py) = uW (x,y) + (1= p) W (x,0)

for each u € [0,1] and each (x,y) € RZ%;
(T4) W (x,0) > 0 for each x > 0.
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Additional MM Aggregator Assumptions

MM assume Thompson aggregators satisfy (T5) &(T6) below.

(T5) W is y— subhomogeneous — there is some 7y > 0 such that:
W (1%, pny) = pW (x,y)
for each € (0,1] and each (x,y) € R?.

e Thompson KDW satisfies (T5) with v = b~1;
e Thompson CES aggregators satisfy (T5) with v = 1.
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MM also assume:

(T6) W satisfies the MM-Limit Condition: for each & > 1 and

v >0,
Wi(l,t
jim WD o1

t—oo

(11)

with t > 0.

@ The parameter a in (T6) is the economy’s maximum long-run
possible consumption growth factor.

@ We set &« =1 (no long-run growth) today and note (T6) holds
whenever the LHS of 11 is less than 1.

e Parameter v is taken from (T5).
e KDW, CES and Quasi-Linear aggregators satisfy (T6).
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Annex 3: The Commodity Space Setup

e Commodity Space: ¢Z; with sup norm with ||C||,, = sup; |ct]|
whenever C € . The zero sequence is 0.

@ Commodity spaces admitting exponential growth are admissible in the
paper's more general setup. Focus on this special case of bounded
growth in today's talk.

@ Imagine “bounded” production possibilities — e.g. diminishing returns
to capital & one-sector model.

@ The commodity space {« is a Banach lattice with the usual pointwise
partial order. The positive cone is /.

o It is also an AM - space with unit given by e = (1,1,...). This fact
implies: the sup norm interior of £ is non-empty. Denote the positive
cone'’s interior by /1; thus, £% is a solid cone. Clearly e € /1.
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Annex 4: Industrial Strength Version of Blackwell's

Theorem

The basic Blackwell aggregator theory in Becker and Boyd (1997) rests on
the following mathematical theorem:

Monotone Contraction Mapping Theorem for Ideals: Let A, be a
principal Riesz ideal of the Riesz space E that is complete in the
associated lattice norm. Suppose that T : A, — E obeys:

Q T7Tx < Ty whenever x < y;
Q@ T9cA,;
QO T (x+Aw) < Tx+ Adw with0 <6 < 1and A > 0.

Then T is a strict contraction and has a unique fixed point.
FOCUS TODAY: T is a monotone operator.
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Fix the vector w € E — an order unit in the norm interior of E.
Ay is the subset of E defined by:

x € Ay iff |x| < Aw for some scalar A > 0.

Here: |x| = sup (x, —x) .

Lattice Norm: |x| <y = ||x|| < ||y|| where

Ix]| = inf{A > 0:|x| < Aw} for x € E & w > 0 an order unit.
Example: Let E be the space of real sequences & w = (1,1,1,...). Then
Av = leo.

Example: Suppose fora > 1, w = (0(,042,043, .. ) A, contains sequences
that grow exponentially.

Example: The space B introduced below is a Principal Ideal: The order
unit is the weight function ¢, .
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