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Abstract

We study subvector inference in the linear instrumental variables model assuming
homoskedasticity but allowing for weak instruments. The subvector Anderson and Ru-
bin (1949) test that uses chi square critical values with degrees of freedom reduced by
the number of parameters not under test, proposed by Guggenberger et al. (2012), con-
trols size but is generally conservative. We propose a conditional subvector Anderson
and Rubin test that uses data-dependent critical values that adapt to the strength of
identification of the parameters not under test. This test has correct size and strictly
higher power than the subvector Anderson and Rubin test by Guggenberger et al.

(2012). We provide tables with conditional critical values so that the new test is quick
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and easy to use. Application of our method to a model of risk preferences in develop-
ment economics shows that it can strengthen empirical conclusions in practice.
Keywords: Asymptotic size, linear IV regression, subvector inference, weak instru-
ments
JEL codes: C12, C26

1 Introduction

Inference in the homoskedastic linear instrumental variables (IV) regression model with pos-
sibly weak instruments has been the subject of a growing literature[] Most of this literature
has focused on the problem of inference on the full vector of slope coefficients of the endoge-
nous regressors. Weak-instrument robust inference on subvectors of slope coefficients is a
harder problem, because the parameters not under test become additional nuisance parame-
ters, and has received less attention in the literature, see e.g., Dufour and Taamouti (2005)),
Guggenberger et al. (2012) (henceforth GKMC), and Kleibergen| (2015).

The present paper contributes to that part of the literature and focuses on the subvector
Anderson and Rubin| (1949) (AR) test studied by GKMC. Chernozhukov et al (2009) showed
that the full vector AR test is admissible, see also [Montiel-Olea| (2017). GKMC proved that
the use of chi square critical values x3_,, ., where k is the number of instruments and myy is
the number of unrestricted slope coefficients under the null hypothesis, results in a subvector
AR test with asymptotic size equal to the nominal size, thus providing a power improvement
over the projection approach, see Dufour and Taamouti| (2005)), that uses x# critical values.

This paper is motivated by the insight that the largest quantiles of the subvector AR test
statistic, namely the quantiles of a Xi—mw distribution, occur under strong identification
of the nuisance parameters. Therefore, there may be scope for improving the power of
the subvector AR test by using data-dependent critical values that adapt to the strength
of identification of the nuisance parameters. Indeed, we propose a new data-dependent
critical value for the subvector AR test that is smaller than the xi_,, = critical value in
GKMC. The new critical value depends monotonically on a statistic that measures the
strength of identification of the nuisance parameters under the null (akin to a first-stage F
statistic in a model with my = 1), and converges to the xi_,, critical value when the
conditioning statistic gets large. We prove that the new conditional subvector AR test has
correct asymptotic size and strictly higher power than the test in GKMC, and therefore the
subvector AR test in GKMC is inadmissible.

1See e.g., Nelson and Startz| (1990)), |Staiger and Stock! (1997), Kleibergen! (2002)), [Moreiral (2003), Andrews
et al.| (2006} |2008) |[Chernozhukov et al.| (2009), and Hillier| (2009a,b]).




At least in the case my, = 1, there is little scope for exploring alternative approaches,
such as, e.g., Bonferroni, for using information about the strength of identification to improve
the power of the new conditional subvector test. Specifically, in the case my = 1, we use
the approach of [Elliott et al.| (2015]) to obtain a point-optimal power bound for any test that
only uses the subvector AR statistic and our measure of identification strength, and find
that the power of the new conditional subvector AR test is very close to it.

Implementation of the new subvector test is trivial. The test statistic is the same as in
GKMC and the critical values, as functions of a scalar conditioning statistic, are tabulated.

Our analysis relies on the insight that the subvector AR statistic is the likelihood ratio
statistic for testing that the mean of a k£ x p Gaussian matrix with Kronecker covariance is
of reduced rank, where p := 1 + my,. When the covariance matrix is known, this statistic
corresponds to the minimum eigenvalue of a noncentral Wishart matrix. This enables us to
draw on a large related statistical literature, see Muirhead, (2009). A useful result from Perl-
man and Olkin| (1980) establishes the monotonicity of the distribution of the subvector AR
statistic with respect to the concentration parameter which measures the strength of iden-
tification when my, = 1. The proposed conditional critical values are based on results given
in [Muirhead| (1978) on approximations of the distribution of the eigenvalues of noncentral
Wishart matrices.

In the Gaussian linear IV model, we show that the finite-sample size of the conditional
subvector AR test depends only on a my -dimensional nuisance parameter. When my, = 1,
it is therefore straightforward to compute the finite-sample size by simulation or numerical
integration, and we prove that finite-sample size for general my, is bounded by the size in
the case my, = 1. The conditional subvector AR test depends on eigenvalues of quadratic
forms of random matrices. We combine the method of |Andrews et al.| (2011) that was used
in GKMC with results in |Andrews and Guggenberger| (2015) to show that the asymptotic
size of the new test can be computed from finite-sample size when errors are Gaussian and
their covariance matrix is known.

Three other related papers are Rhodes Jr| (1981)) that studies the exact distribution of the
likelihood ratio statistic for testing the validity of overidentifying restrictions in a Gaussian
simultaneous equations model; and |[Nielsen| (1999, 2001)) that study conditional tests of rank
in bivariate canonical correlation analysis, which is related to the present problem when
k = 2 and my = 1. These papers do not provide results on asymptotic size or power.

In ongoing work, [Kleibergen| (2015) provides power improvements over projection for the
conditional likelihood ratio test for a subvector hypothesis in the linear IV model. Building on
the approach of|(Chaudhuri and Zivot| (2011)), Andrews (2017)) proposes a two-step Bonferroni-

like method that applies more generally to nonlinear models with non-iid heteroskedastic



data, and is asymptotically efficient under strong identification. Our paper focuses instead
on power improvement under weak identification. Another related recent paper on subvector
inference in the linear IV model is [Wang and Tchatoka (2018]). Also, see |Zhu/ (2015)), whose
setup also allows for conditional heteroskedasticity and is based on the Bonferroni method.
Andrews and Mikusheval (2016) develop robust subvector inference in nonlinear models.
Han and McCloskey| (2017) study subvector inference in nonlinear models with near singular
Jacobian. |[Kaido et al.| (2016) and Bugni et al.| (2017)) consider subvector inference in models
defined by moment inequalities.

The analysis in this paper relies critically on the assumption of homoskedasticity. Al-
lowing for heteroskedasticity is difficult because the number of nuisance parameters grows
with k, and finite-sample distribution theory becomes intractable. When testing hypotheses
on the full vector of coefficients in linear IV regression, robustness to heteroskedasticity is
asymptotically costless since the heteroskedasticity-robust AR test is asymptotically equiva-
lent to the nonrobust one under homoskedasticity, and the latter is admissible. However, in
the subvector case, our paper shows that one can exploit the structure of the homoskedastic
linear IV model to obtain more powerful tests, while it is not at all clear whether this is feasi-
ble under heteroskedasticity. Therefore, given the current state of the art, our results seem to
indicate that there is a trade-off between efficiency and robustness to heteroskedasticity for
subvector testing in the linear IV model. Note that the conditional subvector AR test sug-
gested here must have asymptotic size exceeding the nominal size if one allows for arbitrary
forms of heteroskedasticty. This follows from the fact that this test has uniformly higher
rejection probabilities that the unconditional subvector AR test in GKMC and the latter
test must have asymptotic size larger than nominal size under heteroskedasticity. The sub-
vector AR statistic here uses the weighting matrix that is valid only under homoskedasticity.
While it converges to a chi square X%—mw limiting distribution under strong identification
of the parameters not under test and homoskedasticity, its limiting distribution under het-
eroskedasticity would depend on nuisance parameters some of which leading to quantiles
that exceed the corresponding quantiles of a X%—mw distribution.

The structure of the paper is as follows. Section [2| provides the finite-sample results
with Gaussian errors, fixed instruments, and known covariance matrix. Section [3| gives
asymptotic results. Section 4] provides a Monte Carlo comparison of the power of the new
test and a heteroskedasticity-robust test in a model with conditional homoskedasticity to
investigate potential loss of power for robustness to heteroskedasticity. Section [5| provides
an empirical application of our method to a model of risk preferences from [Tanaka et al.
(2010), and shows that conclusions from previous less powerful methods can be reversed,

namely insignficant effects become significant. The main goal of this section is to provide a



self-contained guide for empirical researchers on how to implement our procedure to conduct
a hypothesis test/build a confidence region. Finally, Section @ concludes. All proofs of the
main results in the paper and tables of conditional critical values and additional numerical
results are provided in the Appendix.

We use the following notation. For a full column rank matrix A with n rows let Py =
A(A'A)TA" and My = I,, — P4, where I,, denotes the n x n identity matrix. If A has zero
columns, then we set M4 = I,,. The chi square distribution with k£ degrees of freedom and its
1—a-quantile are written as y2 and xil_a, respectively. For an n xn matrix A, p (A) denotes
the rank of A and k; (A), i = 1,...,n denote the eigenvalues of A in non-increasing order.
By Kmin(A) and Kpax(A) we denote the smallest and largest eigenvalue of A, respectively.
We write 0"** to denote a matrix of dimensions n by & with all entries equal to zero and

typically write 0" for 0"**.

2 Finite-sample analysis

The model is given by the equations

y=YB+Wy+e
Y=ZIIy + Vy

where y € R", Y € R W € RW>™W and Z € R™*. We assume that k — my > 1. The

reduced form can be written as

(v v w)=z(my HW>(§ Omlvz”jmy Om[yxmw>+(vy Ve Vi ), (22)

mw . 7

g

\%4

where v, := V3 4+ Viyy + €. By V; we denote the i-th row of V' written as a column vector
and similarly for other matrices. Let m := my + my .

The objective is to test the hypothesis

Hy : B = Py against Hy : 8 # By, (2.3)

using tests whose size, i.e. the highest null rejection probability (NRP) over the unrestricted
nuisance parameters Ily, [Ty, and 7, equals the nominal size «. In particular, weak identi-

fication and non-identification of 5 and v are allowed for.



Throughout this section, we make the following assumption.
Assumption A: 1. V; := (v, Wy, Vii;) ~ 1id.N (O(mﬂ)x(mﬂ),Q), i =1,...,n, for
some ) € REHDX(m+D) guch that

1 01><mW ! 1 lemw
Q (BO) — _60 OmYXmW Q _BO OmmeW (24)
Qmw X 1 ImW omw x1 ImW

is known and positive definite. 2. The instruments Z € R"** are fixed and Z’'Z € R¥*¥ is

positive definite.

The subvector AR statistic for testing Hy is defined as

(Yo — W7)'Py(Yo — W7)

AR, (8)) = mi N — 2.5
V=S8 L F) 2 L) 2
where Q () is defined in and

?0 =Y — Yﬁo (26)

Denote by &; for i = 1,...,p := 1 + my the roots of the following characteristic polynomial
in Kk

‘KQ (60) - (70, W)/PZ (?O,W)‘ = 0, (27)

ordered non-increasingly. Then,

ARy (B0) = i, (2.8)

that is, AR, (8p) equals the smallest characteristic root, see, e.g. (Schmidt, 1976, chapter 4.8).
The subvector AR test in GKMC rejects Hy at significance level av if AR,, (fy) > Xﬁ_mwvl_a,
while the AR test based on projection rejects if AR, (60) > X3 1_a-

Under Assumption A, the subvector AR statistic equals the minimum eigenvalue of a
noncentral Wishart matrix. More precisely, we show in the Appendix (Subsection that
the roots &; of for i =1, ..., p, satisfy

0= |l — Z'F) (2.9)

where = ~ N (M, I,) for some nonrandom M € R**? (defined in in the Appendix).
Furthermore, under the null hypothesis Hy, M = (Ok , @W) for some Oy € R¥*™W (defined
in in the Appendix) and thus p (M) < my,, where again p (M) denotes the rank of
the matrix M. Therefore, =Z'= ~ W, (k, I,, M' M), where the latter denotes a non-central



Wishart distribution with k£ degrees of freedom, covariance matrix I,, and noncentrality

IxXmy
JWM:( o0 ) (2.10)

0"l ), O

matrix

The joint distribution of the eigenvalues of a noncentral Wishart matrix only depends
on the eigenvalues of the noncentrality matrix M’ M (see e.g. Muirhead, 2009). Hence, the
distribution of (A1, ..., k,) under the null only depends on the eigenvalues of ©y;, 0y, which

we denote by
R ‘— K; (@%/V@W), 1= 1,...,mw. (211)

We can think of 0,0y as the concentration matrix for the endogenous regressors W, see
e.g. |Stock et al.| (2002). In the case when my, = 1, ©,0y is a scalar, and corresponds to
the well-known concentration parameter (see e.g. Staiger and Stock (1997)) that measures

the strength of the identification of the parameter vector v not under test.

2.1 Motivation for conditional subvector AR test: Case my =1

The above established that when my, = 1 the distribution of AR, (fy) under Hy depends
only on the single nuisance parameter ;. The following result gives a useful monotonicity

property of this distribution.

Theorem 1 Suppose that Assumption A holds and my, = 1. Then, under the null hypothesis
Hy : 8 = o, the distribution function of the subvector AR statistic in (2.5) is monotonically
decreasing in the parameter Ky, defined in 1’ and converges to Xi_, as k1 — 00.

This result follows from (Perlman and Olkin, 1980, Theorem 3.5), who established that
the eigenvalues of a k x p noncentral Wishart matrix are stochastically increasing in the
nonzero eigenvalue of the noncentrality matrix when the noncentrality matrix is of rank 1.

Theorem [I] shows that the subvector AR test in GKMC is conservative for all k; < oo,
because its NRP Pr,,, (ARn (Bo) > Xz_m_a) is monotonically increasing in x; and the worst
case occurs at k1 = 0o. Hence, it seems possible to improve the power of the subvector AR
test by reducing the x7_, critical value based on information about the value of ;.

If k1 were known, which it is not, one would set the critical value equal to the 1 — «
quantile of the exact distribution of AR, (8y) and obtain a similar test with higher power
than the subvector AR test in GKMC. Alternatively, if there was a one-dimensional minimal
sufficient statistic for x; under Hy, one could obtain a similar test by conditioning on it.
Unfortunately, we are not aware of such a statistic. However, an approximation to the

density of eigenvalues of noncentral Wishart matrices by [Leach (1969)), specialized to this
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Figure 1: Conditional critical value function. The solid line plots ¢1_q (A1;k — 1), the 1 —a quantile
of the distribution given in ([2.12)), for a = 0.05. The dotted straight blue line gives the corresponding
quantile of x7_,.

case, implies that the largest eigenvalue <y is approximately sufficient for x; when x; is
“large” and ks = 0. Based on this approximation, (Muirhead, (1978, Section 6) provides
an approximate, nuisance parameter free, conditional density of the smallest eigenvalue ko
given the largest one #;. This approximate density (with respect to Lebesgue measure) of &y

given A1 can be written as

Fooir (walitn) = fra_ (w2) (R — 22) 2 g (R1), @2 € [0, /4], (2.12)

where fi2 () is the density of a X;_; and g (&) is a function that does not depend on any
unknown parameters, see in the Appendix.

Because is analytically available, the quantiles of the distribution whose density
is given in can be computed easily using numerical integration for fixed values of &;.
Figure [1| plots the 1 — a quantile of that distribution as a function of #; for @« = 5% and
k= 2,5,10, and 20. It is evident that this conditional quantile function is strictly increasing
in /1 and asymptotes to X%fmfa.ﬂ We propose to use the above conditional quantile function
to obtain conditional critical values for the subvector AR statistic.

In practice, to make implementation of the test straightforward for empirical researchers,
we tabulate the conditional critical value function for different £ — 1 and « over a grid of

points Ry, 7 = 1,...,J, say, and conditional critical values for any given &, are obtained

2The monotonicity statement is made based on numerical integration without an analytical proof. An
analytical proof of the limiting result is given in Appendix



a=5%, k—1=4
ki ¢v| R4 cev| ki c¢cv| Ry cv| ki ¢cv | Rk cv k1 ¢V k1 cv k1 cv
1.2 1121 19132 29|45 39|59 49|74 59 94 691|125 7.9 | 20.9 8.9
1.3 1223 2135 31|47 41|62 51|78 6.1 99 7.1| 134 81| 26.5 9.1
14 13|25 23|37 33|50 43|65 53|82 63105 73| 145 83| 39.9 9.3
1.6 15|27 25|40 35|53 45|68 55|86 65| 11.1 751|159 85| 574 9.4
1.8 17|30 27|42 37|56 47|71 57|90 6.7 |11.7 77| 179 8.7 | 1000 9.48

Table 1: 1 — a quantile of the conditional distribution with density given in (2.12)),
cv=c1_q (k1,k — 1) at different values of the conditioning variable #;. Computed by numerical
integration.

by linear interpolationﬂ Specifically, let ¢1_o j(k — 1) denote the 1 — a quantile of the
distribution whose density is given by with &, replaced by &; ;. The end point of the
grid &, should be chosen high enough so that q1_q.s(k — 1) = xj_; ,_,- For any realization
of k1 < /%I’Jﬁ find j such that &1 € [Ryj_1, k1] with R19 =0 and g1_a0(k —1) =0, and let

N Rij — k1 K1 — Ri1j-1
cralfipb—1)=—2 " o (k=1 I (k= 1). 2.13
1-a (R1 ) PR R 1 ( ) P—— i ) (2.13)

Table (1] gives conditional critical values at significance level 5% for a fine grid for the condi-
tioning statistic k1 for the case k — 1 = 4. To mitigate any slight over-rejection induced by
interpolation, the reported critical values have been rounded up to one decimal.

We will see that by using ¢;_,, (k1,k — 1) as a critical value for the subvector AR test,
one obtains a close to similar test, except for small values of xk;. Note that &;, the largest
root of the characteristic polynomial in (2.7)) is comparable to the first-stage F statistic in
the case my = 1 for the hypothesis that Iy = 0™ (v is unidentified) under the null
hypothesis Hy : 8 = [y in ([2.3). So given a, ¢1_ (R1,k — 1) is a data-dependent critical
value that depends only on the integer £ — 1 (the number of IVs minus the number of
untested parameters), and the nonnegative scalar &; which is a measure of the strength of

identification of the unrestricted coefficient ~.

3For general myy, discussed in the next subsection, the role of k — 1 is played by k — my .

4When &; > k1,7, we can define ¢1_q (51, k — 1) using nonlinear interpolation between #; y and oo, i.e.,
Cl—q (R, k—1) = (1= F(k1 — f1,0)) 1—a,g (k—1) + F(k1 — :‘%]_7J)X%_L1_a, where I is some distribution
function.



2.2 Definition of the conditional subvector AR test for general my

We will now define the conditional subvector AR test for the general case when my, > 1.

The conditional subvector AR test rejects Hy at nominal size « if
ARn(ﬁo) > Cl—a(/%ly k — mw), (214)

where ¢;_ (-, -) has been defined in for any argument consisting of a vector with first
component in $; U{oo} and second component in N. Tables of critical values for significance
levels o = 10%, 5%, and 1%, and degrees of freedom k — my, = 1 to 20 are provided in
Appendix . Since AR, (o) = Ry, the associated test function can be written as

@c (R) == 11[kp > c1_a(h1, k —mw)], (2.15)

where 1[-] is the indicator function, & := (k1,k,) and the subscript ¢ abbreviates “condi-
tional”.

The subvector AR test in GKMC that uses x3_,,,, critical value has test function
varme (R) =1~y > c1_q (00, k —my)]. (2.16)

Since ¢1_4 (z,+) < ¢1-4 (00,-) for all z < oo, it follows that E [p. (k)] > E[pcrxmc (F)],
i.e., the conditional subvector AR test ¢, has strictly higher power than the (unconditional)
subvector AR test parae in GKMC.

2.3 Finite-sample size of . when myy =1

As long as the conditional critical values ¢1_, (&1, k —my) guarantee size control for the new
test ., the actual quality of the approximation to the true conditional density is not
of major concern to us, and the main purpose of was to give us a simple analytical
expression to generate data-dependent critical values.

We next compute the size of the conditional subvector AR test, and because we don’t
have available an analytical expression of the NRP, we need to do that numerically. This can
be done easily because the nuisance parameter x; is one-dimensional, and the density of the
data is analytically available, so the NRP of the test can be estimated accurately by Monte
Carlo simulation or numerical integration. Using (low-dimensional) simulations to calculate
the (asymptotic) size of a testing procedure has been used in several recent papers, see e.g.
Elliott et al.| (2015]).

Figure 2| plots the NRPs of both ¢, and the subvector AR test pgrxyc of GKMC in
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0050 k=5, m,,=1,a=0.05
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Figure 2: Null rejection probability of 5% level conditional (red solid) and GKMC subvector
AR (blue dotted) tests as a function of the nuisance parameter k. The number of instruments
is k = 5 and the number of nuisance parameters is myy = 1. Computed by numerical integration
of the exact density.

at a = 5% as a function of k; for £ = 5 and my = 1. The conditional test ¢, is
evaluated using the critical values reported in Table |1f with interpolationﬁ

We notice that the size of the conditional subvector AR test . is controlled, because the
NRPs never exceed the nominal size no matter the value of x;. The NRPs of the subvector AR
test @i e are monotonically increasing in x; in accordance with Theorem . Therefore the
proposed conditional test ¢, strictly dominates the unconditional test g aro. The results
for other significance levels and other values of k are the same, and they are reported in
Table [23] of the Appendix. We summarize this finding in the following theorem.

Theorem 2 Under Assumption A and my, = 1, the finite-sample size of the conditional
subvector AR test @, defined in (2.15) at nominal size v is equal to « for a € {1%, 5%, 10%}
and k —my € {1,...,20}.

Comment. To reiterate, the proof of Theorem [2| for given k& — my, and nominal size
« is a combination of an analytical step that shows that the null rejection probability of
the new test depends on only a scalar parameter and of a numerical step where it is shown
by numerical integration and Monte Carlo simulation that none of the NRPs exceeds the

nominal size. Using the tables of critical values provided in Appendix [C| one can obtain

°E.g. if &1 = 2.4 which is an element of [2.3,2.5], then from Table [1| the critical value employed would
be 2.2. To produce Figure [2] we use a grid of 42 points for 1, evenly spaced in log-scale between 0 and 100.
In this figure, the NRPs were computed by numerical integration using the Quadpack in Ox, see [Doornik
(2001). The densities were evaluated using the algorithm of Koev and Edelman| (2006) for the computation
of hypergeometric functions of two matrix arguments. The NRPs are essentially the same when estimated
by Monte Carlo integration with 1 million replications, see Appendix @
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certain bounds on the p-value of the conditional subvector AR test. With further simulation

effort, one can also obtain additional tables for other o« and k — my, combinationsﬁ

2.4 Power analysis when myy =1

One main advantage of the conditional subvector AR test is its computational simplic-
ity. For general my;,, there are other approaches one might consider based on the information
in the eigenvalues (1, ..., Am,, ) that, at the expense of potentially much higher computa-
tional cost, might yield higher power than the conditional subvector AR test. For example,
one could apply the critical value function approach of Moreira et al.| (2016) to derive condi-
tional critical values. One could condition on the largest my; eigenvalues rather than just the
largest one. The objective of this section is to assess the potential scope for power improve-
ments over the subvector AR test by computing power bounds of all tests that depend on the
data only through the statistic (K1, ..., Ry, ). We first provide some theoretical insights that
help to implement this analysis economically. These insights are valid for arbitrary myy. For
the actual computation of the power bound, we then restrict attention to my, = 1 because
the computational effort for larger my, is overwhelming.

Recall from that under Hy : 5 = [y in , the joint distribution of (&1, ..., &,) only
depends on the vector of eigenvalues (K1, ..., K, ) of ©}Ow, where Oy € R¥*™W appears
in the noncentrality matrix M = (Ok, @W) of =2~ N (M, I,). It follows easily from (A.13)
in the Appendix that if [Ty, ranges through all matrices in R¥*™W then (ky, ..., Ky, )’ Tanges
through all vectors in [0, c0)™W.

Define A := E(Z'(y — Y By, W)) € R¥P and consider the null hypothesis

Hj : p(A) < my versus Hj : p(A) =p, (2.17)

where again p (A) denotes the rank of the matrix A. Clearly, whenever H, holds H{, holds too,
but the reverse is not true; by in the Appendix, H| holds iff Il is rank deficient or
Iy (8 — Bo) € span(Ily). It is shown in the Appendix (Case 2 in Subsection[A.2) that under
H] the joint distribution of (ky, ..., k,) is the same as the one of the vector of eigenvalues of
a Wishart matrix W, (k, I,, M’M) with rank deficient noncentrality matrix and therefore
depends only on the vector of the largest my, eigenvalues (K1, ..., Km,, ) € ™ of M/ M.
The important implication of that result is that any test ¢(i1,...,5,) € [0,1] for some
measurable function ¢ that has size bounded by o under Hj also has size (in the parameters

(8,7, Iy, Iy )) bounded by o under Hy. In particular, no test ¢(%y, ..., k,) that controls size

6We provide code to do that here: https://sites.google.com/site/sophoclesmavroeidis/ GKM replication_code.zip.
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under Hy has power exceeding size under alternatives H{\ Ho.

While the theoretical analysis in the previous two paragraphs holds for arbitrary myy,
we now assume my = 1 for computational feasibility. To assess the potential scope for
power improvements over the subvector AR test, we compute power bounds of all tests that
depend on the statistic (41, k). These are point-optimal bounds based on the least favorable
distribution for the nuisance parameter x; under the null that x5 = 0, see Appendix for
details. We consider both the approximately least favorable distribution (ALFD) method of
Elliott et al. (2015) and the one-point least favorable distribution of (Andrews et al., [2008|,
section 4.2), but report here only the ALFD bound for brevity and because it is very similar
to the |Andrews et al.| (2008) upper bound. The results based on the |Andrews et al.| (2008)
method are discussed in Section of the Appendix.

We compute the power of the conditional and unconditional subvector tests . and
vaxmc at the 5% level for k& = 5 and the associated power bound for a grid of values
of the parameters k1 > ko > 0 under the alternative, see Section in the Appendix for
details. The power curves are computed using 100,000 Monte Carlo replications without
importance sampling (results for other k are similar and given in the Appendix). The left
panel of Figure 3| plots the difference between the power function of the conditional test ¢,
and the power bound across all alternatives. Except at alternatives very close to the null,
and when k; is very close to k2 (so the nuisance parameter is weakly identified), the power
of the conditional subvector test . is essentially on the power bound. The fact that the
power of ¢, for small k; is somewhat below the power bound can be explained by the fact
that the test is not exactly similar, so its rejection probability can fall below « for some al-
ternatives. The right panel of Figure 3| plots the power curves for alternatives with xk; = ko,
which seem to be the least favorable to the conditional test. The power of the conditional
test is mostly on the power bound, while the subvector test o e is well below the bound.
Two-dimensional plots for other values of k1 — k9 are provided in the Appendix. As k1 — ko

gets larger, the power of pgxye gets closer to the power envelope, as expected.

2.5 Size of o, when my > 1 and inadmissibility of oo c

We cannot extend the monotonicity result of Theorem [1] to the general case my, > 1. This
is because the distribution of the subvector AR statistic depends on all the my, eigenvalues
of M'M in , and the method of the proof of Theorem |1| only works for the case that
p(MM) = 1.|Z] However, Theorem [3[ below provides a theoretical result that suffices to

"See (Perlman and Olkin} 1980, p. 1337) for some more discussion of the difficulties involved in extending
the result to the general case.
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Figure 3: Power of conditional and GKMC 1D subvector AR tests, ¢. and par o, and
point optimal power envelope computed using the ALFD method of Elliott et al. (2015). The left
panel plots the power of ¢, minus the power bound across all alternatives. The right panel plots
the power curves for both tests and the power bound when k1 = ko.

establish correct finite-sample size of the proposed conditional subvector AR test (2.15)) and
the inadmissibility of the subvector test @iy in (2.16) in the general case.
To state the result we first need to introduce some notation. Recall that Z ~ N (M, I k(mw+1)) ,

with M nonstochastic and p (M) < my under the null hypothesis in (2.3]). Partition = as

=11 =12
—_— — )
=21 S22

where =11 is (K — my + 1) X2, Z1gis (K —mw + 1) x (my — 1), Zo1 18 (my — 1) X2, and Zg

[1]

(2.18)

is (mw — 1) X (my — 1) . Partition M conformably with =. Let u;, i = 1, ..., my,, denote the
possibly nonzero singular values of M (the order doesn’t matter for the arguments below).

Without loss of generality, we can set

M Mll

Ok:fmwxl
0

= =m—lU=—1=

(I2 T 291290 S99 221

0:= =t e (I + = —l=m—1= )—1/2
S99 =21 (2 T 291299 S99 221

where
Ok*mw x1

Mll .

Hinyy

Finally, let

)—1/2

<Omw—1><2

Ok—mw+1><mw—1
; (2.19)
Moy
) , and Mo = diag (p1, .ty —1) - (2.20)

= ==l

(I _i_':'fl:\ =/ ':71/)_1/2
—21—22 mw —1 —22 —21—21—22 c p<p

=1z = =l -1/2
(D1 + B2 E21 55, 555”)

(2.21)

14



Theorem 3 Suppose that Assumption A holds with my, > 1. Denote by Z;; € Rr—mwH1x2
the upper left submatrix 0f§ =20 € R**P. Then, under the null hypothesis Hy : B = [3y

é/11é11|0 ~ W, <k —mw + 1, 127-/\;‘/11-/\;111) 3

where My is defined in in the Appendiz and satisfies p(M' ;M) < 1.

As the next couple of lines establish, Theorem [3| allows us to prove correct size of the
conditional subvector AR test by showing that any null rejection probability of the new test
is bounded by the probability of an event that conditional on O has the same statistical
structure as the event of the conditional subvector AR test rejecting under the null when
my = 1 studied in the section above. By Theorem [2] we know that the latter event has
probability bounded by the nominal size a. Theorem [3|can therefore be viewed as a dimension
reduction tool.

Recall that kpin(A) and kpax(A) denote the smallest and largest eigenvalues of a matrix

A, respectively. Note that

AR, (Bo) = Fomin (Z'Z) = Fmin(Z'Z) < Fnin(E1E11) < Fmax(Z12E1) < Emax(Z'Z) = Fmax (F'E),
(2.22)

where the first and third inequalities hold by the inclusion principle, see (Liitkepohl, 1996],

p. 73) and the second and last equalities hold because O is orthogonal. Therefore, at least

for the values of @ and k — my given in Theorem [2]

P(AR,, (60) > ¢1—a(Fmax (E'2) , k=mw)) < P(kmin(Z),211) > €1—a(fmax(Z512101), k—mw)) < o,

(2.23)
where the first inequality follows from . The second inequality follows from Theorem
for the case my = 1 and from Theorem [3] by conditioning on O, where the role of k is
now played by k — my + 1. Hence, the conditional subvector AR test has correct size for
any myy . Because ¢1_q(Fmax (Z'2) , k — mw) < Xj_pyy1—a» it follows that the subvector AR
test wgrxme given in (2.16) is inadmissible. We summarize these findings in the following
Corollary to Theorems 2] and

Corollary 4 Under Assumption A and my > 1, (i) the finite-sample size of the conditional
subvector AR test @, defined in (2.15) at nominal size av is equal to o for a € {1%,5%, 10%}
and k —my € {1,...,20}. (it) The subvector AR test ke s inadmissible.

An analogous comment as the one to Theorem [2] applies here, namely that the size result

likely extends to other o and k—myy constellations but would require additional simulations.
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Figure 4: Left panel: NRP of (2.15), GKMC (2.16)) and adjusted subvector AR tests, ¢., Yqrrmc
and @gqq;. Right panel: comparison of power curves when 1 = k2 to point optimal power envelope
computed using the ALFD method of Elliott et al. (2015).

2.6 Refinement

Figure [2] shows that the NRPs of test . for nominal size 5% is considerably below 5% for
small values of 1, which causes a loss of power for some alternatives that are close to Hy, see
Figure |3l However, we can reduce the under-rejection by adjusting the conditional critical
values to bring the test closer to similarityﬁ For the case k = 5, my = 1, and a = 5%, let
©qq;j be the test that uses the critical values in Table [1) where the smallest 8 critical values
are divided by 5 (e.g., the critical value for #; = 2.5 becomes 0.46). Figure {4| shows that
©aq; still has size 5%, that it is much closer to similarity than ., and does not suffer from
any loss of power relative to the power bound near Hy. This approach can be applied to all

other values of o and k, but needs to be adjusted for each case.

3 Asymptotics

In this section, Assumption A is replaced by

Assumption B: The random vectors (g;, Z;, Vy; V) fori = 1,...,nin are i.i.d. with
distribution F.

Therefore, the instruments are random, the reduced form errors are not necessarily nor-
mally distributed, and the matrix Q@ = EpV;V/ is unknown. We define the parameter space
F for (v, Iy, Iy, F) under the null hypothesis Hy : f = fy exactly as in GKMCH Namely,
for U; = (&i + Viyiv, Viy,)' (which equals (v, — Vi3, Viy,)') let

8We thank Ulrich Miiller for this suggestion.
9Regarding the notation (v, Iy, Iy, F) and elsewhere, note that we allow as components of a vector
column vectors, matrices (of different dimensions), and distributions.
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F ={(y, Iy, Oy, F) : v € R™ Ty, € R Iy, € REmy|
Er(|T3||*™°) < B, for T; € {vec(Z;U}), Ui, Z;},
Ep(ZV!) = 0" Br(vee(Z,U!) (vee(Z;UD)) = Ep (U;U)) @ Ep (Z;Z))
Kmin(A) > 6 for A € {Ep (Z;Z)) , Ep (U;U])}} (3.1)

for some 0 > 0 and B < 0o, where “®” denotes the Kronecker product of two matrices and
vec(+) the column vectorization of a matrix. Note that the factorization of the covariance
matrix into a Kronecker product in line three of is our definition of homoskedasticity,
which is a weaker assumption than conditional homoskedasticity. Note that the role of Q(fy)
is now played by ErU,U..

Rather than controlling the finite-sample size the objective is to demonstrate that the
new conditional subvector AR test has asymptotic size, that is the limit of the finite-sample

size with respect to F, equal to the nominal size.

We next define the test statistic and the critical value for the case here where €} is
unknown. With some abuse of notation (by using the same symbol for another object than
above), the subvector AR statistic AR, () is defined as the smallest root &y, of the roots

Rin, © = 1,...,p (ordered nonincreasingly) of the characteristic polynomial

i, — U, (Yo, W) Py (Yo, W)U,

—0, (3.2)

where

Up = ((n—k) (Yo, W) My (Yo, W))~1/2 (3.3)

and ﬁ{ 2 is a consistent estimator (under certain drifting sequences from the parameter space
F) for Q(Bo) in (2.4), see Lemma [1] in the Appendix for details. The conditional subvector

AR test rejects Hy at nominal size « if
ARn(/B()) > Cl—a(l%lny k— mw), (34)

where ¢;_, (-, -) has been defined in (2.13)) and &1, is the largest root of (3.2)).

Theorem 5 Under Assumption B, the conditional subvector AR test in (3.4) implemented
at nominal size o has asymptotic size equal to « for the parameter space F defined in (3.1
and for o € {1%,5%,10%} and k — my € {1,...,20}.

Comments. 1. The proof of Theorem [f is given in Section [A.4] in the Appendix. It
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relies on showing that the limiting NRP is smaller or equal to o along all relevant drifting
sequences of parameters from F. This is done by showing that the limiting NRPs equal
finite-sample NRPs under Assumption A. Therefore the same comment applies to Theorem
as the comment below Theorem [2] The analysis is substantially more complicated here
than in GKMC, in part because the critical values are also random.

2. Theorem [5 remains true if the conditional critical value ¢;_, (%14, k — my) of the
subvector AR test is replaced by any other critical value, ¢1_q(R1n, kK — my) say, where
C1—a(+,k — my ) is a continuous non-decreasing function such that the corresponding test
under Assumption A has finite-sample size equal to «. In particular, besides the critical
values obtained from Table 1 by interpolation also the critical values suggested in Section

2.6 could be used.

4 Power loss for robustness to heteroskedasticity

The heteroskedasticity-robust version of the AR test of hypotheses on the full vector of
the parameters is asymptotically equivalent to the standard AR test when the data is ho-
moskedastic. This is because under homoskedasticity, the heteroskedastic (HAR) and ho-
moskedastic (AR) test statistics are such that HAR — AR = o0, (1), and also the critical
values of both tests are the same. The same argument applies to heteroskedasticity-robust
versions of other weak-identification robust tests, such as the CLR test. Therefore, at least
asymptotically, there is no sacrifice of power for robustness to general forms of heteroskedas-
ticity for full-vector inference. It is interesting to ask whether this property applies to the
subvector case or whether, unlike the full-vector case, robustness to heteroskedasticity for
subvector testing entails a loss of power when the data is homoskedastic.

We investigate this issue by comparing the power of our conditional subvector AR test
against a comparable test that controls size under general forms of heteroskedasticity. We
use a Bonferroni-type test as in (Chaudhuri and Zivot| (2011) and Andrews (2017)), which
controls asymptotic size under heteroskedasticity and is asymptotically efficient under strong
instruments. The test requires two steps. The first step constructs a confidence set for ~
of size 1 — aq, and the second step performs a size as subvector C' («)-type test on 3 for
each value of v in the first-step confidence set. To avoid conservativeness under strong
identification, the second-step size as is chosen using the identification category selection
(ICS) rule proposed by |Andrews| (2017)), see Appendix |Ef for details. We report results only
for the just-identified case, in which the various C' («)-type tests all coincide. We use an
AR test for the first step, for reasons discussed in |Andrews| (2017)), and denote the resulting
two-step test as w0z, see Appendix [E] for details.
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We compute the power of the three tests pacz, Yoxme, and . of (2.3)) in model (2.1))
with the following parameter settings: n = 250, my = my = 1, k = 2, V; ~iidN (0, ) with

1 08 08
Q=(08 1 03],
0.8 03 1

Z; ~idN (0, L), IIy = (Wg/%) (1,—1)" and Iy = (77#%) (1,1)". The parameters
7 and m, govern the strength of identification of 3 and +, respectively. We consider the
three cases (mg,m,) € {(4,1),(4,2),(4,4)} corresponding to weak, moderate, and strong
identification of . The first-step size of the p 40z test is set to a; = 0.5% and «a is determined
by the ICS rule described in Appendix [E} All tests are at nominal size o = 5%.

Figure [5| reports the results based on 10,000 Monte Carlo replications. We notice that
the power of the conditional subvector AR test ¢. is uniformly above the power of the
heteroskedasticity robust 4oz test, and the difference is decreasing in the strength of iden-
tification of «v. Notice that ¢z seems to be dominated even by the unconditional subvector
AR test parae. This is because the second-step critical value of p4cz is either equal to
or higher than that of @GKMCE All in all, these results seem to indicate that there is a

trade-off between power and robustness to heteroskedasticity in subvector testing.

5 Empirical illustration

We use an application from a well-cited study in experimental development economics to
illustrate our method. In particular, we consider the homoskedastic linear IV regressions
reported in (Tanaka et al., 2010, Table 5) — henceforth TCN. Using experimental data they
collected from Vietnamese villages, TCN estimate linear IV regressions to study determinants
of risk and time preferences. The dependent variable in their models is the curvature of the
utility function, denoted by ¢ in their notation. They report two specifications, replicated in
Table 2] Both specifications include the same exogenous covariates, Chinese, Age, Gender,
Education, Distance to market, and South, and the same excluded exogenous variables used
as instruments, Rainfall and “Head of Household can’t work”, but differ in the way house-
hold income enters the model. Income is treated as endogenous (indicated by (IV) in the
table following TCN’s original notation) to address the possible simultaneous causation of

preferences and economic circumstances. The first specification contains a single endogenous

101t is equal when ap = 5%, which happens when  is strongly identified, and it is higher when oy = 4.5%,
which occurs frequently when ~y is weakly identified.
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Figure 5: Comparison of power of the two-step test of Chadhuri and Zivot (2011) and Andrews
(2017) pacz against the subvector AR test wgrarc and the conditioanl subvector AR test ..
k =2, n =250 and 10000 Monte Carlo replications.

regressor, Income, which is simply household income. The second specification uses, instead,
a decomposition of household income into mean village income (Mean income), and relative
income within the village (Relative income). It therefore contains two endogenous regressors.
Their sample is random by design and TCN assume homoskedasticity. The coefficients in
these models are interpreted in the usual way as the marginal effects of each variable on
households’ risk preferences. TCN are particularly interested in the effect of income on risk
preference, but they also comment on other determinants, such as gender (=1 for male).
We start with the first specification which contains a single endogenous regressor and is
overidentified. We consider subvector tests and confidence intervals on single coefficients in
the model. First, we note from Table 2 that the first-stage F statistic is 5.96. An application
of the well-known rule-of-thumb pretest for weak instruments of F' > 10 would lead one to
conclude that the instruments are weak, and that ¢ tests are unreliable. However, reliable
inference can be based on the AR test irrespective of the outcome of the pretest. Here,
both the conditional and the unconditional subvector AR tests for the coefficient of Income
coincide with the usual AR test, since there are no endogenous regressors to partial out (in
the notation of our paper, my, = 0 for hypotheses on that coefficient). We therefore turn to

subvector inference on the coefficient of an exogenous regressor. For instance, let § denote
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Dependent variable

o(Value function curvature)

Specification 1

Specification 2

Chinese 0.035  (0.143) ~0.096  (0.138)
Age ~0.006  (0.003)%* 1 —0.006  (0.002)%** t
Gender 0.022  (0.073) ~0.006  (0.059)
Education —0.029  (0.010)**t++ —0.028 (0.010)*** it
Income (IV) 0.010 (0.006)
Relative income (IV) 0.049 (0.148)
Mean income (IV) 0.010 (0.006)*, Tt
Market ~0.012 (0.017) ~0.013  (0.015)
South —0.155  (0.094)* ~0.148  (0.080)*, 1
Constant 0.980  (0.174)%** 0.992  (0.160)%**
First-stage F' statistic 5.963 {0.008}
Sub. AR statistic (ID) 11.925  {0.008} 6.070  {0.014}
Conditioning statistic 00 93.10
95% Confidence intervals
Gender
Wald [—0.098, 0.143]

cond. sub. AR [—0.136,0.302]

uncond. sub. AR (GKMC) [—0.141,0.307]

Mean income

Wald
cond. sub. AR
uncond. sub. AR (GKMC)

[—0.0006,0.0211]
[ 0.0008,0.0206]
[—0.0005, 0.0222]

X kk skekek
) ’

Table 2: Replication of (Tanaka et al., 2010, Table 5). Sample size is 181. Number of instruments
is two, namely, Rainfall and “Head of Household can’t work” (dummy). 2SLS point estimates
reported with standard errors in parentheses.
5%, and 1% level, resp.; T,71,T T 1 indicates ‘significant’ using conditional subvector AR test at 10%,
5%, and 1% level, resp.. Unconditional p-values in curly brackets.
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the coefficient on Gender (the same procedure obviously applies to test hypotheses on the
coefficients of each of the other exogenous regressors). The size-a conditional subvector AR
test of the hypothesis Hy : f = [y against H; : 8 # 3y can be performed using the following
steps:

Algorithm 1.

1. Partial out exogenous regressors: Let X denote the exogenous regressors in the model
other than Gender whose coefficient is under testE Set y equal to the residuals
of the orthogonal projection of o (the dependent variable) on X, y = Mxo, where
Mx = I — Px and Px = X(X'X)'X'. Similarly, set Y = Mx(Gender), W =
Mx (Income), and Z = Mx(Gender, Rainfall, Head of household can’t work). Set n =
(# of observations) — (# of variables in X)) (=175) and k = # of variables in Z (=3).

2. Compute the eigenvalues of the matrix ESS-(n — k) RSS!, where ESS := (YO, W)/ Py
(%,W), RSS = (%,W)/MZ (YO,W), and Yy = y — YBy. The smallest eigenvalue
kon 1s the subvector AR statistic and the largest eigenvalue &y, is the conditioning

statistic.

3. Look up critical value ¢;_q(~1p, k —mw) corresponding to Ay, for k —my = 2 in Table

, and reject Hy if and only if &2, > ¢1_o(R1p, k — mw).

The unconditional subvector AR test in GKMC follows the same steps 1-2, but the final
step is replaced with: Reject Hy if and only if ko, > X%,l—a’ where X%,l—a is the 1 —a quantile
of the x? distribution with 2 degrees of freedom.

Table [2| reports significance of each of the regressors using the conditional subvector AR
test at the 1%, 5% and 10% levels and contrasts them to the nonrobust results reported by
TCN using t tests. Only education is significant at the 1% level, while age is significant at
the 10% instead of 5% level, and the rest of the covariates are not significant at the 10%
level.

A (1 — «)-level confidence set for  can be obtained by grid search over a sufficiently
large range of values for §y. An illustration of this approach is given in Figure [6]

Before discussing Figure[6], we note that both the conditional and unconditional subvector
AR confidence sets can be unbounded when the instruments are sufficiently weak. The
hypothesis of an unbounded confidence set is mathematically equivalent to the hypothesis
that the k x (my + my) coefficient matrix on the instruments in the first-stage regression

— (ITy, ITy) in the notation of equation (2.1]) — is of reduced rank, see Kleibergen| (2015). In

11X consists of Constant, Chinese, Age, Education, Distance to market, and South.
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Figure 6: Subvector AR statistic (red solid) for Gender in specification 1 of Table [2, and Mean
income in specification 2 of Table 2] with conditional (black dashed) and unconditional (green
dotted) critical values. Vertical lines indicate 95% confidence intervals reported in Table

other words, the hypothesis that the confidence set is bounded is equivalent to the hypothesis
that the model is identified. This can be tested using a conditional subvector AR test by
applying Algorithm [1] replacing Y, with Y in step 2. The resulting test statistic is reported
in the row “Sub. AR (ID) statistic” in Table , with the corresponding conditioning statistic
in the row “conditioning statistic”, and unconditional (GKMC) p-value in curly bracketsm
(The value of the “sub. AR (ID) statistic” for specification 2 is obtained using Algorithm
similarly replacing Y with Y in step 2). The (1 — a)-level conditional and unconditional
subvector AR confidence sets are unbounded if and only if this test fails to reject at level a.
The p-value 0.008 of the identification subvector AR test indicates that the 99% confidence
sets on the parameters are bounded. If, instead, one used the first-stage F' rule to discard
the model, because F' < 10 (effectively concluding it is unidentified), the resulting inference
(unbounded confidence intervals) would be grossly inefficient.

The graph on the left in Figure [6] plots the subvector AR statistic for the coefficient
of Gender in the first specification, together with the conditional and unconditional 10%,
5% and 1% critical values. Note that the conditional critical values vary with 3y as the
conditioning statistic changes. The resulting 95% confidence intervals are reported in Table
2l We notice that the conditional confidence interval is shorter than the corresponding one
in GKMC as expected, though the difference is small. Both confidence intervals are wide and
include zero, thus corroborating the finding reported in TCN that there are no significant

effects of gender on risk preferences.

12Tn the present example where Y is an exogenous variable (Gender) and W consists of only one endogenous
variable (Income), it turns out that k1, = oo and hence the conditional subvector AR test of identification
coincides with the unconditional one. Moreover, ko, = 2F where F is the standard first-stage F statistic
for testing the exclusion of the additional instruments (Rainfall and Head of household can’t work) from the
first-stage regression for W.
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Next, turn to the second specification in Table 2] with two endogenous regressors, Relative
income and Mean income. A conditional subvector AR test of the coefficient on Mean income

can be implemented with the following modification of Algorithm [}

Algorithm 2.

1. Partial out all of the included exogenous regressors X Er] Set y = Mxo,Y = Mx(Mean
Income), W = Mx(Relative income), Z = Mx(Rainfall, Head of household can’t
work). Set n =174 and k = 2.

2-3. Same as in Algorithm [I], but for £ — my = 1.

The significance of each coefficient in the second specification is reported in Table [2]
The results mostly agree with the conclusions from the non-robust t tests, except for the
significance of Mean income, which is stronger using our method (5% instead of 10%).

The graph on the right in Figure [0] plots the subvector AR statistic for the coefficient
of Mean income in the second specification, alongside conditional and unconditional critical
values. The resulting 95% confidence intervals are reported in Table 2 We notice that the
GKMC test fails to reject the null hypothesis that the coefficient is zero at the 5% level,
while the conditional test does. Moreover, it is remarkable that the conditional subvector AR
confidence interval is even smaller than the nonrobust Wald confidence interval. Therefore,
use of our conditional subvector AR test strengthens the results reported in TCN. Finally,
notice that both the conditional and the unconditional subvector AR confidence sets are
unbounded at 99% coverage, but the latter contains the entire real line, while the former
excludes two intervals, thus being non-convex.

All of the above results together took less than 5 seconds to compute (using grids of 10000
points for the graphs) on a standard computer. This application is yet another example of
a setting where one can do informative inference, i.e., not leading to unbounded confidence
sets, using weak-instrument-robust methods, as opposed to unreliable inference using Wald /t

tests.

6 Conclusion

We show that the subvector AR test of GKMC is inadmissible by developing a new condi-
tional subvector AR test that has correct size and uses data-dependent critical values that are

always smaller than the Xi—mw critical values in GKMC. The critical values are increasing

13X consists of Constant, Chinese, Age, Gender, Education, Distance to market, and South.
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in a conditioning statistic that relates to the strength of identification of the parameters not
under test. Our proposed test has considerably higher power under weak identification than
the GKMC procedure. We show, using an empirical example, that the implementation of
our method is easy and fast, and can make a difference to empirical conclusions in practice,
in the sense that effects that are insignificant using GKMC become significant using our new
method. A crucial assumption maintained throughout the paper is homoskedasticity. If one
allows for arbitrary forms of heteroskedasticity both the GKMC test and the new conditional
subvector AR test suffer from size distortion. We are currently working on extending these

methods to heteroskedastic settings, which is a much harder problem.

Appendix

A Proofs and derivations

A.1 Proofs of Theorems [I] and [3

Proof of Theorem (1} The monotonicity follows from (Perlman and Olkin, |1980, Theorem 3.5).
The proof relies on the following result, available in (Muirhead, 2009, Theorem 10.3.8), which states

that a 2x2 non-central Wishart matrix with noncentrality matrix of rank 1 can be expressed as

T'T, where
T tir ti2
0 tan)’

2, ~ X% (k1) (non-central x? with noncentrality parameter k1), t3 ~ X3_, ti2 ~ N (0,1), and

t11,t12, tao are mutually independent. The minimum eigenvalue of T'T, Ry, is given by

2
By + 2+ 8 — [ (8, + 3y + 13)° — 462,83,
Kmin = 2 .

It is straightforward to show that Amin < t%Q, which establishes the upper bound in the distribution
of Amin in GKMC. It is also straightforward to establish that &, is monotonically increasing in t%l,
and since t2; is stochastically increasing in 1 (see, e.g., (Johnson and Kotz, 1970, ch. 28)), then
Rmin 18 stochastically increasing in x1, as shown formally in (Perlman and Olkin, (1980, Theorem
3.5). Finally, Amin — t%Q B0 as k — oo (because t%l LN o0), and therefore, Apmin LA X%—p as

required. [J

Proof of Theorem (3} Using (2.18) and ([2.21]) we have
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where

1= (Bu - 2105508 (I + 550 55 En) 77 (A.2)

[1]:

Moreover, since Zo; and Egy are independent of =11 and =12, and O’O = Iy, +1, conditional on O,

211 € RE—mwHDX2 45 Gaussian with covariance matrix Iy(k—myy+1) and mean

~ — —_1— —1/2
M= (M11 M12\_422 ._421) (IQ + H/21_4221/_4221H21) /
—1l=—1= —1/2

Since p (Mi1) < 1 by (2.20), the same holds for p (Mll). Hence, conditional on O, é’nén ~
Wa(k — mw + 1,[2,/\;(/11/\;111) with p (Mlllﬂ;lU) <10

A.2 Joint distribution of the vector of eigenvalues of eigenproblem ([2.7))

We study the joint distribution of the vector of eigenvalues (&1, ..., Ky, ) of the eigenproblem that
defines the subvector statistic AR, (f8y) when the hypothesized §y does not necessarily equal the
true slope parameter 3. Recall the model (2.1)) and the eigenproblem of the subvector AR statistic

(2.7). Pre/post-multiplying (2.7 by

1 0
( > yields 0 = [kX — (u, W) Pz (u, W)| (A.4)
- ImW
an equivalent eigenproblem, where
Ouu ZuVW
u=y—Yp-Wy=e+Y(B-05), L:= |, , (A.5)
EuVW EVWVW

and oy, and X’ wiy € R™W denote the variance of u and the covariance between u and Vi, re-
spectively. Note that u does not equal the structural error € in unless = By. Note that

for

~1/2
C = o ; ith 32 =3 D YT € jmwxmw,
= _2—1/2 ’ ~1 2—1/2 w ViwViwu = “Vw Vi uViy “uViy 0 uu
Vv Vv .u uVyy Oun Vw Vv .u
(A.6)

CXC’" = I, holds. Therefore, pre and postmultiplying (A.4) by |C| leads to

Y. _ ! . _
kI, — <u/cr?1‘£2, <W - uVW> Evvlv/éw.u> Py (u/a}“/f, (W - uVW> EV&ﬁw-U)‘ (A.7)

Ouu Ouu

0=

or

0= , (A.8)
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where

¢ = (22)? Z'ujolf? € R* and &y = (2'2) 1 2 (W - uEuVW) s e

Now,
E(&)=E (Z Z) 22 (B - Bo) o2
=(2'2)"* 10y (B - Bo) Jol? and
£Wu=(Z’Z)1/2< w — Iy (8 — fo) “:W)E;j/iw.u-
Hence,

(11

= [&u, Ew] ~ N (M, Iyp) and E'E ~ W, (k, I,, M'M) , where

M = (Z/Z)I/Q [HY (B — Bo) /oul, <HW Iy (8 — Bo) uVW) EVvli//‘%W~“:| :

uu

Case 1) Assume that Hj in holds. In that case u = € and we write
5 ( Oce  Yevyy >
S SV Viv
and Xy, vy e 1= Xviy Vi — E/EVW Yeviy 0o - Defining
Ow = (Z’Z)I/QH Sy e Rxmw

it follows that M = (0%, Oy).
Case 2) Assume instead that H{) in (2.17)) holds. Note that

A=Z7'Z [y (B — Bo) + Hw, ]

and therefore for M defined in (A.11)

Xy —1/2
1/ 1/2 ZuV
M= (2'2)""? AT for T := ol ViV
1/2 Suviy \—1/2
=v/oud (Imy +7 o172 )EVWVW,U

Because (Z'Z)""/? and T are both of full rank it follows that p (M) = p (A)

14To see the former, note that 7T is of full rank iff

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



A.3 The approximate conditional distribution

This section replicates the analysis in Muirhead (1978, Section 6). As a special case of (James,
1964, eq. (68)), the joint density of the eigenvalues &1 and ko of Z'E ~ W (k, Iy, M’ M) can be
written as

7T2

1
Jrriio (T1,T25 K1, Ko) = 5T, (k/2) T (1)exp (—2 (1 + m)) x? 292 (21— 22) (A.16)

1 1. 1/k1 0 x1 0
X exp <—2 (Fél +/€2)> 0F1(2) <2/€§ 1 ( 01 H2> ) ( 01 x2>>

for 21 > 9 > 0, where I'y, (a) := 7™M~ V/AT[™ T (a— 1 (i — 1)) and 0F1(2) is the hypergeometric
function of two matrix arguments. Thus, I's (a) := 7'/2T (a) T'(a — $), o (1) := /2T (1) r(3)=n
and Ty (k/2) = 7'/2T (k/2) I'(551). So, the joint density (A.16) can also be written as

"2 1 e kg
2T (h/2)T (%) exp <—2 (x1 + xg)) x? xy? (21— 22)

1 1, 1 0 0
X exp (—2 (k1 + /12)> 0F1(2) <2k; 1 <I?)1 @) , <%1 m)) . (A.17)

Under the assumption that k1 > kg = 0, where k; is large, Leach (1969) has shown that

oF? (;k;l <“1 0 ) , <x1 0 )) N ijl“(k:/Q) eap ((z1r1)?) (A.18)

4 0 K2 0 i) 7T
2-k 1
X (H1$1) 4 (Kl (.%1 — .7}2)) 2.,

Substituting equation (A.18)]) into equation (A.17)) gives an asymptotic representation for the density

function of &1 and &2 under the assumption that 1 is large,

N

172 1 _k k=4 1
) exp <—I€1> Ky YRyt exp [—371 + (x1K1)

2T (5 "7\ 2 2 | Y

N|=

1 k=3
X exp (—23:2> o2 (X1 —x2)2 .

This is a special case of Muirhead (1978, (6.5)) with his k£, m, and n corresponding to 1,p = 2, and

is of full rank, where ¢’ := ZuVWZ;VIV/‘EW.UUJJ/z. But whenever f(al,aé)’ = 0? it follows that a; — c'as =0
and —yaq —&-Z‘;Vlv/éw_uaz +vc'ay = 0™W . Inserting the former into the latter equality yields Z\;‘}V/\EW.uGQ = ("W

—1/2

and thus ag = 0™W. The latter implies a; = 0. Finally, (Z'Z7) is of full rank by Assumption A 2.
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k, respectively, and using ko = 0. Integrating the second line of (A.19)) w.r.t. zo yields

R 1 k=3 1
/ exp <—2ZE‘2 To? (1 — x2)2 dao
0

P <k—1 k+2 _331> 7 (A.20)

where 1 F} (a, ¢; ) is the confluent hypergeometric function. Combined with (A.19)), the approximate

conditional distribution of Ao given &7 is

N|=

2)

The last equation reduces to 1) if we use the definition of the density of X%—l? fxi,l (zg) =
[ -

%(kl)% 2 e T, Hence, the integrating constant g (k1) in the approximate conditional density

22 (%5

(2.12) is given by

T (:;1) 2exp (~3w2) 2,7 (a (A.21)
2

finliy (@2]R1) =
r
(*2%) SN T <k2k

w\m\w H

I (k£2) 25
g (k1) = — (%) ) (A.22)

) k=1 k+2. K
REVT 1 E <T7Tv_71>

The result that ¢;_q (00, k — 1) = X%—l,l— follows from the fact that lims, o0 f7, 2 (- |k1) =

fe (1) . This can be proven using the property that 1 Fj (a,c; —2) 2* = T'(¢) /T (c — a) as z — oo
kgl

o) /2D (k2 OB p(kt2 k1 3
(Olver, 1997, p. 257, eq. 10.08). Tt follows that —— @1 =22 "C(52) 2 7 T(52-57) _ 21:/(2)
Ay | e

3

=1as x; — o0.

A.4 Proof of Theorem [5

Uniformity Reparametrization To prove that the new subvector AR test has asymptotic size
bounded by the nominal size o we use a general result in Andrews, Cheng, and Guggenberger
(2011, ACG from now on). To describe it, consider a sequence of arbitrary tests {¢, : n > 1} of a
certain null hypothesis and denote by RP, (\) the null rejection probability of ¢, when the DGP
is pinned down by the parameter vector A € A, where A denotes the parameter space of A. By

definition, the asymptotic size of ¢, is defined as

AsySz = lim sup sup RP,(\). (A.23)

n—o00 A\e€A
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Let {hn,(X\) : n > 1} be a sequence of functions on A, where hp(A\) = (hp1(N), ..., by s(X)) with
hni(X) € RVj =1,...,J. Define

H={he ®RU{xoo})’ : hy, (Aw,) — h for some subsequence {w,}
of {n} and some sequence {\,, € A:n>1}} (A.24)

Assumption B in ACG: For any subsequence {w, } of {n} and any sequence {\,,, € A : n > 1} for
which hy,,(Aw,) = h € H, RPy, (\w,) — [RP~(h), RP*(h)] for some RP~(h), RP*(h) € (0,1)]]

The assumption states, in particular, that along certain drifting sequences of parameters A,
indexed by a localization parameter h the NRP of the test cannot asymptotically exceed a certain
threshold RP(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption B in ACG holds.
Then, infrey RP~(h) < AsySz < suppc RP1(h).

We next verify Assumption B in ACG for the subvector AR test and establish that supy,c;; RP1(h) =
« when the test is implemented at nominal size «. To do so, we use Andrews and Guggenberger
(2015, AG from now on), namely Proposition 12.5 in AG, to derive the joint limiting distribution
of the eigenvalues K, i = 1,...,p in . We reparameterize the null distribution F' to a vector
A. The vector A is chosen such that for a subvector of A convergence of a drifting subsequence of
the subvector (after suitable renormalization) yields convergence in distribution of the test statistic

and the critical value. For given F' define
Qp = (EpZ; Z)Y? and Up := Q(Bo)~V/? := (EpUU)) /2. (A.25)
Let

Br denote a p x p orthogonal matrix of eigenvectors of Uy (I, Hw)' QrQr (M, Uy )Ur
(A.26)

ordered so that the p corresponding eigenvalues (17, ..., mpr) are nonincreasing. Let

Cr denote a k x k orthogonal matrix of eigenvectors of Qp(Ilyy, iy )UrUp(Ilyy, Iy ) Q7 [
(A.27)

The corresponding k eigenvalues are (i, ..., 7pF, 0, ..., 0). Let

(T1F, -, Tpr) denote the singular values of Qp(Ily, iy )Up € RE*P, (A.28)

5By definition, the notation z,, — [¥1,00,T2,00] means that 1,0, < liminf, 4o 2, < limsup,,_,. =,
X2, 00-

16The matrices Br and Cr are not uniquely defined. We let By denote one choice of the matrix of
eigenvectors of U (I, Iy )’ Q%Q (Il +y, Iy )Up and analogously for Cp.

Note that the role of ErG; in AG, Section 12, is played by (ITy~y,Iy) € R¥*P and the role of W is

played by Qp.
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which are nonnegative, ordered so that 7,7 is nonincreasing. (Some of these singular values may
be zero.) As is well-known, the squares of the p singular values of a k X p matrix A equal the p
largest eigenvalues of A’A and AA’. In consequence, 7;p = Tj2F for j = 1,...,p. In addition, njr =0
forj=p+1,..k.

Define the elements of A to bd'|

M = (T1F, oy Tpr) € RP,
)\2,F = Bp € §Rp><p’

)\S,F =Cf € §Rk><k,

!
)\4,F = ()\471F, ceey /\4,p71F), = (T2F, ceny TpF) € [O, ”p—17 where 0/0 = 0,
TIF Tp—1F

X5 ri= Qp € RFF,
e, = Up € RP*P,
A7 pi=F, and
A= Ap = (ALps oo M), (A.29)

The parameter space A for A and the function h,(A) (that appears in Assumption B in ACG)
are defined by

A= {)\ A= ()\1,F7 -~-7)\7,F) for some F € f},
hn()\> = (nl/z)\LF, )\Q,F, )\37F, ceuy )\G,F)- (A.?)O)

We define A and h,(\) as in and because, as shown below, the asymptotic
distributions of the test statistic and conditional critical values under a sequence {F,, : n > 1} for
which h,(Ag,) — h depend on lim nl/z)\ljpn and lim A\, g, for m = 2,...,9. Note that we can view
h e (RU{xo0})” (for an appropriately chosen finite .J € N).

For notational convenience, for any subsequence {w, : n > 1},
{Awn,n i n > 1} denotes a sequence {\y, € A :n > 1} for which Ay, (Aw,) = h. (A.31)

It follows that the set H defined in is given as the set of all h € (R U {#oc})” such that
there exists {\y, n : n > 1} for some subsequence {w, : n > 1}.

We decompose h analogously to the decomposition of the first six components of A\: h =
(h1, ..., he), where A\,  and hy, have the same dimensions for m = 1, ...,6. We further decompose

the vector hy as hy = (h11, ..., h1p)’, where the elements of hy could equal co. Again, by definition,

"For simplicity, as above, when writing A = (A1, r, ..., A1o,r) OF As.r = (As1,F, -, As.3,7) (and likewise in
similar expressions) we allow the elements to be scalars, vectors, matrices, and distributions.
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under a sequence {\,  : n > 1}, we have
Y2 = hiy > 09 =1,.0,0, Am.r, = B Y =2, ..., 6. (A.32)

Note that hy, = 7,5, = 0 because p(Ily~,IIy) < p. By Lyapunov-type WLLNs and CLTSs, using
the moment restrictions imposed in (3.1)), we have under A, 4,

71/2zl Viv Y .
n*l/Zvec(Z/U) _ n (5 + Vi ) N § h ~ N <0pk><1’ hg? ® hg) 7
vec (n_l/QZ’VW) d \ &vip.h

N p(n12'Z) = Iy, (A.33)
’ p
where the random vector (&4, &y, ;)" is defined here.

Asymptotic Distributions Let ¢ = ¢, € {0,...,p — 1} be such that
hi; =00 for 1 <j <gqpand hyj < oo for g, +1<7<p, (A.34)

where hy; = limn'/2r;p > 0 for j = 1,...p by and the distributions {F,, : n > 1}
correspond to {X, : n > 1} defined in (A.31). This value ¢ exists because {hy; : j < p} are
nonincreasing in j (since {7;r : j < p} are nonincreasing in j, as defined in (A.28)). Note that
q is the number of singular values of Qr, (I nYn, Hw,)Ur, € RF¥P that diverge to infinity when

1/2

multiplied by n'/¢. Note again that ¢ < p because p(Ily v, Hwn) < p.

An analogue to Lemma 12.4 in AG is given by the following statement. Define
Dy = (2'2)712" (Yo, W) and Q, := (n"'2'Z)/2. (A.35)

Lemma 1 Under all sequences {\,p, : n > 1} with A\, € A, nl/z(ﬁn — (MwnYn, Mwn)) —q Da,

where

Dy, ~ h3*(&nsveci . (Sviyn)) € R,

U, 2= Q(Bo) —p 0PP, and Qn — QF, —p 0F*F where vec;}nw(-) denotes the inverse vec operation

that transforms a kmyy vector into a k X myy matriz and ﬁn is defined in 1)

Proof of Lemma [It We have

n1/2(13n — (MwnYn, wn))

=n'2((Z'2)72 2" (y = Y Bo, W) — (W, Twn))

=n2((Z'2)" 2 (Zwnn + Vivyn + & Zwn + Vi) — Mwnn, D))

=(n12'2) 022! (Vi + 2, Vi) 4 D, (4.36)
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where the first equality uses the definition of ﬁn in 1) the second equality uses the formulas in
(2.1]), and the convergence results holds by the (triangular array) CLT and WLLN in (A.33)). Also,

U—2

n

(’I’L - k)_l (?07 W)/MZ (?Ov W)
(n— k) (Viwyn + &, Vi) Mz (Vivyn + €, Viv)
(n— k) (Vv + &, Vir)' (Vieyn + €, Viv) + 0p(1), (A.37)

where the first equality uses the formulas in and the fact that MzZ = 0"** and the second
equality follows directly from . Because Q(80) = E(Vyy,v + €0, Viy) (Vip Y + €i, Vi) an
application of WLLNs as in yields the desired convergence result. Likewise, an application
of a WLLN using the uniform moment conditions on Z; in F in and the continuous mapping
theorem immediately imply the desired result @n - QF, —p 0>k 0O

N AN AN A A A

nonincreasingly, and Ky, is the subvector AR test statistic. To describe the limiting distribution of

(Rin, ..., kpn) we need additional notation, namely:

ho = (ha,q, hap—q); h3 = (R34, h31—q),
4% (P—a)

¢ : = | Diag{hi,g+1,...,h1p-1,0} | € %kx(p_q),
0(k—p)x(p—9)

Ap = (Dpg Appq) € RExP, Apgi=hsq€ Rkxa,
Appq = hsh ,_, + hsDyhghay—q € RE*P=D), (A.38)
where hg g € RP*9, hy g € RPXP=D g, € RF¥9 hgy € REXED A € R and Ay, €
Rkx(p—q)

Let T, := Bp,S, and S, := Diag{(n'?ni,)"", ..., (n" 21, )", 1,...,1} € RP*P. The same
proof as the one of Lemma 12.4 in AG shows that nt/ 2Q FnﬁnU £, Tn —d A}, under all sequences
{Ann i n > 1} with A, 5, € A. The following proposition is an analogue to Proposition 12.5 in AG.

Proposition 2 Under all sequences {\, p, : n > 1} with A\, 5, € A,

(a) Kjn —p 00 for all j < g,

(b) the (ordered) vector of the smallest p—q eigenvalues ofnﬁr’lﬁ;@n@nf)nﬁn, i€y (K(g1)ns -+
Rpn), converges in distribution to the (ordered) p—q vector of the eigenvalues OfZ/h’p—th},kf—qhé,qu
X Appq € RE—a)x(p=a)

(¢) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma (1|, and

18There is some abuse of notation here. E.g., ho , and hs,,_, denote different matrices even if p — g equals
q.
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(d) under all subsequences {wy} and all sequences { Ay, n : n > 1} with Ay, n € A, the results
in parts (a)-(c) hold with n replaced with wy,.

Comments. 1. The proof of Proposition [2| follows directly from Proposition 12.5 in AG. Note
that Assumption WU in AG is fulfilled with the roles of Wop, Wg, Usp, and Ur in AG played
here by Qp, Qr, Ur = Q(8y)~"/2, and Up while the roles of Wi and U; in AG are played by the
identity function. The roles of /Wgn and /V[7n in AG are both played by @n and those of both (727Z
and ﬁn by ﬁn Lemma |1| shows consistency /Wgn — Wag, —p 0%*k and ﬁgn — Usp, —p 0P”P under
sequences {\, 5 : n > 1} with A, ;, € A and trivially the functions W; and U; are continuous in our
case. Note that by the restrictions in F in the requirements in the parameter space Fyy in
AG, namely “Kmin(Qr) and Kmin(Ur) are uniformly bounded away from zero and ||Qr|| and ||Ur||
are uniformly bounded away from infinity”, are fulfilled.

2. Proposition yields the desired joint limiting distribution of the p eigenvalues in . Using
repeatedly the general formula (C'® A)vec(B) = vec(ABC) for three conformable matrices A, B, C,

we have
vec(hg,ﬁhhg):vec(hgl(fs’h,vec,;inw(fywﬁ)) he)
el
EViw b
~vec(vi, ..., Vp), (A.39)
where, by definition, v;, j = 1,...,p are ii.d. normal k-vectors with zero mean and covariance

matrix [, and the distributional statement follows by straightforward calculations using (A.33)).
Therefore, by Lemma the definition of Zhyp,q in 1' and by noting that

Dq’a’g{hl -‘rlv"'ahl —170}
/ <o _ »q Y
3,quh3h1,p—q - ( o(k—p)x(p—q) (A'4O)

we obtain

— Diag{h1,4+1, ., h1p-1,0}
h,&k—th,p*q = ( 0(§_p)><(p_q)p + é,k—q(vla ceny Up)hQ,p—q

~ ( D/iag{hl,q+17 ) hl,p—l) O}

ok—p)x(p—q) ) + (w1, ..., Wp—q), (A.41)

where, by definition, w;, j = 1, ..., p—q are i.i.d. normal (k—g)-vectors with zero mean and covariance
matrix Ij_,. The distributional equivalence in the second line holds because (v1,...,vp)hop—q ~
(U1, ..., Up—q), where v;, j = 1,...,p — ¢ are ii.d. N(0F, ;) as ha p—q has orthogonal columns of
length 1. Analogously, hé,k—q@l? ey Up—q) ~ (w1, ..., wp—q) because hj_, has orthogonal columns
of length 1.
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E.g. when ¢ = p—1 = myy (which could be called the ”strong IV” case), we obtain from (A.41])
h’&k_qzh,p,q = wy € RF—™W  Therefore Z;Lp—qh?),quhé’k_qzh,p*q ~ X%—mw and thus by part (b)
of Proposition [2 the limiting distribution of the subvector AR statistic is X%fmw in that case, while
all the larger roots in (3.2)) converge in probability to infinity by part (a).

Proof of Theorem [5. By construction, for a € (0, 1), ¢1_(2, k—myp ) is an increasing continuous
function in z on (0, c0), where ¢;_q(z, kK —mw ) is defined in with &1 replaced by z. Further-
more, ¢1—q(z,k — my) — Xifmw,lfa as z — 00. Thus, defining ¢1_4 (00, k — my ) := Xifmw,lfw
we can view ¢1_q(z, kK — my ) as a continuous function in z on (0, cc]. Finally, for a € (0,1) we
have P(kp = ci—a(k1,k —mw)) = 0 whenever &, and #; are the smallest and largest eigenvalues
of the Wishart matrix Z'2 ~ W, (k, I, M'M) and any choice of eigenvalues (ki, ..., Kmy,,0) of
M'M e RP*P,

According to Proposition [1] in order to show that AsySz < « it is sufficient to establish that
RP*(h) < « for all h € H, where RP*(h) appears in Assumption B in ACG. We therefore need
to establish that for every drifting sequence {\,,n € A : n > 1} the null rejection probability
of the conditional subvector AR test RP,, (Aw, ) satisfies RP,,, (Ay, n) — [RP~(h), RPT(h)] for
some RPT(h) < a. We also show that under strong IV sequences the limiting rejection probability
equals « which then implies that the asymptotic size equals a. For notational simplicity we write
n instead of wy,.

By the discussion below Proposition [2f when ¢ = p — 1 = myy, the strong IV case, AR, (80) —4
X%—mw under {\, , € A :n > 1} while the largest root <1, goes off to infinity in probability. Thus,

by the definition of convergence in distribution and the features of ¢;_,(z, k —my ) described above

RPy(Anp) = Pr, (AR, (Bo) > ci—a(Rin. k — mw)) = RPT(h) = P(X3—my > Xeemp1-a) = Q-
(A.42)
When 0 < g < myy, then, just like above, the largest root &1, goes off to infinity in prob-
ability and ci—q(Rin, k — mw) — X%—mw,l—a' By Proposition (b) the limiting distribution
of Kpp = AR, (fo) in equals the distribution of the smallest eigenvalue, x(p — q) say, of
Z;L’p,qh37k_qhg7k_qzh,p_q € RP~1*P~1 where hg7k_qzh,p_q = (W1, ..., Wy—q), where w; € R*¥~7 for
j =1,..,p — q are independent N(my;, I_,) with m; = (09~ hy o4 ;,0¥=977") for j < p — q and

Mp_q = 0%~4, respectively. Therefore,
RP,(Ann) = Pr, (ARn(Bo) > ci—a(fin, k—mw)) = RPT(h) = P((p—q) > Xi—myy1—a)» (A.43)

where the convergence holds by the features of ¢1_o(z,k — my ) described above. Consider a
finite-sample scenario as in in Section [2| with the roles of k,p,= and M played by k — q,p —
q, hé,k— qZh,p_q, and (myq, ..., mp_gq), respectively. From the discussion below Theorem (3| we know
that P(k(p—q) > ci—a(k(1),k—mw)) < a for any choice of k(1) > 0, where k(1) denotes the largest

eigenvalue of Z;Z7p_qh3,k,qhg7k_qzh,p,q. But given that ¢1_(x(1),k — my) is increasing in x(1)
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and converges to Xifmw,lfa as k(1) — oo, it must also hold that P(k(p —q) > Xzfmw,lfa) < a.

By Proposition 2[b) when ¢ = 0, the limiting distribution of the two roots (Kin, ARn(50))
in (3.2) equals the distribution of the largest and smallest eigenvalues, k(1) and k(p) say, of
Z;hphg,kh’g,kzhp € RP*P where hg’kzh’p = (W1, ..., Wp), where w; € R* for j = 1,...,p are in-
dependent N(my, I) with m; = (09=Y hy ;,0877") for j < p and m, = 0, respectively. Con-
sider a finite-sample scenario as in (2.9) in Section [2| with the roles of = and M played by
hngh,p and (mu1,...,mp), respectively. From the discussion below Theorem [3| we know that
P(k(p) > c1—a(k(1),k — mw)) < a. Therefore,

RP,(Anp) = Pr, (AR, (Bo) > ci—a(Rin, k—mw)) — RPT(h) = P(k(p) > c1_a(k(1),k—mp)) < a,
(A.44)

where the convergence holds again from the features of ¢;_,(z,k — my) described above. [

B Computational details

B.1 Computation of the hypergeometric function

The function 0F1(2) of two matrix arguments, which appears in the kernel of the density ,
involves an infinite series of Jack functions that converge very slowly and it is notoriously hard to
compute accurately. We use the recently developed algorithm of [Koev and Edelman| (2006) which
is efficient and fast. The algorithm approximates 0F1(2) using a finite sum of terms M terms, so
we need to choose M large enough for an accurate approximation. By extensive experimentation
with different values of M up to 500, we found that M = 200 seems to be sufficiently large for all
the cases we considered, because the results are unchanged when M is increased further. Hence,

we used M = 200 in all calculations.

B.2 Size calculations

The computation of the NRP in Section [2| was conducted using numerical integration of the exact
density . Their accuracy depends in part on the accuracy of the computation of 0F1(2). To
assess that, we compare in Figure[7]the NRP computed using Monte Carlo integration with 1 million
replications to the one reported in Figure 2l The results are essentially identical to 3 decimals.

Further results on the size of conditional subvector AR test are given in Section [D.1]

B.3 Power bounds

In this section, we explain how we compute bounds to the power of the rank testing problem
in Section using the methods of (Andrews et al., 2008| Section 4.2) and |Elliott et al. (2015)
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Figure 7: Comparison of estimates of NRP obtained by numerical integration (NI) and Monte Carlo
simulaiton (MC) with 1 million draws. NRP of 5% level conditional (red solid) and GKMC
subvector AR (blue dotted) tests as a function of the nuisance parameter k,, , The number of
instruments is k = 5 and the number of nuisance parameters is my = 1.

(henceforth AMS and EMW respectively). The testing problem is
Hy: ko =0,k1 >0 versus Hy : kg > 0,K1 > Ko,

where k1, k2 are the eigenvalues of the noncentrality parameter x; (M’ M) of the 2 x 2 noncentral
Wishart matrix Z'2 ~ Wy (k, Is, M'M) , and #; = k; (E'Z). The joint density of the eigenvalues
fir,ia (X1, 225 K1, K2) is given in .

All simulations in this section are performed using importance sampling. The parameter space
for k1 under Hy is discretized into N, = 42 points, in the same way as for the size calculations
before, i.e., k1 € {n171, cees K1,N,, }, where k1 ; are equally spaced in log-scale between 0 and 100.
We will compute point-optimal power bounds over a grid of point alternatives. Let F' denote
a distribution over Hy, so that Hy p € Hp is a point alternative, and let g denote the density
of the data under H; r. For the power envelope, we consider one-point distributions F', whose
support varies over the range ko € [0.1,R2 (k)|, discretized into 30 equally spaced points, and
k1 — ko € {0,1,2,4,8,16,32,64} . We do not consider greater values of k1 — k2 because the power
curves of ko are already indistinguishable at k1 — ko = 64. The upper bound of ke under Hj,
Ra (k) , is chosen to be about just high enough for the power of the conditional subvector AR test
©c to be above 0.99, and it necessarily varies with k& (larger values are needed for higher k). With
some experimentation, we picked rg (2) = 25, ko (5) = 30, k2 (10) = 38, k2 (20) = 46. We index the
density of the data under the alternative by r = 1, ..., N;, = 30x8, so that g, (-) = fa, 2, (; K10, K2,r) -

Let x; ; € R? denote a draw from W (k, Iz, diag (k1,,0)) . We draw Ny simulations from each
of N,, data generating processes (DGPs). We abbreviate by f; (x; ;) the joint density at
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parameter [ evaluated at the ith draw z; ; from DGP j, i.e.,

fi (@) = fario (X1, 2,053 K1,0,0),
l’s’@j = KRgs (Xz) , 8 = 1, 2 Xi ~ WQ (k, IQ, diag (/4317]', 0)) y
Lj=1,.Nu, i=1,..,No.

The rejection probability of any test ¢ (x), under DGP j, RP; (¢), is computed by Monte Carlo

integration with importance sampling using the formula

0 s S e o
where f (1) = Ny 200 £ ().

Let A denote a distribution over the space of the nuisance parameter k1, i.e., a distribution over
Hy. A point null hypothesis Hy 5 € Hp is defined by the distribution [ f,, dA, and is approximated
here by Zl]\i”f fi (-)wy A, where wy a, Il =1,..., Ny, are the weights over the (discretized) support of
A. A least favorable distribution AYF for testing Hy against a particular point alternative H 1r (if
it exists) is such that the a-level Neyman-Pearson test of Hj, yr against Hy p has size o under Hy.

ALY is not known in this application. As shown in (Elliott

The least favorable distribution
et al} 2015, Lemma 1), any Neyman-Pearson test ¢, of size o under Hy s will provide an upper
bound on the power of tests of Hy. But the power bound may be quite conservative in the sense
that it could be far above the least upper bound. The procedures in AMS and EMW are designed
to produce bounds that are close to the least upper bound obtained using AX*". AMS consider one-
point distributions A, and provide upper and lower bounds on the power envelope. The upper bound
is obtained by looking for the (one-point) distribution A* that gives the smallest size under Hy, i.e.,
maxy, Ey, (pa+) < maxy, Ex, (¢a) for all one-point distributions A, where Ey, (-) is expectation
w.r.t. the Null distribution indexed by k1. When the size of g~ exceeds « this bound may be
too high. We will report here only the upper bound of AMS, because it is close to, and often

indistinguishable from, the bound obtained by the ALFD method of EMW.

B.3.1 AMS bound

The AMS algorithm for the upper bound on power, with a slight modification to do importance

sampling, is as follows.

1. For each j, j = 1,..., N, generate Ny draws x; j, i = 1,..., Ng with density f;. The draws

must be independent across ¢ and j.

2. Compute and store the importance sampling weights wy; j = fi (@i ;) /f (€ij), 1, =1, ..., Ny,
i=1,...N,.
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3. Set r=1.
4. Compute LR; (CCZ'J‘) = gr (:121‘7]') /fl (wm), l,j=1,...,Ng,1=1,..., Np.

5. Computation of cvs under Hy: For each [ =1, ..., N,;, find s by solving }/H\Dl (p1) = o, where
o1 := 1[LR; > 5] is the LR test of f; against g, with critical value s, and ]/%]\31 (1) is the
Monte Carlo estimate (B.1)) with the weights w;; ; computed in step 2.

6. Computation of size of each test: For each [,5 = 1,..., Ny, compute I/Bﬁj (1), and obtain
Dl = ma’XjE{l,...,an} |:RP]' ((pl) - a} )

7. Find test with size closest to a: I* = arg minle{1 } D.

7"',Nn1

8. Compute the AMS upper bound 7, = N; ! Zf\gl ¢+ (), where x; are i.i.d. draws of (A1, k2)
with density g,.

9. If r < N, set r =7+ 1 and go to step 4.

All the reported results are based on Ny = 10000 and N; = 100000. (we can use a smaller
number of simulations under Hy for a similar level of precision due to importance sampling.)

Because the size of the test ¢« can exceed o, the AMS upper bound 7@ may be higher than the
least upper bound. To gauge this, Figure |8| plots (Monte Carlo estimates of) the size of ¢;» across
the different alternatives r. Note that for most alternatives the size of the test ;« is close to a, so
7, could be close to the least upper bound in those cases. However, for alternatives close to Hy
the size of ¢« deviates substantially from «, and the AMS upper bound 7, may be higher than the
least upper bound. These are precisely the cases in which the conditional subvector AR test has

the highest deviations from the power bound.

B.3.2 EMW bound

The PO power bound reported in Figure |3|is based on the ALFD approach of EMW. The ALFD
is designed to produce tests that are at most ¢ away from the true (unknown) power envelope. We
apply the algorithm with a slight modification to allow € to vary across alternatives — for some
alternatives we may be able to get closer to the least upper bound than for others.

We use the following modified version of the algorithm in (Elliott et al., 2015, Appendix A.2)
without switching, assuming the parameter space for the nuisance parameter is compact. The
modification relates to steps 6 to 8 of the original algorithm and cannot underestimate the true

power bound.

1. For each j, j = 1,..., N, generate Ny draws x; j, i = 1,..., Ng with density f;. The draws

must be independent across ¢ and j.

2. Compute and store f; (z; ;) and f(z;;), l,j =1,...; Ngy, i =1, ..., No.
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Figure 8: Size of the AMS test for each point under Hp, ko € [0.1,R2(k)], R2(2) = 25,
Ko (5) = 30, ko (10) = 38, ko (20) = 46, discretized into 30 equally spaced points, and k1 — kg €
{0,1,2,4,8,16,32,64} . Calculated over 42 points of the nuisance parameter under Hy, using 10000
Monte Carlo replications with importance sampling.
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3. Setr=1.
4. Set p® = (=2,...,-2) € RN=1.

5. Compute xGt) from p(® via ,u§.s+1) = ,u§.s) +w (ﬁﬁ] (cp(s)) - a) and w = 2, where p(®) =
1[gr > ZZ | exp (uz ) f,} and EI\DZ (go(s)) is the Monte Carlo estimate 1| with weights

computed in step 2, and repeat this step O = 600 times. Denote the resulting element in the
simplex by A* = (5\1, e 5‘an> where )\ = exp ( O)) /ZN“1 exp ( (© )> )

6. Compute the number »* such that the test ¢z, :=1 [gr > 7" vanf S\*fl} is exactly of (Monte

Carlo) level w when @ is drawn with density ZZ "1 X\ffi, that is, solve > e “1 /\* (EI\DJ (i) —a
= 0.

7. Compute the estimate of the power bound 7, = Nl_1 Zf\gl @i~ (x;) , where x; are i.i.d. draws

of (k1, ko) with density g,.

8. Compute the number » such that the test ¢;. =1 [gr > %Zf\[:”ll S\ffl is exactly of (Monte

Carlo) level a when @ is drawn with density f;, i = 1,..., Ny,, that is, solve maXjer; N, Y
seeydiVR]
<RPJ' (@A*) — Ot) = 0.
9. Compute another estimate of the power bound 7, = Nl_1 vazll @i~ (x;), where x; are the

i.i.d. draws in step 7, and &, = T, — 7.
10. If r < N,, set r =7+ 1 and go to step 4.

All the reported results are based on Ny = 10000 and N; = 100000. (we can use a smaller
number of simulations under Hy for a similar level of precision due to importance sampling.)

Up to step 7, the algorithm is identical to EMW (Appendix A.2.1). The difference is in step 7,
which replaces steps 6 to 8 of the original algorithm. The number &, is an estimate of the maximum
distance of the power bound 7, from the unknown least upper bound. 7, is the PO power bound
used in Figure [3] Figure [J] plots &, across all alternatives. In most cases £, is equal to zero to 3
decimals, indicating that the ALFD upper bound is essentially least favorable. The only exceptions
are for a handful of alternatives very close to the null. Hence, the ALFD upper bound is arguably
a good approximation of the PO power envelope.

The bound 7, (which is obtained from step 5 in the original EMW algorithm) can also serve
as an upper bound on the power, similar to the AMS bound in the previous section. The only
difference is the use of a distribution A* with full support on the discretized Hy, as opposed to
a one-point candidate least favorable distribution in AMS. But as for AMS, 7, can be far from
the least upper bound if ¢j. is oversized under Hy. To gauge this, Figure (10| plots (Monte Carlo

estimates of) the size of pp~ across the different alternatives r. The figure is directly comparable
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Figure 9: Estimates of the distance of the ALFD power bound from the least favorable bound,
e = 7 — 7, for each point under Hy, ky € [0.1,Ra (k)], R2(2) = 25, Ra (5) = 30, ke (10) = 38,
R2 (20) = 46, discretized into 30 equally spaced points, and k1 — Ky € {0,1,2,4,8,16,32,64}.
Calculated over 42 points of the nuisance parameter under Hy, using 10000 Monte Carlo replications
with importance sampling.
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Figure 10: Size of the test ¢;. in step 5 of EMW’s ALFD algorithm for each point under Hi,
ko € [0.1,R2 (k)], R2 (2) = 25, Ra (5) = 30, k2 (10) = 38, Ko (20) = 46, discretized into 30 equally
spaced points, and k1 — k2 € {0,1,2,4,8,16,32,64}. Calculated over 42 points of the nuisance
parameter under Hy, using 10000 Monte Carlo replications with importance sampling.
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to Figure [§| for the AMS algorithm in the previous subsection. Compared to AMS, the EMW
procedure has size much closer to a across most (but not all) alternatives.

Let 7AM5 and #FMW denote the power bounds obtained from the AMS and EMW algorithms,
respectively. Since they are both upper bounds to the true PO power envelope, so is their minimum,

—min AMS —EMW
» T

M = min (7_T,, ) . We can therefore use ﬁ?in as a possibly tighter upper bound on the

power envelope.

C Tables of critical values

10%, 5% and 1% conditional critical values c¢1_q (k1,k —my) were computed by numerically
integrating the density at different values of the conditioning variable & for the cases
k — mw = 1,...,20. The results are reported in Tables [3| to The conditional quantiles are
rounded upwards to one decimal place, and the initial value of %1 in each table is the smallest &1

for which the rounded quantile is less than 1.
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a = 10%

03 0209 06|17 10|27 14|40 18 6.4 22| 15.2 2.6
04 0311 0719 11|30 15|45 19 7.4 23| 276 2.7
05 0413 08|21 12|33 16|50 20 8.8 2.4 | 1000 2.703
0.7 0515 09|24 13|36 17|56 21| 11.0 2.5 oo 2.706

a=5%
kK1 ¢ev| Rl ¢ev| ki c¢v| Rl c¢v| Rl c¢v R1 cv R1 cv
05 0413 10]23 16|36 22|55 28 9.8 3.4 oo 3.841
06 05|15 1125 1.7/39 23|60 29| 114 3.5
07 06|16 12|27 18|41 24|65 3.0 139 3.6
09 0718 1329 19|44 25|70 3.1 185 3.7
1.0 08|20 14|31 2048 26|78 32| 29.7 3.8
1.2 0921 15|34 21|51 27|86 3.3]| 1000 3.838

a=1%
ki ¢ev| R c¢ev| Rl c¢v| Rl c¢v| R cv k1 cv k1 cv
1.0 0920 18|32 27|45 36|62 45 9.0 54| 19.3 6.3
1.1 1.0(21 19|33 28|47 37|65 4.6 9.5 5.5 | 23.8 6.4
1.2 1122 20(34 29|48 38|67 4.7 10.0 5.6 | 32.2 6.5
1.3 1224 21|36 30|50 39|70 48| 10.6 5.7 | 53.1 6.6
14 13(25 22|37 31|52 40|72 49| 11.3 5.8 | 1000 6.628
1.5 14126 23|39 32|54 41|75 50| 122 5.9 o 6.635
1.6 15|28 24|40 33|56 42|79 51| 13.3 6.0
1.8 16|29 25|42 34|58 43|82 52| 14.7 6.1
1.9 17130 26|43 35|60 44|86 53| 16.6 6.2

Table 3: 1 — « quantile of the conditional distribution, with density given in {'
cv=ci_q (k1,k —myp ) at different values of the conditioning variable #;. Computed by numer-
ical integration.
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a=10%
kK1 ¢v| Ri ¢ev| Rl c¢cv| R c¢v k1 ¢V k1 cv R1 cv
05 04|14 11|25 18|39 25| 57 32 9.2 3.9 | 47.2 4.6
06 05|16 12|27 19|41 26| 6.1 3.3 10.1 4.0 | 1000 4.601
07 06|17 13|29 20|43 27| 65 34| 11.2 4.1 oo 4.605
08 07|19 14|31 21|46 28| 6.9 3.5 ]| 12.7 4.2
1.0 0820 15|33 22|48 29| 73 3.6 15.0 4.3
1.1 09(22 16|35 23|51 30| 79 37| 18.6 4.4
1.3 1024 17|37 24|54 31| 85 38| 259 4.5
a = 5%
I%l Ccv /231 Ccv /%1 Ccv I%l CV 1%1 Ccv /%1 (&A% /%1 Ccv
07 06|16 14|27 22|40 30| 55 338 7.8 4.6 | 13.0 5.4
08 07|18 15|29 23|42 31| 58 39 8.2 4.7 | 14.5 5.5
09 08|19 16|30 24|43 32| 6.0 4.0 8.6 4.8 | 16.5 5.6
1.0 09]20 17|32 25|45 33| 63 4.1 9.1 49| 195 5.7
1.1 10|22 18|33 26|47 34| 65 4.2 9.7 5.0 | 24.7 5.8
1.3 11123 19|35 2749 35| 6.8 43| 10.3 5.1 | 354 5.9
14 1224 20(36 28|51 36| 7.1 44| 11.0 5.2 | 1000 5.985
1.5 1326 21|38 29|53 37| 75 45| 11.9 5.3 oo 5.991
a=1%
I%l Ccv /231 Cv /%1 Ccv /%1 CV 1%1 Ccv /%1 Ccv /%1 Ccv
1.6 1529 27|46 41|65 55| 9.2 6.9 | 15.3 8.3 oo 9.210
1.7 16|31 29|48 43|69 57| 97 7.1 | 175 8.5
1.8 17133 31|51 45|72 591|103 73| 21.1 8.7
20 19136 3354 47|75 6.1|11.0 7.5 28.3 8.9
22 21|38 35|56 49|79 6.3 |11.7 7.7| 49.5 9.1
24 23|41 37|59 51|83 6.5|126 7.9]| 89.0 9.2
27 25143 3962 53|87 6.7]13.8 81| 1000 9.201

Table 4: 1 — «a quantile of the conditional distribution, with density given in

(2.12),cv=c1_q (A1, k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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a=10%
I%l Ccv l%l Ccv /%1 Cv /%1 Ccv 1%1 Ccv /%1 Ccv l%l Ccv
06 05|17 14|29 23|44 32| 62 41| 91 5.0/ 188 5.9
0.7 06|18 15|31 24|46 33| 65 42| 96 51| 226 6.0
08 07|19 16|32 25|47 34| 68 43]102 52| 29.6 6.1
09 08|21 1734 26149 35| 70 441|108 53| 46.0 6.2
1.0 09|22 18|35 27|51 36| 73 45| 11.5 54| 1000 6.245
1.2 10|23 19|37 28|53 37| 76 46| 123 5.5 oo 6.251
1.3 1125 20(39 29|56 38| 80 477|133 5.6
14 12|26 21|40 30|58 39| 83 48| 146 5.7
1.5 13|28 22|42 31|60 40| 87 49163 5.8
a=5%
I%l CcVv 1%1 Ccv I%l (@Y% 1%1 (Y I%l (@Y% 1%1 cv 1%1 (@Y%
09 08|21 1935 30|51 41| 71 521|102 6.3 20.9 7.4
1.0 09|23 20|37 31|53 42| 74 53|10.6 64| 24.5 7.5
1.1 1024 21|38 32|55 43| 76 54 |11.1 6.5| 304 7.6
1.2 11|25 22|39 33|56 44| 78 55|11.6 6.6 | 41.9 7.7
1.3 12|26 23|41 34|58 45| 81 56| 121 6.7| 73.6 7.8
14 13|27 24|42 35|60 46| 83 57|12.8 6.8 | 1000 7.807
1.5 14129 25|44 36|6.2 47| 86 58| 135 6.9 oo 7.815
1.6 15|30 26|45 37|63 48| 89 59|144 7.0
1.8 16|31 27|47 38|65 49| 9.2 6.0 | 154 7.1
1.9 17133 28|48 39|67 50| 95 6.1]16.7 7.2
20 18134 29|50 40|69 51| 98 6.2|185 7.3
a=1%
1%1 (&A% /%1 Ccv /%1 Ccv /%1 (A% 1%1 Ccv /%1 Ccv /%1 Ccv
22 21137 35|55 51|76 6.7]103 83151 9.9 | 1000 11.334
23 22139 3758 53|79 69107 85163 10.1 oo 11.345
24 23|41 39160 5582 7.1|11.2 871|177 10.3
26 25|44 41163 57|85 73|11.6 89| 19.8 10.5
28 27|46 4365 59|88 751|122 9.1 ]229 10.7
30 29|48 45168 6.1]92 777|128 93283 10.9
32 31|50 4771 6395 779|134 9.5 403 11.1
35 33|53 49|73 65199 81 |142 97|84 11.3

Table 5: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — my ) at different values of the conditioning variable #1. Computed by
numerical integration.
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a=10%
kK1 c¢cv| Rl c¢v| k1 cv k1 cv R1 cv R1 cv R cv
0.8 0721 18|35 29| 52 40| 72 51103 6.2| 19.7 7.3
09 08122 19|37 30| 53 41| 74 522|107 6.3 224 7.4
1.0 09|23 2038 31| 55 42| 77 53 |11.1 64| 26.6 7.5
1.1 10|25 21139 32| 57 43| 79 54116 6.5| 33.9 7.6
1.2 11|26 2241 33| 58 44| 82 55121 6.6| 493 7.7
1.3 12|27 2342 34| 60 45| 84 56127 6.7 1000 7.772
1.5 13|28 24|44 35| 62 46| 87 57]134 6.8 oo 7.779
1.6 14|30 25|45 36| 64 47| 90 58142 6.9
1.7 15|31 26|47 37| 66 48| 93 59]151 7.0
1.8 16|32 2748 38| 68 49| 96 6.0|163 7.1
19 17134 28|50 39| 70 50| 99 6.1 |177 72
a=5%
ki c¢v| k1 c¢cv| R cv k1 cv k1 cv k1 cv k1 cv
1.2 11|25 23142 37| 62 51| 86 6.5 (125 79| 399 9.3
1.3 12|27 25145 39| 65 53| 90 6.7|134 81| 574 9.4
14 13|30 2747 41| 68 55| 94 69145 83| 1000 9.478
16 15|32 29|50 43| 71 57| 99 71]159 85 oo 9.488
1.8 17|35 31|53 45| 74 59|105 773|179 87
21 1937 33|56 47| 78 6.1 |11.1 7.5]209 89
23 21|40 35|59 49| 82 63 |11.7 7.7]265 9.1
a=1%
/%1 (&A% I%l Ccv I%l Ccv /%1 Ccv I%l Cv f%l Ccv /%1 Ccv
27 2644 42|64 60| 87 78114 96| 16.0 11.4 | 83.7 13.2
28 27|46 44|66 62| 89 80 |11.8 9.8 16.8 11.6 | 1000 13.264
29 28|48 46|69 64| 92 82122 100|178 11.8 oo 13.277
31 3050 48|71 66| 95 84126 10.2|19.1 12.0
33 32153 50|74 68| 98 86|13.0 104|207 12.2
35 34155 52|76 70]10.1 88135 10.6|229 124
3.7 36|57 54|79 722|104 90 |14.0 108 26.3 12.6
39 38159 56|81 74107 92 |14.6 11.0]| 320 12.8
41 40162 58|84 76| 11.1 94152 11.2|44.1 13.0

Table 6: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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k—mw =5

a=10%

kK1 ¢cv| Rl c¢v | k1 c¢v R1 cv R1 cv R1 cv R1 cv
09 08|22 20|40 34| 6.0 48| 84 6.2|124 7.6 | 34.8 9.0
1.0 09|25 2243 36| 63 50| 89 64132 78| 749 9.2
1.1 10|27 24|45 38| 66 52| 93 6.6 143 8.0 | 1000 9.227
1.3 12|30 26|48 40| 69 54| 98 6.8 |156 8.2 oo 9.236
1.5 14|32 28|51 42| 73 56104 70174 84

18 16|35 30|54 44| 77 58110 72201 86

20 18|37 32|57 46| 80 6.0|11.6 741|246 88

a=5%

kK1 ¢cv| Rl c¢v| k1 c¢v R1 cv k1 cv R cv K1 cv
14 13|29 2748 43| 69 59| 95 75134 9.1 31.8 10.7
1.5 14|31 29|50 45| 72 61| 98 77141 9.3 49.1 10.9
16 15|34 31|53 47| 75 63]102 79150 95| 73.0 11.0
1.8 17|36 33|56 49| 78 65107 81 |16.0 9.7 ] 1000 11.060
20 19138 35|58 51| 81 6.7 |11.1 83 |17.3 9.9 oo 11.070
22 21|41 37|61 53| 84 69 |11.6 85| 189 10.1

25 23143 39|63 55| 88 7.1 ]121 871]21.2 10.3

27 25|45 41|66 57| 91 73|127 891|249 105

a=1%

kK1 ¢cv| Rl c¢v| k1 c¢v R1 cv k1 cv R cv R1 cv
32 31|51 49|73 69| 97 89]|127 109|173 12.9]| 62.8 14.9
33 32|53 51|75 7.1|10.0 9.1]13.0 11.1|18.0 13.1| 90.8 15.0
34 33|55 53|77 73]10.2 93134 11.3| 18.8 13.3 | 1000 15.072
3.6 35|57 55|80 75105 9.5 | 137 11.5|19.8 13.5 oo 15.086
3.8 3.7/59 57|82 7.7]108 9.7|14.1 11.7|21.1 13.7

40 39162 59|85 79 |11.1 99146 11.9|22.6 139

42 41164 6.1 |87 81114 10.11| 150 12.1|24.7 14.1

44 43166 63[9.0 83 |11.7 103|155 123|277 14.3

46 45168 6592 85120 10.5|16.0 12.5| 32.5 14.5

48 47171 67195 87123 10.7|16.6 12.7|41.4 147

Table T: 1 — « quantile of the conditional distribution, with density given

in

(2.12)),cv=c1_q (R1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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k—mwy =6

a=10%
/%1 Cv /%1 Ccv I%l CcVv /231 Ccv I%l Ccv I%l Cv I%l Ccv
1.1 10|26 24|46 40| 68 56| 95 7.2]|13.7 88| 394 10.4
1.2 1129 2649 42| 71 58| 99 74|145 9.0| 819 10.6
1.3 1231 28|51 44| 74 60103 7.6| 155 9.2 1000 10.634
1.5 14|34 30|54 46| 7.7 62108 7.8]16.6 94 oo 10.645
1.7 16|36 32|57 48| 80 64 |11.3 80| 181 9.6
20 18|38 34|59 50| 84 6.6]11.8 82201 98
22 20|41 36|62 52| 87 6.8]124 84230 10.0
24 22|43 38|65 54| 91 7.01]13.0 86282 10.2
a=5%
/%1 Cv /%1 (A% I%l (A% /231 Ccv I%l Ccv I%l (&A% I%l (A%
1.6 15|33 31|54 49| 77 67104 85| 144 103 | 30.9 12.1
1.7 16|35 33|56 51| 79 69108 87151 10.5| 41.6 12.3
1.8 17|37 35|59 53| 82 71 |11.1 89158 10.7| 75.0 12.5
20 1940 37|61 55| 85 73 |11.5 9.1 |16.7 109 | 1000 12.579
22 21142 39|64 57| 88 75119 93177 11.1 oo 12.592
24 23|44 41|66 59| 91 77124 95189 113
26 25|47 43|69 61| 94 791|128 97204 11.5
29 27149 45|71 63| 97 81]133 99225 11.7
3.1 29|51 47|74 6.5|101 831|139 10.1 | 257 11.9
a=1%
k1 c¢v| Rl c¢v | R c¢v k1 cv k1 cv k1 cv k1 cv
3.7 36|55 54|78 75|103 9.6 13.1 11.7|17.1 13.8| 28.7 15.9
3.8 37|59 57|82 78107 99136 120|179 14.1| 355 16.2
40 391]6.2 6.0 (85 81 |11.1 10.2|14.1 123|188 144 | 524 16.5
4.3 42165 6389 84 |11.5 105|146 12.6 | 19.8 14.7 | 159.8 16.8
46 4568 6.6 92 87119 108|152 129 |21.1 15.0| 1000 16.796
49 48|72 6996 90123 11.1 | 157 132|228 153 oo 16.812
52 51|75 72199 93|127 114|164 13.5| 251 15.6

Table 8: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (A1, k — my ) at different values of the conditioning variable #1. Computed by

numerical integration.
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a=10%
kK1 c¢v | Rp c¢v R1 cv k1 cv R cv R1 cv R1 cv
1.2 11129 27| 51 45| 75 63]103 811|147 99| 385 11.7
1.3 12|32 29| 53 47| 77 65]10.7 83| 155 10.1| 65.0 11.9
14 13|34 31| 56 49| 80 6.7|11.1 85 ]16.3 10.3 | 112.1 12.0
16 15|36 33| 58 51| 83 69115 887|173 10.5| 1000 12.005
1.8 1.7139 35| 6.1 53| 87 7.1]12.0 89184 10.7 oo 12.017
20 19|41 37| 64 55| 90 73124 9.1|19.9 10.9
23 21143 39| 66 57| 93 75129 93218 11.1
25 23146 41| 69 59| 96 7.7 135 9.5 |247 11.3
27 25|48 43| 72 61100 79141 971293 11.5
a=5%
kK1 c¢cv | Rl cv R1 cv R1 cv R1 cv R1 cv k1 cv
19 18|38 36| 6.1 56| 86 76/|11.5 961|159 11.6| 35.6 13.6
20 19|40 38| 63 58| 89 78119 98165 11.8| 49.0 13.8
21 20|43 40| 66 60| 9.1 80122 10.0|17.2 12.0| 94.6 14.0
23 22|45 42| 68 62| 94 82126 10.2|18.0 12.2 | 1000 14.053
25 24147 44| 71 64| 97 84 |13.0 104 | 19.0 124 oo 14.067
27 26149 46| 73 66100 86134 10.6|20.1 12.6
29 28|52 48| 75 68103 88139 10.8|21.4 128
31 30|54 50| 78 7.0|106 9.0|14.3 11.0|23.2 13.0
34 32|56 52| 81 72109 92148 11.2|256 13.2
36 34|59 54| 83 74 |11.2 94153 114|293 134
a=1%
ki c¢cv| k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
42 41164 62| 90 86|11.8 11.0 151 134 |20.1 158 | 62.0 18.2
43 42167 65| 93 89121 11.3|156 13.7|21.0 16.1 | 117.1 18.4
45 44170 68| 96 92125 116 |16.1 14.0|22.2 16.4 | 1000 18.459
48 47173 711100 95129 119 |16.6 14.3|23.6 16.7 oo 18.475
51 50|76 74103 98| 133 122|172 14.6 | 255 17.0
54 53|80 7.7|107 10.1 | 13.7 12,5 |17.8 14.9|28.1 17.3
57 56|83 80 |11.0 104 | 14.2 128 |18.5 152|324 17.6
6.0 59|86 83|11.4 10.7|14.6 13.1 |19.2 15.5| 40.5 17.9

Table 9: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by
numerical integration.
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a=10%

1%1 Ccv /%1 Ccv /2.71 Ccv /%1 (A% /%1 Ccv 1%1 Ccv 1%1 Ccv

14 13|33 31| 57 51| 83 71114 91 ]16.1 11.1 | 478 13.1

1.5 14|36 33| 59 53| 86 73 |11.8 93169 11.3| 93.3 13.3

16 15|38 35| 62 55| 88 75(122 95| 17.7 11.5| 1000 13.348

1.8 1740 37| 64 57| 91 177|126 9.7|18.6 11.7 oo 13.362

20 19143 39| 67 59| 94 79|13.0 99|19.7 11.9

22 21|45 41| 69 61| 97 81134 10.1|21.0 12.1

24 23|47 43| 72 63101 83139 103|227 123

27 25|50 45| 75 65104 85144 105|251 125

29 27|52 47| 77 6.7 |107 87149 10.7|28.7 12.7

31 29|54 49| 80 69| 11.1 89155 10.9 | 34.8 12.9

a=5%

kK1 c¢cv | Rl cv R1 cv R1 cv R1 cv R1 cv k1 cv

21 20|42 40| 67 62| 94 84 |125 106 |17.1 128 | 37.6 15.0

22 21|44 42| 69 64| 96 86129 108|177 13.0| 50.0 15.2

23 22|46 44| 71 66| 99 88132 11.0| 184 13.2| 86.5 15.4

25 24149 46| 74 68102 9.0|13.6 11.2|19.1 134 | 155.6 15.5

27 26|51 48| 76 70104 9.2 |139 11.4|19.9 13.6 | 1000 15.492

29 28|53 50| 79 721107 94143 11.6 | 209 13.8 oo 15.507

3.1 30|55 52| 81 74|11.0 9.6 147 11.8|22.0 14.0

33 32|58 54| 84 76 |11.3 98151 12.0| 234 14.2

35 34|60 56| 86 7.8|11.6 10.0 |15.6 12.2|25.2 144

38 36|62 58| 89 80|11.9 10.2|16.1 124 |27.7 14.6

40 3864 60| 91 82122 104|166 12.6 |31.4 148

a=1%

I%l Ccv /%1 Cv I%l Ccv /%1 (A% /%1 Ccv 1%1 Ccv I%l Ccv

47 461168 6.7 94 91122 115|152 139|193 163 | 285 18.7

48 47172 70| 97 94125 11.8 157 142|199 16.6 | 31.8 19.0

50 49|75 73101 97129 12.1|16.1 14.5|20.6 169 | 37.2 19.3

53 52|78 7.6 |104 10.0| 13.2 124 |16.6 14.8|21.4 172 | 484 19.6

56 55|81 79108 103 |13.6 12.7|17.0 15.1|224 175 | 82.9 19.9

59 58|84 82 |11.1 106 | 14.0 13.0|17.6 154|234 17.8| 1184 20.0

6.2 6.1 |88 85 |11.4 109|144 133 |18.1 15.7|24.7 18.1 | 1000 20.073

6.5 64191 88 |11.8 11.2 | 14.8 13.6 | 18.7 16.0 | 26.3 18.4 oo 20.090
Table 10: 1 — a quantile of the conditional distribution, with density given

(2.12),cv=c1_q (A1, k — my ) at different values of the conditioning variable

numerical integration.
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a=10%
k1 ¢V k1 c¢v R cv k1 cv R1 cv k1 cv k1 cv
1.5 14| 34 32| 57 52| 82 7.2|11.0 92| 146 11.2| 21.6 13.2
16 15| 36 34| 59 54| 84 74 |11.3 941|151 114 | 23.0 13.4
1.7 16| 39 36| 62 56| 87 7.6|11.6 9.6| 156 11.6| 24.8 13.6
19 18| 41 38| 64 58| 90 7.8/|11.9 98] 16.1 11.8| 27.3 13.8
21 20| 43 40| 6.7 6.0| 92 80123 10.0]16.6 12.0| 31.0 14.0
23 22| 45 42| 69 62| 95 82]126 102|173 122 | 37.3 14.2
25 24| 48 44| 72 64| 98 84 ]13.0 104|179 124 | 50.3 14.4
28 26| 50 46| 74 6.6 |10.1 861|134 10.6 | 18.7 126 | 91.8 14.6
3.0 28] 52 48| 7.7 6.8]|10.4 88| 13.8 10.8| 19.5 12.8 | 1000 14.669
32 30| 55 50| 79 7.0]|10.7 9.0 14.2 11.0|20.5 13.0 oo 14.684
a=5%
/%1 Cv I%l Ccv /%1 (&A% /%1 Cv I%l Cv /%1 Ccv /%1 Ccv
23 22| 45 43| 72 6.7]10.0 9.1 ]134 115|181 13.9| 36.9 16.3
24 23| 48 46| 75 770|104 94138 11.8]189 14.2| 535 16.6
26 25| 51 49| 78 73|10.8 9.7|14.3 12.1]19.9 14.5 | 1544 16.9
29 28| 55 52| 82 76 |11.2 100|149 124 |21.0 14.8 | 1000 16.903
32 31| 58 55| 86 79]|11.6 10.3| 154 12.7| 224 15.1 oo 16.919
35 34| 61 58| 89 82]12.0 10.6 | 16.0 13.0| 24.1 15.4
3.8 37| 65 6.1| 93 &85|125 109 16.6 13.3|26.5 15.7
42 40| 6.8 6.4| 9.7 88129 11.2|17.3 13.6 | 30.2 16.0
a=1%
/%1 Ccv I%l Ccv /%1 (&A% /%1 Ccv I%l Ccv /%1 (&A% /%1 Ccv
52 51| 76 75105 10.2|13.6 129|171 156 | 22.1 183 | 44.1 21.0
53 52| 80 7.8]10.9 105|140 132|176 159|229 186 | 61.9 21.3
55 54| 83 81 ]11.2 10.8| 144 13.5|18.1 16.2 | 23.8 18.9 | 1434 21.6
58 57| 86 84115 11.1|14.7 13.8 | 185 16.5|24.8 19.2 | 1000 21.647
6.1 60| 89 &87|11.9 11.4| 151 14.1|19.0 16.8 | 26.0 19.5 oo 21.666
64 63| 92 9.0 122 11.7| 155 14.4|19.6 17.1 | 275 19.8
6.7 66| 96 93| 12.6 12.0| 159 14.7|20.1 17.4 1 29.4 20.1
70 69| 99 96129 123 |16.3 15.0|20.7 17.7|32.2 204
73 721102 99133 126 | 16.7 153|214 180 | 36.4 20.7

Table 11: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by
numerical integration.
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a=10%

I%l cv I%l Ccv I%l (@Y% I%l Ccv 1%1 CcVv I%l Ccv I%l Ccv

1.7 16| 39 37| 67 6.1 97 85|13.2 109|184 13.3| 544 15.7

1.8 1.7 43 40| 70 64 ]10.1 88| 13.7 11.2|194 13.6 | 983 15.9

20 19| 46 43| 74 6.7]|105 9.1 |14.2 11.5|20.5 13.9| 1000 15.971

23 221 49 46| 78 70109 94148 11.8 219 14.2 oo 15.987

26 25| 53 49| 81 733|113 97154 12.1|23.6 14.5

29 28] 56 52| 85 76|11.8 10.0|16.1 124 |26.0 14.8

33 31| 6.0 55| 89 79122 103 |16.8 12.7|29.7 15.1

36 34| 63 58| 93 82]|127 106|175 13.0|36.6 15.4

a=5%

I%l cv I%l Ccv I%l Ccv I%l CcVv 1%1 CcVv I%l Ccv I%l Ccv

25 24| 50 48| 80 7.5 |11.2 10.2|15.0 129 20.8 15.6 | 183.9 18.3

26 25| 53 51| 83 7.8|11.6 10.5| 155 13.2|21.8 159 | 1000 18.289

28 27| 56 54| 87 81]120 10.8|16.0 13.5|23.0 16.2 oo 18.307

31 30| 6.0 57| 90 84]|124 11.1|16.6 13.8 |24.4 16.5

34 33| 63 60| 94 87|128 114|171 14.1 | 26.3 16.8

37 36| 66 63| 97 90132 11.7|17.7 144|289 17.1

40 39| 70 6.6 |101 93 |13.6 120|184 14.7 329 174

44 42| 73 6.9]105 96| 14.1 123 ] 19.1 15.0|404 17.7

4.7 45| 76 72108 99| 145 126 ] 19.9 15.3|59.3 18.0

a=1%

I%l Cv /%1 Ccv 1%1 Cv I%l Ccv /%1 (A% /%1 Ccv /%1 Cv

57 56| 81 80| 11.0 10.7 | 140 134|174 16.1|21.6 188 | 30.6 21.5

58 57| 85 83| 11.3 11.0| 144 13.7|17.8 16.4 | 22.2 19.1 | 33.0 21.8

6.0 59| 88 86| 11.7 11.3 | 14.7 14.0 | 182 16.7 | 22.9 194 | 36.7 22.1

6.3 62| 91 89120 116|151 143|186 17.0|23.6 19.7 | 42.7 22.4

6.6 65| 94 92123 119|155 146 |19.1 173|244 20.0| 54.9 22.7

69 68| 9.7 95|127 122|158 149 |19.6 17.6 | 25.2 20.3 | 90.9 23.0

72 7.11100 9.8 |13.0 12.5|16.2 15.2]20.0 17.9|26.2 20.6 | 221.2 23.2

7.5 74104 10.1 | 13.3 128 | 16.6 15.5| 20.5 18.2 | 27.4 20.9 | 1000 23.190

7.8 777|107 104 | 13.7 13.1 | 17.0 158 | 21.1 18.5 | 28.8 21.2 oo 23.209
Table 12: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (A1, k —mw ) at different values of the conditioning variable #;. Computed by
numerical integration.
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a=10%
k1 c¢v R1 cv k1 cv R1 cv R1 cv R1 cv R1 cv
1.8 1.7 40 38| 6.7 6.2| 9.6 86| 12.8 11.0 | 17.1 13.4 | 25.7 15.8
1.9 18| 43 41| 71 6.5|10.0 89133 11.3|17.7 13.7| 28.3 16.1
21 20| 47 44| 74 68103 92138 116|185 14.0| 324 16.4
24 23| 50 47| 78 71107 95142 119|193 143 | 40.1 16.7
27 26| 53 50| 81 74111 98148 122 ]20.2 146 | 60.3 17.0
30 29| 57 53| 85 7.7 |11.6 10.1 |153 125 |21.2 14.9 | 112.6 17.2
34 32| 60 56| 88 80120 104|158 128|224 152 | 1000 17.258
3.7 35| 64 59| 92 83|124 10.7|164 13.1|239 155 oo 17.275
a=5%
k1 c¢v R1 cv k1 cv R1 cv R1 cv R1 cv R1 cv
28 27| 53 51| 82 78114 105|149 13.2]19.7 159 | 328 18.6
29 28| 56 54| 86 81 |11.7 108|154 13.5|204 16.2 | 38.3 18.9
31 30| 59 57| 89 84121 11.1| 158 13.8 |21.2 16.5| 49.8 19.2
34 33| 63 60| 93 87125 114|163 14.1|22.0 16.8 | 86.7 19.5
37 36| 66 63| 96 90129 11.7|16.8 144 |23.0 17.1 | 127.1 19.6
40 39| 69 6.6|100 93 |133 120|173 14.7|24.1 17.4 | 1000 19.656
43 42| 72 69103 96| 13.7 123|179 150|255 17.7 oo 19.675
46 45| 76 72]10.7 99141 126|184 153|272 18.0
50 48| 79 75 (11.0 10.2|145 129 |19.1 156|294 18.3
a=1%
f%l Ccv /%1 Ccv I?Ll Ccv f%l Ccv /%1 Ccv /%1 Ccv /%1 Cv
6.1 60| 89 88123 120 |16.0 152 |20.1 184 | 26.5 21.6 | 208.0 24.7
6.2 61| 94 92128 124|164 156 |20.8 188 | 27.7 22.0 | 1000 24.705
6.5 64| 98 961|132 128|169 16.0|21.4 19.2|29.3 224 oo 24.725
6.9 6.81]10.2 10.0|13.7 132|174 164|221 19.6 | 31.3 22.8
73 721106 104 |14.1 13.6 | 179 16.8 | 22.8 20.0 | 34.2 23.2
77 7.6 |11.1 108 | 146 14.0 | 185 17.2 | 23.6 20.4 | 38.9 23.6
8.1 80 |11.5 112|150 144 |19.0 176|244 20.8 | 483 24.0
85 84119 116|155 148 |19.6 18.0 | 254 21.2 | 75.7 244

Table 13: 1 — a quantile of the conditional distribution, with density given

in

(2.12)),cv=c1_q (R1,k — mw ) at different values of the conditioning variable #;. Computed by
numerical integration.
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a=10%
k1 c¢v R cv K1 cv K1 cv K1 cv R cv R cv
20 19| 45 43| 75 70108 97145 124 ]19.7 151 | 37.6 17.8
21 20| 49 46| 79 73 (11.2 10.0| 150 12.7 204 154 | 49.3 18.1
23 22| 52 49| 82 76116 103|155 13.0|21.3 157 | 89.6 18.4
26 25| 55 52| 86 79120 106 |16.0 13.3|22.3 16.0 | 139.0 18.5
29 28] 59 55| 90 82124 109|165 13.6 |23.4 16.3 | 1000 18.531
32 31| 62 58| 93 85128 11.2|17.1 139|248 16.6 oo 18.549
36 34| 65 6.1 97 88132 115|177 14.2|26.5 16.9
39 37| 69 64100 9.1|136 11.8|183 145|288 17.2
42 40| 72 6.7]104 94141 121|189 148|320 175
a=5%
k1 c¢v R1 cv k1 cv R1 cv R1 cv R1 cv R1 cv
3.0 29| 58 56| 91 86125 116|166 146|222 17.6 | 56.7 20.6
31 30| 61 59| 94 89129 119|170 149 |23.0 179 | 109.1 20.9
33 32| 64 62| 97 92133 122|175 152|239 182 | 181.6 21.0
36 35| 68 65101 95137 125|180 155 |25.0 185 | 1000 21.006
39 38| 71 68104 98 |14.1 128|185 158 |26.2 18.8 oo 21.026
42 41| 74 711108 10.1 | 145 13.1|19.0 16.1 | 276 19.1
45 44| 77 74 ]11.1 104|149 134|196 16.4|29.5 194
4.8 47| 81 7.7]11.5 10.7| 153 13.7]20.2 16.7|32.0 19.7
52 50| 84 80 |11.8 11.0| 157 14.0|20.8 17.0 | 358 20.0
5.5 53| 87 83122 11.3|16.1 143 |21.5 173|424 20.3
a=1%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
6.6 65| 94 93128 125|164 157|204 189 | 25.7 22.1 | 45.5 25.3
6.7 66| 99 97132 129|168 16.1 |209 193 |26.7 22.5| 61.7 25.7
70 69103 10.1|13.7 133|173 16.5|21.5 19.7|27.7 229 | 136.8 26.1
74 73107 105 | 14.1 137|178 16.9|22.1 20.1 | 28.9 23.3 | 232.0 26.2
7.8 7.7 |11.1 109|146 14.1 | 183 17.3|22.7 20.5|30.4 23.7| 1000 26.197
82 81 |11.5 11.3 | 150 145|188 17.7|23.4 209|322 24.1 oo 26.217
8.6 85120 11.7 155 149|193 181 |24.1 213|348 24.5
9.0 89124 121|159 153|198 185|249 21.7|38.6 24.9

Table 14: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by
numerical integration.
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a=10%

I%l Ccv /%1 Ccv 1%1 Cv I%l Ccv /%1 Ccv /%1 Ccv /%1 Cv

21 20| 49 47| 83 7.7 |119 107 |16.1 13.7 222 16.7 | 109.7 19.7

22 21| 53 5H50| 86 80122 11.0|16.5 14.0|23.1 17.0 | 192.2 19.8

24 23] 56 53| 90 83126 11.3|17.0 143 |24.1 17.3 | 1000 19.793

27 26| 59 56| 93 886|130 116|176 146|254 17.6 oo 19.812

30 29| 63 5b59| 97 89134 119|181 149|268 179

33 32| 66 62100 92138 122|187 152|287 18.2

36 35| 69 65104 95 |143 125|193 155 |31.1 18.5

40 38| 73 6.8]10.7 9.8 |14.7 128|199 158 | 34.8 188

43 41| 76 7.1 |11.1 10.1|15.1 13.1|206 16.1|41.2 19.1

46 44| 79 74115 104|156 134|214 16.4 | 553 194

a=5%

I%l (A% /%1 Ccv 1%1 Cv I%l Ccv /%1 Cv /%1 Ccv /%1 Cv

32 31| 60 58] 92 88126 11.8|164 148 |21.3 178 | 32.0 20.8

33 32| 63 61| 95 91130 121 |16.8 151|219 181 | 34.9 21.1

35 34| 66 64| 99 94133 124|173 154|226 184 | 39.3 21.4

3.8 3.7 69 6.7]102 97 |13.7 127|177 157 |23.3 187 | 474 21.7

41 40| 73 7.0 10.6 10.0 | 14.1 13.0 | 18.2 16.0 |24.0 19.0 | 66.2 22.0

44 43| 76 731|109 103|145 13.3|18.6 16.3 | 24.9 19.3 | 154.5 22.3

47 46| 79 76| 11.2 106 | 148 13.6 | 19.1 16.6 | 25.9 19.6 | 1000 22.341

50 49| 82 79116 109|152 139|196 169|270 19.9 oo 22.362

53 52| 86 82119 112|156 142|202 17.2 | 283 20.2

5.7 55| 89 85123 11.5|16.0 145|207 175|299 20.5

a=1%

I%l Ccv /%1 (A% 1%1 Ccv I%l Ccv /%1 (A% /%1 Ccv /%1 Ccv

71 70| 99 98133 13.0|16.8 16.2|20.7 194 | 255 226 | 35.6 25.8

72 711103 10.2 137 134|173 16.6|21.2 19.8 |26.2 23.0| 38.9 26.2

75 741108 106 | 14.2 138 | 177 17.0 | 21.7 20.2 | 27.1 234 | 444 26.6

79 78 (|11.2 11.0 | 146 142|182 174|223 20.6 | 28.0 23.8 | 55.8 27.0

83 82116 114|150 146|187 178|229 21.0|29.0 24.2| 90.7 27.4

8.7 86120 118|155 150 |19.2 182|235 214 |30.2 246 | 162.1 27.6

9.1 90124 122|159 154|196 186 |24.1 21.8 |31.6 25.0 | 1000 27.668

9.5 941129 126|164 158 | 20.1 19.0 | 248 222 | 33.3 254 oo 27.688
Table 15: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — my ) at different values of the conditioning variable #1. Computed by
numerical integration.
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k—my =14

a=10%
R1 cv R cv R1 cv k1 cv R1 cv R cv R1 cv
23 22| 51 49| 84 779|119 109|159 139 |21.1 169 | 34.9 19.9
24 23| 54 52| 88 82(123 11.2|164 14.2|21.8 17.2| 39.9 20.2
26 25| 58 55| 91 85 |12.7 11.5|16.8 14.5|22.6 17.5| 49.5 20.5
29 28| 6.1 58] 95 88 |13.1 11.8|17.3 148|234 178 | 754 20.8
32 31| 64 6.1 98 91135 12.1|17.8 15.1 | 24.3 18.1 | 145.2 21.0
35 34| 68 64101 941|138 124|183 154|253 184 | 1000 21.044
38 37| 71 6.7]10.5 9.7 |14.2 12.7| 188 15.7 | 26.4 18.7 oo 21.064
42 40| 74 701109 10.0]| 146 13.0|19.3 16.0 | 27.8 19.0
45 43| 78 73 |11.2 103|151 133|199 16.3|29.5 19.3
48 46| 81 76 |11.6 10.6 | 155 13.6 | 20.5 16.6 | 31.7 19.6

a=5%
I%l CcVv 1%1 CcVv I%l Ccv I%l Ccv I%l Ccv 1%1 CcVv I%l Ccv
34 33| 65 63]10.0 96| 13.8 129|180 16.2|23.7 195 | 434 22.8
35 34| 68 66104 99141 132|184 16.5|24.3 19.8 | 53.7 23.1
37 36| 71 69107 102 | 14.5 135|189 16.8|25.1 20.1| 80.3 23.4
40 39| 74 72|11.0 105|149 138|193 17.1 | 259 20.4 | 145.9 23.6
43 42| 78 75|114 108|152 14.1 |19.8 174 | 26.8 20.7 | 1000 23.663
46 45| 81 78 |11.7 11.1| 156 14.4|20.3 17.7 279 21.0 oo 23.685
49 48| 84 881|120 114 ] 16.0 14.7 | 20.8 18.0 | 29.1 21.3
52 51| 87 84124 11.7]164 15.0|21.3 183 | 30.5 21.6
55 54| 91 87127 120 16.8 153 | 21.8 18.6 | 32.3 21.9
59 57| 94 9.0 131 123|172 156|224 18.9 | 34.6 22.2
6.2 6.0 97 93134 126|176 159 | 23.0 19.2 | 38.0 22.5

a=1%
I%l (&A% /%1 Ccv /%1 Ccv 1%1 Cv I%l Ccv /%1 Ccv /%1 Ccv
76 751|108 10.7 | 146 143 | 186 179 | 23.1 21.5|29.3 251 | 750 28.7
77 76| 11.3 11.1 | 151 14.7 | 19.1 183 | 23.6 21.9| 30.3 25.5 | 216.0 29.1
80 79| 11.7 11.5 | 155 151 | 19.5 187 | 24.2 223 |31.5 259 | 1000 29.120
84 83121 119|159 155 | 20.0 19.1 | 24.8 22.7 | 32.8 26.3 oo 29.141
88 87125 123|164 159 | 20.5 19.5| 255 23.1 | 34.4 26.7
92 911129 127 ]16.8 16.3 | 21.0 19.9| 26.1 23.5| 36.6 27.1
96 95134 13.1 | 172 16.7 | 21.5 20.3 | 26.8 239|395 275

10,0 9.9 13.8 13.5 | 17.7 17.1 | 22.0 20.7|27.6 24.3|442 279

104 103 | 14.2 139 | 18.2 17.5| 22,5 21.1 | 284 24.7 | 53.0 28.3

Table 16: 1 — «a quantile of the conditional distribution, with density given

in

(2.12)),cv=c1_q (R1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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a=10%
I%l Ccv /%1 Ccv /%1 Ccv 1%1 Ccv 1%1 Ccv /%1 Ccv /%1 Ccv
24 23| 55 53] 92 86|13.0 119|174 152|235 185 | 55.6 21.8
25 24| 59 56| 95 89 |134 122|179 155 |24.3 188 | 91.2 22.1
27 26| 6.2 59| 98 92138 125|183 158 |25.1 19.1 | 224.8 22.3
30 29| 65 6.2]10.2 95|14.1 128|188 16.1 | 26.1 194 | 1000 22.286
33 32| 68 65105 98| 14.5 13.1|193 164|271 19.7 oo 22.307
36 35| 72 68109 10.1|149 134|198 16.7 | 28.4 20.0
39 38| 75 7.1 |11.2 104|153 13.7| 204 17.0|29.9 20.3
42 41| 78 74 |11.6 10.7 | 15.7 14.0|20.9 17.3 | 31.7 20.6
46 44| 81 7.7 (119 11.0|16.1 143|215 176 | 34.2 20.9
49 47| 85 801|123 113|166 14.6 |22.1 179 | 37.8 21.2
52 50| 88 83126 11.6 | 17.0 14.9| 22.8 18.2 | 43.7 21.5

a=5%
f%l (&A% /%1 Ccv /%1 Ccv 1‘%1 Cv f%l Ccv /%1 Ccv /%1 Ccv
37 36| 70 68109 104|149 140|196 17.6 | 26.2 21.2 | 104.1 24.8
38 37| 74 72113 108|154 14.4|20.2 18.0 | 27.2 21.6 | 146.4 24.9
41 40| 78 76| 11.7 11.2 | 159 148 |20.8 184 | 28.5 22.0| 1000 24.973
45 44| 83 801|122 116|164 152 |21.4 188 ]29.9 224 oo 24.996
49 48| 87 841|126 120|169 15.6 |22.1 19.2 | 31.7 228
53 52| 91 88131 124|174 16.0| 22.8 19.6 | 34.1 23.2
57 56| 95 9.2 135 128 | 18.0 16.4 | 23.5 20.0 | 375 23.6
6.1 6.0] 100 9.6 |14.0 13.2 | 18.5 16.8 | 24.3 204 | 43.4 24.0
6.6 6.4]104 10.0 | 145 13.6 |19.0 17.2| 25.2 20.8 | 56.2 244

a=1%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
81 80| 11.3 11.2 | 151 14.8 |19.0 184 | 23.4 22.0|29.0 256 | 44.5 29.2
82 81| 11.7 11.6 | 15,5 152 | 19.5 188|239 224 |29.8 26.0| 51.8 29.6
85 84122 12.0]16.0 156 |20.0 19.2 | 24.5 228 | 30.7 264 | 67.8 30.0
89 888|126 124|164 16.0 | 204 19.6 | 25.0 23.2 | 31.6 26.8 | 129.2 30.4
93 9.2]13.0 128 |16.8 16.4 | 20.9 20.0| 25.6 23.6 |32.8 27.2| 185.6 30.5
97 961|134 132|173 16.8 |21.4 20.4 | 262 24.0|34.1 27.6 | 1000 30.557

10.1 10.0 | 13.8 13.6 | 17.7 17.2 | 21.9 20.8 | 26.8 24.4 | 35.7 28.0 oo 30.578

10.5 104 | 14.3 14.0 | 18.1 17.6 | 22.4 21.2 | 27.5 24.8 | 37.7 28.4

109 10.8 | 14.7 144 | 18.6 18.0 | 22.9 21.6 | 28.2 25.2 | 404 28.8

Table 17: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (A1, k — my ) at different values of the conditioning variable #1. Computed by

numerical integration.
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a=10%
I%l Ccv /%1 Ccv /%1 Ccv I%l Cv I%l Ccv /%1 Ccv /%1 Cv
26 25| 57 55| 93 88|13.1 121|173 154|227 18.7| 34.9 22.0
27 26| 60 58| 96 91135 124|178 157|234 19.0| 38.0 22.3
29 28| 64 6.1]10.0 94 |13.8 12.7|18.2 16.0|24.0 19.3 | 42.9 22.6
32 31| 67 641103 9.7 |142 130|186 163|247 19.6 | 51.8 22.9
35 34| 70 6.7]10.7 10.0| 146 13.3|19.1 16.6 | 25.5 19.9 | 73.1 23.2
38 37| 73 7.0]11.0 103|150 13.6 |19.6 169 | 26.3 20.2 | 184.3 23.5
41 40| 77 73| 114 106|153 13.9]20.0 17.2| 272 20.5| 1000 23.519
44 43| 80 7.6 |11.7 109 | 157 14.2]20.5 175|283 20.8 oo 23.542
48 46| 83 79120 11.2|16.1 145 |21.0 178 29.5 21.1
51 49| 87 82124 115|165 148|216 181|309 214
54 52| 90 85128 11.8|16.9 15.1 221 184 | 32.6 21.7

a=5%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
39 38| 72 7.0]11.0 106|150 142|195 178|253 21.4 | 40.8 25.0
40 39| 76 74115 110|155 146 |20.1 182 | 26.1 21.8 | 48.1 25.4
43 42| 80 78|11.9 114 |16.0 15.0|20.6 18.6 |27.0 222 | 654 25.8
4.7 46| 84 821|123 11.8|16.5 154 |21.2 19.0 | 28.0 22.6 | 153.6 26.2
51 50| 89 86128 122|170 158 |21.8 194 |29.1 23.0 | 1000 26.272
55 54| 93 9.0]132 126|174 16.2 |224 198 | 30.5 234 oo 26.296
59 58| 97 941137 13.0|179 166 |23.1 20.2 | 32.0 238
6.3 6.2]102 9.8 |14.1 134|185 17.0|23.8 20.6 | 34.0 24.2
6.8 6.6|106 102|146 13.8|19.0 174|245 21.0] 36.7 24.6

a=1%
I%l (&A% /%1 Ccv /%1 Ccv 1%1 Cv I%l Ccv /%1 Ccv /%1 Ccv
85 841|120 11.9]16.2 159 20.6 19.9 255 239|325 27.9 | 1754 31.9
8.6 851|126 124 |16.8 164 |21.2 204|262 244 | 33.8 284 | 1000 31.979
9.0 89131 129|173 169 |21.8 20.9|270 249|354 28.9 oo 32.000
95 94|13.6 134|178 174|224 214|277 254|374 294

10.0 99| 141 139|184 179 23.0 21.9|285 259 |40.0 29.9

10.5 104 | 146 144|189 184|236 224|294 264|440 304

11.0 109|152 149|195 189|242 229|303 269 | 51.4 30.9

11,5 114|157 154|200 194|249 234|314 274]69.6 314

Table 18: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — my ) at different values of the conditioning variable #1. Computed by

numerical integration.
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a=10%
k1 cv k1 cv R1 cv k1 cv k1 cv k1 cv k1 cv
27 26| 60 58] 99 941|141 13.0| 187 16.6 | 24.8 20.2 | 44.6 23.8
28 27| 64 62104 98| 145 134|193 17.0| 25.7 20.6 | 58.2 24.2
3.1 30| 69 6.6]10.8 10.2|15.0 13.8|19.8 17.4 | 26.7 21.0| 112.6 24.6
35 34| 73 70]11.3 106|155 14.2| 205 17.8|27.8 21.4 | 166.2 24.7
39 38| 77 74117 11.0|16.0 14.6 |21.1 18.2|29.1 21.8 | 1000 24.745
43 42| 82 781|122 114|165 15.0|21.7 186 | 30.6 22.2 oo 24.769
4.7 46| 86 822|126 11.8|17.1 154|224 19.0 | 32.5 226
52 50| 90 86131 122|176 158 | 23.2 19.4 | 349 23.0
56 54| 95 9.0 ]13.6 126 | 18.1 16.2|24.0 19.8 | 385 234

a=5%
I%l Ccv /%1 Ccv /%1 Ccv 1%1 Cv I%l Ccv /%1 (A% I%l Ccv
41 40| 74 721|112 10.8| 152 144|195 180 |24.7 21.6 | 34.3 25.2
42 41| 78 76 |11.6 11.2 | 156 14.8|20.0 184|255 22.0| 36.5 25.6
45 44| 82 801121 11.6|16.1 152 |20.5 188 |26.2 224 | 39.6 26.0
49 48| 86 841|125 12.0|16.6 15.6 |21.1 19.2 | 27.0 228 | 44.5 26.4
53 52| 91 88129 124|170 16.0|21.6 19.6 | 27.9 23.2| 53.8 26.8
57 56| 95 92134 128 |17.5 16.4| 222 20.0 | 28.8 23.6 | 78.9 27.2
6.1 6.0 99 96138 13.2|18.0 16.8 | 228 20.4|29.9 24.0 | 167.6 27.5
6.5 6.4]103 10.0 |14.3 13.6 | 185 17.2 | 23.4 20.8 | 31.1 244 | 1000 27.562
70 6.8 108 10.4 | 14.7 14.0|19.0 176 | 24.1 21.2 | 325 24.8 oo 27.587

a=1%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
9.0 89125 124 |16.7 16.4 | 21.1 20.4 | 25.8 24.4|32.1 284 | 559 32.4
91 9.0]13.0 129|172 169 |21.6 209|265 249|332 289 | 79.5 32.9
95 94136 134 |17.8 174|222 21.4|272 254|344 29.4 | 298.9 33.4

100 99| 14.1 139|183 179|228 219|279 259|358 29.9| 1000 33.388

10.5 10.4 | 146 14.4 | 188 184|234 224|286 264|374 304 oo 33.409

11.0 109 | 151 149|194 189 |24.0 229|294 269 | 39.6 309

11.5 11.4 | 157 154 1199 194 |24.6 234|303 274|425 314

120 119 |16.2 159 |20.5 199|252 239|311 279|471 319

Table 19: 1 — a quantile of the conditional distribution, with density given

in

(12.12)),cv=c1_q (R1,k — mw ) at different values of the conditioning variable ;. Computed by

numerical integration.
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a=10%
R1 cv k1 cv R cv R1 cv R1 cv k1 cv k1 cv
29 28| 6.2 60101 96 |14.2 132|186 16.8|24.2 204 | 352 24.0
30 29| 66 64105 100|146 13.6|19.2 17.2 | 25.0 20.8 | 38.2 24.4
33 32| 71 68 ]11.0 104 |15.1 14.0|19.7 17.6 | 25.8 21.2 | 428 24.8
3.7 36| 75 72114 108|156 14.4|20.3 18.0 | 26.7 21.6 | 51.6 25.2
41 40| 79 761|119 11.2|16.1 148|209 184 |27.6 22.0| 75.2 25.6
45 44| 84 801|123 11.6|16.6 152 |21.5 18.8 | 28.7 22.4 | 158.1 25.9
49 48| 88 84128 12.0|17.1 156 |22.1 19.2|29.9 228 | 1000 25.965
54 52| 92 88132 124|176 16.0| 228 19.6 | 31.3 23.2 oo 25.989
58 5.6 | 9.7 92137 128 |18.1 16.4| 23.5 20.0| 33.0 23.6
a=5%
R1 cv R1 cv R1 cv Rk1 cv R1 cv R1 cv R1 cv
43 42| 80 781|122 11.8|16.7 158 |21.6 19.8 |27.9 23.8| 48.8 27.8
44 43| 84 82127 122|171 16.2|22.1 20.2|28.8 24.2 | 61.3 28.2
47 46| 88 861|131 126|176 16.6 | 22.7 20.6 | 29.7 24.6 | 101.2 28.6
51 50| 92 9.0 ]135 13.0| 181 17.0| 23.2 21.0 | 30.7 25.0 190.8 28.8
55 54| 97 94140 134|185 17.4|23.8 21.4|31.8 254 | 1000 28.843
59 58| 10.1 9.8|14.4 13.8|19.0 17.8|24.4 21.8| 33.1 25.8 oo 28.869
6.3 6.2]105 10.2 | 14.8 14.2 | 19.5 182 | 25.1 22.2 | 34.7 26.2
6.7 6.6 10.9 10.6 | 15.3 14.6 | 20.0 18.6 | 25.7 22.6 | 36.6 26.6
71 701|114 11.0 | 157 15.0]20.5 19.0|26.4 23.0|39.1 27.0
76 74118 11.4|16.2 154 |21.0 194|272 23.4| 427 274
a=1%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
95 941|130 129|172 169 |21.5 209 26.2 249 | 32.0 289 | 452 32.9
96 95| 135 134 | 17.7 174 |22.1 214|268 254|329 294 | 50.5 33.4
100 99| 141 139|182 179|226 219|275 2591|339 299 | 614 33.9
10.5 10.4 | 14.6 14.4 | 18.8 18.4 | 23.2 22.4 | 28.1 26.4 | 35.0 30.4| 93.8 34.4
11.0 10.9 | 15.1 149 | 19.3 18.9 | 23.8 22.9 | 28.8 26.9 | 36.3 30.9 | 1000 34.785
115 114 | 15.6 154|199 19.4 | 244 234 |29.6 274|377 31.4 oo 34.805
12.0 11.9]16.1 159|204 199 | 25.0 23.9]| 30.3 279 | 39.5 31.9
125 124 | 16.7 16.4|20.9 20.4 | 256 244 |31.1 284|419 324
Table 20: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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a=10%
/%1 Ccv 1%1 Ccv /2.',1 Cv /%1 (A% /%1 (A% /%1 Ccv /%1 Ccv
30 29| 6.7 6.5|11.0 105|156 14.5|20.7 185 | 274 225 | 57.3 26.5
31 30| 71 69115 109 16.1 149|212 189 | 284 229 | 904 26.9
34 33| 76 773|119 11.3|16.5 153 | 21.8 19.3| 294 23.3 | 280.9 27.2
3.8 37| 80 v7 124 11.7|17.0 157|224 19.7| 30.5 23.7| 1000 27.178
42 41| 84 811|128 121|175 16.1|23.0 20.1| 31.8 24.1 oo 27.204
46 45| 89 85| 133 125 |18.0 16.5|23.7 205 | 33.3 245
5.0 49| 93 891|137 129|185 16.9|24.3 209 | 351 249
550 53| 97 93|142 133 |19.0 173|251 213 | 375 253
59 57102 9.7|14.6 13.7|19.6 17.7| 258 21.7| 409 25.7
6.3 6.1]106 10.1 | 15.1 14.1 | 20.1 18.1 ] 26.6 22.1 | 46.3 26.1

a=5%
1 cv | R cv| R ev| Ry cv | A1 cv k1 cv k1 cv
4.5 4.4 8.2 801|124 120 16.8 16.0 | 21.6 20.0 274 24.0 39.0 28.0
4.6 4.5 8.6 84 128 124|172 16.4 | 22.1 20.4 281 244 | 41.9 28.4
4.9 4.8 9.0 88 | 13.3 128 | 17.7 16.8 | 22.6 20.8 289 24.8 46.3 28.8
5.3 5.2 94 9.2 13.7 13.2 182 172 23.1 21.2 29.7 25.2 54.0 29.2
5.7 5.6 9.8 9.6 | 14.1 13.6 | 186 17.6 | 23.7 21.6 30.6 25.6 71.5 29.6
6.1 6.0 | 10.3 10.0 | 14.6 14.0 | 19.1 18.0 | 24.3 22.0 31.5 26.0 | 146.7 30.0
6.5 6.4 | 10.7 10.4 | 15.0 14.4 | 19.6 184 | 24.8 224 32.6 26.4 | 229.3 30.1
6.9 6.8 11.1 10.8 | 154 14.8 | 20.1 188 | 254 228 33.8 26.8 | 1000 30.116
7.3 72 11,5 11.2 | 159 15.2 | 20.6 19.2 | 26.1 23.2 35.2 27.2 oo 30.144
7.8 76120 116 | 16.3 15.6 | 21.0 19.6 | 26.7 23.6 36.9 27.6

a=1%
k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv k1 cv
10.0 9.9 14.0 139|187 184 | 23.6 229 |29.1 274 | 36.9 319 | 201.8 36.1
10.1 10.0 | 146 144|193 189 | 24.2 234 |29.8 279 | 38.2 324 | 1000 36.171
10.5 104 | 151 149 | 19.8 194 | 24.8 239 | 30.5 284 | 39.8 329 oo 36.191
11.0 109 | 156 154 |20.3 199 | 254 244 | 31.2 289 | 41.7 334
11.5 114 ] 16.1 159|209 204|259 249|320 294 | 44.3 339
120 119|166 16.4 | 21.4 209 | 26.5 254|328 29.9| 48.1 344
125 124 | 171 16.9 | 22.0 214|272 259 | 33.7 304 | 54.5 349
13.0 129 | 17.7 174|225 219|278 26.4 | 34.7 30.9| 68.2 354
135 134 | 182 17.9 | 23.1 224|284 269|357 314 |116.7 359

Table 21: 1 — a quantile of the conditional distribution, with density given in
(2.12),cv=c1_q (A1, k — my ) at different values of the conditioning variable #1. Computed by
numerical integration.
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k—mpy =20

a=10%

R1 cv R cv R1 cv k1 cv R1 cv R cv R1 cv

31 30| 6.8 6.6 |11.1 106 | 156 14.6 | 20.5 18.6 | 26.6 22.6 | 39.9 26.6

32 31| 72 70115 11.0|16.0 15.0|21.0 19.0 | 27.4 23.0| 43.8 27.0

35 34| 77 741120 114 |16.5 154 |21.6 194 | 28.2 234 | 50.3 27.4

39 38| 81 78124 11.8|17.0 158|221 19.8|29.1 23.8 | 64.4 27.8

43 42| 85 82129 122|175 16.2|22.7 20.2|30.1 24.2 | 114.8 28.2
4.7 46| 89 861|133 126 | 18.0 16.6 | 23.3 20.6 | 31.1 24.6 | 273.1 28.4

51 50| 94 9.0 138 13.0| 185 17.0] 23.9 21.0 | 32.3 25.0| 1000 28.385

55 54| 98 94142 134 |19.0 174|246 214 |33.7 254 oo 28.412

6.0 5.8]102 98 |14.7 13.8 |19.5 17.8| 25.2 21.8 | 35.3 25.8

6.4 6.2 107 10.2 | 151 14.2 | 20.0 182 | 259 22.2 | 373 26.2
a=5%

I%l CcVv 1%1 CcVv I%l Ccv I%l Ccv I%l Ccv 1%1 CcVv I%l Ccv

4.8 47| 89 87135 13.1|184 17.5|23.8 219 |30.8 26.3 | 64.7 30.7
49 48| 93 9.1 |14.0 135|188 179 |24.3 223 | 31.7 26.7 | 101.7 31.1

52 51| 97 95144 139|193 183 | 24.8 22.7 | 32.6 27.1 | 299.7 314

56 5.5 |101 99| 14.8 14.3 | 19.8 18.7 | 254 23.1 | 33.7 27.5| 1000 31.382

6.0 59106 103|153 14.7]20.3 19.1 | 26.0 23.5| 34.8 279 oo 31.410

6.4 63| 11.0 10.7 | 157 15.1 | 20.7 19.5| 26.6 23.9 | 36.2 28.3

6.8 6.7]11.4 11.1 | 16.1 155 | 21.2 19.9| 272 243 | 37.8 28.7

72 71 (11.8 11.5|16.6 159 | 21.7 20.3 | 279 24.7| 39.8 29.1

76 751(122 119|170 16.3 | 22.2 20.7 | 28.5 25.1 | 424 29.5

81 79127 123|175 16.7 | 22.7 21.1|29.3 255 |46.1 29.9

85 831|131 127|179 17.1|23.2 21.5|30.0 259523 30.3
a=1%

I%l (&A% /%1 Ccv /%1 Ccv 1%1 Cv I%l Ccv /%1 Ccv /%1 Ccv
104 103 | 144 14.3 | 19.1 18.8 | 24.0 233|293 278 36.3 323 | 72.0 36.8
10.5 104|149 148 | 19.6 193 |24.5 23.8| 299 283 |37.3 328 | 126.7 37.3
109 10.8 | 155 153 | 20.2 19.8 | 25.1 24.3 | 30.6 288 | 38.5 33.3 | 231.5 37.5
114 11.3 | 16.0 15.8 | 20.7 20.3 | 25.7 24.8 | 31.3 29.3 | 39.9 33.8 | 1000 37.547
11.9 11.8 | 16.5 16.3 | 21.2 20.8 | 26.2 25.3 | 32.0 29.8 | 41.5 34.3 oo 37.566
124 123|170 16.8 | 21.8 21.3 | 26.8 25.8 | 32.8 30.3 | 43.6 34.8
129 128 | 175 173|223 21.8|274 26.3|33.6 30.8|46.3 35.3
134 13.3 | 181 17.8 | 229 223 |28.0 26.8| 344 31.3|50.2 358
13.9 138 | 18.6 183|234 228|286 273|353 31.8|57.1 36.3

Table 22: 1 — a quantile of the conditional distribution, with density given

in

(2.12)),cv=c1_q (R1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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o o
k 0.1 0.05 0.01 k 0.1 0.05 0.01
2| 0.1000 | 0.0500 | 0.0100 12| 0.1003 | 0.0504 | 0.0101
31 0.1000 | 0.0504 | 0.0100 13 | 0.1004 | 0.0504 | 0.0102
41 0.1000 | 0.0500 | 0.0100 14 | 0.1007 | 0.0506 | 0.0102
5 | 0.1000 | 0.0500 | 0.0100 15 | 0.1007 | 0.0503 | 0.0102
6 | 0.1000 | 0.0500 | 0.0100 16 | 0.1013 | 0.0507 | 0.0101
7| 0.1000 | 0.0500 | 0.0100 17 | 0.1006 | 0.0509 | 0.0101
8 1 0.1000 | 0.0502 | 0.0100 18 | 0.1014 | 0.0508 | 0.0101
9 | 0.1000 | 0.0500 | 0.0101 19 | 0.1017 | 0.0508 | 0.0101

10 | 0.1001 | 0.0505 | 0.0101 20 | 0.1014 | 0.0511 | 0.0102

11 | 0.1005 | 0.0504 | 0.0100 21 | 0.1019 | 0.0510 | 0.0102

Table 23: Size of the conditional subvector AR test with nominal size « for different k with my = 1,
using critical values given in Tables [3] to and linear interpolation. Computed using 1 million
Monte Carlo replications.

D Additional numerical results

D.1 Size

We computed the size of ¢, at significance levels 1%, 5% and 10% for k = 2,...,21 and my = 1
using a grid of 42 points in k1 equally spaced in log-scale between 0 and 100. The reported size is
the maximum of « or the estimated NRPs. The results are reported in Table In all cases, the

size of the test is controlled to two decimals, in accordance with Theorem

D.2 Power

Here, we report supplementary power comparisons for Section The power of the conditional
subvector AR test ¢. and the unconditional test pgrarc are compared to the ALFD estimate of
the point-optimal power envelope for k£ = 2,5, 10, and 20.

Figure|l1|gives the difference between the power of 5% level ¢ test and the point-optimal ALFD
power bound 7 defined in the step 9 of the algorithm in Section [B.3.2] across all alternatives. The
power of . is well within 1% of the power bound except for alternatives very close to Hy. The
largest deviations from the power bound occur when x1 = kao.

Figurerepeats the comparison of the power of ¢, but with 7 replaced by min (7_TAM S gEM W) ,

AMS’ ﬂ.EMW

where 7 are computed using the algorithms in sections [B.3.1] and [B.3.2] respectively.
Since min (ﬁAM S gBEM W) > 7, the differences are larger than in Figure but not by much.

Figures [13] through [16] report power comparisons in 2D, where x1 — kg is kept fixed in each

figure, and the alternative only varies across k2. The figures plot the power curves of both test
e, parmc at 5% level, and both power bounds, min (ﬁAMS,ﬁEMW) and 7. We notice that the
power of . is very close to both power bounds, which are in turn very close to each other, while the

power of the unconditional subvector AR test wai ¢ is noticeably below the power bounds. As
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K1— kKo increases, both power curves get closer to the power bounds, and they essentially collapse on
top of each other when k1 — ko = 64. This is why we do not consider values higher than that in the

simulations. The distance of pgr e from . and the power bounds is also somewhat increasing

in k.

Figure 13: Power curves and power bounds of 5% level ¢. and ¢gi e tests as a function of ko,
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at different values of k1 — k9 when the number of instruments k = 2.

E The ACZ test reported in section

The test is constructed as follows:
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1. Compute C, = {’y t AR (Bo,v) < X%—l,cu}'

2. Reject Ho if min,ec, ARg (Bo;7) > Xi%.

The ARg (So;y) statistic is a C (a) score test in the present case because the model is just-
identified. It is defined as

ARg (Bo;7) = 13 (Bo,7)" Mp(s.2)9 (B0, )

§(8:7) = 1/229 /n, 0=(8,7),
9 (0) = Zi(yi = YiB = Wiy),  9n (0) ="' Zi(ys — i — Wiy)

= 12% — G0 (6)) (9 (6) — 30 (6))',
D(0) = —n_lZ’W ~T(0)2(0) " §n (),

L) =-n"t i (ZIWi —n 1 Z'W) g; (6) .
=1

The second step size as is chosen as

a—ap, ifICS<Kj
[0 =
7 o if 1CS > K,

where

1/2

I1CS =

no~
n n 2
6’3 E n*l Z <HZz/W1H — nil Z HZ;WZH>
=1 =1

and K7 = 0.05 (Andrews, 2017 p. 34).
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Figure 14: Power curves and power bounds of 5% level ¢. and ¢gi e tests as a function of ko,

at different values of k1 — k9 when the number of instruments k = 5.

73



k=10, k,-k_=0 1.0 k=10, k., -k =1

10 1 "2

0.5 __ —— Upper bound
----ALFD
""" “le
““lekmc
S L R NS SN I SN RS S
0 10 20 30
10 - k=10, ky-k =2k,
0.5 __ —— Upper bound
----ALFD
..... S
~~lckmec
N S S RS S S RS S
0 10 20 30

1.0
0.5 __ —— Upper bound 0.5 __ —— Upper bound
----ALFD ----ALFD
----- —J. c i -J c
“~lekmc r “~lekmc
N R E S RS -/....I....I....I.
0 10 20 30 0 10 20 30

1.0 1.0
0.5 __ —— Upper bound 0.5 __ —— Upper bound
----ALFD ----ALFD
----- i i
“~Jekmc “~Jekmc
N R RSN PR R RS S
0 10 20 30 0 10 20 30
I(2 k2
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