Elections and Strategic Voting: Condorcet and Borda

E. Maskin
Harvard University

Indiana University
Bloomington
October 5, 2018
• voting rule
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)
• prominent examples
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)

• prominent examples
 – Plurality Rule (MPs in Britain, members of Congress in U.S.)
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)

• prominent examples
 – Plurality Rule (MPs in Britain, members of Congress in U.S.)
 choose candidate ranked first by more voters than any other
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)

• prominent examples
 – Plurality Rule (MPs in Britain, members of Congress in U.S.)
 choose candidate ranked first by more voters than any other
 – Majority Rule (Condorcet Method)
• voting rule
 method for choosing winning candidate on basis of voters’ preferences (rankings, utility functions)

• prominent examples
 – Plurality Rule (MPs in Britain, members of Congress in U.S.)
 choose candidate ranked first by more voters than any other
 – Majority Rule (Condorcet Method)
 choose candidate preferred by majority to each other candidate
− Run-off Voting (presidential elections in France)
− Run-off Voting (presidential elections in France)
 • choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
Run-off Voting (presidential elections in France)

- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
− Run-off Voting (presidential elections in France)
 • choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority

− Rank-Order Voting (Borda Count)
− Run-off Voting (presidential elections in France)
 • choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
 among top 2 candidates, choose alternative preferred by majority
− Rank-Order Voting (Borda Count)
 • candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
− Run-off Voting (presidential elections in France)
 • choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
 among top 2 candidates, choose alternative preferred by majority

− Rank-Order Voting (Borda Count)
 • candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
 • choose candidate with lowest point total
- Run-off Voting (presidential elections in France)
 - choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
 among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
 - candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
 - choose candidate with lowest point total
- Utilitarian Principle
- Run-off Voting (presidential elections in France)
 - choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
 - among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
 - candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
 - choose candidate with lowest point total
- Utilitarian Principle
 - choose candidate who maximizes sum of voters’ utilities
• Which voting rule to adopt?
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify *criteria* (axioms) voting rule should satisfy
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
 – voters shouldn’t have incentive to misrepresent preferences, i.e., vote strategically
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
 – voters shouldn’t have incentive to misrepresent preferences, i.e., vote strategically
 – otherwise
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
 – voters shouldn’t have incentive to misrepresent preferences, i.e., vote strategically
 – otherwise
 not implementing intended voting rule
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
 – voters shouldn’t have incentive to misrepresent preferences, i.e., vote strategically
 – otherwise
 not implementing intended voting rule
decision problem for voters may be hard
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, *no* voting rule is always nonmanipulable
 (except for dictatorial rules -- where one voter has all the power)
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, *no* voting rule is always nonmanipulable
 (except for dictatorial rules - - where one voter has all the power)
• Still, GS overly pessimistic
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, *no* voting rule is always nonmanipulable
 (except for dictatorial rules - - where one voter has all the power)
• Still, GS overly pessimistic
 – requires that voting rule *never* be manipulable
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, *no* voting rule is always nonmanipulable
 (except for dictatorial rules - - where one voter has all the power)
• Still, GS overly pessimistic
 – requires that voting rule *never* be manipulable
 – but some circumstances where manipulation can occur may be unlikely
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, *no* voting rule is always nonmanipulable
 (except for dictatorial rules - - where one voter has all the power)

• Still, GS overly pessimistic
 – requires that voting rule *never* be manipulable
 – but some circumstances where manipulation can occur may be unlikely

• In any case, natural question:
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, no voting rule is always nonmanipulable
 (except for dictatorial rules - - where one voter has all the power)
• Still, GS overly pessimistic
 – requires that voting rule never be manipulable
 – but some circumstances where manipulation can occur may be unlikely
• In any case, natural question:
 Which (reasonable) voting rule(s) nonmanipulable most often?
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more candidates, no voting rule is always nonmanipulable
 (except for dictatorial rules -- where one voter has all the power)
• Still, GS overly pessimistic
 – requires that voting rule never be manipulable
 – but some circumstances where manipulation can occur may be unlikely
• In any case, natural question:
 Which (reasonable) voting rule(s) nonmanipulable most often?
• Paper tries to answer question
• $X = \text{finite set of candidates}$
• $X =$ finite set of candidates
• society consists of a continuum of voters $[0,1]$
• $X = \text{finite set of candidates}$
• society consists of a continuum of voters $[0,1]$
 – typical voter $i \in [0,1]$
• $X = \text{finite set of candidates}$
• society consists of a continuum of voters $[0,1]$
 – typical voter $i \in [0,1]$
 – reason for continuum clear soon
- $X = \text{finite set of candidates}$
- society consists of a continuum of voters $[0,1]$
 - typical voter $i \in [0,1]$
 - reason for continuum clear soon
- utility function for voter i
 $U_i : X \rightarrow \mathbb{R}$
• \(X = \) finite set of candidates

• society consists of a continuum of voters \([0,1]\)
 – typical voter \(i \in [0,1] \)
 – reason for continuum clear soon

• utility function for voter \(i \) \(U_i : X \rightarrow \mathbb{R} \)
 – restrict attention to strict utility functions
 if \(x \neq y \), then \(U_i(x) \neq U_i(y) \)

\(\mathcal{U}_X \) = set of strict utility functions
• \(X = \) finite set of candidates
• society consists of a continuum of voters \([0, 1]\)
 – typical voter \(i \in [0, 1]\)
 – reason for continuum clear soon
• utility function for voter \(i \) \(U_i : X \to \mathbb{R} \)
 – restrict attention to \textit{strict} utility functions
 if \(x \neq y \), then \(U_i(x) \neq U_i(y) \)
 \(\forall_X \) = set of strict utility functions
• profile \(U \). --- specification of each individual's utility function
- voting rule F

 for all profiles U, and all $Y \subseteq X$,

 $F(U., Y) \in Y$
• voting rule F

 for all profiles U. and all $Y \subseteq X$,
 $$F(U, Y) \in Y$$

 – Y is ballot
• voting rule F

 for all profiles U. and all $Y \subseteq X$,

 $F(U, Y) \in Y$

 – Y is ballot

 – $F(U, Y) =$ optimal candidate in Y if profile is U.
- voting rule F

 for all profiles U. and all $Y \subseteq X$,

 $F(U, Y) \in Y$

 - Y is ballot

 - $F(U, Y) =$ optimal candidate in Y if profile is U.

- definition isn’t quite right -- ignores ties
• voting rule F

 for all profiles U. and all $Y \subseteq X$,
 $F(U, Y) \in Y$

 – Y is ballot

 – $F(U, Y) =$ optimal candidate in Y if profile is U.

• definition isn’t quite right - - ignores ties

 – with plurality rule, might be two candidates who are both ranked first the most
• voting rule F

 for all profiles U, and all $Y \subseteq X$,
 \[F(U, Y) \in Y \]

 – Y is ballot

 – $F(U, Y) =$ optimal candidate in Y if profile
 is U.

• definition isn’t quite right -- ignores ties

 – with plurality rule, might be two candidates who are both ranked
 first the most

 – with rank-order voting, might be two candidates who each get
 lowest number of points
• voting rule F
 for all profiles U, and all $Y \subseteq X$,
 $F(U, Y) \in Y$

 – Y is ballot

 – $F(U, Y) =$ optimal candidate in Y if profile is U.

• definition isn’t quite right -- ignores ties
 – with plurality rule, might be two candidates who are both ranked first the most
 – with rank-order voting, might be two candidates who each get lowest number of points

• But exact ties unlikely with many voters
• voting rule F
 for all profiles $U.$ and all $Y \subseteq X,$
 $$F(U., Y) \in Y$$
 – Y is ballot
 – $F(U., Y) =$ optimal candidate in Y if profile is $U.$

• definition isn’t quite right - - ignores ties
 – with plurality rule, might be two candidates who are both ranked first the most
 – with rank-order voting, might be two candidates who each get lowest number of points

• But exact ties unlikely with many voters
 – with continuum, ties are nongeneric
• voting rule F

 for all profiles U, and all $Y \subseteq X$,
 \[F(U, Y) \in Y \]

 – Y is ballot

 – $F(U, Y) =$ optimal candidate in Y if profile is U.

• definition isn’t quite right - - ignores ties

 – with plurality rule, might be two candidates who are both ranked first the most

 – with rank-order voting, might be two candidates who each get lowest number of points

• But exact ties unlikely with many voters

 – with continuum, ties are nongeneric

• so, correct definition:

 for generic profile U, and all $Y \subseteq X$
 \[F(U, Y) \in Y \]
plurality rule:
plurality rule:

\[F^p(U, Y) = \{ a \mid \mu \{ i \mid U_i(a) \geq U_i(b) \text{ for all } b \} \geq \mu \{ i \mid U_i(a') \geq U_i(b) \text{ for all } b \} \text{ for all } a' \} \]
plurality rule:

\[F^p(U, Y) = \{ a | \mu \{ i | U_i(a) \geq U_i(b) \text{ for all } b \} \geq \mu \{ i | U_i(a') \geq U_i(b) \text{ for all } b \} \text{ for all } a' \} \]

majority rule:
plurality rule:

\[F^p(U,Y) = \{ a | \mu \{ i | U_i(a) \geq U_i(b) \text{ for all } b \} \geq \mu \{ i | U_i(a') \geq U_i(b) \text{ for all } b \} \text{ for all } a' \} \]

majority rule:

\[F^c(U,Y) = \{ a | \mu \{ i | U_i(a) \geq U_i(b) \} \geq \frac{1}{2} \text{ for all } b \} \]
plurality rule:

\[F^p (U_, Y) = \{ a | \mu \{ i | U_i (a) \geq U_i (b) \text{ for all } b \} \geq \mu \{ i | U_i (a') \geq U_i (b) \text{ for all } b \} \text{ for all } a' \} \]

majority rule:

\[F^c (U_, Y) = \{ a | \mu \{ i | U_i (a) \geq U_i (b) \} \geq \frac{1}{2} \text{ for all } b \} \]

rank-order voting:
plurality rule:

\[F^P(U_., Y) = \{ a \mid \mu \{ i \mid U_i(a) \geq U_i(b) \} \text{ for all } b \} \]

\[\geq \mu \{ i \mid U_i(a') \geq U_i(b) \} \text{ for all } a' \}

majority rule:

\[F^C(U_., Y) = \{ a \mid \mu \{ i \mid U_i(a) \geq U_i(b) \} \geq \frac{1}{2} \text{ for all } b \} \]

rank-order voting:

\[F^B(U_., Y) = \{ a \mid \int r_{U_i}(a) d\mu(i) \leq \int r_{U_i}(b) d\mu(i) \text{ for all } b \}, \]

where \(r_{U_i}(a) = \# \{ b \mid U_i(b) \geq U_i(a) \} \)
plurality rule:
\[F^p(U,Y) = \left\{ a \mid \mu_i \left\{ i \mid U_i(a) \geq U_i(b) \right\} \text{ for all } b \right\} \]
\[\geq \mu \left\{ i \mid U_i(a') \geq U_i(b) \right\} \text{ for all } a' \}

majority rule:
\[F^c(U,Y) = \left\{ a \mid \mu \left\{ i \mid U_i(a) \geq U_i(b) \right\} \geq \frac{1}{2} \text{ for all } b \right\} \]

rank-order voting:
\[F^b(U,Y) = \left\{ a \right\} \left\{ \int r_{U_i}(a) d\mu(i) \leq \int r_{U_i}(b) d\mu(i) \text{ for all } b \right\}, \]
where \(r_{U_i}(a) = \#\left\{ b \mid U_i(b) \geq U_i(a) \right\} \)

utilitarian principle:
plurality rule:

\[F^P (U, Y) = \{ a | \mu \{ i | U_i (a) \geq U_i (b) \text{ for all } b \} \geq \mu \{ i | U_i (a') \geq U_i (b) \text{ for all } b \} \text{ for all } a' \} \]

majority rule:

\[F^C (U, Y) = \{ a | \mu \{ i | U_i (a) \geq U_i (b) \} \geq \frac{1}{2} \text{ for all } b \} \]

rank-order voting:

\[F^B (U, Y) = \{ a | \int r_{U_i} (a) d \mu (i) \leq \int r_{U_i} (b) d \mu (i) \text{ for all } b \}, \]

where \(r_{U_i} (a) = \# \{ b | U_i (b) \geq U_i (a) \} \)

utilitarian principle:

\[F^U (U, Y) = \{ a | \int U_i (a) d \mu (i) \geq \int U_i (b) d \mu (i) \text{ for all } b \} \]
What properties should reasonable voting rule satisfy?
What properties should reasonable voting rule satisfy?

- *Pareto Property (P):* if $U_i(x) > U_i(y)$ for all i and $x \in Y$, then $y \neq F(U, Y)$
What properties should reasonable voting rule satisfy?

- *Pareto Property (P):* if \(U_i(x) > U_i(y) \) for all \(i \) and \(x \in Y \), then \(y \neq F(U_i, Y) \)
 - if everybody prefers \(x \) to \(y \), \(y \) should not be chosen
What properties should reasonable voting rule satisfy?

• **Pareto Property** (P): if $U_i(x) > U_i(y)$ for all i and $x \in Y$, then $y \neq F(U_., Y)$

 – if everybody prefers x to y, y should not be chosen

• **Anonymity** (A): suppose $\pi : [0,1] \rightarrow [0,1]$ measure-preserving permutation. If $U_i^\pi = U_{\pi(i)}$ for all i, then
What properties should reasonable voting rule satisfy?

- **Pareto Property (P):** if \(U_i(x) > U_i(y) \) for all \(i \) and \(x \in Y \), then \(y \neq F(U_i, Y) \)

 - if everybody prefers \(x \) to \(y \), \(y \) should not be chosen

- **Anonymity (A):** suppose \(\pi: [0,1] \rightarrow [0,1] \) measure-preserving permutation. If \(U_i^\pi = U_{\pi(i)} \) for all \(i \), then

 \[
 F(U_i^\pi, Y) = F(U_i, Y)
 \]

 for all \(Y \)
What properties should reasonable voting rule satisfy?

- **Pareto Property (P):** if \(U_i(x) > U_i(y) \) for all \(i \) and \(x \in Y \), then \(y \neq F(U.,Y) \)

 - if everybody prefers \(x \) to \(y \), \(y \) should not be chosen

- **Anonymity (A):** suppose \(\pi : [0,1] \rightarrow [0,1] \) measure-preserving permutation. If \(U_i^\pi = U_{\pi(i)} \) for all \(i \), then
 \[
 F(U^\pi.,Y) = F(U.,Y) \quad \text{for all } Y
 \]

 - candidate chosen depends only on voters’ preferences and not who has those preferences
What properties should reasonable voting rule satisfy?

- **Pareto Property (P):** if \(U_i(x) > U_i(y) \) for all \(i \) and \(x \in Y \), then \(y \neq F(U.,Y) \)

 - if everybody prefers \(x \) to \(y \), \(y \) should not be chosen

- **Anonymity (A):** suppose \(\pi: [0,1] \rightarrow [0,1] \) measure-preserving permutation. If \(U_i^\pi = U_{\pi(i)} \) for all \(i \), then
 \[F(U_.^\pi,Y) = F(U_.,Y) \]

 - candidate chosen depends only on voters’ preferences and not who has those preferences
 - voters treated symmetrically
• *Neutrality* (N): Suppose $\rho : Y \rightarrow Y$ permutation.
• *Neutrality* (N): Suppose $\rho : Y \rightarrow Y$ permutation.

If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \Leftrightarrow U_{i}(x) > U_{i}(y)$ for all $x, y, i,$
• *Neutrality* (N): Suppose $\rho : Y \to Y$ permutation. If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y)$ for all x, y, i, then
• \textit{Neutrality (N)}: Suppose $\rho : Y \rightarrow Y$ permutation.

If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \Leftrightarrow U_{i}(x) > U_{i}(y)$ for all x, y, i, then

$$F\left(U_{i}^{\rho,Y}, Y\right) = \rho\left(F\left(U_{i}, Y\right)\right).$$
• *Neutrality* (N): Suppose $\rho : Y \to Y$ permutation.

If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y)$ for all x, y, i, then

$$F(U_{i}^{\rho,Y}, Y) = \rho(F(U_{i}, Y)).$$

- candidates treated symmetrically
• *Neutrality* (N): Suppose $\rho : Y \rightarrow Y$ permutation.

If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y)$ for all x, y, i,
then

$$F(U_{i}^{\rho,Y}, Y) = \rho(F(U_{i,Y})).$$

– candidates treated symmetrically

• All four voting rules – plurality, majority, rank-order, utilitarian – satisfy P, A, N
• **Neutrality** (N): Suppose \(\rho : Y \rightarrow Y \) permutation.

 If \(U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y) \) for all \(x, y, i, \)

 then

 \[
 F\left(U_{i}^{\rho,Y}, Y\right) = \rho\left(F\left(U_{i}, Y\right)\right).
 \]

 – candidates treated symmetrically

• All four voting rules – plurality, majority, rank-order, utilitarian – satisfy P, A, N

• Next axiom most controversial

still
• **Neutrality (N):** Suppose $\rho : Y \rightarrow Y$ permutation.

 If $U^\rho_Y(\rho(x)) > U^\rho_Y(\rho(y)) \iff U_i(x) > U_i(y)$ for all x, y, i,

 then

 $$F(U^\rho_Y, Y) = \rho(F(U_, Y)).$$

 – candidates treated symmetrically

• All four voting rules – plurality, majority, rank-order, utilitarian – satisfy P, A, N

• Next axiom most controversial

 still

 • has quite compelling justification
• **Neutrality** (N): Suppose $\rho : Y \rightarrow Y$ permutation.

 If $U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y)$ for all x, y, i, then

 $$F(U_{i}^{\rho,Y}, Y) = \rho(F(U_{i}, Y)).$$

 – candidates treated symmetrically

• All four voting rules – plurality, majority, rank-order, utilitarian – satisfy P, A, N

• Next axiom most controversial

 still

 • has quite compelling justification

 • invoked by both Arrow (1951) and Nash (1950)
• Independence of Irrelevant Candidates (I):
• *Independence of Irrelevant Candidates (I):*

\[x = F(U, Y) \text{ and } x \in Y' \subseteq Y \]
• *Independence of Irrelevant Candidates (I):*

\[
\text{if } x = F(U, Y) \text{ and } x \in Y' \subseteq Y
\]

then
• **Independence of Irrelevant Candidates (I):**

\[
\text{if } x = F(U, Y) \text{ and } x \in Y' \subseteq Y \\
\text{then } x = F(U, Y')
\]
• **Independence of Irrelevant Candidates (I):**

\[
\text{if } x = F(U, Y) \text{ and } x \in Y' \subseteq Y
\]

then

\[
x = F(U, Y')
\]

– if \(x \) chosen and some non-chosen candidates removed, \(x \) still chosen
• Independence of Irrelevant Candidates (I):

\[x = F(U_., Y) \text{ and } x \in Y' \subseteq Y \]

then

\[x = F(U_., Y') \]

– if \(x \) chosen and some non-chosen candidates removed, \(x \) still chosen

– Nash formulation (rather than Arrow)
• **Independence of Irrelevant Candidates (I):**

 \[
 \text{if } x = F(U, Y) \text{ and } x \in Y' \subseteq Y
 \]

 \[
 \text{then } x = F(U, Y')
 \]

 – if \(x \) chosen and some non-chosen candidates removed, \(x \) still chosen

 – Nash formulation (rather than Arrow)

 – no “spoilers” (e.g. Nader in 2000 U.S. presidential election, Le Pen in 2002 French presidential election)
• Majority rule and utilitarianism satisfy I, but others don’t:
• Majority rule and utilitarianism satisfy I, but others don’t:
 – plurality rule

\[
\begin{array}{ccc}
.35 & .33 & .32 \\
x & y & z \\
y & z & y \\
z & x & x \\
\end{array}
\]

\[F^P (U, \{x, y, z\}) = x\]
\[F^P (U, \{x, y\}) = y\]
• Majority rule and utilitarianism satisfy I, but others don’t:
 – plurality rule

\[
\begin{array}{ccc}
0.35 & 0.33 & 0.32 \\
x & y & z \\
y & z & x \\
z & x & y \\
\end{array}
\]

\[F^P(U,\{x,y,z\}) = x\]

\[F^P(U,\{x,y\}) = y\]

 – rank-order voting

\[
\begin{array}{cc}
0.55 & 0.45 \\
x & y \\
y & z \\
z & x \\
\end{array}
\]

\[F^B(U,\{x,y,z\}) = y\]

\[F^B(U,\{x,y\}) = x\]
Final Axiom:
Final Axiom:

- *Nonmanipulability (NM):*
Final Axiom:

- *Nonmanipulability (NM):*

 if \(x = F(U_., Y) \) and \(x' = F(U'_., Y) \),

 where \(U'_{j_0} = U_j \) for all \(j \notin C \subseteq [0,1] \)
Final Axiom:

- **Nonmanipulability (NM):**

 if $x = F(U., Y)$ and $x' = F(U', Y)$,

 where $U'_j = U_j$ for all $j \notin C \subseteq [0,1]$

 then
Final Axiom:

- **Nonmanipulability (NM):**

 if \(x = F(U, Y) \) and \(x' = F(U', Y) \),

 where \(U'_j = U_j \) for all \(j \notin C \subseteq [0,1] \)

 then

 \(U_i(x) > U_i(x') \) for some \(i \in C \)
Final Axiom:

- **Nonmanipulability (NM):**

 if \(x = F(U, Y) \) and \(x' = F(U', Y) \),

 where \(U'_j = U_j \) for all \(j \notin C \subseteq [0,1] \)

 then

 \(U_i(x) > U_i(x') \) for some \(i \in C \)

 - the members of coalition \(C \) can’t all gain from misrepresenting

 utility functions as \(U'_i \)
• NM implies voting rule must be *ordinal* (no cardinal information used)
• NM implies voting rule must be \textit{ordinal} (no cardinal information used)

• \(F \) is \textit{ordinal} if whenever, for profiles \(U \) and \(U' \),
• NM implies voting rule must be *ordinal* (no cardinal information used)

• *F* is *ordinal* if whenever, for profiles *U* and *U*′,

 \[U_i(x) > U_i(y) \iff U_i'(x) > U_i'(y) \]

 for all *i*, *x*, *y*
• NM implies voting rule must be *ordinal* (no cardinal information used)

• *F* is *ordinal* if whenever, for profiles *U* and *U'*,
 \[U_i(x) > U_i(y) \iff U'_i(x) > U'_i(y) \]
 for all *i, x, y*

(*) \[F(U_, Y) = F(U', Y) \]
for all *Y*
• NM implies voting rule must be ordinal (no cardinal information used)

• F is ordinal if whenever, for profiles U_i and U'_i,
 $U_i(x) > U_i(y) \iff U'_i(x) > U'_i(y)$ for all i, x, y

(*) $F(U_i, Y) = F(U'_i, Y)$ for all Y

• Lemma: If F satisfies NM, F ordinal
• NM implies voting rule must be *ordinal* (no cardinal information used)

• *F* is *ordinal* if whenever, for profiles *U_* and *U'*,

\[U_i(x) > U_i(y) \iff U'_i(x) > U'_i(y) \text{ for all } i, x, y \]

(*) \[F(U, Y) = F(U', Y) \text{ for all } Y \]

• **Lemma:** If *F* satisfies NM, *F* ordinal

• NM rules out utilitarianism
But majority rule also violates NM
But majority rule also violates NM

- F^C not even always *defined*

\[
\begin{array}{ccc}
0.35 & 0.33 & 0.32 \\
x & y & z \\
y & z & x \\
z & x & y \\
\end{array}
\]

$F^C(U, \{x, y, z\}) = \emptyset$
But majority rule also violates NM

- F^C not even always *defined*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.35</td>
<td>.33</td>
<td>.32</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>y</td>
<td>z</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

$$F^C(U,\{x, y, z\}) = \emptyset$$

- example of *Condorcet cycle*
But majority rule also violates NM

- F^C not even always *defined*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>y</td>
<td>z</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

$F^C(U, \{x, y, z\}) = \emptyset$

- example of *Condorcet cycle*
- F^C must be extended to Condorcet cycles
But majority rule also violates NM

- F^C not even always defined

<table>
<thead>
<tr>
<th>.35</th>
<th>.33</th>
<th>.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>y</td>
<td>z</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

\[F^C \left(U, \{x, y, z\}\right) = \emptyset \]

- example of Condorcet cycle
- F^C must be extended to Condorcet cycles
- one possibility

\[
F^{C/B}(U,Y) = \begin{cases}
F^C(U,Y), & \text{if nonempty} \\
F^B(U,Y), & \text{otherwise}
\end{cases} \quad \text{(Black's method)}
\]
But majority rule also violates NM

- F^C not even always defined

\[
\begin{array}{ccc}
0.35 & 0.33 & 0.32 \\
x & y & z \\
y & z & x \\
z & x & y \\
\end{array}
\]

$F^C(U, \{x, y, z\}) = \emptyset$

- example of Condorcet cycle
- F^C must be extended to Condorcet cycles
- one possibility

\[
F^{C/B}(U, Y) = \begin{cases}
F^C(U, Y), & \text{if nonempty} \\
F^B(U, Y), & \text{otherwise}
\end{cases}
\]

(Black's method)

- extensions make F^C vulnerable to manipulation
But majority rule also violates NM

- F^C not even always defined

\[
\begin{array}{c|c|c}
.35 & .33 & .32 \\
\hline
x & y & z \\
y & z & x \\
z & x & y
\end{array}
\]

$F^C (U, \{x, y, z\}) = \emptyset$

- example of Condorcet cycle
- F^C must be extended to Condorcet cycles
- one possibility

\[
F^{C/B} (U, Y) = \begin{cases}
F^C (U, Y), \text{ if nonempty} \\
F^B (U, Y), \text{ otherwise}
\end{cases}
\] (Black's method)

- extensions make F^C vulnerable to manipulation

\[
\begin{array}{c|c|c}
.35 & .33 & .32 \\
\hline
x & y & z \\
y & z & x \\
z & x & y
\end{array}
\]

$F^{C/B} (U, \{x, y, z\}) = x$

\[
\begin{array}{c}
z \\
y \\
x
\end{array}
\]

$F^{C/B} (U', \{x, y, z\}) = z$
Theorem: There exists no voting rule satisfying P, A, N, I and NM
Theorem: There exists no voting rule satisfying P, A, N, I and NM

Proof: similar to that of GS
Theorem: There exists no voting rule satisfying P, A, N, I and NM

Proof: similar to that of GS

overly pessimistic -- many cases in which some rankings unlikely
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked

2000 US election

Nader Gore Bush
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles.

When can we rule out Condorcet cycles?

- preferences single-peaked

2000 US election

- unlikely that many had ranking
 - Bush or Nader
 - Nader or Bush
 - Gore or Gore
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles.

When can we rule out Condorcet cycles?

- preferences single-peaked

2000 US election

```
Nader ─────── Gore ─────── Bush
```

unlikely that many had ranking

```
Bush or Nader
Nader or Bush
Gore or Gore
```

- strongly-felt candidate
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked

2000 US election

```
Nader       Gore       Bush
```

unlikely that many had ranking

```
Bush or Nader
Nader or Bush
Gore       Gore
```

- strongly-felt candidate
 - in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked

2000 US election

\[
\begin{array}{ccc}
Nader & \text{Gore} & \text{Bush} \\
\end{array}
\]

unlikely that many had ranking Bush or Nader
Nader or Bush
Gore or Gore

• strongly-felt candidate
 – in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
 – voters didn’t feel strongly about Chirac and Jospin
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked

2000 US election

unlikely that many had ranking Bush Nader or Nader Bush Gore

• strongly-felt candidate
 – in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
 – voters didn’t feel strongly about Chirac and Jospin
 – felt strongly about Le Pen (ranked him first or last)
• Voting rule F works well on domain \mathcal{U} if satisfies P,A,N,I,NM when utility functions restricted to \mathcal{U}
• Voting rule F works well on domain \mathcal{U} if satisfies P,A,N,I,NM when utility functions restricted to \mathcal{U}

 – e.g., F^C works well when preferences single-peaked
• *Theorem 1*: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too.
• **Theorem 1**: Suppose F works well on domain \mathcal{U}, then F^c works well on \mathcal{U} too.

• Conversely, suppose that F^c works well on \mathcal{U}^c.
• **Theorem 1**: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too.

• Conversely, suppose that F^C works well on \mathcal{U}^C.

Then if there exists profile U^* on \mathcal{U}^C such that...
• **Theorem 1**: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too. Conversely, suppose that F^C works well on \mathcal{U}^C.

Then if there exists profile U° on \mathcal{U}^C such that

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$

for some Y.

• Theorem 1: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too. Conversely, suppose that F^C works well on \mathcal{U}^C.

Then if there exists profile U° on \mathcal{U}^C such that

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$ for some Y,

there exists domain \mathcal{U}' on which F^C works well but F does not
• Theorem 1: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too.
• Conversely, suppose that F^C works well on \mathcal{U}^C.

Then if there exists profile U° on \mathcal{U}^C such that

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$

for some Y,

there exists domain \mathcal{U}' on which F^C works well but F does not

Proof: From NM and I, if F works well on \mathcal{U}, F must be ordinal
Theorem 1: Suppose \(F \) works well on domain \(\mathcal{U} \), then \(F^C \) works well on \(\mathcal{U} \) too.

Conversely, suppose that \(F^C \) works well on \(\mathcal{U}^C \).

Then if there exists profile \(U^\circ \) on \(\mathcal{U}^C \) such that
\[
F\left(U^\circ, Y\right) \neq F^C\left(U^\circ, Y\right)
\]
for some \(Y \),

there exists domain \(\mathcal{U}' \) on which \(F^C \) works well but \(F \) does not

Proof: From NM and I, if \(F \) works well on \(\mathcal{U} \), \(F \) must be ordinal

Hence result follows from

Dasgupta-Maskin (2008), *JEEA*
• **Theorem 1**: Suppose F works well on domain \mathcal{U}, then F^C works well on \mathcal{U} too.

• Conversely, suppose that F^C works well on \mathcal{U}^C.

Then if there exists profile U° on \mathcal{U}^C such that

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$ for some Y,

there exists domain \mathcal{U}' on which F^C works well but F does not

Proof: From NM and I, if F works well on \mathcal{U}, F must be ordinal

• Hence result follows from

 Dasgupta-Maskin (2008), *JEEA*

 – shows that Theorem 1 holds when NM replaced by ordinality
To show this D-M uses
To show this D-M uses

Lemma: F^C works well on $\not\exists$ if and only if $\not\exists$ has no Condorcet cycles
To show this D-M uses

Lemma: F^C works well on \mathcal{U} if and only if \mathcal{U} has no Condorcet cycles

- Suppose F works well on \mathcal{U}
To show this D-M uses

Lemma: F^C works well on U if and only if U has no Condorcet cycles

• Suppose F works well on U

• If F^C doesn't work well on U, Lemma implies U must contain Condorcet cycle $x\ y\ z$

 $\ y\ z\ x$

 $z\ x\ y$
• Consider
Consider

\[
\begin{bmatrix}
1 & 2 & \ldots & n \\
\end{bmatrix}
\]

\[
U_1^1 = \begin{bmatrix}
x & z & z \\
z & x & x \\
z & x & x \\
\end{bmatrix}
\]
• Consider

\[
U_1 = \begin{array}{ccc}
1 & 2 & \ldots & n \\
 x & z & z \\
 z & x & x \\
\end{array}
\]

(*) Suppose \(F(U_1, \{x, z\}) = z \)
• Consider

\[
U^1 = \begin{array}{ccc}
1 & 2 & \ldots & n \\
\downarrow & \downarrow &{}& \downarrow \\
x & z & z \\
z & x & x \\
\end{array}
\]

(*) Suppose \(F(U^1, \{x, z\}) = z \)

• \(U^2 = \begin{array}{cccc}
1 & 2 & 3 & n \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array} \)
• Consider

\[
U_1 = \begin{array}{ccc}
1 & 2 & \ldots n \\
x & z & z \\
z & x & x \\
\end{array}
\]

(*) Suppose \(F(U_1, \{x, z\}) = z \)

• \(U_2 = \begin{array}{ccc}
1 & 2 & 3 & n \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array} \)

\[
F(U_2, \{x, y, z\}) = x \quad \Rightarrow \quad (\text{from I}) \quad F(U_2, \{x, z\}) = x, \text{ contradicts (*)}
\]
• Consider

\[
U_1^1 = \begin{array}{cccc}
1 & 2 & \ldots & n \\
x & z & z \\
\end{array}
\]

\[
\begin{array}{cccc}
z & x & x \\
\end{array}
\]

(*) Suppose \(F(U_1^1, \{x, z\}) = z \)

\cdot \quad U_2^1 = \begin{array}{cccc}
1 & 2 & \ldots & n \\
x & y & z & z \\
\end{array}
\]

\[
\begin{array}{cccc}
y & z & x & x \\
z & x & y & y \\
\end{array}
\]

\[
F(U_2^1, \{x, y, z\}) = x \quad \Rightarrow \text{(from I)} \quad F(U_2^1, \{x, z\}) = x, \text{ contradicts (*)}
\]

\[
F(U_2^1, \{x, y, z\}) = y \quad \Rightarrow \text{(from I)} \quad F(U_2^1, \{x, y\}) = y, \text{ contradicts (*) (A,N)}
\]
Consider

\[
\begin{array}{cccc}
1 & 2 & \ldots & n \\
\ U^1_1 = & x & z & z \\
& z & x & x
\end{array}
\]

(*) Suppose \(F(U^1_1, \{x, z\}) = z \)

\[
\begin{array}{cccc}
1 & 2 & \ldots & n \\
\ U^2_1 = & x & y & z \\
& z & x & x \\
& y & z & x \\
& z & x & y \\
\end{array}
\]

\[
F(U^2_1, \{x, y, z\}) = x \implies \text{(from I)} F(U^2_1, \{x, z\}) = x, \text{ contradicts (*)}
\]

\[
F(U^2_1, \{x, y, z\}) = y \implies \text{(from I)} F(U^2_1, \{x, y\}) = y, \text{ contradicts (*) (A,N)}
\]

so
Consider
\[U^1_1 = \begin{array}{ccc} 1 & 2 & \ldots n \\ x & z & z \\ z & x & x \end{array} \]

(*) Suppose \(F\left(U^1_1, \{x,z\}\right) = z \)

\[U^2 = \begin{array}{ccc} 1 & 2 & 3 & \ldots n \\ x & y & z & \vdots \\ y & z & x & x \\ z & x & y & y \end{array} \]

\(F\left(U^2_1, \{x,y,z\}\right) = x \) \(\Rightarrow \) (from I) \(F\left(U^2_1, \{x,z\}\right) = x \), contradicts (*)

\(F\left(U^2_1, \{x,y,z\}\right) = y \) \(\Rightarrow \) (from I) \(F\left(U^2_1, \{x,y\}\right) = y \), contradicts (*) (A,N)

so

\(F\left(U^2_1, \{x,y,z\}\right) = z \)
• Consider

\[
U_1 = \begin{array}{ccc}
1 & 2 & \ldots \ n \\
1 & 2 & \ldots \ n \\
\end{array} \\
\begin{array}{ccc}
x & z & z \\
z & x & x \\
\end{array}
\]

(*) Suppose \(F\left(U_1, \{x, z\} \right) = z \)

• \(U_2 = \begin{array}{cccc}
1 & 2 & 3 & \ldots \ n \\
1 & 2 & 3 & \ldots \ n \\
\end{array} \\
\begin{array}{cccc}
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array}
\]

\[
F\left(U_2, \{x, y, z\} \right) = x \quad \Rightarrow \text{(from I) } F\left(U_2, \{x, z\} \right) = x, \text{ contradicts (*)}
\]

\[
F\left(U_2, \{x, y, z\} \right) = y \quad \Rightarrow \text{(from I) } F\left(U_2, \{x, y\} \right) = y, \text{ contradicts (*) (A,N)}
\]

so

\[
F\left(U_2, \{x, y, z\} \right) = z
\]

• so \(F\left(U_2, \{y, z\} \right) = z \quad \text{(I)} \)
Consider

\[U_1 = \begin{array}{ccc}
1 & 2 & \cdots n \\
x & z & z \\
z & x & x
\end{array} \]

\((\ast) \) Suppose \(F\left(U_1, \{x, z\}\right) = z \)

\[U_2 = \begin{array}{cccc}
1 & 2 & 3 & n \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y
\end{array} \]

\[F\left(U_2, \{x, y, z\}\right) = x \implies (\text{from I}) F\left(U_2, \{x, z\}\right) = x, \text{ contradicts } (\ast) \]

\[F\left(U_2, \{x, y, z\}\right) = y \implies (\text{from I}) F\left(U_2, \{x, y\}\right) = y, \text{ contradicts } (\ast) \quad (A, N) \]

so

\[F\left(U_2, \{x, y, z\}\right) = z \]

so \(F\left(U_2, \{x, y\}\right) = z \quad (I) \)

so for
Consider

\[U^1 = \begin{array}{cccc}
1 & 2 & \ldots & n \\
x & z & z \\
z & x & x \\
\end{array} \]

so

\[U^1 = \begin{array}{cccc}
1 & 2 & \ldots & n \\
x & z & z \\
z & x & x \\
\end{array} \]

\((*) \) Suppose \(F(U^1, \{x, z\}) = z \)

\[U^2 = \begin{array}{cccc}
1 & 2 & 3 & n \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array} \]

\[F(U^2, \{x, y, z\}) = x \implies (\text{from I}) \ F(U^2, \{x, z\}) = x, \text{ contradicts (}) \]

\[F(U^2, \{x, y, z\}) = y \implies (\text{from I}) \ F(U^2, \{x, y\}) = y, \text{ contradicts (}) \ (A,N) \]

so

\[F(U^2, \{x, y, z\}) = z \]

\[\text{so} F(U^2, \{y, z\}) = z \quad (\text{I}) \]

\[\text{so for} \]

\[U^3 = \begin{array}{cccc}
1 & 2 & 3 & \ldots & n \\
x & x & z & z \\
z & z & x & x \\
\end{array} \]
• Consider

\[U^1 = \begin{array}{ccc}
1 & 2 & \ldots \ n \\
\frac{1}{2} & \frac{3}{2} & \ldots \frac{n}{2} \\
\end{array} \]

\[= x \quad z \quad z \\
\frac{z}{2} \quad \frac{x}{2} \quad \frac{x}{2} \]

\((*) \) Suppose \(F\left(U^1, \{x, z\}\right) = z \)

• \[U^2 = \begin{array}{cccc}
1 & 2 & 3 & \ldots n \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array} \]

\[F\left(U^2, \{x, y, z\}\right) = x \Rightarrow (\text{from I}) \ F\left(U^2, \{x, z\}\right) = x, \text{ contradicts (*)} \]

\[F\left(U^2, \{x, y, z\}\right) = y \Rightarrow (\text{from I}) \ F\left(U^2, \{x, y\}\right) = y, \text{ contradicts (*) (A,N)} \]

so \[F\left(U^2, \{x, y, z\}\right) = z \]

• so \(F\left(U^2, \{y, z\}\right) = z \) (I)

• so for

\[U^3 = \begin{array}{cccc}
1 & 2 & 3 & \ldots n \\
x & x & z & z \\
\frac{z}{2} & \frac{z}{2} & \frac{x}{2} \quad \frac{x}{2} \]

\[F\left(U^3, \{x, z\}\right) = z \text{ (N)} \]
Consider
\[
\begin{array}{llll}
1 & 2 & \cdots & n \\
U^1_1 &=& x & z \\
& &=& z \\
& &=& x \\
\end{array}
\]

\[
\begin{array}{llll}
1 & 2 & 3 & n \\
U^2_1 &=& x & y \\
& &=& z & z \\
& &=& x & x \\
& &=& z & y \\
\end{array}
\]

\[
\begin{array}{llll}
1 & 2 & 3 & \cdots n \\
U^3_1 &=& x & x \\
& &=& z & z \\
& &=& x & x \\
\end{array}
\]

\[
\begin{array}{llll}
1 & \cdots & n-1 & n \\
U^4_1 &=& x & x \\
& &=& z & z \\
& &=& x & x \\
\end{array}
\]

(*) Suppose \(F\left(U^1_1, \{x, z\}\right) = z \)

\[
\begin{array}{llll}
1 & 2 & 3 & n \\
U^2_1 &=& x & y \\
& &=& z & z \\
& &=& x & x \\
& &=& z & y \\
\end{array}
\]

\[
\begin{array}{llll}
1 & 2 & 3 & \cdots n \\
U^3_1 &=& x & x \\
& &=& z & z \\
& &=& x & x \\
\end{array}
\]

\[
\begin{array}{llll}
1 & \cdots & n-1 & n \\
U^4_1 &=& x & x \\
& &=& z & z \\
& &=& x & x \\
\end{array}
\]

Continuing in the same way, let \(U^4_1 = \frac{1 \cdots n-1}{x} \frac{n}{z} \frac{z}{z} \frac{x}{x} \)
Consider
\[
\begin{array}{cccc}
1 & 2 & \ldots & n \\
U^1 & = & x & z \\
z & & x & x \\
\end{array}
\]

(*) Suppose \(F(U^1, \{x, z\}) = z \)

\[
\begin{array}{cccc}
1 & 2 & 3 & n \\
U^2 & = & x & y \\
y & z & x & x \\
z & x & y & y \\
\end{array}
\]

\(F(U^2, \{x, y, z\}) = x \) \(\Rightarrow \) (from I) \(F(U^2, \{x, z\}) = x \), contradicts (*)

\(F(U^2, \{x, y, z\}) = y \) \(\Rightarrow \) (from I) \(F(U^2, \{x, y\}) = y \), contradicts (*) (A,N)

so \(F(U^2, \{x, y, z\}) = z \)

so \(F(U^2, \{y, z\}) = z \) \(\) (I)

so for
\[
\begin{array}{cccc}
1 & 2 & 3 & \ldots & n \\
U^3 & = & x & x \\
x & z & z & z \\
z & z & x & x \\
\end{array}
\]

\(F(U^3, \{x, z\}) = z \) \(\) (N)

Continuing in the same way, let \(U^4 = \)
\[
\begin{array}{cccc}
1 & \ldots & n-1 & n \\
x & x & z & z \\
z & z & x & x \\
\end{array}
\]

\(F(U^4, \{x, z\}) = z \), contradicts (*)
• So F can’t work well on \mathcal{U} with Condorcet cycle
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^C works well on \mathcal{U}^C and
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^c works well on \mathcal{U}^c and

$$F\left(U^\circ, Y\right) \neq F^c\left(U^\circ, Y\right)$$

for some U° and Y
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^c works well on \mathcal{U}^c and

$$F(U^*, Y) \neq F^c(U^*, Y)$$

for some U^* and Y

• Then there exist α with $1 - \alpha > \alpha$ and
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^C works well on \mathcal{U}^C and

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$

for some U° and Y

• Then there exist α with $1 - \alpha > \alpha$ and

$$U^\circ = \frac{1 - \alpha}{x} \begin{pmatrix} \alpha \\ x \\ y \\ x \end{pmatrix}$$
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^c works well on \mathcal{U}^c and

$$F(U^\circ, Y) \neq F^c(U^\circ, Y)$$ for some U° and Y

• Then there exist α with $1 - \alpha > \alpha$ and

$$U^\circ = \frac{1-\alpha}{x} \frac{\alpha}{y}$$

such that
• So \(F \) can’t work well on \(\mathcal{U} \) with Condorcet cycle

• Conversely, suppose that \(F^C \) works well on \(\mathcal{U}^C \) and

\[
F\left(U^\circ, Y\right) \neq F^C\left(U^\circ, Y\right)
\]

for some \(U^\circ \) and \(Y \)

• Then there exist \(\alpha \) with \(1 - \alpha > \alpha \) and

\[
U^\circ = \begin{pmatrix}
1 - \alpha \\
\alpha
\end{pmatrix}
\]

such that

\[
x = F^C\left(U^\circ, \{x, y\}\right) \quad \text{and} \quad y = F\left(U^\circ, \{x, y\}\right)
\]
• So F can’t work well on \mathcal{U} with Condorcet cycle

• Conversely, suppose that F^C works well on \mathcal{U}^C and

$$F(U^\circ, Y) \neq F^C(U^\circ, Y)$$

for some U° and Y

• Then there exist α with $1 - \alpha > \alpha$ and

$$U^\circ = \frac{1 - \alpha}{x} \frac{\alpha}{y} = \frac{\alpha}{x} \frac{1 - \alpha}{y}$$

such that

$$x = F^C(U^\circ, \{x, y\})$$

and

$$y = F(U^\circ, \{x, y\})$$

• But not hard to show that F^C unique voting rule satisfying P, A, N, and NM when $|X| = 2$ - - contradiction
• Let’s drop I
• Let’s drop I
 – most controversial
• Let’s drop I
 – most controversial

• *no* voting rule satisfies P,A,N,NM on \forall_X
• Let’s drop I
 – most controversial

• *no* voting rule satisfies P,A,N,NM on \forall_X
 – GS again
• Let’s drop I
 – most controversial

• *no* voting rule satisfies P, A, N, NM on \mathcal{X}
 – GS again

• *F works nicely* on \mathcal{Y} if satisfies P, A, N, NM on \mathcal{Y}
Theorem 2:
Theorem 2:

- Suppose F works nicely on \mathcal{H}, then F^C or F^B works nicely on \mathcal{H} too.
Theorem 2:

• Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

• Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely, suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

Then, if there exists profile U^{∞} on \mathcal{U}^* such that
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

 Then, if there exists profile U^∞ on \mathcal{U}^* such that

 $$F(U^\infty, Y) \neq F^*(U^\infty, Y)$$

 for some Y,
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely, suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

 Then, if there exists profile U° on \mathcal{U}^* such that

 $$F\left(U^\circ, Y\right) \neq F^*\left(U^\circ, Y\right)$$

 for some Y,

 there exists domain \mathcal{U}' on which F^* works nicely but F does not.
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

 Then, if there exists profile U^* on \mathcal{U}^* such that

 $$F(U^*, Y) \neq F^*(U^*, Y)$$

 for some Y,

 there exists domain \mathcal{U}' on which F^* works nicely but F does not

Proof:
Theorem 2:
- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.
- Conversely, suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.
 Then, if there exists profile U^* on \mathcal{U}^* such that
 \[F(U^*, Y) \neq F^*(U^*, Y) \] for some Y,
 there exists domain \mathcal{U}' on which F^* works nicely but F does not work.

Proof:
- F^C works nicely on any Condorcet-cycle-free domain
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

Then, if there exists profile U^∞ on \mathcal{U}^* such that

$$F(U^\infty, Y) \neq F^*(U^\infty, Y)$$

for some Y,

there exists domain \mathcal{U}' on which F^* works nicely but F does not work nicely only when \mathcal{U}' is subset of Condorcet cycle

Proof:

- F^C works nicely on any Condorcet-cycle-free domain

- F^B works nicely only when \mathcal{U} is subset of Condorcet cycle
Theorem 2:
• Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

• Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

Then, if there exists profile U^∞ on \mathcal{U}^* such that

$$F\left(U^\infty, Y\right) \neq F^*\left(U^\infty, Y\right)$$

for some Y,

there exists domain \mathcal{U}' on which F^* works nicely but F does not work nicely.

Proof:
• F^C works nicely on any Condorcet-cycle-free domain
• F^B works nicely only when \mathcal{U} is subset of Condorcet cycle

so F^C and F^B complement each other
Theorem 2:

- Suppose \(F \) works nicely on \(\forall \), then \(F^C \) or \(F^B \) works nicely on \(\forall \) too.

- Conversely suppose \(F^* \) works nicely on \(\forall^* \), where \(F^* = F^C \) or \(F^B \).

 Then, if there exists profile \(U^\infty \) on \(\forall^* \) such that

 \[
 F\left(U^\infty, Y\right) \neq F^*\left(U^\infty, Y\right)
 \]

 for some \(Y \), there exists domain \(\forall' \) on which \(F^* \) works nicely but \(F \) does not

Proof:

- \(F^C \) works nicely on any Condorcet-cycle-free domain

- \(F^B \) works nicely only when \(\forall \) is subset of Condorcet cycle

- so \(F^C \) and \(F^B \) complement each other
 - if \(F \) works nicely on \(\forall \) and \(\forall \) doesn't contain Condorcet cycle, \(F^C \) works nicely too
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely, suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

 Then, if there exists profile U^* on \mathcal{U}^* such that
 \[F(U^*, Y) \neq F^*(U^*, Y) \]
 for some Y,
 there exists domain \mathcal{U}' on which F^* works nicely but F does not work nicely on \mathcal{U}'.

Proof:

- F^C works nicely on any Condorcet-cycle-free domain.

- F^B works nicely only when \mathcal{U} is subset of Condorcet cycle.

- so F^C and F^B complement each other
 - if F works nicely on \mathcal{U} and \mathcal{U} doesn't contain Condorcet cycle, F^C works nicely too.
 - if F works nicely on \mathcal{U} and \mathcal{U} contains Condorcet cycle, then \mathcal{U} can't contain any other ranking (otherwise no voting rule works nicely).
Theorem 2:

- Suppose F works nicely on \mathcal{U}, then F^C or F^B works nicely on \mathcal{U} too.

- Conversely suppose F^* works nicely on \mathcal{U}^*, where $F^* = F^C$ or F^B.

Then, if there exists profile U^∞ on \mathcal{U}^* such that

$$F(U^\infty, Y) \neq F^*(U^\infty, Y)$$

for some Y,

there exists domain \mathcal{U}' on which F^* works nicely but F does not

Proof:

- F^C works nicely on any Condorcet-cycle-free domain

- F^B works nicely only when \mathcal{U} is subset of Condorcet cycle

- so F^C and F^B complement each other

 - if F works nicely on \mathcal{U} and \mathcal{U} doesn't contain Condorcet cycle, F^C works nicely too

 - if F works nicely on \mathcal{U} and \mathcal{U} contains Condorcet cycle, then \mathcal{U} can't contain any other ranking (otherwise no voting rule works nicely)

 - so F^B works nicely on \mathcal{U}.

Striking that the 2 longest-studied voting rules (Condorcet and Borda) are also
Striking that the 2 longest-studied voting rules (Condorcet and Borda) are also
• *only two* that work nicely on maximal domains