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• voting rule 
method for choosing winning candidate on basis of 

voters’ preferences (rankings, utility functions)
• prominent examples

– Plurality Rule (MPs in Britain, members of Congress in 
U.S.)
choose candidate ranked first by more voters than any 
other

– Majority Rule (Condorcet Method)
choose candidate preferred by majority to each other 
candidate
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− Run-off Voting (presidential elections in France)
• choose candidate ranked first by more voters than any 

other, unless number of first-place rankings
less than majority

among top 2 candidates, choose alternative preferred 
by majority

− Rank-Order Voting (Borda Count)
• candidate assigned 1 point every time some voter ranks 

her first, 2 points every time ranked second, etc.
• choose candidate with lowest point total

− Utilitarian Principle
• choose candidate who maximizes sum of voters’ 

utilities
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• Which voting rule to adopt?
• Answer depends on what one wants in voting rule

– can specify criteria (axioms) voting rule should satisfy
– see which rules best satisfy them

• One important criterion: nonmanipulability
– voters shouldn’t have incentive to misrepresent 

preferences, i.e., vote strategically
– otherwise

not implementing intended voting rule
decision problem for voters may be hard



26

• But basic negative result
Gibbard-Satterthwaite (GS) theorem



27

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)



28

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic



29

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic
– requires that voting rule never be manipulable



30

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic
– requires that voting rule never be manipulable
– but some circumstances where manipulation can occur 

may be unlikely



31

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic
– requires that voting rule never be manipulable
– but some circumstances where manipulation can occur 

may be unlikely
• In any case, natural question:



32

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic
– requires that voting rule never be manipulable
– but some circumstances where manipulation can occur 

may be unlikely
• In any case, natural question:

Which (reasonable) voting rule(s) nonmanipulable most 
often?



33

• But basic negative result
Gibbard-Satterthwaite (GS) theorem
– if 3 or more candidates, no voting rule is always 

nonmanipulable
(except for dictatorial rules - - where one voter has all 
the power)

• Still, GS overly pessimistic
– requires that voting rule never be manipulable
– but some circumstances where manipulation can occur 

may be unlikely
• In any case, natural question:

Which (reasonable) voting rule(s) nonmanipulable most 
often?

• Paper tries to answer question
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• X = finite set of candidates
• society consists of a continuum of voters [0,1]

– typical
– reason for continuum clear soon

• utility function for voter i
– restrict attention to strict utility functions

if 
= set of strict utility functions

• profile

[ ]voter 0,1i∈

:iU X →

( ) ( ),  then i ix y U x U y≠ ≠

XU

 - - specification of each individual's utility
         function
U




41

• voting rule F
for all profiles

( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈







42

• voting rule F
for all profiles

( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



43

• voting rule F
for all profiles

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



44

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



45

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties
– with plurality rule, might be two candidates who are both ranked 

first the most

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



46

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties
– with plurality rule, might be two candidates who are both ranked 

first the most
– with rank-order voting, might be two candidates who each get 

lowest number of points

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



47

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties
– with plurality rule, might be two candidates who are both ranked 

first the most
– with rank-order voting, might be two candidates who each get 

lowest number of points
• But exact ties unlikely with many voters

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



48

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties
– with plurality rule, might be two candidates who are both ranked 

first the most
– with rank-order voting, might be two candidates who each get 

lowest number of points
• But exact ties unlikely with many voters

– with continuum, ties are nongeneric

( )  ,  optimal candidate in  if profile
                           is 

F U Y Y
U

− =




( )
 and all ,

       ,
U Y X

F U Y Y
⊆
∈





   is Y ballot−



49

• voting rule F
for all profiles

• definition isn’t quite right - - ignores ties
– with plurality rule, might be two candidates who are both ranked 

first the most
– with rank-order voting, might be two candidates who each get 

lowest number of points
• But exact ties unlikely with many voters

– with continuum, ties are nongeneric
• so, correct definition:
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• Pareto Property (P): if
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• Anonymity (A): suppose 
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• Neutrality (N): 

then

– candidates treated symmetrically

• All four voting rules – plurality, majority, rank-order, 
utilitarian – satisfy P, A, N 

• Next axiom most controversial
still

• has quite compelling justification
• invoked by both Arrow (1951) and Nash (1950)

Suppose :  permutation.Y Yρ →
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• Independence of Irrelevant Candidates (I): 

then

– if x chosen and some non-chosen candidates removed, x still 
chosen

– Nash formulation (rather than Arrow)

– no “spoilers” (e.g. Nader in 2000 U.S. presidential election, Le Pen 
in 2002 French presidential election)
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• Majority rule and utilitarianism satisfy I, but 
others don’t:
– plurality rule

– rank-order voting

{ }( ), ,PF U x y y=

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x
y
z

{ }( ), , ,PF U x y z x=
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y
z
x
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x
y
z
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Final Axiom:

• Nonmanipulability (NM): 

then

– the members of coalition C can’t all gain from misrepresenting

( ) ( )
[ ]

if  ,  and , ,

    where  for all 0,1j j

x F U Y x F U Y

U U j C

′ ′= =

′ = ∉ ⊆

 

( ) ( )  for some i iU x U x i C′> ∈

utility functions as iU ′
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• F is ordinal if whenever,  
( ) ( ) ( ) ( )  for all , ,i i i iU x U y U x U y i x y′ ′> ⇔ >

for profiles  and  ,U U ′
 
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• NM implies voting rule must be ordinal (no cardinal 
information used)

• F is ordinal if whenever,  
( ) ( ) ( ) ( )  for all , ,i i i iU x U y U x U y i x y′ ′> ⇔ >

( ) ( )(*)    , ,  for all F U Y F U Y Y′=
 

for profiles  and  ,U U ′
 
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• NM implies voting rule must be ordinal (no cardinal 
information used)

• F is ordinal if whenever,  

• Lemma: If F satisfies NM, F ordinal

( ) ( ) ( ) ( )  for all , ,i i i iU x U y U x U y i x y′ ′> ⇔ >

( ) ( )(*)    , ,  for all F U Y F U Y Y′=
 

for profiles  and  ,U U ′
 
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• NM implies voting rule must be ordinal (no cardinal 
information used)

• F is ordinal if whenever,  

• Lemma: If F satisfies NM, F ordinal
• NM rules out utilitarianism 

( ) ( ) ( ) ( )  for all , ,i i i iU x U y U x U y i x y′ ′> ⇔ >

( ) ( )(*)    , ,  for all F U Y F U Y Y′=
 

for profiles  and  ,U U ′
 
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But majority rule also violates NM
•

– example of Condorcet cycle
–
– one possibility

 must be extended to Condorcet cyclesCF

{ }( ), , ,CF U x y z =∅


.33
y
z
x

.35
x
y
z

.32
z
x
y

 not even always CF defined

( )
( )

( )
/

, ,  if nonempty
,

, ,  otherwise

C

C B

B

F U Y
F U Y

F U Y

= 








(Black's method)
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•

– example of Condorcet cycle
–
– one possibility
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 must be extended to Condorcet cyclesCF

{ }( ), , ,CF U x y z =∅


.33
y
z
x
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x
y
z
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z
x
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 not even always CF defined

( )
( )

( )
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, ,  if nonempty
,

, ,  otherwise

C

C B

B

F U Y
F U Y

F U Y

= 








(Black's method)

extensions make  vulnerable to manipulationCF
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But majority rule also violates NM
•

– example of Condorcet cycle
–
– one possibility

–
–

 must be extended to Condorcet cyclesCF

.35
x
y
z

{ }( ), , ,CF U x y z =∅


.33
y
z
x

.35
x
y
z

.32
z
x
y

.33
y
z
x

{ }( )/ , , ,C BF U x y z z′ =


{ }( )/ , , ,C BF U x y z x=


 not even always CF defined

z
y
x

.32
z
x
y

( )
( )

( )
/

, ,  if nonempty
,

, ,  otherwise

C

C B

B

F U Y
F U Y

F U Y

= 








(Black's method)

extensions make  vulnerable to manipulationCF
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Theorem: There exists no voting rule satisfying 
P,A,N,I and NM



104

Theorem: There exists no voting rule satisfying 
P,A,N,I and NM

Proof: similar to that of GS
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Theorem: There exists no voting rule satisfying 
P,A,N,I and NM

Proof: similar to that of GS

overly pessimistic - - many cases in which some rankings 
unlikely
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preferences restricted to domain with no Condorcet cycles
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Lemma: Majority rule satisfies all 5 properties if and only if 
preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked
2000 US election

unlikely that many had ranking

• strongly-felt candidate

Bush Nader
            or
Nader        Bush

Gore Gore
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• • •

Nader Gore
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When can we rule out Condorcet cycles?

• preferences single-peaked
2000 US election

unlikely that many had ranking

• strongly-felt candidate
– in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen

Bush Nader
            or
Nader        Bush

Gore Gore

Bush
• • •

Nader Gore
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Lemma: Majority rule satisfies all 5 properties if and only if 
preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked
2000 US election

unlikely that many had ranking

• strongly-felt candidate
– in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
– voters didn’t feel strongly about Chirac and Jospin

Bush Nader
            or
Nader        Bush

Gore Gore

Bush
• • •

Nader Gore
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Lemma: Majority rule satisfies all 5 properties if and only if 
preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

• preferences single-peaked
2000 US election

unlikely that many had ranking

• strongly-felt candidate
– in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
– voters didn’t feel strongly about Chirac and Jospin
– felt strongly about Le Pen (ranked him first or last)

Bush Nader
            or
Nader        Bush

Gore Gore

Bush
• • •

Nader Gore
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      when utility functions restricted to 
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U
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•

–

Voting rule    on domain  if satisfies P,A,N,I,NM
      when utility functions restricted to 

F works well U

U

e.g.,  works well when preferences single-peakedCF



116

• Theorem 1: Suppose F works well on domain U , then  works well on  too.CF U



117

• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

then  works well on  too.CF U
that works well on .C CF U



118

• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U



119

• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U

( ) ( ), ,  for some ,CF U Y F U Y Y≠ 

 



120

• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U

( ) ( ), ,  for some ,CF U Y F U Y Y≠ 

 

there exists domain  on which  works well but  does notCF F′U
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• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

Proof: From NM and I, if F works well on U , F must be ordinal

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U

( ) ( ), ,  for some ,CF U Y F U Y Y≠ 

 

there exists domain  on which  works well but  does notCF F′U
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• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

Proof: From NM and I, if F works well on U , F must be ordinal
• Hence result follows from

Dasgupta-Maskin (2008), JEEA

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U

( ) ( ), ,  for some ,CF U Y F U Y Y≠ 

 

there exists domain  on which  works well but  does notCF F′U
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• Theorem 1: Suppose F works well on domain U , 
• Conversely, suppose 

Proof: From NM and I, if F works well on U , F must be ordinal
• Hence result follows from

Dasgupta-Maskin (2008), JEEA
– shows that Theorem 1 holds when NM replaced by ordinality

then  works well on  too.CF U
that works well on .C CF U

Then if there exisits profile  on  such thatCU 



U

( ) ( ), ,  for some ,CF U Y F U Y Y≠ 

 

there exists domain  on which  works well but  does notCF F′U
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To show this D-M uses

• Suppose F works well on U 

Lemma:  works well on if and only if  has no Condorcet cyclesCF U  U
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To show this D-M uses

• Suppose F works well on U 

• If   doesn't work well on , Lemma implies  must containCF U U

Lemma:  works well on if and only if  has no Condorcet cyclesCF U  U

Condorcet cycle x y z
y z x
z x y
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• Consider

1U =


1 2 n
x z z
z x x


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• Consider
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• Consider

•

{ }( )1(*)      Suppose , ,F U x z z=
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1U =
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x y z z
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z x y y
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• Consider
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•

so 

{ }( )1(*)      Suppose , ,F U x z z=

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 

{ }( ) { }( )2 2, , , (from I) , , , contradicts (*)F U x y z x F U x z x= ⇒ =
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
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
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so 
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
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
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•

so 

•
• so for 

•
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

{ }( ) { }( )2 2, , , (from I) , , , contradicts (*) (A,N)F U x y z y F U x y y= ⇒ =
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 
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
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
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
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• Consider

•

so 

•
• so for 

•

{ }( )1(*)      Suppose , ,F U x z z=


{ }( ) { }( )2 2, , , (from I) , , , contradicts (*) (A,N)F U x y z y F U x y y= ⇒ =
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{ }( ) { }( )2 2, , , (from I) , , , contradicts (*)F U x y z x F U x z x= ⇒ =
 

3U =


1U =


1 2 n
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z x x



2U =


1 2 3 n
x y z z
y z x x
z x y y

{ }( )2 , , ,F U x y z z=


{ }( )2so , , (I)F U y z z=


1 2 3 n
x x z z
z z x x



{ }( )3, , (N)F U x z z=


{ }( )4 , , ,  contradicts (*)F U x z z=


4Continuing in the same way, let U =


1 1n n
x x z
z z x

−
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• So F can’t work well on U with Condorcet cycle

•

• Then there exist  with 1  andα α α− >

( ) ( ), ,  for some  and CF U Y F U Y U Y≠  

  

Conversely, suppose that  works well on  and C CF U
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• So F can’t work well on U with Condorcet cycle

•

• Then there exist  with 1  andα α α− >

1
x
y

α−

( ) ( ), ,  for some  and CF U Y F U Y U Y≠  

  

y
x

α

Conversely, suppose that  works well on  and C CF U

U =

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•

• Then there exist  with 1  andα α α− >

1
x
y

α−

( ) ( ), ,  for some  and CF U Y F U Y U Y≠  

  

y
x

α

Conversely, suppose that  works well on  and C CF U

U =


such that
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• So F can’t work well on U with Condorcet cycle

•

• Then there exist  with 1  andα α α− >

1
x
y

α−

( ) ( ), ,  for some  and CF U Y F U Y U Y≠  

  

y
x

α

{ }( ) { }( ), ,  and , ,Cx F U x y y F U x y= = 

 

Conversely, suppose that  works well on  and C CF U

U =


such that
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• So F can’t work well on U with Condorcet cycle

•

•

•

Then there exist  with 1  andα α α− >

1
x
y

α−

( ) ( ), ,  for some  and CF U Y F U Y U Y≠  

  

y
x

α

{ }( ) { }( ), ,  and , ,Cx F U x y y F U x y= = 

 

Conversely, suppose that  works well on  and C CF U

U =


such that

But not hard to show that  unique voting rule satisfying P,A,N, and NM

when 2 - - contradiction

CF

X =
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• Let’s drop I
– most controversial

•
– GS again

• F works nicely on U if satisfies P,A,N,NM on U

 voting rule satisfies P,A,N,NM on Xno U
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Theorem 2: 
• Suppose F works nicely on U ,

• Conversely 

Proof:
•  works nicely on any Condorcet-cycle-free domainCF

suppose works nicely on , where or .C BF F F F∗ ∗ ∗ =U

Then, if there exisits profile  on  such thatU ∗



U

( ) ( ), ,  for some ,F U Y F U Y Y∗≠ 
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Striking that the 2 longest-studied voting rules 
(Condorcet and Borda) are also 

• only two that work nicely on maximal domains
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