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Overview

• Robust inference on a slope coeffi cient(s) in a linear IV regression

• "Robust" means uniform control of null rejection probability over all "em-
pirically relevant" parameter constellations

• "Weak instruments"

— pervasive in applied research (Angrist and Krueger, 1991)

— adverse effect on estimation and inference (Dufour, 1997; Staiger and
Stock 1997)



• Large literature on "robust inference" for the full parameter vector

• Here: Consider subvector inference in the linear IV model, allowing for
weak instruments

• First assume homoskedasticity

— then relax to general Kronecker-Product structure

— then allow for arbitrary forms of heteroskedasticity

• Presentation based on two papers; one being "A more powerful subvector
Anderson Rubin test in linear instrumental variables regression"



• Focus on the Anderson and Rubin (AR, 1949) subvector test statistic:

— "History of critical values":

— Projection of AR test (Dufour and Taamouti, 2005)

— Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) pro-
vide power improvement:

Using χ2
k−mW ,1−α as critical value, rather than χ

2
k,1−α still controls

asymptotic size

"Worst case" occurs under strong identification

• HERE: consider a data-dependent critical value that adapts to strength
of identification



• Show: controls finite sample/asymptotic size & has uniformly higher
power than method in GKMC

• One additional main contribution : computational ease

• Implication: Test in GKMC is "inadmissible"



Presentation

• Introduction: X

• finite sample case

a) mW = 1 : motivation, correct size, power analysis (near optimality
result)

b) mW > 1 : correct size, uniform power improvement over GKMC

c) refinement



• asymptotic case:

a) homoskedasticity

b) general Kronecker-Product structure

c) general case (arbitrary forms of heteroskedasticity)



Model and Objective (finite sample case)

y = Y β +Wγ + ε,

Y = ZΠY + VY ,

W = ZΠW + VW ,

y ∈ Rn, Y ∈ Rn×mY (end or ex),W ∈ Rn×mW (end), Z ∈ Rn×k (IVs)

• Reduced form:

(y ... Y ... W ) = Z (ΠY
... ΠW )

(
β

γ
...
ImY

0
...

0

ImW

)
+ (vy

... VY
... VW )︸ ︷︷ ︸

V

,

where vy := ε+ VY β + VWγ.

• Objective: test

H0 : β = β0 versus H1 : β 6= β0.



s.t. size bounded by nominal size & "good" power

Parameter space:

1. The reduced form error satisfies:

Vi ∼ i.i.d. N (0,Ω) , i = 1, ..., n,

for some Ω ∈ R(m+1)×(m+1) s.t. the variance matrix of (Y 0i, V
′
Wi)
′ for

Y 0i = yi − Y ′i β0 = W ′iγ + εi, namely

Ω (β0) =

 1 0
−β0 0

0 ImW


′

Ω

 1 0
−β0 0

0 ImW


is known and positive definite.

2. Z ∈ Rn×k fixed, and Z′Z > 0 k × k matrix.



• Note: no restrictions on reduced form parameters ΠY and ΠW → allow
for weak IV



• Several robust tests available for full vector inference

H0 : β = β0, γ = γ0 vs H1 : not H0

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleiber-
gen (2002), Moreira (2003, 2009).

• Optimality properties: Andrews, Moreira, and Stock (2006), Andrews,
Marmer, and Yu (2018), and Chernozhukov, Hansen, and Jansson (2009)



Subvector procedures

• Projection: "inf" test statistic over parameter not under test, same critical
value → "computationally hard" and "uninformative"

• Bonferroni and related techniques: Staiger and Stock (1997), Chaud-
huri and Zivot (2011), McCloskey (2012), Zhu (2015), Andrews (2017),Wang
and Tchatoka (2018) ...; often computationally hard, power ranking with
projection unclear

• Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong identification of parameters not under test.



• GMM models: Andrews, I. and Mikusheva (2016)

• Models defined by moment inequalities: Gafarov (2016), Kaido, Molinari,
and Stoye (2016), Bugni, Canay, and Shi (2017), ...



The Anderson and Rubin (1949) test

• AR test stat for full vector hypothesis

H0 : β = β0, γ = γ0 vs H1 : not H0

• AR statistic exploits EZiεi = 0

• AR test stat:

ARn(β0, γ0) =
(y − Y β0 −Wγ0)′PZ(y − Y β0 −Wγ0)(

1 ... − β′0
... − γ′0

)
Ω
(

1 ... − β′0
... − γ′0

)′

• AR stat is distri. as χ2
k under null hypothesis; critical value χ

2
k,1−α



• Subvector AR statistic for testing H0 is given by

ARn (β0) = min
γ∈RmW

(Y 0 −Wγ)′PZ(Y 0 −Wγ)(
1 ... − β′0

... − γ′
)

Ω
(
1 ... − β′0

... − γ′
),

where again Y 0 = y − Y β0.

• Alternative representation (using κmin(A) = minx,||x||=1 x
′Ax):

ARn (β0) = κ̂p,

where κ̂i for i = 1, ..., p = 1 +mW be roots of characteristic polynomial
in κ ∣∣∣∣κIp − Ω (β0)−1/2

(
Y 0

... W
)′
PZ

(
Y 0

... W
)

Ω (β0)−1/2
∣∣∣∣ = 0,

ordered non-increasingly



• When using χ2
k,1−α critical values, as for projection, trivially, test has

correct size;

GKMC show that this is also true for χ2
k−mW ,1−α critical values



• Next show: AR statistic is the minimum eigenvalue of a non-central
Wishart matrix

• For par space above, the roots κ̂i solve

0 =
∣∣∣κ̂iI1+mW

− Ξ′Ξ
∣∣∣ , i = 1, ..., p = 1 +mW ,

where

Ξ ∼ N (M, Ik ⊗ Ip) ,

and M is a k × p.

• Under H0, the noncentrality matrix becomes M =
(

0k,ΘW

)
, where

ΘW =
(
Z′Z

)1/2
ΠWΣ

−1/2
VWVW .ε

,

ΣVWVW .ε = ΣVWVW − Σ′εVWσ
−1
εε ΣεVW



and (
σεε ΣεVW

Σ′εVW ΣVWVW

)
=

 1 0
−β0 0
−γ ImW


′

Ω

 1 0
−β0 0
−γ ImW



• Summarizing, under H0 the p× p matrix

Ξ′Ξ ∼W
(
k, Ip,M

′M
)
,

has non-central Wishart with noncentrality matrix

M ′M =

(
0 0
0 Θ′WΘW

)
and

ARn (β0) = κmin(Ξ′Ξ)



• The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M ′M .

• Hence, distribution of κ̂i only depends on the eigenvalues of Θ′WΘW , κi
say, i = 1, . . . ,mW and κ = (κ1, ..., κmW )′

• When mW = 1, κ = κ1 = Θ′WΘW is scalar.



Figure 1: The cdf of the subset AR statistic with k = 3 instruments, for
different values of κ1 = 5, 10, 15, 100

Theorem: Suppose mW = 1. Then, under the null hypothesis H0 : β = β0,
the distribution function of the subvector AR statistic, ARn (β0) , is monoton-
ically decreasing in the parameter κ1.



New critical value for subvector Anderson and Rubin test: mW = 1

• Relevance: If we knew κ1 we could implement the subvector AR test with
a smaller critical value than χ2

k−mW ,1−α which is the critical value in the
case when κ1 is "large".

• Muirhead (1978): Under null, when κ1 "is large", the larger root κ̂1 (which
measures strength of identification) is a suffi cient statistic for κ1

• More precisely: the conditional density of ARn (β0) = κ̂2 given κ̂1 can
be approximated by

fκ̂2|κ̂1
(x) ∼ fχ2

k−1
(x) (κ̂1 − x)1/2 g (κ̂1) ,



where fχ2
k−1

is the density of a χ2
k−1 and g is a function that does not

depend on κ1.

• Analytical formula for g

• The new critical value for the subvector AR-test at significance level 1−α
is given by

1− α quantile of (approximation of ARn given κ̂1)

• Denote cv by

c1−α(κ̂1, k −mW )

Depends only on α, k −mW , and κ̂1



• Conditional quantiles can be computed by numerical integration

• Conditional critical values can be tabulated→ implementation of new test
is trivial and fast

• They are increasing in κ̂1 and converging to quantiles of χ2
k−1

• We find, by simulations over fine grid of values of κ1, that new test

1(ARn (β0) > c1−α(κ̂1, k −mW ))

controls size

• It improves on the GKMC procedure in terms of power



• Theorem: Suppose mW = 1. The new conditional subvector Anderson
Rubin test has correct size under the assumptions above.

• Proof partly based on simulations; Verified for e.g. α ∈ {1%, 5%, 10%}
and k −mW ∈ {1, ..., 20} .

• Summary mW = 1: the cond’l test rejects when

κ̂2 > c1−α(κ̂1, k − 1),

where (κ̂1, κ̂2) are the eigenvalues of 2×2matrix Ξ′Ξ ∼W
(
k, Ip,M ′M

)
;

Under the null M ′M is of rank 1; test has size α
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Table of conditional critical values cv=c1−α(κ̂1, k −mW )

α = 5%, k −mW = 4
κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv
0.22 0.2 2.00 1.8 3.92 3.4 6.10 5.0 8.95 6.6 14.46 8.2
0.44 0.4 2.23 2.0 4.17 3.6 6.41 5.2 9.40 6.8 15.88 8.4
0.65 0.6 2.46 2.2 4.43 3.8 6.73 5.4 9.89 7.0 17.85 8.6
0.87 0.8 2.70 2.4 4.69 4.0 7.05 5.6 10.42 7.2 20.89 8.8
1.10 1.0 2.94 2.6 4.96 4.2 7.39 5.8 11.01 7.4 26.42 9.0
1.32 1.2 3.18 2.8 5.24 4.4 7.75 6.0 11.68 7.6 39.82 9.2
1.54 1.4 3.42 3.0 5.52 4.6 8.13 6.2 12.44 7.8 114.76 9.4
1.77 1.6 3.67 3.2 5.81 4.8 8.52 6.4 13.35 8.0 +.Inf 9.5

* For simplicity of implementation we suggest linear interpolation of tabulated
cvs; we verify resulting test has correct size
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Extension to mW > 1

We define a new subvector Anderson Rubin test that rejects when

ARn (β0) > c1−α(κmax

(
Ξ′Ξ

)
, k −mW ).

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem: The test above has i) correct size and ii) has uniformly larger
power than the test in GKMC.

Lemma: Under the nullH0 : β = β0, there exists a random matrix O ∈ O(p),

such that for

Ξ̃ := ΞO ∈ Rk×p, and its upper left submatrix Ξ̃11 ∈ Rk−mW+1×2



Ξ̃′11Ξ̃11 is a non-central Wishart 2 × 2 matrix of order k −mW + 1 (cond’l
on O), whose noncentrality matrix, M̃ ′1M̃1 say, is of rank 1;

Proof of Theorem:

(i) Note that

ARn (β0) = κmin

(
Ξ′Ξ

)
= κmin

(
Ξ̃′Ξ̃

)
≤ κmin

(
Ξ̃′11Ξ̃11

)
≤ κmax

(
Ξ̃′11Ξ̃11

)
≤ κmax

(
Ξ̃′Ξ̃

)
= κmax

(
Ξ′Ξ

)
(1)

and thus

P (ARn (β0) > c1−α(κmax

(
Ξ′Ξ

)
, k −mW ))

≤ P (κmin

(
Ξ̃′11Ξ̃11

)
> c1−α(κmax

(
Ξ̃′11Ξ̃11

)
, k −mW ))

= P (κ2

(
Ξ̃′11Ξ̃11

)
> c1−α(κ1

(
Ξ̃′11Ξ̃11

)
, k −mW ))

≤ α,



where first inequality follows from (1) and last inequality from correct size for
mW = 1 (by conditionning on O) and the lemma

Recall summary when mW = 1: new test rejects when

κ̂2 > c1−α(κ̂1, k − 1)

where (κ̂1, κ̂2) are the eigenvalues of Ξ′Ξ ∼W
(
k, I2,M

′M
)
and M ′M is of

rank 1 under the null

(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1−α(·, k −mW )) is increasing and converging to χ2

k−mW ,1−α as argument
goes to infinity), i.e. the test in GKMC is inadmissible



Power analysis of tests based on (κ̂1, ..., κ̂p)

• For A = E
[
Z′ (y − Y β0

... W )
]
∈ Rk×p, consider

H ′0 : ρ (A) ≤ mW versus H ′1 : ρ (A) = p = mW + 1

• H0 : β = β0 implies H
′
0 but the converse is not true:

— H ′0 holds iff [ρ (ΠW ) < mW or ΠY (β − β0) ∈ span(ΠW )]

• UnderH ′0, (κ̂1, ..., κ̂p) are distributed as eigenvalues of WishartW
(
k, Ip,M ′M

)
with rank deficient noncentrality matrix - a distribution that appears also
under H0



• Thus, every test ϕ(κ̂1, ..., κ̂p) ∈ [0, 1] that has size α under H0 must
also have size α under H ′0 - so cannot have power exceeding size under
alternatives H ′0\H0.

• In other words, size α tests ϕ(κ̂1, ..., κ̂p) underH0 can only have nontrivial
power under alternatives ρ (A) = p.

• We use this insight to derive a power envelope for tests of the form
ϕ (κ̂1, ..., κ̂p) .



Power bounds

• Consider only the case mW = 1.

• Equivalently, H ′0 : κ2 = 0, κ1 ≥ κ2 against H ′1 : κ2 > 0, κ1 ≥ κ2.

• Obtain point-optimal power bounds using approximately least favorable
distribution ΛLF over nuisance parameter κ1 based on algorithm in Elliott,
Müller, and Watson (2015)



P o we r o f ϕ c  m inus  po wer bo und

κ 2

κ
1 − κ

2

10 20 30
25

50
75

­0
.0

2
­0

.0
1

0

p ow er bound
ϕ c
ϕ G K M C

0 5 1 0 1 5 2 0 2 5 3 0

0 .5

1 .0 P o wer  curves  when κ 1 = κ 2

κ 2

p ow er bound
ϕ c
ϕ G K M C

Power of conditional subvector AR test ϕc (κ̂) = 1{κ̂2>c1−α(κ̂1,k−1)} relative to power
bound (left) and power of ϕc, ϕGKMC (κ̂) = 1{
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and bound at κ1 = κ2 (right) for k = 5. Computed using 10000 MC replications.



• Little scope for power improvement over proposed test. But not zero
scope...:

Refinement: For the case k = 5, mW = 1, and α = 5%, let ϕadj be the test
that uses the critical values in Table above where the smallest 8 critical values
are divided by 5



Asymptotic case: a) homoskedasticity

• Define parameter space F under the null hypothesis H0 : β = β0.

Let Ui := (εi + V ′W,iγ, V
′
W,i)

′ and F distribution of (Ui, VY i, Zi)

F is set of all (γ,ΠW ,ΠY , F ) s.t.

γ ∈ RmW ,ΠW ∈ Rk×mW ,ΠY ∈ Rk×mY ,

EF (||Ti||2+δ) ≤M, for Ti ∈ {vec(ZiUi), Zi, Ui},
EF (Zi(εi, V

′
Wi, V

′
Y i)) = 0,

EF (vec(ZiU
′
i)(vec(ZiU

′
i))′) = (EF (UiU

′
i)⊗ EF (ZiZ

′
i)),

κmin(A) ≥ δ for A ∈ {EF (ZiZ
′
i), EF (UiU

′
i)}

for some δ > 0, M <∞

• Note: no restriction is imposed on the variance matrix of vec(ZiV ′Y i)



• subvector AR stat equals smallest solution of∣∣∣∣∣∣κ̂I1+mW
− (

Y
′
MZY

n− k
)−1/2(Y

′
PZY )(

Y
′
MZY

n− k
)−1/2

∣∣∣∣∣∣ = 0

where

Y := (y − Y β0
... W ) ∈ Rn×(1+mW )

• Note: Same as in finite sample case with Ω (β0) replaced by Y
′
MZY
n−k

• critical value is again

c1−α(κ̂1, k −mW )

the 1− α quantile of (the approximation of) ARn given κ̂1



• Theorem: The new subvector AR test has correct asymptotic size for
parameter space F .

• Again, part of the proof is based on simulations.



Asymptotic case: b) general Kronecker Product Structure

• For Ui := (εi + V ′W,iγ, V
′
W,i)

′, p := 1 +mW , and m := mY +mW let

FKP = {(γ,ΠW ,ΠY , F ) : γ ∈ <mW ,ΠW ∈ <k×mW ,ΠY ∈ <k×mY ,

EF (||Ti||2+δ1) ≤ B, for Ti ∈ {vec(ZiU ′i), vec(ZiZ′i)},
EF (ZiV

′
i ) = 0k×(m+1), EF (vec(ZiU

′
i)(vec(ZiU

′
i))′) = G1⊗G2,

κmin(A) ≥ δ2 for A ∈ {EF
(
ZiZ

′
i

)
, G1, G2}}

for pd G1 ∈ <p×p (whose upper left element is normalized to 1) and
G2 ∈ <k×k and δ1, δ2 > 0, B <∞

• Covers homoskedasticity, but also cases of (cond) heteroskedasticity



Example. Take (ε̃i, Ṽ
′
Wi)
′ ∈ <p i.i.d. zero mean with pd variance matrix,

independent of Zi, and

(εi, V
′
Wi)
′ := f(Zi)(ε̃i, Ṽ

′
Wi)
′

for some scalar valued function f of Z, e.g. f(Zi) = ||Zi||/k1/2. Then

EF (vec(ZiU
′
i)(vec(ZiU

′
i))′)

=EF
(
UiU

′
i ⊗ ZiZ′i

)
=EF

(
(εi + V ′W,iγ, V

′
W,i)

′(εi + V ′W,iγ, V
′
W,i)⊗ ZiZ

′
i

)
=EF

(
(ε̃i + Ṽ ′W,iγ, Ṽ

′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

)
⊗ EF

(
f(Zi)

2ZiZ
′
i

)
has KP structure even though

EF (UiU
′
i|Zi) = f(Zi)

2EF (ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

depends on Zi.



• Modified AR subvector statistic. Estimate EF (UiU
′
i ⊗ ZiZ′i) by

R̂n := n−1
n∑
i=1

fif
′
i ∈ <kp×kp, where

fi := ((MZ(y − Y β0))i, (MZW )′i)
′ ⊗ Zi ∈ <kp.

• Let

(Ĝ1, Ĝ2) = arg min ||G1 ⊗G2 − R̂n||F ,

where the minimum is taken over (G1, G2) for G1 ∈ <p×p, G2 ∈ <k×k
being pd, symmetric matrices, normalized such that the upper left element
of G1 equals 1. Estimators are unique and given in closed form.

• The subvector AR statistic, ARKP,n(β0) is defined it as the smallest
root κ̂pn of the roots κ̂in, i = 1, ..., p (ordered nonincreasingly) of the



characteristic polynomial∣∣∣∣κ̂Ip − n−1Ĝ
−1/2
1

(
Y 0,W

)′
ZĜ−1

2 Z′
(
Y 0,W

)
Ĝ
−1/2
1

∣∣∣∣ = 0.

• Note: Relative to previous definition,

Ĝ1 replaces
Y
′
MZY
n−k and Ĝ2 replaces

Z′Z
n

• The conditional subvector ARKP test rejects H0 at nominal size α if

ARKP,n(β0) > c1−α(κ̂1n, k −mW ),

where c1−α (·, ·) is defined as above.



Theorem: The conditional subvector ARKP test implemented at nominal size
α has asymptotic size, i.e.

lim sup
n→∞

sup
(γ,ΠW ,ΠY ,F )∈FKP

P(β0,γ,ΠW ,ΠY ,F )(ARAKP,n(β0) > c1−α(κ̂1n, k−mW ))

equal to α.



Asymptotic case: c) General forms of Hetero

• Perform a Wald type pretest based on Ĝ1 ⊗ Ĝ2 − R̂n to test the null of
Kronecker Product structure

• If pretest rejects continue with a robust (to hetero and weak IV) subvector
procedure, like the AR type tests proposed in Andrews (2017)

• Otherwise, continue with the test ARKP test

• Resulting test has correct asymptotic size no matter what the pretest nom-
inal size is



• Reasons:

— pretest is consistent against deviations from null for which

n1/2 min ||G1 ⊗G2 − EF (UiU
′
i ⊗ ZiZ′i)|| → ∞

and the AR type tests in Andrews (2017) have correct asymptotic size

— when

n1/2 min ||G1 ⊗G2 − EF (UiU
′
i ⊗ ZiZ′i)|| = O(1)

the conditional subvector ARKP test has correct asymptotic size and
rejects whenever the AR type test in Andrews (2017) rejects.



Asymptotic Size: General theory

• Distinction between pointwise (asymptotic) null rejection probability and
(asymptotic) size

“Discontinuity” in limiting distribution of test statistic

Staiger and Stock (1997): simplified version of linear IV model with one IV

y1 = y2θ + u,

y2 = Zπ + v

Let λn = (λ1n, λ2n, λ3n) be sequence of parameters s.t. λ3n = (Fn, πn)

λ1n = (EZ2
i )1/2π/σv and λ2n = corr(ui, vi)



satisfies

hn,1(λn) = n1/2λ1n → h1 <∞ and hn,2(λn) = λ2n → h2.

We will denote such a sequence λn by λn,h.

Work out limiting distribution of 2SLS under λn,h :

σv

σu
(θ̂2SLS − θ) =

σv

σu

y′2PZu
y′2PZy2

=
(n−1Z′Z)−1/2n−1/2Z′u/σu
(n−1Z′Z)−1/2n−1/2Z′y2/σv

=
(n−1Z′Z)−1/2n−1/2Z′u/σu

(n−1Z′Z)1/2n1/2π/σv + (n−1Z′Z)−1/2n−1/2Z′v/σv

→ d
zu,h2

h1 + zv,h2

, where

(
zu,h2
zv,h2

)
∼ N(0,Σh2

) and Σh2
=

(
1 h2
h2 1

)



• Similarly for t test statistic Tn(θ0) :

Tn(θ0)→d Jh

for h = (h1, h2) under the parameter sequence λn,h.

• So, to implement the test, we should take the 1 − α-quantile ch(1 − α)

of Jh as the critical value

• If we implement a test using a Wald statistics with chi-square critical
values, the asymptotic size is 1, see Dufour (1997)

• Problem: we cannot consistently estimate h; we can only estimate consis-
tently λ1n



• (h1, h2) takes on values in H = (R ∪ {±∞})× [−1, 1]

• We say the limit distribution of Tn(θ0) “depends discontinuously on
nuisance parameter λ1”and continuously on λ2

Continuity: when x→ x0 then f(x)→ f(x0)

Here (EZ2
i )1/2π/σv → 0, but limit of Tn(θ0) does not just depend on 0

• Situation arises frequently in applied econometrics and leads to size distor-
tion for various "classical" inference procedures:

weak IVs/identification, use of pretests, moment inequalities, (nuisance)
parameters on boundary, inference in (V)ARs with unit root(s)



General Theory: Asymptotic Size of Tests

• {ϕn : n ≥ 1} sequence of tests for null hypothesis H0

• λ indexes the true null distribution of the observations

• Parameter space for λ is some space Λ

• RPn(λ) denotes rejection probability of ϕn under λ

• The asymptotic size of ϕn for the parameter space Λ is defined as:

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ)



Formula for Calculation of AsySz
Recall relevance of limits of hn,1(λn) = n1/2λ1n = n1/2(EZ2

i )1/2π/σv and
hn,2(λn) = λ2n = corr(ui, vi) for limit distributions of test statistics in weak
IV example

Generalizing, let

{hn(λ) = (hn,1(λ), ..., hn,J(λ))′ ∈ RJ : n ≥ 1}
be a sequence of functions on Λ, where hn,j(λ) ∈ R ∀j = 1, ..., J.

For any subsequence {pn} of {n} and h ∈ (R ∪ {±∞})J denote a sequence
{λpn ∈ Λ : n ≥ 1} such that hpn(λpn)→ h by

λpn,h

Define

H = {h ∈ (R∪{±∞})J : there is subsequence {pn} and sequence λpn,h}.



Theorem, Andrews, Cheng, and Guggenberger (2011)

Assume that under any sequence λpn,h

RPpn(λpn,h)→ RP (h)

for some RP (h) ∈ [0, 1]. Then:

AsySz = sup
h∈H

RP (h).

Proof. i) Let h ∈ H. To show AsySz ≥ RP (h). By definition of H, there is
λpn,h. Then

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ)

≥ lim sup
n→∞

RPpn(λpn,h)

= RP (h)



Proof. (continued)

ii) To show AsySz ≤ suph∈H RP (h). Let {λn ∈ Λ : n ≥ 1} be a sequence
such that

lim sup
n→∞

RPn(λn) = AsySz.

Let {pn : n ≥ 1} be a subsequence of {n} such that limn→∞RPpn(λpn)

exists and equals AsySz and hpn(λpn) → h. Therefore this sequence is of
type λpn,h, and thus, by assumption, RPpn(λpn) → RP (h). Because also
RPpn(λpn)→ AsySz, it follows that AsySz = RP (h). �



Specification of λ for subvector Anderson and Rubin test

• Given F let

WF := (EFZiZ
′
i)

1/2 and UF := Ω(β0)−1/2.

• Consider a singular value decomposition

CFΛFB
′
F

of

WF (ΠWγ,ΠW )UF

• i.e. BF denote a p× p orthogonal matrix of eigenvectors of

U ′F (ΠWγ,ΠW )′W ′FWF (ΠWγ,ΠW )UF



and CF denote a k × k orthogonal matrix of eigenvectors of

WF (ΠWγ,ΠW )UFU
′
F (ΠWγ,ΠW )′W ′F

• ΛF denotes a k × p diagonal matrix with singular values (τ1F , ..., τpF )

on diagonal, ordered nonincreasingly

• Note τpF = 0



• Define the elements of λF to be

λ1,F : = (τ1F , ..., τpF )′ ∈ Rp,
λ2,F : = BF ∈ Rp×p,
λ3,F : = CF ∈ Rk×k,
λ4,F : = WF ∈ Rk×k,
λ5,F : = UF ∈ Rp×p,
λ6,F : = F,

λF : = (λ1,F , ..., λ9,F ).

• A sequence λn,h denotes a sequence λFn such that (n1/2λ1,Fn, ..., λ5,Fn)→
h = (h1, ..., h5)

• Let q = qh ∈ {0, ..., p− 1} be such that

h1,j =∞ for 1 ≤ j ≤ qh and h1,j <∞ for qh + 1 ≤ j ≤ p− 1



• Roughly speaking, need to compute asy null rej probs under seq’s with (i)
strong ident’n,(ii) semi-strong ident’n, (iii) std weak ident’n (all parameters
weakly ident’d) & (iv) nonstd weak ident’n

• strong identification: limn→∞ τmW ,Fn > 0

• semi-strong ident’n: limn→∞ τmW ,Fn = 0 & limn→∞ n1/2τmW ,Fn =

∞

• weak ident’n: limn→∞ n1/2τmW ,Fn <∞

— standard (of all parameters): limn→∞ n1/2τ1,Fn < ∞ as in Staiger
& Stock (1997)

— nonstandard: limn→∞ n1/2τmW ,Fn < ∞ & limn→∞ n1/2τ1,Fn =

∞ includes some weakly/some strongly ident’d parameters, as in Stock
& Wright (2000); also includes joint weak ident’n



Andrews and Guggenberger (2014): Limit distribution of eigenvalues of
quadratic forms

• Consider a singular value decomposition CFΛFB
′
F of WFDFUF

• Define λF , h, λn,h... as above

Let κ̂jn ∀j = 1, ..., p denote jth eigenval of

nÛ ′nD̂
′
nŴ

′
nŴnD̂nÛn,



where under λn,h

n1/2(D̂n −DFn) → dDh ∈ Rk×p,
Ŵn −WFn → p0k×k,

Ûn − UFn → p0p×p,

WFn → h4, UFn → h5

with h4, h5 nonsingular

Theorem (AG, 2014): under {λn,h : n ≥ 1},

(a) κ̂jn →p ∞ for all j ≤ q

(b) vector of smallest p−q eigenvals of nÛ ′nD̂′nŴ ′nŴnD̂nÛn, i.e., (κ̂(q+1)n, ..., κ̂pn)′,
converges in dist’n to p− q vector of eigenvals of random matrixM(h,Dh) ∈
R(p−q)×(p−q)



• complicated proof;
— eigenvalues can diverge at any rate or converge to any number
— can become close to each other or close to 0 as n→∞



• We apply this result with

WF = (EFZiZ
′
i)

1/2, Ŵn = (n−1∑ZiZ
′
i)

1/2,

UF = Ω(β0)−1/2, Ûn =

Y ′MZY

n− k

−1/2

,

DF = (ΠWγ,ΠW ), D̂n = (Z′Z)−1Z′Y

to obtain the joint limiting distribution of all eigenvalues



Joint asymptotic dist’n of eigenvalues

• Recall: test statistic and critical value are functions of p = 1 +mW roots
of ∣∣∣∣∣∣κ̂I1+mW

− (
Y
′
MZY

n− k
)−1/2(Y

′
PZY )(

Y
′
MZY

n− k
)−1/2

∣∣∣∣∣∣ = 0

• To obtain joint limiting distribution of eigenvalues, we use general result
in Andrews and Guggenberger (2014) about joint limiting distribution of
eigenvalues of quadratic forms

Results:

• the joint limit depends only on localization parameters h1,1, ..., h1,mW



• asymptotic cases replicate finite sample, normal, fixed IV, known variance
matrix setup

• together with above proposition, correct asymptotic size then follows from
correct finite sample size


