Elections and Strategic Voting: Condorcet and Borda

E. Maskin

Harvard University

Indiana University

Bloomington
October 5, 2018

- voting rule
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- prominent examples
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- prominent examples
- Plurality Rule (MPs in Britain, members of Congress in U.S.)
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- prominent examples
- Plurality Rule (MPs in Britain, members of Congress in U.S.)
choose candidate ranked first by more voters than any other
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- prominent examples
- Plurality Rule (MPs in Britain, members of Congress in U.S.)
choose candidate ranked first by more voters than any other
- Majority Rule (Condorcet Method)
- voting rule
method for choosing winning candidate on basis of voters' preferences (rankings, utility functions)
- prominent examples
- Plurality Rule (MPs in Britain, members of Congress in U.S.)
choose candidate ranked first by more voters than any other
- Majority Rule (Condorcet Method)
choose candidate preferred by majority to each other candidate

- Run-off Voting (presidential elections in France)

- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
- candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
- candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
- choose candidate with lowest point total
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
- candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
- choose candidate with lowest point total
- Utilitarian Principle
- Run-off Voting (presidential elections in France)
- choose candidate ranked first by more voters than any other, unless number of first-place rankings less than majority
among top 2 candidates, choose alternative preferred by majority
- Rank-Order Voting (Borda Count)
- candidate assigned 1 point every time some voter ranks her first, 2 points every time ranked second, etc.
- choose candidate with lowest point total
- Utilitarian Principle
- choose candidate who maximizes sum of voters' utilities
- Which voting rule to adopt?
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- One important criterion: nonmanipulability
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- One important criterion: nonmanipulability
- voters shouldn't have incentive to misrepresent preferences, i.e., vote strategically
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- One important criterion: nonmanipulability
- voters shouldn't have incentive to misrepresent preferences, i.e., vote strategically
- otherwise
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- One important criterion: nonmanipulability
- voters shouldn't have incentive to misrepresent preferences, i.e., vote strategically
- otherwise not implementing intended voting rule
- Which voting rule to adopt?
- Answer depends on what one wants in voting rule
- can specify criteria (axioms) voting rule should satisfy
- see which rules best satisfy them
- One important criterion: nonmanipulability
- voters shouldn't have incentive to misrepresent preferences, i.e., vote strategically
- otherwise
not implementing intended voting rule decision problem for voters may be hard
- But basic negative result Gibbard-Satterthwaite (GS) theorem
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable
(except for dictatorial rules - - where one voter has all the power)
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable
(except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable
(except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- requires that voting rule never be manipulable
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable (except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- requires that voting rule never be manipulable
- but some circumstances where manipulation can occur may be unlikely
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable (except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- requires that voting rule never be manipulable
- but some circumstances where manipulation can occur may be unlikely
- In any case, natural question:
- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable (except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- requires that voting rule never be manipulable
- but some circumstances where manipulation can occur may be unlikely
- In any case, natural question:

Which (reasonable) voting rule(s) nonmanipulable most often?

- But basic negative result

Gibbard-Satterthwaite (GS) theorem

- if 3 or more candidates, no voting rule is always nonmanipulable (except for dictatorial rules - - where one voter has all the power)
- Still, GS overly pessimistic
- requires that voting rule never be manipulable
- but some circumstances where manipulation can occur may be unlikely
- In any case, natural question:

Which (reasonable) voting rule(s) nonmanipulable most often?

- Paper tries to answer question
- $X=$ finite set of candidates
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- typical voter $i \in[0,1]$
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- typical voter $i \in[0,1]$
- reason for continuum clear soon
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- typical voter $i \in[0,1]$
- reason for continuum clear soon
- utility function for voter $i U_{i}: X \rightarrow \mathbb{R}$
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- typical voter $i \in[0,1]$
- reason for continuum clear soon
- utility function for voter i $U_{i}: X \rightarrow \mathbb{R}$
- restrict attention to strict utility functions
if $x \neq y$, then $U_{i}(x) \neq U_{i}(y)$
$\mathscr{U}_{X}=$ set of strict utility functions
- $X=$ finite set of candidates
- society consists of a continuum of voters [0,1]
- typical voter $i \in[0,1]$
- reason for continuum clear soon
- utility function for voter $i U_{i}: X \rightarrow \mathbb{R}$
- restrict attention to strict utility functions
if $x \neq y$, then $U_{i}(x) \neq U_{i}(y)$
$\mathscr{U}_{X}=$ set of strict utility functions
- profile $U_{\text {. }}$ - specification of each individual's utility function
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U . \text { and all } Y \subseteq X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- voting rule F

> for all profiles U. and all $Y \subseteq X$, $$
F(U ., Y) \in Y
$$

- Y is ballot
- voting rule F

> for all profiles U. and all $Y \subseteq X, X$, $$
F(U ., Y) \in Y
$$

- Y is ballot
- $F\left(U_{.}, Y\right)=$ optimal candidate in Y if profile is U.
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U . \text { and all } Y \subseteq X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - ignores ties
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U . \text { and all } Y \subseteq X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - ignores ties
- with plurality rule, might be two candidates who are both ranked first the most
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U . \text { and all } Y \subseteq X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - ignores ties
- with plurality rule, might be two candidates who are both ranked first the most
- with rank-order voting, might be two candidates who each get lowest number of points
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U \text {. and all } Y \subseteq X, X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - - ignores ties
- with plurality rule, might be two candidates who are both ranked first the most
- with rank-order voting, might be two candidates who each get lowest number of points
- But exact ties unlikely with many voters
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U \text {. and all } Y \subseteq X, X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - ignores ties
- with plurality rule, might be two candidates who are both ranked first the most
- with rank-order voting, might be two candidates who each get lowest number of points
- But exact ties unlikely with many voters
- with continuum, ties are nongeneric
- voting rule F

$$
\begin{aligned}
& \text { for all profiles } U \text {. and all } Y \subseteq X, X, \\
& \qquad F(U ., Y) \in Y
\end{aligned}
$$

- Y is ballot
- $F(U ., Y)=$ optimal candidate in Y if profile is U.
- definition isn't quite right - - ignores ties
- with plurality rule, might be two candidates who are both ranked first the most
- with rank-order voting, might be two candidates who each get lowest number of points
- But exact ties unlikely with many voters
- with continuum, ties are nongeneric
- so, correct definition:
for generic profile U. and all $Y \subseteq X$

$$
F\left(\dot{U}_{.}, Y\right) \in Y
$$

plurality rule:
plurality rule:

$$
\begin{aligned}
F^{P}\left(U_{.}, Y\right)=\{a \mid & \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\} \\
& \left.\geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
\end{aligned}
$$

plurality rule:

$$
F^{p}\left(U_{.}, Y\right)=\left\{a \mid \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\}\right.
$$

$$
\left.\geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
$$

majority rule:
plurality rule:

$$
F^{p}\left(U_{.}, Y\right)=\left\{a \mid \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\}\right.
$$

$$
\left.\geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
$$

majority rule:

$$
F^{C}\left(U_{.}, Y\right)=\left\{a \left\lvert\, \mu\left\{i \mid U_{i}(a) \geq U_{i}(b)\right\} \geq \frac{1}{2}\right. \text { for all } b\right\}
$$

plurality rule:

$$
F^{p}\left(U_{.}, Y\right)=\left\{a \mid \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\}\right.
$$

$$
\left.\geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
$$

majority rule:

$$
F^{C}(U ., Y)=\left\{a \left\lvert\, \mu\left\{i \mid U_{i}(a) \geq U_{i}(b)\right\} \geq \frac{1}{2}\right. \text { for all } b\right\}
$$

rank-order voting:
plurality rule:

$$
\begin{aligned}
& F^{P}\left(U_{.}, Y\right)=\left\{a \mid \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\}\right. \\
& \left.\quad \geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
\end{aligned}
$$

majority rule:

$$
F^{C}\left(U_{.}, Y\right)=\left\{a \left\lvert\, \mu\left\{i \mid U_{i}(a) \geq U_{i}(b)\right\} \geq \frac{1}{2}\right. \text { for all } b\right\}
$$

rank-order voting:

$$
\begin{gathered}
F^{B}(U ., Y)=\left\{a \mid \int r_{U_{i}}(a) d \mu(i) \leq \int r_{U_{i}}(b) d \mu(i) \text { for all } b\right\}, \\
\text { where } r_{U_{i}}(a)=\#\left\{b \mid U_{i}(b) \geq U_{i}(a)\right\}
\end{gathered}
$$

plurality rule:

$$
\begin{aligned}
& F^{P}\left(U_{.}, Y\right)=\left\{a \mid \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\}\right. \\
& \left.\quad \geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
\end{aligned}
$$

majority rule:

$$
F^{C}\left(U_{.}, Y\right)=\left\{a \left\lvert\, \mu\left\{i \mid U_{i}(a) \geq U_{i}(b)\right\} \geq \frac{1}{2}\right. \text { for all } b\right\}
$$

rank-order voting:

$$
\begin{gathered}
F^{B}(U ., Y)=\left\{a \mid \int r_{U_{i}}(a) d \mu(i) \leq \int r_{U_{i}}(b) d \mu(i) \text { for all } b\right\}, \\
\text { where } r_{U_{i}}(a)=\#\left\{b \mid U_{i}(b) \geq U_{i}(a)\right\}
\end{gathered}
$$

utilitarian principle:
plurality rule:

$$
\begin{aligned}
F^{P}(U ., Y)=\{a \mid & \mu\left\{i \mid U_{i}(a) \geq U_{i}(b) \text { for all } b\right\} \\
& \left.\geq \mu\left\{i \mid U_{i}\left(a^{\prime}\right) \geq U_{i}(b) \text { for all } b\right\} \text { for all } a^{\prime}\right\}
\end{aligned}
$$

majority rule:

$$
F^{C}\left(U_{.}, Y\right)=\left\{a \left\lvert\, \mu\left\{i \mid U_{i}(a) \geq U_{i}(b)\right\} \geq \frac{1}{2}\right. \text { for all } b\right\}
$$

rank-order voting:

$$
\begin{gathered}
F^{B}\left(U_{.}, Y\right)=\left\{a \mid \int r_{U_{i}}(a) d \mu(i) \leq \int r_{U_{i}}(b) d \mu(i) \text { for all } b\right\}, \\
\text { where } r_{U_{i}}(a)=\#\left\{b \mid U_{i}(b) \geq U_{i}(a)\right\}
\end{gathered}
$$

utilitarian principle:

$$
F^{U}\left(U_{.}, Y\right)=\left\{a \mid \int U_{i}(a) d \mu(i) \geq \int U_{i}(b) d \mu(i) \text { for all } b\right\}
$$

What properties should reasonable voting rule satisfy?

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F\left(U_{.}, Y\right)$

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F\left(U_{.}, Y\right)$
- if everybody prefers x to y, y should not be chosen

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F(U ., Y)$
- if everybody prefers x to y, y should not be chosen
- Anonymity (A): suppose $\pi:[0,1] \rightarrow[0,1]$ measure-preserving permutation. If $U_{i}^{\pi}=U_{\pi(i)}$ for all i, then

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F(U ., Y)$
- if everybody prefers x to y, y should not be chosen
- Anonymity (A): suppose $\pi:[0,1] \rightarrow[0,1]$ measure-preserving permutation. If $U_{i}^{\pi}=U_{\pi(i)}$ for all i, then

$$
F\left(U_{.}^{\pi}, Y\right)=F\left(U_{.}, Y\right) \text { for all } Y
$$

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F(U ., Y)$
- if everybody prefers x to y, y should not be chosen
- Anonymity (A): suppose $\pi:[0,1] \rightarrow[0,1]$ measure-preserving permutation. If $U_{i}^{\pi}=U_{\pi(i)}$ for all i, then

$$
F\left(U_{.}^{\pi}, Y\right)=F\left(U_{.}, Y\right) \text { for all } Y
$$

- candidate chosen depends only on voters' preferences and not who has those preferences

What properties should reasonable voting rule satisfy?

- Pareto Property (P): if $U_{i}(x)>U_{i}(y)$ for all i and $x \in Y$, then $y \neq F(U ., Y)$
- if everybody prefers x to y, y should not be chosen
- Anonymity (A): suppose $\pi:[0,1] \rightarrow[0,1]$ measure-preserving permutation. If $U_{i}^{\pi}=U_{\pi(i)}$ for all i, then

$$
F\left(U_{.}^{\pi}, Y\right)=F\left(U_{.}, Y\right) \text { for all } Y
$$

- candidate chosen depends only on voters' preferences and not who has those preferences
- voters treated symmetrically
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation.
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation. If $U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y)$ for all x, y, i,
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation. If $U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y)$ for all x, y, i, then
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation. If $U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y)$ for all x, y, i, then

$$
F\left(U_{.}^{\rho, Y}, Y\right)=\rho\left(F\left(U_{.}, Y\right)\right) .
$$

- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation. If $U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y)$ for all x, y, i, then

$$
F\left(U_{.}^{\rho, Y}, Y\right)=\rho\left(F\left(U_{.}, Y\right)\right) .
$$

- candidates treated symmetrically
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation.

$$
\text { If } U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y) \text { for all } x, y, i,
$$ then

$$
F\left(U_{.}^{\rho, Y}, Y\right)=\rho\left(F\left(U_{.}, Y\right)\right) .
$$

- candidates treated symmetrically
- All four voting rules - plurality, majority, rank-order, utilitarian - satisfy P, A, N
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation.

$$
\text { If } U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y) \text { for all } x, y, i,
$$ then

$$
F\left(U^{\rho, Y}, Y\right)=\rho(F(U, Y)) .
$$

- candidates treated symmetrically
- All four voting rules - plurality, majority, rank-order, utilitarian - satisfy P, A, N
- Next axiom most controversial still
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation.

$$
\text { If } U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y) \text { for all } x, y, i,
$$ then

$$
F\left(U_{.}^{\rho, Y}, Y\right)=\rho\left(F\left(U_{.}, Y\right)\right) .
$$

- candidates treated symmetrically
- All four voting rules - plurality, majority, rank-order, utilitarian - satisfy P, A, N
- Next axiom most controversial still
- has quite compelling justification
- Neutrality (N): Suppose $\rho: Y \rightarrow Y$ permutation.

$$
\text { If } U_{i}^{\rho, Y}(\rho(x))>U_{i}^{\rho, Y}(\rho(y)) \Leftrightarrow U_{i}(x)>U_{i}(y) \text { for all } x, y, i,
$$ then

$$
F\left(U^{\rho, Y}, Y\right)=\rho(F(U, Y)) .
$$

- candidates treated symmetrically
- All four voting rules - plurality, majority, rank-order, utilitarian - satisfy P, A, N
- Next axiom most controversial still
- has quite compelling justification
- invoked by both Arrow (1951) and Nash (1950)
- Independence of Irrelevant Candidates (I):
- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F(U ., Y) \text { and } x \in Y^{\prime} \subseteq Y
$$

- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F(U ., Y) \text { and } x \in Y^{\prime} \subseteq Y
$$

then

- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F(U ., Y) \text { and } x \in Y^{\prime} \subseteq Y
$$

then

$$
x=F\left(U ., Y^{\prime}\right)
$$

- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F\left(U_{.}, Y\right) \text { and } x \in Y^{\prime} \subseteq Y
$$

then

$$
x=F\left(U ., Y^{\prime}\right)
$$

- if x chosen and some non-chosen candidates removed, x still chosen
- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F\left(U_{.}, Y\right) \text { and } x \in Y^{\prime} \subseteq Y
$$

then

$$
x=F\left(U ., Y^{\prime}\right)
$$

- if x chosen and some non-chosen candidates removed, x still chosen
- Nash formulation (rather than Arrow)
- Independence of Irrelevant Candidates (I):

$$
\text { if } x=F\left(U_{.}, Y\right) \text { and } x \in Y^{\prime} \subseteq Y
$$

then

$$
x=F\left(U ., Y^{\prime}\right)
$$

- if x chosen and some non-chosen candidates removed, x still chosen
- Nash formulation (rather than Arrow)
- no "spoilers" (e.g. Nader in 2000 U.S. presidential election, Le Pen in 2002 French presidential election)
- Majority rule and utilitarianism satisfy I, but others don't:
- Majority rule and utilitarianism satisfy I, but others don't:
- plurality rule

$$
\begin{array}{cccl}
\frac{.35}{x} & \frac{.33}{y} & \frac{.32}{z} & F^{P}(U .,\{x, y, z\})=x \\
y & z & y & \\
z & x & x & F^{P}(U .,\{x, y\})=y
\end{array}
$$

- Majority rule and utilitarianism satisfy I, but others don't:
- plurality rule

$$
\begin{array}{llll}
\frac{.35}{x} & \frac{.33}{y} & \frac{.32}{z} & F^{P}(U .,\{x, y, z\})=x \\
y & z & y & F^{p}(U .,\{x, y\})=y \\
z & x & x & y
\end{array}
$$

- rank-order voting

$$
\begin{array}{lll}
\frac{.55}{x} & \frac{.45}{y} & F^{B}(U .,\{x, y, z\})=y \\
y & z & F^{B}(U .,\{x, y\})=x
\end{array}
$$

Final Axiom:

Final Axiom:

- Nonmanipulability (NM):

Final Axiom:

- Nonmanipulability (NM):

$$
\text { if } x=F\left(U_{.}, Y\right) \text { and } x^{\prime}=F\left(U^{\prime}, Y\right) \text {, }
$$

where $U_{j}^{\prime}=U_{j}$ for all $j \notin C \subseteq[0,1]$

Final Axiom:

- Nonmanipulability (NM):

$$
\begin{aligned}
& \text { if } x=F\left(U_{.}, Y\right) \text { and } x^{\prime}=F\left(U^{\prime}, Y\right), \\
& \text { where } U_{j}^{\prime}=U_{j} \text { for all } j \notin C \subseteq[0,1]
\end{aligned}
$$

then

Final Axiom:

- Nonmanipulability (NM):

$$
\text { if } x=F(U ., Y) \text { and } x^{\prime}=F\left(U^{\prime}, Y\right),
$$

$$
\text { where } U_{j}^{\prime}=U_{j} \text { for all } j \notin C \subseteq[0,1]
$$

then

$$
U_{i}(x)>U_{i}\left(x^{\prime}\right) \text { for some } i \in C
$$

Final Axiom:

- Nonmanipulability (NM):
if $x=F(U ., Y)$ and $x^{\prime}=F\left(U^{\prime}, Y\right)$,
where $U_{j}^{\prime}=U_{j}$ for all $j \notin C \subseteq[0,1]$
then
$U_{i}(x)>U_{i}\left(x^{\prime}\right)$ for some $i \in C$
- the members of coalition C can't all gain from misrepresenting utility functions as U_{i}^{\prime}
- NM implies voting rule must be ordinal (no cardinal information used)
- NM implies voting rule must be ordinal (no cardinal information used)
- F is ordinal if whenever, for profiles U. and $U_{\text {. }}$,
- NM implies voting rule must be ordinal (no cardinal information used)
- F is ordinal if whenever, for profiles U. and $U_{\text {. }}$, $U_{i}(x)>U_{i}(y) \Leftrightarrow U_{i}^{\prime}(x)>U_{i}^{\prime}(y)$ for all i, x, y
- NM implies voting rule must be ordinal (no cardinal information used)
- F is ordinal if whenever, for profiles U. and $U_{\text {. }}^{\prime}$, $U_{i}(x)>U_{i}(y) \Leftrightarrow U_{i}^{\prime}(x)>U_{i}^{\prime}(y)$ for all i, x, y
(*) $\quad F(U ., Y)=F\left(U^{\prime}, Y\right)$ for all Y
- NM implies voting rule must be ordinal (no cardinal information used)
- F is ordinal if whenever, for profiles U. and $U_{.}^{\prime}$, $U_{i}(x)>U_{i}(y) \Leftrightarrow U_{i}^{\prime}(x)>U_{i}^{\prime}(y)$ for all i, x, y
(*) $\quad F(U ., Y)=F\left(U^{\prime}, Y\right)$ for all Y
- Lemma: If F satisfies NM, F ordinal
- NM implies voting rule must be ordinal (no cardinal information used)
- F is ordinal if whenever, for profiles U. and $U_{.}^{\prime}$, $U_{i}(x)>U_{i}(y) \Leftrightarrow U_{i}^{\prime}(x)>U_{i}^{\prime}(y)$ for all i, x, y
(*) $\quad F(U ., Y)=F\left(U^{\prime}, Y\right)$ for all Y
- Lemma: If F satisfies NM, F ordinal
- NM rules out utilitarianism

But majority rule also violates NM

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
.35 & \frac{.33}{x} & \frac{.32}{x} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & \frac{z}{z} & x & \\
z & x & y &
\end{array}
$$

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
.35 & \frac{.33}{x} & \frac{.32}{x} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & \frac{z}{z} & x & \\
z & x & y &
\end{array}
$$

- example of Condorcet cycle

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
.35 & \frac{.33}{x} & \frac{.32}{x} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & \frac{z}{z} & x & \\
z & x & y &
\end{array}
$$

- example of Condorcet cycle
- F^{C} must be extended to Condorcet cycles

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
.35 & \frac{.33}{x} & \frac{.32}{x} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & \frac{z}{z} & x & \\
z & x & y &
\end{array}
$$

- example of Condorcet cycle
- F^{C} must be extended to Condorcet cycles
- one possibility

$$
F^{C / B}(U ., Y)=\left\{\begin{array}{l}
F^{C}(U ., Y), \text { if nonempty } \\
F^{B}(U ., Y), \text { otherwise }
\end{array} \quad\right. \text { (Black's method) }
$$

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
\frac{.35}{x} & \frac{.33}{y} & \frac{.32}{z} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & z & x \\
z & x & y &
\end{array}
$$

- example of Condorcet cycle
- F^{C} must be extended to Condorcet cycles
- one possibility

$$
F^{C / B}(U ., Y)=\left\{\begin{array}{l}
F^{C}(U ., Y), \text { if nonempty } \\
F^{B}(U ., Y), \text { otherwise }
\end{array} \quad\right. \text { (Black's method) }
$$

- extensions make F^{C} vulnerable to manipulation

But majority rule also violates NM

- F^{C} not even always defined

$$
\begin{array}{cccc}
\frac{.35}{x} & \frac{.33}{y} & \frac{.32}{z} & F^{c}(U .,\{x, y, z\})=\varnothing \\
y & \frac{z}{z} & x &
\end{array}
$$

- example of Condorcet cycle
- F^{C} must be extended to Condorcet cycles
- one possibility

$$
F^{C / B}\left(U_{.}, Y\right)=\left\{\begin{array}{l}
F^{C}\left(U_{.}, Y\right), \text { if nonempty } \\
F^{B}\left(U_{.}, Y\right), \text { otherwise }
\end{array}\right.
$$

(Black's method)

- extensions make F^{C} vulnerable to manipulation

-	.35	$\frac{.33}{}$
x	$\frac{.32}{y}$	
y	z	x
z	x	y

$$
F^{C / B}(U .,\{x, y, z\})=x
$$

z
y
x

$$
F^{C / B}\left(U^{\prime},\{x, y, z\}\right)=z
$$

Theorem: There exists no voting rule satisfying P,A,N,I and NM

Theorem: There exists no voting rule satisfying P,A,N,I and NM

Proof: similar to that of GS

Theorem: There exists no voting rule satisfying P,A,N,I and NM

Proof: similar to that of GS

overly pessimistic - many cases in which some rankings unlikely

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

unlikely that many had ranking	Bush	Nader
Nader or	Bush	
	Gore	Gore

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

- strongly-felt candidate

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

unlikely that many had ranking	Bush	Nader
Nader or	Bush	
	Gore	Gore

- strongly-felt candidate
- in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

unlikely that many had ranking	Bush	Nader
Nader	Bush	
	Gore	Gore

- strongly-felt candidate
- in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
- voters didn’t feel strongly about Chirac and Jospin

Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked 2000 US election

unlikely that many had ranking	Bush	Nader
Nader or	Bush	
	Gore	Gore

- strongly-felt candidate
- in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
- voters didn’t feel strongly about Chirac and Jospin
- felt strongly about Le Pen (ranked him first or last)
- Voting rule F works well on domain \mathscr{U} if satisfies P,A,N,I,NM when utility functions restricted to \mathscr{U}
- Voting rule F works well on domain \mathscr{U} if satisfies P,A,N,I,NM when utility functions restricted to \mathscr{U}
- e.g., F^{C} works well when preferences single-peaked
- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{V} too.
- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{U} too.
- Conversely, suppose that F^{C} works well on \mathscr{V}^{C}.
- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{U} too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U° on \mathscr{U}^{C} such that

- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{V} too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U°. on \mathscr{U}^{C} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{c}\left(U_{.}^{\circ}, Y\right) \text { for some } Y,
$$

- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{V} too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U°. on \mathscr{U}^{C} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{c}\left(U_{.}^{\circ}, Y\right) \text { for some } Y
$$

there exists domain \mathscr{U}^{\prime} on which F^{C} works well but F does not

- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on $\mathscr{\mathscr { V }}$ too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U°. on \mathscr{U}^{C} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } Y
$$

there exists domain \mathscr{U}^{\prime} on which F^{C} works well but F does not

Proof: From NM and I, if F works well on \mathscr{U}, F must be ordinal

- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on $\mathscr{\mathscr { V }}$ too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U°. on \mathscr{U}^{C} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } Y
$$

there exists domain \mathscr{U}^{\prime} on which F^{C} works well but F does not

Proof: From NM and I, if F works well on \mathscr{U}, F must be ordinal

- Hence result follows from

Dasgupta-Maskin (2008), JEEA

- Theorem 1: Suppose F works well on domain \mathscr{U}, then F^{C} works well on \mathscr{V} too.
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C}.

Then if there exisits profile U°. on \mathscr{U}^{C} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{c}\left(U_{.}^{\circ}, Y\right) \text { for some } Y
$$

there exists domain \mathscr{U}^{\prime} on which F^{C} works well but F does not

Proof: From NM and I, if F works well on \mathscr{U}, F must be ordinal

- Hence result follows from

Dasgupta-Maskin (2008), JEEA

- shows that Theorem 1 holds when NM replaced by ordinality

To show this D-M uses

To show this D-M uses

Lemma: F^{C} works well on \mathscr{U} if and only if \mathscr{U} has no Condorcet cycles

To show this D-M uses

Lemma: F^{C} works well on \mathscr{U} if and only if \mathscr{U} has no Condorcet cycles

- Suppose F works well on

To show this D-M uses

Lemma: F^{C} works well on \mathscr{U} if and only if \mathscr{U} has no Condorcet cycles

- Suppose F works well on
- If F^{C} doesn't work well on \mathscr{U}, Lemma implies \mathscr{Z} must contain Condorcet cycle $\left.\begin{array}{ccc}x & y & z \\ & y & z\end{array}\right]$
- Consider
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z \\
z & x & x
\end{array}
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} \cdots \frac{n}{z} \\
z & x & z
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} \cdots \frac{n}{x} \\
z & x & z \\
z & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U_{.}^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ y & y & z & z \\ z & z & x & x \\ z & x & y & y\end{array}$
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} \cdots \frac{n}{z} \\
z & x & z \\
z
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U_{.}^{2}=\begin{array}{cccc}\frac{1}{x} & \underline{2} & \underline{3} & \underline{n} \\ y & y & z & z \\ z & z & x & x \\ z & x & y & y\end{array}$

$$
F\left(U_{.}^{2},\{x, y, z\}\right)=x \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right)\right.
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ x & y & z & z \\ z & z & x & x \\ z & x & y & y\end{array}$

$$
\begin{aligned}
& F\left(U_{.}^{2},\{x, y, z\}\right)=x \quad \text { (from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right) \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, y\}\right)=y, \text { contradicts }\left(^{*}\right)(\mathrm{A}, \mathrm{~N})\right.
\end{aligned}
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ x & y & z & z \\ y & z & x & x \\ z & x & y & y\end{array}$

$$
\begin{aligned}
& F\left(U_{.}^{2},\{x, y, z\}\right)=x \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right)\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, y\}\right)=y, \text { contradicts }(*)(\mathrm{A}, \mathrm{~N})\right.
\end{aligned}
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
z & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ x & y & z & z \\ y & z & x & x \\ z & x & y & y\end{array}$
$F\left(U_{.}^{2},\{x, y, z\}\right)=x \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, z\}\right)=x$, contradicts $(*)$
$F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, y\}\right)=y$, contradicts $(*)(\mathrm{A}, \mathrm{N})$

$$
F\left(U_{.}^{2},\{x, y, z\}\right)=z
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U_{.}^{2}=\begin{array}{cccc}\frac{1}{x} & \underline{2} & \underline{3} & \underline{n} \\ y & y & z & z \\ z & z & x & x \\ z & y & y\end{array}$

$$
\begin{aligned}
& F\left(U_{.}^{2},\{x, y, z\}\right)=x \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right)\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, y\}\right)=y, \text { contradicts }\left(^{*}\right)(\mathrm{A}, \mathrm{~N})\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=z
\end{aligned}
$$

- so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U_{.}^{2}=\begin{array}{cccc}\frac{1}{x} & \underline{2} & \underline{3} & \underline{n} \\ y & y & z & z \\ z & z & x & x \\ z & y & y\end{array}$
$F\left(U_{.}^{2},\{x, y, z\}\right)=x \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, z\}\right)=x$, contradicts $\left(^{*}\right)$
$F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, y\}\right)=y$, contradicts $(*)(\mathrm{A}, \mathrm{N})$

$$
F\left(U_{.}^{2},\{x, y, z\}\right)=z
$$

- \quad so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- so for
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \frac{n}{x} \\ y & z & z & z \\ z & x & y & x \\ y\end{array}$
$F\left(U_{.}^{2},\{x, y, z\}\right)=x \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, z\}\right)=x$, contradicts $\left(^{*}\right)$
$F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, y\}\right)=y$, contradicts $(*)(\mathrm{A}, \mathrm{N})$

$$
F\left(U_{.}^{2},\{x, y, z\}\right)=z
$$

- \quad so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- so for
$U_{.}^{3}=\begin{array}{ccccc}\frac{1}{x} & \underline{2} & \underline{3} & \cdots & \frac{n}{n} \\ z & z & z & & z \\ & & x & & x\end{array}$
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \frac{n}{x} \\ y & z & z & z \\ z & x & y & x \\ y\end{array}$
$F\left(U_{.}^{2},\{x, y, z\}\right)=x \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, z\}\right)=x$, contradicts $\left(^{*}\right)$
$F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\right.$ from I) $F\left(U_{.}^{2},\{x, y\}\right)=y$, contradicts $(*)(\mathrm{A}, \mathrm{N})$

$$
F\left(U_{.}^{2},\{x, y, z\}\right)=z
$$

- \quad so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- so for

$$
\begin{aligned}
& U^{3}=\begin{array}{ccccc}
\frac{1}{x} & \underline{2} & \underline{3} & \cdots & \frac{n}{z} \\
z & z & z & & x \\
& & x & & x
\end{array} \\
& F\left(U_{.}^{3},\{x, z\}\right)=z \quad(\mathrm{~N})
\end{aligned}
$$

- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $\quad U^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ x & y & z & z \\ y & z & x & x \\ z & x & y & y\end{array}$

$$
\begin{aligned}
& F\left(U_{.}^{2},\{x, y, z\}\right)=x \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right)\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, y\}\right)=y, \text { contradicts }\left(^{*}\right)(\mathrm{A}, \mathrm{~N})\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=z
\end{aligned}
$$

- \quad so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- so for

$$
\begin{aligned}
& U^{3}=\begin{array}{ccccc}
\frac{1}{x} & \underline{2} & \underline{3} & \cdots & \frac{n}{z} \\
z & z & z & & x \\
& & x & & x
\end{array} \\
& F\left(U_{.}^{3},\{x, z\}\right)=z \quad(\mathrm{~N})
\end{aligned}
$$

- Continuing in the same way, let $U_{.}^{4}=\begin{array}{ccc}\frac{1}{x} & \cdots & \frac{n-1}{x} \\ z & \frac{n}{z} \\ z & z & x\end{array}$
- Consider

$$
U_{.}^{1}=\begin{array}{ccc}
\frac{1}{x} & \underline{2} & \cdots \\
x & z & z \\
z & x & x
\end{array}
$$

$\left(^{*}\right) \quad$ Suppose $F\left(U_{.}^{1},\{x, z\}\right)=z$

- $U_{.}^{2}=\begin{array}{cccc}\underline{1} & \underline{2} & \underline{3} & \underline{n} \\ y & y & z & z \\ z & z & x & x \\ z & x & y & y\end{array}$

$$
\begin{aligned}
& F\left(U_{.}^{2},\{x, y, z\}\right)=x \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, z\}\right)=x, \text { contradicts }\left(^{*}\right)\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=y \quad \Rightarrow\left(\text { from I) } F\left(U_{.}^{2},\{x, y\}\right)=y, \text { contradicts }\left({ }^{*}\right)(\mathrm{A}, \mathrm{~N})\right. \\
& F\left(U_{.}^{2},\{x, y, z\}\right)=z
\end{aligned}
$$

- \quad so $F\left(U_{.}^{2},\{y, z\}\right)=z \quad$ (I)
- so for

$$
\begin{aligned}
U_{.}^{3}= & \left.\begin{array}{ccccc}
\frac{1}{x} & \frac{2}{x} & \frac{3}{z} & \cdots & \frac{n}{z} \\
z & z & x & x \\
& F\left(U_{.}^{3},\{x, z\}\right)=z \quad(N)
\end{array}, \begin{array}{lll}
& &
\end{array}\right)
\end{aligned}
$$

- Continuing in the same way, let $U_{.}^{4}=\begin{array}{ccc}\frac{1}{x} & \cdots & \frac{n-1}{x} \\ & \frac{n}{z} \\ z & z & x\end{array}$

$$
F\left(U_{.}^{4},\{x, z\}\right)=z, \text { contradicts }\left({ }^{*}\right)
$$

- So F can’t work well on \mathscr{U} with Condorcet cycle
- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and
- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- Then there exist α with $1-\alpha>\alpha$ and
- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- Then there exist α with $1-\alpha>\alpha$ and

$$
U_{.}^{\circ}=\frac{1-\alpha}{x} \quad \frac{\alpha}{y} \begin{gathered}
\frac{\alpha}{y}
\end{gathered}
$$

- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- Then there exist α with $1-\alpha>\alpha$ and

$$
U_{.}^{\circ}=\frac{1-\alpha}{x} \quad \frac{\alpha}{y}
$$

such that

- So F can’t work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- Then there exist α with $1-\alpha>\alpha$ and

$$
U_{.}^{\circ}=\frac{1-\alpha}{x} \quad \frac{\alpha}{y}
$$

such that

$$
x=F^{C}\left(U_{.}^{\circ},\{x, y\}\right) \text { and } y=F\left(U_{.}^{\circ},\{x, y\}\right)
$$

- So F can't work well on \mathscr{U} with Condorcet cycle
- Conversely, suppose that F^{C} works well on \mathscr{U}^{C} and

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{C}\left(U_{.}^{\circ}, Y\right) \text { for some } U_{.}^{\circ} \text { and } Y
$$

- Then there exist α with $1-\alpha>\alpha$ and

$$
U_{.}^{\circ}=\frac{1-\alpha}{x} \quad \frac{\alpha}{y}
$$

such that

$$
x=F^{C}\left(U_{.}^{\circ},\{x, y\}\right) \text { and } y=F\left(U_{.}^{\circ},\{x, y\}\right)
$$

- But not hard to show that F^{C} unique voting rule satisfying P,A,N, and NM when $|X|=2-$ - contradiction
- Let's drop I
- Let's drop I
- most controversial
- Let's drop I
- most controversial
- no voting rule satisfies $\mathrm{P}, \mathrm{A}, \mathrm{N}, \mathrm{NM}$ on \mathscr{U}_{X}
- Let's drop I
- most controversial
- no voting rule satisfies $\mathrm{P}, \mathrm{A}, \mathrm{N}, \mathrm{NM}$ on \mathscr{U}_{X}
- GS again
- Let's drop I
- most controversial
- no voting rule satisfies $\mathrm{P}, \mathrm{A}, \mathrm{N}, \mathrm{NM}$ on \mathscr{U}_{X}
- GS again
- F works nicely on \mathscr{U} if satisfies P,A,N,NM on \mathscr{U}

Theorem 2:

Theorem 2:

- Suppose F works nicely on $\mathscr{\mathscr { U }}$, then F^{C} or F^{B} works nicely on \mathscr{U} too.

Theorem 2:

- Suppose F works nicely on $\mathscr{\mathscr { U }}$, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}. Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}. Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}. Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}. Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{V}^{*} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{\text {. }}^{\circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain
- F^{B} works nicely only when \mathscr{U} is subset of Condorcet cycle

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{\text {. }}^{\circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain
- F^{B} works nicely only when \mathscr{U} is subset of Condorcet cycle
- so F^{C} and F^{B} complement each other

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain
- F^{B} works nicely only when \mathscr{U} is subset of Condorcet cycle
- so F^{C} and F^{B} complement each other
- if F works nicely on \mathscr{U} and \mathscr{U} doesn't contain Condorcet cycle, F^{C} works nicely too

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not
Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain
- F^{B} works nicely only when \mathscr{U} is subset of Condorcet cycle
- so F^{C} and F^{B} complement each other
- if F works nicely on \mathscr{U} and \mathscr{U} doesn't contain Condorcet cycle, F^{C} works nicely too
- if F works nicely on \mathscr{U} and \mathscr{U} contains Condorcet cycle, then $\mathscr{\mathscr { U }}$ can't contain any other ranking (otherwise no voting rule works nicely)

Theorem 2:

- Suppose F works nicely on \mathscr{U}, then F^{C} or F^{B} works nicely on \mathscr{U} too.
- Conversely suppose F^{*} works nicely on \mathscr{U}^{*}, where $F^{*}=F^{C}$ or F^{B}.

Then, if there exisits profile $U_{.}^{\circ \circ}$ on \mathscr{U}^{*} such that

$$
F\left(U_{.}^{\circ \circ}, Y\right) \neq F^{*}\left(U_{.}^{\circ \circ}, Y\right) \text { for some } Y \text {, }
$$

there exists domain \mathscr{U}^{\prime} on which F^{*} works nicely but F does not

Proof:

- F^{C} works nicely on any Condorcet-cycle-free domain
- F^{B} works nicely only when \mathscr{U} is subset of Condorcet cycle
- so F^{C} and F^{B} complement each other
- if F works nicely on \mathscr{U} and \mathscr{U} doesn't contain Condorcet cycle, F^{C} works nicely too
- if F works nicely on \mathscr{U} and \mathscr{U} contains Condorcet cycle, then $\mathscr{\mathscr { V }}$ can't contain any other ranking (otherwise no voting rule works nicely)
- so F^{B} works nicely on थ .

Striking that the 2 longest-studied voting rules (Condorcet and Borda) are also

Striking that the 2 longest-studied voting rules (Condorcet and Borda) are also

- only two that work nicely on maximal domains

