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Abstract

We study subvector inference in the linear instrumental variables model assuming

homoskedasticity but allowing for weak instruments. The subvector Anderson and Ru-

bin (1949) test that uses chi square critical values with degrees of freedom reduced by

the number of parameters not under test, proposed by Guggenberger et al. (2012), con-

trols size but is generally conservative. We propose a conditional subvector Anderson

and Rubin test that uses data-dependent critical values that adapt to the strength of

identification of the parameters not under test. This test has correct size and strictly

higher power than the subvector Anderson and Rubin test by Guggenberger et al.

(2012). We provide tables with conditional critical values so that the new test is quick
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and easy to use. Application of our method to a model of risk preferences in develop-

ment economics shows that it can strengthen empirical conclusions in practice.

Keywords: Asymptotic size, linear IV regression, subvector inference, weak instru-

ments

JEL codes: C12, C26

1 Introduction

Inference in the homoskedastic linear instrumental variables (IV) regression model with pos-

sibly weak instruments has been the subject of a growing literature.1 Most of this literature

has focused on the problem of inference on the full vector of slope coefficients of the endoge-

nous regressors. Weak-instrument robust inference on subvectors of slope coefficients is a

harder problem, because the parameters not under test become additional nuisance parame-

ters, and has received less attention in the literature, see e.g., Dufour and Taamouti (2005),

Guggenberger et al. (2012) (henceforth GKMC), and Kleibergen (2015).

The present paper contributes to that part of the literature and focuses on the subvector

Anderson and Rubin (1949) (AR) test studied by GKMC. Chernozhukov et al (2009) showed

that the full vector AR test is admissible, see also Montiel-Olea (2017). GKMC proved that

the use of chi square critical values χ2
k−mW , where k is the number of instruments and mW is

the number of unrestricted slope coefficients under the null hypothesis, results in a subvector

AR test with asymptotic size equal to the nominal size, thus providing a power improvement

over the projection approach, see Dufour and Taamouti (2005), that uses χ2
k critical values.

This paper is motivated by the insight that the largest quantiles of the subvector AR test

statistic, namely the quantiles of a χ2
k−mW distribution, occur under strong identification

of the nuisance parameters. Therefore, there may be scope for improving the power of

the subvector AR test by using data-dependent critical values that adapt to the strength

of identification of the nuisance parameters. Indeed, we propose a new data-dependent

critical value for the subvector AR test that is smaller than the χ2
k−mW critical value in

GKMC. The new critical value depends monotonically on a statistic that measures the

strength of identification of the nuisance parameters under the null (akin to a first-stage F

statistic in a model with mW = 1), and converges to the χ2
k−mW critical value when the

conditioning statistic gets large. We prove that the new conditional subvector AR test has

correct asymptotic size and strictly higher power than the test in GKMC, and therefore the

subvector AR test in GKMC is inadmissible.

1See e.g., Nelson and Startz (1990), Staiger and Stock (1997), Kleibergen (2002), Moreira (2003), Andrews
et al. (2006, 2008) Chernozhukov et al. (2009), and Hillier (2009a,b).
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At least in the case mW = 1, there is little scope for exploring alternative approaches,

such as, e.g., Bonferroni, for using information about the strength of identification to improve

the power of the new conditional subvector test. Specifically, in the case mW = 1, we use

the approach of Elliott et al. (2015) to obtain a point-optimal power bound for any test that

only uses the subvector AR statistic and our measure of identification strength, and find

that the power of the new conditional subvector AR test is very close to it.

Implementation of the new subvector test is trivial. The test statistic is the same as in

GKMC and the critical values, as functions of a scalar conditioning statistic, are tabulated.

Our analysis relies on the insight that the subvector AR statistic is the likelihood ratio

statistic for testing that the mean of a k × p Gaussian matrix with Kronecker covariance is

of reduced rank, where p := 1 + mW . When the covariance matrix is known, this statistic

corresponds to the minimum eigenvalue of a noncentral Wishart matrix. This enables us to

draw on a large related statistical literature, see Muirhead (2009). A useful result from Perl-

man and Olkin (1980) establishes the monotonicity of the distribution of the subvector AR

statistic with respect to the concentration parameter which measures the strength of iden-

tification when mW = 1. The proposed conditional critical values are based on results given

in Muirhead (1978) on approximations of the distribution of the eigenvalues of noncentral

Wishart matrices.

In the Gaussian linear IV model, we show that the finite-sample size of the conditional

subvector AR test depends only on a mW -dimensional nuisance parameter. When mW = 1,

it is therefore straightforward to compute the finite-sample size by simulation or numerical

integration, and we prove that finite-sample size for general mW is bounded by the size in

the case mW = 1. The conditional subvector AR test depends on eigenvalues of quadratic

forms of random matrices. We combine the method of Andrews et al. (2011) that was used

in GKMC with results in Andrews and Guggenberger (2015) to show that the asymptotic

size of the new test can be computed from finite-sample size when errors are Gaussian and

their covariance matrix is known.

Three other related papers are Rhodes Jr (1981) that studies the exact distribution of the

likelihood ratio statistic for testing the validity of overidentifying restrictions in a Gaussian

simultaneous equations model; and Nielsen (1999, 2001) that study conditional tests of rank

in bivariate canonical correlation analysis, which is related to the present problem when

k = 2 and mW = 1. These papers do not provide results on asymptotic size or power.

In ongoing work, Kleibergen (2015) provides power improvements over projection for the

conditional likelihood ratio test for a subvector hypothesis in the linear IV model. Building on

the approach of Chaudhuri and Zivot (2011), Andrews (2017) proposes a two-step Bonferroni-

like method that applies more generally to nonlinear models with non-iid heteroskedastic
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data, and is asymptotically efficient under strong identification. Our paper focuses instead

on power improvement under weak identification. Another related recent paper on subvector

inference in the linear IV model is Wang and Tchatoka (2018). Also, see Zhu (2015), whose

setup also allows for conditional heteroskedasticity and is based on the Bonferroni method.

Andrews and Mikusheva (2016) develop robust subvector inference in nonlinear models.

Han and McCloskey (2017) study subvector inference in nonlinear models with near singular

Jacobian. Kaido et al. (2016) and Bugni et al. (2017) consider subvector inference in models

defined by moment inequalities.

The analysis in this paper relies critically on the assumption of homoskedasticity. Al-

lowing for heteroskedasticity is difficult because the number of nuisance parameters grows

with k, and finite-sample distribution theory becomes intractable. When testing hypotheses

on the full vector of coefficients in linear IV regression, robustness to heteroskedasticity is

asymptotically costless since the heteroskedasticity-robust AR test is asymptotically equiva-

lent to the nonrobust one under homoskedasticity, and the latter is admissible. However, in

the subvector case, our paper shows that one can exploit the structure of the homoskedastic

linear IV model to obtain more powerful tests, while it is not at all clear whether this is feasi-

ble under heteroskedasticity. Therefore, given the current state of the art, our results seem to

indicate that there is a trade-off between efficiency and robustness to heteroskedasticity for

subvector testing in the linear IV model. Note that the conditional subvector AR test sug-

gested here must have asymptotic size exceeding the nominal size if one allows for arbitrary

forms of heteroskedasticty. This follows from the fact that this test has uniformly higher

rejection probabilities that the unconditional subvector AR test in GKMC and the latter

test must have asymptotic size larger than nominal size under heteroskedasticity. The sub-

vector AR statistic here uses the weighting matrix that is valid only under homoskedasticity.

While it converges to a chi square χ2
k−mW limiting distribution under strong identification

of the parameters not under test and homoskedasticity, its limiting distribution under het-

eroskedasticity would depend on nuisance parameters some of which leading to quantiles

that exceed the corresponding quantiles of a χ2
k−mW distribution.

The structure of the paper is as follows. Section 2 provides the finite-sample results

with Gaussian errors, fixed instruments, and known covariance matrix. Section 3 gives

asymptotic results. Section 4 provides a Monte Carlo comparison of the power of the new

test and a heteroskedasticity-robust test in a model with conditional homoskedasticity to

investigate potential loss of power for robustness to heteroskedasticity. Section 5 provides

an empirical application of our method to a model of risk preferences from Tanaka et al.

(2010), and shows that conclusions from previous less powerful methods can be reversed,

namely insignficant effects become significant. The main goal of this section is to provide a
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self-contained guide for empirical researchers on how to implement our procedure to conduct

a hypothesis test/build a confidence region. Finally, Section 6 concludes. All proofs of the

main results in the paper and tables of conditional critical values and additional numerical

results are provided in the Appendix.

We use the following notation. For a full column rank matrix A with n rows let PA =

A(A′A)−1A′ and MA = In − PA, where In denotes the n× n identity matrix. If A has zero

columns, then we set MA = In. The chi square distribution with k degrees of freedom and its

1−α-quantile are written as χ2
k and χ2

k,1−α, respectively. For an n×n matrix A, ρ (A) denotes

the rank of A and κi (A), i = 1, ..., n denote the eigenvalues of A in non-increasing order.

By κmin(A) and κmax(A) we denote the smallest and largest eigenvalue of A, respectively.

We write 0n×k to denote a matrix of dimensions n by k with all entries equal to zero and

typically write 0n for 0n×1.

2 Finite-sample analysis

The model is given by the equations

y=Y β +Wγ + ε

Y =ZΠY + VY

W =ZΠW + VW , (2.1)

where y ∈ <n, Y ∈ <n×mY , W ∈ <n×mW , and Z ∈ <n×k. We assume that k −mW ≥ 1. The

reduced form can be written as

(
y Y W

)
= Z

(
ΠY ΠW

)( β ImY 0mY ×mW

γ 0mW×mY ImW

)
+
(
vy VY VW

)
︸ ︷︷ ︸

V

, (2.2)

where vy := VY β+ VWγ + ε. By Vi we denote the i-th row of V written as a column vector

and similarly for other matrices. Let m := mY +mW .

The objective is to test the hypothesis

H0 : β = β0 against H1 : β 6= β0, (2.3)

using tests whose size, i.e. the highest null rejection probability (NRP) over the unrestricted

nuisance parameters ΠY , ΠW , and γ, equals the nominal size α. In particular, weak identi-

fication and non-identification of β and γ are allowed for.
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Throughout this section, we make the following assumption.

Assumption A: 1. Vi := (vyi, V
′
Y i, V

′
Wi)

′ ∼ i.i.d.N
(
0(m+1)×(m+1),Ω

)
, i = 1, ..., n, for

some Ω ∈ <(m+1)×(m+1) such that

Ω (β0) :=

 1 01×mW

−β0 0mY ×mW

0mW×1 ImW


′

Ω

 1 01×mW

−β0 0mY ×mW

0mW×1 ImW

 (2.4)

is known and positive definite. 2. The instruments Z ∈ <n×k are fixed and Z ′Z ∈ <k×k is

positive definite.

The subvector AR statistic for testing H0 is defined as

ARn (β0) := min
γ̃∈<mW

(Y 0 −Wγ̃)′PZ(Y 0 −Wγ̃)

(1,−γ̃′) Ω (β0) (1,−γ̃′)′
, (2.5)

where Ω (β0) is defined in (2.4) and

Y 0 := y − Y β0. (2.6)

Denote by κ̂i for i = 1, ..., p := 1 + mW the roots of the following characteristic polynomial

in κ ∣∣∣κΩ (β0)−
(
Y 0,W

)′
PZ
(
Y 0,W

)∣∣∣ = 0, (2.7)

ordered non-increasingly. Then,

ARn (β0) = κ̂p, (2.8)

that is, ARn (β0) equals the smallest characteristic root, see, e.g. (Schmidt, 1976, chapter 4.8).

The subvector AR test in GKMC rejects H0 at significance level α if ARn (β0) > χ2
k−mW ,1−α,

while the AR test based on projection rejects if ARn (β0) > χ2
k,1−α.

Under Assumption A, the subvector AR statistic equals the minimum eigenvalue of a

noncentral Wishart matrix. More precisely, we show in the Appendix (Subsection A.2) that

the roots κ̂i of (2.7) for i = 1, ..., p, satisfy

0 = |κ̂iIp − Ξ′Ξ| , (2.9)

where Ξ ∼ N (M, Ikp) for some nonrandomM∈ <k×p (defined in (A.11) in the Appendix).

Furthermore, under the null hypothesis H0, M =
(
0k,ΘW

)
for some ΘW ∈ <k×mW (defined

in (A.13) in the Appendix) and thus ρ (M) ≤ mW , where again ρ (M) denotes the rank of

the matrix M. Therefore, Ξ′Ξ ∼ Wp (k, Ip,M′M) , where the latter denotes a non-central
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Wishart distribution with k degrees of freedom, covariance matrix Ip, and noncentrality

matrix

M′M =

(
0 01×mW

0mW×1 Θ′WΘW

)
. (2.10)

The joint distribution of the eigenvalues of a noncentral Wishart matrix only depends

on the eigenvalues of the noncentrality matrix M′M (see e.g. Muirhead, 2009). Hence, the

distribution of (κ̂1, ..., κ̂p) under the null only depends on the eigenvalues of Θ′WΘW , which

we denote by

κi := κi (Θ
′
WΘW ) , i = 1, . . . ,mW . (2.11)

We can think of Θ′WΘW as the concentration matrix for the endogenous regressors W, see

e.g. Stock et al. (2002). In the case when mW = 1, Θ′WΘW is a scalar, and corresponds to

the well-known concentration parameter (see e.g. Staiger and Stock (1997)) that measures

the strength of the identification of the parameter vector γ not under test.

2.1 Motivation for conditional subvector AR test: Case mW = 1

The above established that when mW = 1 the distribution of ARn (β0) under H0 depends

only on the single nuisance parameter κ1. The following result gives a useful monotonicity

property of this distribution.

Theorem 1 Suppose that Assumption A holds and mW = 1. Then, under the null hypothesis

H0 : β = β0, the distribution function of the subvector AR statistic in (2.5) is monotonically

decreasing in the parameter κ1, defined in (2.11), and converges to χ2
k−1 as κ1 →∞.

This result follows from (Perlman and Olkin, 1980, Theorem 3.5), who established that

the eigenvalues of a k × p noncentral Wishart matrix are stochastically increasing in the

nonzero eigenvalue of the noncentrality matrix when the noncentrality matrix is of rank 1.

Theorem 1 shows that the subvector AR test in GKMC is conservative for all κ1 < ∞,
because its NRP Prκ1

(
ARn (β0) > χ2

k−1,1−α
)

is monotonically increasing in κ1 and the worst

case occurs at κ1 =∞. Hence, it seems possible to improve the power of the subvector AR

test by reducing the χ2
k−1 critical value based on information about the value of κ1.

If κ1 were known, which it is not, one would set the critical value equal to the 1 − α

quantile of the exact distribution of ARn (β0) and obtain a similar test with higher power

than the subvector AR test in GKMC. Alternatively, if there was a one-dimensional minimal

sufficient statistic for κ1 under H0, one could obtain a similar test by conditioning on it.

Unfortunately, we are not aware of such a statistic. However, an approximation to the

density of eigenvalues of noncentral Wishart matrices by Leach (1969), specialized to this
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Figure 1: Conditional critical value function. The solid line plots c1−α (κ̂1; k − 1) , the 1−α quantile
of the distribution given in (2.12), for α = 0.05. The dotted straight blue line gives the corresponding
quantile of χ2

k−1.

case, implies that the largest eigenvalue κ̂1 is approximately sufficient for κ1 when κ1 is

“large” and κ2 = 0. Based on this approximation, (Muirhead, 1978, Section 6) provides

an approximate, nuisance parameter free, conditional density of the smallest eigenvalue κ̂2

given the largest one κ̂1. This approximate density (with respect to Lebesgue measure) of κ̂2

given κ̂1 can be written as

f ∗κ̂2|κ̂1 (x2|κ̂1) = fχ2
k−1

(x2) (κ̂1 − x2)1/2 g (κ̂1) , x2 ∈ [0, κ̂1] , (2.12)

where fχ2
k−1

(·) is the density of a χ2
k−1 and g (κ̂1) is a function that does not depend on any

unknown parameters, see (A.22) in the Appendix.

Because (2.12) is analytically available, the quantiles of the distribution whose density

is given in (2.12) can be computed easily using numerical integration for fixed values of κ̂1.

Figure 1 plots the 1 − α quantile of that distribution as a function of κ̂1 for α = 5% and

k = 2, 5, 10, and 20. It is evident that this conditional quantile function is strictly increasing

in κ̂1 and asymptotes to χ2
k−1,1−α.2 We propose to use the above conditional quantile function

to obtain conditional critical values for the subvector AR statistic.

In practice, to make implementation of the test straightforward for empirical researchers,

we tabulate the conditional critical value function for different k − 1 and α over a grid of

points κ̂1,j, j = 1, . . . , J , say, and conditional critical values for any given κ̂1 are obtained

2The monotonicity statement is made based on numerical integration without an analytical proof. An
analytical proof of the limiting result is given in Appendix A.3.
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α = 5%, k − 1 = 4
κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv
1.2 1.1 2.1 1.9 3.2 2.9 4.5 3.9 5.9 4.9 7.4 5.9 9.4 6.9 12.5 7.9 20.9 8.9
1.3 1.2 2.3 2.1 3.5 3.1 4.7 4.1 6.2 5.1 7.8 6.1 9.9 7.1 13.4 8.1 26.5 9.1
1.4 1.3 2.5 2.3 3.7 3.3 5.0 4.3 6.5 5.3 8.2 6.3 10.5 7.3 14.5 8.3 39.9 9.3
1.6 1.5 2.7 2.5 4.0 3.5 5.3 4.5 6.8 5.5 8.6 6.5 11.1 7.5 15.9 8.5 57.4 9.4
1.8 1.7 3.0 2.7 4.2 3.7 5.6 4.7 7.1 5.7 9.0 6.7 11.7 7.7 17.9 8.7 1000 9.48

Table 1: 1 − α quantile of the conditional distribution with density given in (2.12),
cv=c1−α (κ̂1, k − 1) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

by linear interpolation.3 Specifically, let q1−α,j(k − 1) denote the 1 − α quantile of the

distribution whose density is given by (2.12) with κ̂1 replaced by κ̂1,j. The end point of the

grid κ̂1,J should be chosen high enough so that q1−α,J(k− 1) ≈ χ2
k−1,1−α. For any realization

of κ̂1 ≤ κ̂1,J ,4 find j such that κ̂1 ∈ [κ̂1,j−1, κ̂1,j] with κ̂1,0 = 0 and q1−α,0 (k − 1) = 0, and let

c1−α (κ̂1, k − 1) :=
κ̂1,j − κ̂1

κ̂1,j − κ̂1,j−1

q1−α,j−1 (k − 1) +
κ̂1 − κ̂1,j−1

κ̂1,j − κ̂1,j−1

q1−α,j (k − 1) . (2.13)

Table 1 gives conditional critical values at significance level 5% for a fine grid for the condi-

tioning statistic κ̂1 for the case k − 1 = 4. To mitigate any slight over-rejection induced by

interpolation, the reported critical values have been rounded up to one decimal.

We will see that by using c1−α (κ̂1, k − 1) as a critical value for the subvector AR test,

one obtains a close to similar test, except for small values of κ1. Note that κ̂1, the largest

root of the characteristic polynomial in (2.7) is comparable to the first-stage F statistic in

the case mW = 1 for the hypothesis that ΠW = 0k×mW (γ is unidentified) under the null

hypothesis H0 : β = β0 in (2.3). So given α, c1−α (κ̂1, k − 1) is a data-dependent critical

value that depends only on the integer k − 1 (the number of IVs minus the number of

untested parameters), and the nonnegative scalar κ̂1 which is a measure of the strength of

identification of the unrestricted coefficient γ.

3For general mW , discussed in the next subsection, the role of k − 1 is played by k −mW .
4When κ̂1 > κ̂1,J , we can define c1−α (κ̂1, k − 1) using nonlinear interpolation between κ̂1,J and ∞, i.e.,

c1−α (κ̂1, k − 1) := (1− F (κ̂1 − κ̂1,J)) q1−α,J (k − 1) + F (κ̂1 − κ̂1,J)χ2
k−1,1−α, where F is some distribution

function.
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2.2 Definition of the conditional subvector AR test for general mW

We will now define the conditional subvector AR test for the general case when mW ≥ 1.

The conditional subvector AR test rejects H0 at nominal size α if

ARn(β0) > c1−α(κ̂1, k −mW ), (2.14)

where c1−α (·, ·) has been defined in (2.13) for any argument consisting of a vector with first

component in <+∪{∞} and second component in N. Tables of critical values for significance

levels α = 10%, 5%, and 1%, and degrees of freedom k − mW = 1 to 20 are provided in

Appendix C. Since ARn (β0) = κ̂p, the associated test function can be written as

ϕc (κ̂) := 1 [κ̂p > c1−α(κ̂1, k −mW )] , (2.15)

where 1 [·] is the indicator function, κ̂ := (κ̂1, κ̂p) and the subscript c abbreviates “condi-

tional”.

The subvector AR test in GKMC that uses χ2
k−mW critical value has test function

ϕGKMC (κ̂) := 1 [κ̂p > c1−α (∞, k −mW )] . (2.16)

Since c1−α (x, ·) < c1−α (∞, ·) for all x < ∞, it follows that E [ϕc (κ̂)] > E [ϕGKMC (κ̂)] ,

i.e., the conditional subvector AR test ϕc has strictly higher power than the (unconditional)

subvector AR test ϕGKMC in GKMC.

2.3 Finite-sample size of ϕc when mW = 1

As long as the conditional critical values c1−α(κ̂1, k−mW ) guarantee size control for the new

test ϕc, the actual quality of the approximation (2.12) to the true conditional density is not

of major concern to us, and the main purpose of (2.12) was to give us a simple analytical

expression to generate data-dependent critical values.

We next compute the size of the conditional subvector AR test, and because we don’t

have available an analytical expression of the NRP, we need to do that numerically. This can

be done easily because the nuisance parameter κ1 is one-dimensional, and the density of the

data is analytically available, so the NRP of the test can be estimated accurately by Monte

Carlo simulation or numerical integration. Using (low-dimensional) simulations to calculate

the (asymptotic) size of a testing procedure has been used in several recent papers, see e.g.

Elliott et al. (2015).

Figure 2 plots the NRPs of both ϕc and the subvector AR test ϕGKMC of GKMC in
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Figure 2: Null rejection probability of 5% level conditional (2.15) (red solid) and GKMC subvector
AR (blue dotted) tests as a function of the nuisance parameter κmW . The number of instruments
is k = 5 and the number of nuisance parameters is mW = 1. Computed by numerical integration
of the exact density.

(2.16) at α = 5% as a function of κ1 for k = 5 and mW = 1. The conditional test ϕc is

evaluated using the critical values reported in Table 1 with interpolation.5

We notice that the size of the conditional subvector AR test ϕc is controlled, because the

NRPs never exceed the nominal size no matter the value of κ1. The NRPs of the subvector AR

test ϕGKMC are monotonically increasing in κ1 in accordance with Theorem 1. Therefore the

proposed conditional test ϕc strictly dominates the unconditional test ϕGKMC . The results

for other significance levels and other values of k are the same, and they are reported in

Table 23 of the Appendix. We summarize this finding in the following theorem.

Theorem 2 Under Assumption A and mW = 1, the finite-sample size of the conditional

subvector AR test ϕc defined in (2.15) at nominal size α is equal to α for α ∈ {1%, 5%, 10%}
and k −mW ∈ {1, ..., 20} .

Comment. To reiterate, the proof of Theorem 2 for given k − mW and nominal size

α is a combination of an analytical step that shows that the null rejection probability of

the new test depends on only a scalar parameter and of a numerical step where it is shown

by numerical integration and Monte Carlo simulation that none of the NRPs exceeds the

nominal size. Using the tables of critical values provided in Appendix C, one can obtain

5E.g. if κ̂1 = 2.4 which is an element of [2.3, 2.5], then from Table 1 the critical value employed would
be 2.2. To produce Figure 2 we use a grid of 42 points for κ1, evenly spaced in log-scale between 0 and 100.
In this figure, the NRPs were computed by numerical integration using the Quadpack in Ox, see Doornik
(2001). The densities were evaluated using the algorithm of Koev and Edelman (2006) for the computation
of hypergeometric functions of two matrix arguments. The NRPs are essentially the same when estimated
by Monte Carlo integration with 1 million replications, see Appendix B.
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certain bounds on the p-value of the conditional subvector AR test. With further simulation

effort, one can also obtain additional tables for other α and k −mW combinations.6

2.4 Power analysis when mW = 1

One main advantage of the conditional subvector AR test (2.14) is its computational simplic-

ity. For general mW , there are other approaches one might consider based on the information

in the eigenvalues (κ̂1, ..., κ̂mW ) that, at the expense of potentially much higher computa-

tional cost, might yield higher power than the conditional subvector AR test. For example,

one could apply the critical value function approach of Moreira et al. (2016) to derive condi-

tional critical values. One could condition on the largest mW eigenvalues rather than just the

largest one. The objective of this section is to assess the potential scope for power improve-

ments over the subvector AR test by computing power bounds of all tests that depend on the

data only through the statistic (κ̂1, ..., κ̂mW ). We first provide some theoretical insights that

help to implement this analysis economically. These insights are valid for arbitrary mW . For

the actual computation of the power bound, we then restrict attention to mW = 1 because

the computational effort for larger mW is overwhelming.

Recall from (2.11) that under H0 : β = β0 in (2.3), the joint distribution of (κ̂1, ..., κ̂p) only

depends on the vector of eigenvalues (κ1, ..., κmW ) of Θ′WΘW , where ΘW ∈ <k×mW appears

in the noncentrality matrix M =
(
0k,ΘW

)
of Ξ ∼ N (M, Ikp). It follows easily from (A.13)

in the Appendix that if ΠW ranges through all matrices in <k×mW , then (κ1, ..., κmW )′ ranges

through all vectors in [0,∞)mW .

Define A := E(Z ′(y − Y β0,W )) ∈ <k×p and consider the null hypothesis

H ′0 : ρ (A) ≤ mW versus H ′1 : ρ (A) = p, (2.17)

where again ρ (A) denotes the rank of the matrix A. Clearly, whenever H0 holds H ′0 holds too,

but the reverse is not true; by (A.14) in the Appendix, H ′0 holds iff ΠW is rank deficient or

ΠY (β−β0) ∈ span(ΠW ). It is shown in the Appendix (Case 2 in Subsection A.2) that under

H ′0 the joint distribution of (κ̂1, ..., κ̂p) is the same as the one of the vector of eigenvalues of

a Wishart matrix Wp (k, Ip,M′M) with rank deficient noncentrality matrix and therefore

depends only on the vector of the largest mW eigenvalues (κ1, ..., κmW )′ ∈ <mW of M′M.

The important implication of that result is that any test ϕ(κ̂1, ..., κ̂p) ∈ [0, 1] for some

measurable function ϕ that has size bounded by α under H0 also has size (in the parameters

(β, γ,ΠY ,ΠW )) bounded by α under H ′0. In particular, no test ϕ(κ̂1, ..., κ̂p) that controls size

6We provide code to do that here: https://sites.google.com/site/sophoclesmavroeidis/GKM replication code.zip.
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under H0 has power exceeding size under alternatives H ′0\H0.

While the theoretical analysis in the previous two paragraphs holds for arbitrary mW ,

we now assume mW = 1 for computational feasibility. To assess the potential scope for

power improvements over the subvector AR test, we compute power bounds of all tests that

depend on the statistic (κ̂1, κ̂2). These are point-optimal bounds based on the least favorable

distribution for the nuisance parameter κ1 under the null that κ2 = 0, see Appendix B.3 for

details. We consider both the approximately least favorable distribution (ALFD) method of

Elliott et al. (2015) and the one-point least favorable distribution of (Andrews et al., 2008,

section 4.2), but report here only the ALFD bound for brevity and because it is very similar

to the Andrews et al. (2008) upper bound. The results based on the Andrews et al. (2008)

method are discussed in Section D.2 of the Appendix.

We compute the power of the conditional and unconditional subvector tests ϕc and

ϕGKMC at the 5% level for k = 5 and the associated power bound for a grid of values

of the parameters κ1 ≥ κ2 > 0 under the alternative, see Section B.3 in the Appendix for

details. The power curves are computed using 100,000 Monte Carlo replications without

importance sampling (results for other k are similar and given in the Appendix). The left

panel of Figure 3 plots the difference between the power function of the conditional test ϕc

and the power bound across all alternatives. Except at alternatives very close to the null,

and when κ1 is very close to κ2 (so the nuisance parameter is weakly identified), the power

of the conditional subvector test ϕc is essentially on the power bound. The fact that the

power of ϕc for small κ1 is somewhat below the power bound can be explained by the fact

that the test is not exactly similar, so its rejection probability can fall below α for some al-

ternatives. The right panel of Figure 3 plots the power curves for alternatives with κ1 = κ2,

which seem to be the least favorable to the conditional test. The power of the conditional

test is mostly on the power bound, while the subvector test ϕGKMC is well below the bound.

Two-dimensional plots for other values of κ1− κ2 are provided in the Appendix. As κ1− κ2

gets larger, the power of ϕGKMC gets closer to the power envelope, as expected.

2.5 Size of ϕc when mW > 1 and inadmissibility of ϕGKMC

We cannot extend the monotonicity result of Theorem 1 to the general case mW > 1. This

is because the distribution of the subvector AR statistic depends on all the mW eigenvalues

of M′M in (2.10), and the method of the proof of Theorem 1 only works for the case that

ρ (M′M) = 1.7 However, Theorem 3 below provides a theoretical result that suffices to

7See (Perlman and Olkin, 1980, p. 1337) for some more discussion of the difficulties involved in extending
the result to the general case.
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Figure 3: Power of conditional (2.15) and GKMC (2.16) subvector AR tests, ϕc and ϕGKMC , and
point optimal power envelope computed using the ALFD method of Elliott et al. (2015). The left
panel plots the power of ϕc minus the power bound across all alternatives. The right panel plots
the power curves for both tests and the power bound when κ1 = κ2.

establish correct finite-sample size of the proposed conditional subvector AR test (2.15) and

the inadmissibility of the subvector test ϕGKMC in (2.16) in the general case.

To state the result we first need to introduce some notation. Recall that Ξ ∼ N
(
M, Ik(mW+1)

)
,

with M nonstochastic and ρ (M) ≤ mW under the null hypothesis in (2.3). Partition Ξ as

Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
, (2.18)

where Ξ11 is (k −mW + 1)×2, Ξ12 is (k −mW + 1)×(mW − 1) , Ξ21 is (mW − 1)×2, and Ξ22

is (mW − 1)× (mW − 1) . PartitionM conformably with Ξ. Let µi, i = 1, ...,mW , denote the

possibly nonzero singular values of M (the order doesn’t matter for the arguments below).

Without loss of generality, we can set

M =

(
M11 0k−mW+1×mW−1

0mW−1×2 M22

)
, (2.19)

where

M11 :=

(
0k−mW×1 0k−mW×1

0 µmW

)
, and M22 := diag (µ1, ...µmW−1) . (2.20)

Finally, let

O :=

( (
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2
Ξ′21Ξ−1′

22

(
ImW−1 + Ξ−1

22 Ξ21Ξ′21Ξ−1′
22

)−1/2

−Ξ−1
22 Ξ21

(
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2 (
ImW−1 + Ξ−1

22 Ξ21Ξ′21Ξ−1′
22

)−1/2

)
∈ <p×p.

(2.21)
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Theorem 3 Suppose that Assumption A holds with mW > 1. Denote by Ξ̃11 ∈ <k−mW+1×2

the upper left submatrix of Ξ̃ := ΞO ∈ <k×p. Then, under the null hypothesis H0 : β = β0

Ξ̃′11Ξ̃11|O ∼ W2

(
k −mW + 1, I2,M̃′

11M̃11

)
,

where M̃11 is defined in (A.3) in the Appendix and satisfies ρ(M̃′
11M̃11) ≤ 1.

As the next couple of lines establish, Theorem 3 allows us to prove correct size of the

conditional subvector AR test by showing that any null rejection probability of the new test

is bounded by the probability of an event that conditional on O has the same statistical

structure as the event of the conditional subvector AR test rejecting under the null when

mW = 1 studied in the section above. By Theorem 2 we know that the latter event has

probability bounded by the nominal size α. Theorem 3 can therefore be viewed as a dimension

reduction tool.

Recall that κmin(A) and κmax(A) denote the smallest and largest eigenvalues of a matrix

A, respectively. Note that

ARn (β0) = κmin (Ξ′Ξ) = κmin(Ξ̃′Ξ̃) ≤ κmin(Ξ̃′11Ξ̃11) ≤ κmax(Ξ̃′11Ξ̃11) ≤ κmax(Ξ̃′Ξ̃) = κmax (Ξ′Ξ) ,

(2.22)

where the first and third inequalities hold by the inclusion principle, see (Lütkepohl, 1996,

p. 73) and the second and last equalities hold because O is orthogonal. Therefore, at least

for the values of α and k −mW given in Theorem 2,

P (ARn (β0) > c1−α(κmax (Ξ′Ξ) , k−mW )) ≤ P (κmin(Ξ̃′11Ξ̃11) > c1−α(κmax(Ξ̃′11Ξ̃11), k−mW )) ≤ α,

(2.23)

where the first inequality follows from (2.22). The second inequality follows from Theorem

2 for the case mW = 1 and from Theorem 3 by conditioning on O, where the role of k is

now played by k −mW + 1. Hence, the conditional subvector AR test has correct size for

any mW . Because c1−α(κmax (Ξ′Ξ) , k −mW ) < χ2
k−mW ,1−α, it follows that the subvector AR

test ϕGKMC given in (2.16) is inadmissible. We summarize these findings in the following

Corollary to Theorems 2 and 3.

Corollary 4 Under Assumption A and mW ≥ 1, (i) the finite-sample size of the conditional

subvector AR test ϕc defined in (2.15) at nominal size α is equal to α for α ∈ {1%, 5%, 10%}
and k −mW ∈ {1, ..., 20} . (ii) The subvector AR test ϕGKMC is inadmissible.

An analogous comment as the one to Theorem 2 applies here, namely that the size result

likely extends to other α and k−mW constellations but would require additional simulations.
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Figure 4: Left panel: NRP of (2.15), GKMC (2.16) and adjusted subvector AR tests, ϕc, ϕGKMC

and ϕadj . Right panel: comparison of power curves when κ1 = κ2 to point optimal power envelope
computed using the ALFD method of Elliott et al. (2015).

2.6 Refinement

Figure 2 shows that the NRPs of test ϕc for nominal size 5% is considerably below 5% for

small values of κ1, which causes a loss of power for some alternatives that are close to H0, see

Figure 3. However, we can reduce the under-rejection by adjusting the conditional critical

values to bring the test closer to similarity.8 For the case k = 5, mW = 1, and α = 5%, let

ϕadj be the test that uses the critical values in Table 1 where the smallest 8 critical values

are divided by 5 (e.g., the critical value for κ̂1 = 2.5 becomes 0.46). Figure 4 shows that

ϕadj still has size 5%, that it is much closer to similarity than ϕc, and does not suffer from

any loss of power relative to the power bound near H0. This approach can be applied to all

other values of α and k, but needs to be adjusted for each case.

3 Asymptotics

In this section, Assumption A is replaced by

Assumption B: The random vectors (εi, Z
′
i, V

′
Y,iV

′
W,i) for i = 1, ..., n in (2.1) are i.i.d. with

distribution F.

Therefore, the instruments are random, the reduced form errors are not necessarily nor-

mally distributed, and the matrix Ω = EFViV
′
i is unknown. We define the parameter space

F for (γ,ΠW ,ΠY , F ) under the null hypothesis H0 : β = β0 exactly as in GKMC.9 Namely,

for Ui = (εi + V ′W,iγ, V
′
W,i)

′ (which equals (vyi − V ′Y,iβ, V ′W,i)′) let

8We thank Ulrich Müller for this suggestion.
9Regarding the notation (γ,ΠW ,ΠY , F ) and elsewhere, note that we allow as components of a vector

column vectors, matrices (of different dimensions), and distributions.
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F = {(γ,ΠW ,ΠY , F ) : γ ∈ <mW ,ΠW ∈ <k×mW ,ΠY ∈ <k×mY ,

EF (||Ti||2+δ) ≤ B, for Ti ∈ {vec(ZiU ′i), Ui, Zi},

EF (ZiV
′
i ) = 0k×(m+1), EF (vec(ZiU

′
i)(vec(ZiU

′
i))
′) = EF (UiU

′
i)⊗ EF (ZiZ

′
i) ,

κmin(A) ≥ δ for A ∈ {EF (ZiZ
′
i) , EF (UiU

′
i)}} (3.1)

for some δ > 0 and B <∞, where “⊗” denotes the Kronecker product of two matrices and

vec(·) the column vectorization of a matrix. Note that the factorization of the covariance

matrix into a Kronecker product in line three of (3.1) is our definition of homoskedasticity,

which is a weaker assumption than conditional homoskedasticity. Note that the role of Ω(β0)

is now played by EFUiU
′
i .

Rather than controlling the finite-sample size the objective is to demonstrate that the

new conditional subvector AR test has asymptotic size, that is the limit of the finite-sample

size with respect to F , equal to the nominal size.

We next define the test statistic and the critical value for the case here where Ω is

unknown. With some abuse of notation (by using the same symbol for another object than

above), the subvector AR statistic ARn(β0) is defined as the smallest root κ̂pn of the roots

κ̂in, i = 1, ..., p (ordered nonincreasingly) of the characteristic polynomial∣∣∣κ̂Ip − Ûn (Y 0,W
)′
PZ
(
Y 0,W

)
Ûn

∣∣∣ = 0, (3.2)

where

Ûn := ((n− k)−1
(
Y 0,W

)′
MZ

(
Y 0,W

)
)−1/2 (3.3)

and Û−2
n is a consistent estimator (under certain drifting sequences from the parameter space

F) for Ω (β0) in (2.4), see Lemma 1 in the Appendix for details. The conditional subvector

AR test rejects H0 at nominal size α if

ARn(β0) > c1−α(κ̂1n, k −mW ), (3.4)

where c1−α (·, ·) has been defined in (2.13) and κ̂1n is the largest root of (3.2).

Theorem 5 Under Assumption B, the conditional subvector AR test in (3.4) implemented

at nominal size α has asymptotic size equal to α for the parameter space F defined in (3.1)

and for α ∈ {1%, 5%, 10%} and k −mW ∈ {1, ..., 20} .

Comments. 1. The proof of Theorem 5 is given in Section A.4 in the Appendix. It
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relies on showing that the limiting NRP is smaller or equal to α along all relevant drifting

sequences of parameters from F . This is done by showing that the limiting NRPs equal

finite-sample NRPs under Assumption A. Therefore the same comment applies to Theorem

5 as the comment below Theorem 2. The analysis is substantially more complicated here

than in GKMC, in part because the critical values are also random.

2. Theorem 5 remains true if the conditional critical value c1−α(κ̂1n, k − mW ) of the

subvector AR test is replaced by any other critical value, c̃1−α(κ̂1n, k − mW ) say, where

c̃1−α(·, k − mW ) is a continuous non-decreasing function such that the corresponding test

under Assumption A has finite-sample size equal to α. In particular, besides the critical

values obtained from Table 1 by interpolation also the critical values suggested in Section

2.6 could be used.

4 Power loss for robustness to heteroskedasticity

The heteroskedasticity-robust version of the AR test of hypotheses on the full vector of

the parameters is asymptotically equivalent to the standard AR test when the data is ho-

moskedastic. This is because under homoskedasticity, the heteroskedastic (HAR) and ho-

moskedastic (AR) test statistics are such that HAR − AR = op (1), and also the critical

values of both tests are the same. The same argument applies to heteroskedasticity-robust

versions of other weak-identification robust tests, such as the CLR test. Therefore, at least

asymptotically, there is no sacrifice of power for robustness to general forms of heteroskedas-

ticity for full-vector inference. It is interesting to ask whether this property applies to the

subvector case or whether, unlike the full-vector case, robustness to heteroskedasticity for

subvector testing entails a loss of power when the data is homoskedastic.

We investigate this issue by comparing the power of our conditional subvector AR test

against a comparable test that controls size under general forms of heteroskedasticity. We

use a Bonferroni-type test as in Chaudhuri and Zivot (2011) and Andrews (2017), which

controls asymptotic size under heteroskedasticity and is asymptotically efficient under strong

instruments. The test requires two steps. The first step constructs a confidence set for γ

of size 1 − α1, and the second step performs a size α2 subvector C (α)-type test on β for

each value of γ in the first-step confidence set. To avoid conservativeness under strong

identification, the second-step size α2 is chosen using the identification category selection

(ICS) rule proposed by Andrews (2017), see Appendix E for details. We report results only

for the just-identified case, in which the various C (α)-type tests all coincide. We use an

AR test for the first step, for reasons discussed in Andrews (2017), and denote the resulting

two-step test as ϕACZ , see Appendix E for details.
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We compute the power of the three tests ϕACZ , ϕGKMC , and ϕc of (2.3) in model (2.1)

with the following parameter settings: n = 250, mY = mW = 1, k = 2, Vi ∼iidN (0,Ω) with

Ω =

 1 0.8 0.8

0.8 1 0.3

0.8 0.3 1

 ,

Zi ∼iidN (0, I2), ΠY =
(
πβ/
√
kn
)

(1,−1)′ and ΠW =
(
πγ/
√
kn
)

(1, 1)′ . The parameters

πβ and πγ govern the strength of identification of β and γ, respectively. We consider the

three cases (πβ, πγ) ∈ {(4, 1) , (4, 2) , (4, 4)} corresponding to weak, moderate, and strong

identification of γ. The first-step size of the ϕACZ test is set to α1 = 0.5% and α2 is determined

by the ICS rule described in Appendix E. All tests are at nominal size α = 5%.

Figure 5 reports the results based on 10,000 Monte Carlo replications. We notice that

the power of the conditional subvector AR test ϕc is uniformly above the power of the

heteroskedasticity robust ϕACZ test, and the difference is decreasing in the strength of iden-

tification of γ. Notice that ϕACZ seems to be dominated even by the unconditional subvector

AR test ϕGKMC . This is because the second-step critical value of ϕACZ is either equal to

or higher than that of ϕGKMC .10 All in all, these results seem to indicate that there is a

trade-off between power and robustness to heteroskedasticity in subvector testing.

5 Empirical illustration

We use an application from a well-cited study in experimental development economics to

illustrate our method. In particular, we consider the homoskedastic linear IV regressions

reported in (Tanaka et al., 2010, Table 5) – henceforth TCN. Using experimental data they

collected from Vietnamese villages, TCN estimate linear IV regressions to study determinants

of risk and time preferences. The dependent variable in their models is the curvature of the

utility function, denoted by σ in their notation. They report two specifications, replicated in

Table 2. Both specifications include the same exogenous covariates, Chinese, Age, Gender,

Education, Distance to market, and South, and the same excluded exogenous variables used

as instruments, Rainfall and “Head of Household can’t work”, but differ in the way house-

hold income enters the model. Income is treated as endogenous (indicated by (IV) in the

table following TCN’s original notation) to address the possible simultaneous causation of

preferences and economic circumstances. The first specification contains a single endogenous

10It is equal when α2 = 5%, which happens when γ is strongly identified, and it is higher when α2 = 4.5%,
which occurs frequently when γ is weakly identified.
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Figure 5: Comparison of power of the two-step test of Chadhuri and Zivot (2011) and Andrews
(2017) ϕACZ against the subvector AR test ϕGKMC and the conditioanl subvector AR test ϕc.
k = 2, n = 250 and 10000 Monte Carlo replications.

regressor, Income, which is simply household income. The second specification uses, instead,

a decomposition of household income into mean village income (Mean income), and relative

income within the village (Relative income). It therefore contains two endogenous regressors.

Their sample is random by design and TCN assume homoskedasticity. The coefficients in

these models are interpreted in the usual way as the marginal effects of each variable on

households’ risk preferences. TCN are particularly interested in the effect of income on risk

preference, but they also comment on other determinants, such as gender (=1 for male).

We start with the first specification which contains a single endogenous regressor and is

overidentified. We consider subvector tests and confidence intervals on single coefficients in

the model. First, we note from Table 2 that the first-stage F statistic is 5.96. An application

of the well-known rule-of-thumb pretest for weak instruments of F > 10 would lead one to

conclude that the instruments are weak, and that t tests are unreliable. However, reliable

inference can be based on the AR test irrespective of the outcome of the pretest. Here,

both the conditional and the unconditional subvector AR tests for the coefficient of Income

coincide with the usual AR test, since there are no endogenous regressors to partial out (in

the notation of our paper, mW = 0 for hypotheses on that coefficient). We therefore turn to

subvector inference on the coefficient of an exogenous regressor. For instance, let β denote
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Dependent variable
σ(Value function curvature)

Specification 1 Specification 2

Chinese −0.035 (0.143) −0.096 (0.138)
Age −0.006 (0.003)**,† −0.006 (0.002)***,††
Gender 0.022 (0.073) −0.006 (0.059)
Education −0.029 (0.010)***,† † † −0.028 (0.010)***,††
Income (IV) 0.010 (0.006)
Relative income (IV) 0.049 (0.148)
Mean income (IV) 0.010 (0.006)*, ††
Market −0.012 (0.017) −0.013 (0.015)
South −0.155 (0.094)* −0.148 (0.080)*, †
Constant 0.980 (0.174)***,†† 0.992 (0.160)***,††

First-stage F statistic 5.963 {0.008}
Sub. AR statistic (ID) 11.925 {0.008} 6.070 {0.014}
Conditioning statistic ∞ 93.10

95% Confidence intervals
Gender

Wald [−0.098, 0.143]
cond. sub. AR [−0.136, 0.302]

uncond. sub. AR (GKMC) [−0.141, 0.307]

Mean income
Wald [−0.0006, 0.0211]

cond. sub. AR [ 0.0008, 0.0206]
uncond. sub. AR (GKMC) [−0.0005, 0.0222]

Table 2: Replication of (Tanaka et al., 2010, Table 5). Sample size is 181. Number of instruments
is two, namely, Rainfall and “Head of Household can’t work” (dummy). 2SLS point estimates
reported with standard errors in parentheses. *, **, *** indicates ‘significant’ using t-test at 10%,
5%, and 1% level, resp.; †,††,† † † indicates ‘significant’ using conditional subvector AR test at 10%,
5%, and 1% level, resp.. Unconditional p-values in curly brackets.
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the coefficient on Gender (the same procedure obviously applies to test hypotheses on the

coefficients of each of the other exogenous regressors). The size-α conditional subvector AR

test of the hypothesis H0 : β = β0 against H1 : β 6= β0 can be performed using the following

steps:

Algorithm 1.

1. Partial out exogenous regressors: Let X denote the exogenous regressors in the model

other than Gender whose coefficient is under test.11 Set y equal to the residuals

of the orthogonal projection of σ (the dependent variable) on X, y = MXσ, where

MX = I − PX and PX = X(X ′X)−1X ′. Similarly, set Y = MX(Gender), W =

MX(Income), and Z = MX(Gender, Rainfall, Head of household can’t work). Set n =

(# of observations) − (# of variables in X) (=175) and k = # of variables in Z (=3).

2. Compute the eigenvalues of the matrix ESS·(n− k)RSS−1, where ESS :=
(
Ȳ0,W

)′
PZ(

Ȳ0,W
)
, RSS :=

(
Ȳ0,W

)′
MZ

(
Ȳ0,W

)
, and Ȳ0 = y − Y β0. The smallest eigenvalue

κ̂2n is the subvector AR statistic and the largest eigenvalue κ̂1n is the conditioning

statistic.

3. Look up critical value c1−α(κ̂1n, k−mW ) corresponding to κ̂1n for k−mW = 2 in Table

4, and reject H0 if and only if κ̂2n > c1−α(κ̂1n, k −mW ).

The unconditional subvector AR test in GKMC follows the same steps 1-2, but the final

step is replaced with: Reject H0 if and only if κ̂2n > χ2
2,1−α, where χ2

2,1−α is the 1−α quantile

of the χ2 distribution with 2 degrees of freedom.

Table 2 reports significance of each of the regressors using the conditional subvector AR

test at the 1%, 5% and 10% levels and contrasts them to the nonrobust results reported by

TCN using t tests. Only education is significant at the 1% level, while age is significant at

the 10% instead of 5% level, and the rest of the covariates are not significant at the 10%

level.

A (1− α)-level confidence set for β can be obtained by grid search over a sufficiently

large range of values for β0. An illustration of this approach is given in Figure 6.

Before discussing Figure 6, we note that both the conditional and unconditional subvector

AR confidence sets can be unbounded when the instruments are sufficiently weak. The

hypothesis of an unbounded confidence set is mathematically equivalent to the hypothesis

that the k × (mY +mW ) coefficient matrix on the instruments in the first-stage regression

– (ΠY ,ΠW ) in the notation of equation (2.1) – is of reduced rank, see Kleibergen (2015). In

11X consists of Constant, Chinese, Age, Education, Distance to market, and South.
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Figure 6: Subvector AR statistic (red solid) for Gender in specification 1 of Table 2, and Mean
income in specification 2 of Table 2, with conditional (black dashed) and unconditional (green
dotted) critical values. Vertical lines indicate 95% confidence intervals reported in Table 2.

other words, the hypothesis that the confidence set is bounded is equivalent to the hypothesis

that the model is identified. This can be tested using a conditional subvector AR test by

applying Algorithm 1 replacing Ȳ0 with Y in step 2. The resulting test statistic is reported

in the row “Sub. AR (ID) statistic” in Table 2, with the corresponding conditioning statistic

in the row “conditioning statistic”, and unconditional (GKMC) p-value in curly brackets.12

(The value of the “sub. AR (ID) statistic” for specification 2 is obtained using Algorithm

2 similarly replacing Ȳ0 with Y in step 2). The (1− α)-level conditional and unconditional

subvector AR confidence sets are unbounded if and only if this test fails to reject at level α.

The p-value 0.008 of the identification subvector AR test indicates that the 99% confidence

sets on the parameters are bounded. If, instead, one used the first-stage F rule to discard

the model, because F < 10 (effectively concluding it is unidentified), the resulting inference

(unbounded confidence intervals) would be grossly inefficient.

The graph on the left in Figure 6 plots the subvector AR statistic for the coefficient

of Gender in the first specification, together with the conditional and unconditional 10%,

5% and 1% critical values. Note that the conditional critical values vary with β0 as the

conditioning statistic changes. The resulting 95% confidence intervals are reported in Table

2. We notice that the conditional confidence interval is shorter than the corresponding one

in GKMC as expected, though the difference is small. Both confidence intervals are wide and

include zero, thus corroborating the finding reported in TCN that there are no significant

effects of gender on risk preferences.

12In the present example where Y is an exogenous variable (Gender) andW consists of only one endogenous
variable (Income), it turns out that κ̂1n =∞ and hence the conditional subvector AR test of identification
coincides with the unconditional one. Moreover, κ̂2n = 2F where F is the standard first-stage F statistic
for testing the exclusion of the additional instruments (Rainfall and Head of household can’t work) from the
first-stage regression for W .
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Next, turn to the second specification in Table 2, with two endogenous regressors, Relative

income and Mean income. A conditional subvector AR test of the coefficient on Mean income

can be implemented with the following modification of Algorithm 1.

Algorithm 2.

1. Partial out all of the included exogenous regressors X:13 Set y = MXσ, Y = MX(Mean

Income), W = MX(Relative income), Z = MX(Rainfall, Head of household can’t

work). Set n = 174 and k = 2.

2-3. Same as in Algorithm 1, but for k −mW = 1.

The significance of each coefficient in the second specification is reported in Table 2.

The results mostly agree with the conclusions from the non-robust t tests, except for the

significance of Mean income, which is stronger using our method (5% instead of 10%).

The graph on the right in Figure 6 plots the subvector AR statistic for the coefficient

of Mean income in the second specification, alongside conditional and unconditional critical

values. The resulting 95% confidence intervals are reported in Table 2. We notice that the

GKMC test fails to reject the null hypothesis that the coefficient is zero at the 5% level,

while the conditional test does. Moreover, it is remarkable that the conditional subvector AR

confidence interval is even smaller than the nonrobust Wald confidence interval. Therefore,

use of our conditional subvector AR test strengthens the results reported in TCN. Finally,

notice that both the conditional and the unconditional subvector AR confidence sets are

unbounded at 99% coverage, but the latter contains the entire real line, while the former

excludes two intervals, thus being non-convex.

All of the above results together took less than 5 seconds to compute (using grids of 10000

points for the graphs) on a standard computer. This application is yet another example of

a setting where one can do informative inference, i.e., not leading to unbounded confidence

sets, using weak-instrument-robust methods, as opposed to unreliable inference using Wald/t

tests.

6 Conclusion

We show that the subvector AR test of GKMC is inadmissible by developing a new condi-

tional subvector AR test that has correct size and uses data-dependent critical values that are

always smaller than the χ2
k−mW critical values in GKMC. The critical values are increasing

13X consists of Constant, Chinese, Age, Gender, Education, Distance to market, and South.
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in a conditioning statistic that relates to the strength of identification of the parameters not

under test. Our proposed test has considerably higher power under weak identification than

the GKMC procedure. We show, using an empirical example, that the implementation of

our method is easy and fast, and can make a difference to empirical conclusions in practice,

in the sense that effects that are insignificant using GKMC become significant using our new

method. A crucial assumption maintained throughout the paper is homoskedasticity. If one

allows for arbitrary forms of heteroskedasticity both the GKMC test and the new conditional

subvector AR test suffer from size distortion. We are currently working on extending these

methods to heteroskedastic settings, which is a much harder problem.

Appendix

A Proofs and derivations

A.1 Proofs of Theorems 1 and 3

Proof of Theorem 1: The monotonicity follows from (Perlman and Olkin, 1980, Theorem 3.5).

The proof relies on the following result, available in (Muirhead, 2009, Theorem 10.3.8), which states

that a 2×2 non-central Wishart matrix with noncentrality matrix of rank 1 can be expressed as

T ′T, where

T =

(
t11 t12

0 t22

)
,

t211 ∼ χ2
k (κ1) (non-central χ2 with noncentrality parameter κ1), t222 ∼ χ2

k−1, t12 ∼ N (0, 1) , and

t11, t12, t22 are mutually independent. The minimum eigenvalue of T ′T, κ̂min, is given by

κ̂min =
t211 + t212 + t222 −

√(
t211 + t212 + t222

)2 − 4t211t
2
22

2
.

It is straightforward to show that κ̂min ≤ t222, which establishes the upper bound in the distribution

of κ̂min in GKMC. It is also straightforward to establish that κ̂min is monotonically increasing in t211,

and since t211 is stochastically increasing in κ1 (see, e.g., (Johnson and Kotz, 1970, ch. 28)), then

κ̂min is stochastically increasing in κ1, as shown formally in (Perlman and Olkin, 1980, Theorem

3.5). Finally, κ̂min − t222
p→ 0 as κ1 → ∞ (because t211

p→ ∞), and therefore, κ̂min
d→ χ2

k−1, as

required. �

Proof of Theorem 3: Using (2.18) and (2.21) we have

Ξ̃ := ΞO =

(
Ξ̃11 Ξ̃12

0 Ξ̃22

)
, (A.1)
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where

Ξ̃11 :=
(
Ξ11 − Ξ12Ξ−1

22 Ξ21

) (
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2
. (A.2)

Moreover, since Ξ21 and Ξ22 are independent of Ξ11 and Ξ12, and O′O = ImW+1, conditional on O,

Ξ̃11 ∈ <(k−mW+1)×2 is Gaussian with covariance matrix I2(k−mW+1) and mean

M̃11 :=
(
M11 −M12Ξ−1

22 Ξ21

) (
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2

=M11

(
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2
. (A.3)

Since ρ (M11) ≤ 1 by (2.20), the same holds for ρ
(
M̃11

)
. Hence, conditional on O, Ξ̃′11Ξ̃11 ∼

W2(k −mW + 1, I2,M̃′11M̃11) with ρ
(
M̃′11M̃11

)
≤ 1. �

A.2 Joint distribution of the vector of eigenvalues of eigenproblem (2.7)

We study the joint distribution of the vector of eigenvalues (κ̂1, ..., κ̂mW ) of the eigenproblem that

defines the subvector statistic ARn(β0) when the hypothesized β0 does not necessarily equal the

true slope parameter β. Recall the model (2.1) and the eigenproblem of the subvector AR statistic

(2.7). Pre/post-multiplying (2.7) by∣∣∣∣∣
(

1 0

−γ ImW

)∣∣∣∣∣ yields 0 =
∣∣κΣ− (u,W )′ PZ (u,W )

∣∣ (A.4)

an equivalent eigenproblem, where

u := y − Y β0 −Wγ = ε+ Y (β − β0) , Σ :=

(
σuu ΣuVW

Σ′uVW ΣVWVW

)
, (A.5)

and σuu and Σ′uVW ∈ <
mW denote the variance of u and the covariance between u and VW , re-

spectively. Note that u does not equal the structural error ε in (2.1) unless β = β0. Note that

for

C :=

(
σ
−1/2
uu 0

−Σ
−1/2
VWVW .uΣ′

uVW
σ−1
uu Σ

−1/2
VWVW .u

)
with ΣVWVW .u := ΣVWVW − Σ′uVWΣuVW σ

−1
uu ∈ <mW×mW ,

(A.6)

CΣC ′ = Ip holds. Therefore, pre and postmultiplying (A.4) by |C| leads to

0 =

∣∣∣∣κIp − (u/σ1/2
uu ,

(
W − uΣuVW

σuu

)
Σ
−1/2
VWVW .u

)′
PZ

(
u/σ1/2

uu ,

(
W − uΣuVW

σuu

)
Σ
−1/2
VWVW .u

)∣∣∣∣ (A.7)

or

0 =

∣∣∣∣∣κI1+mW −

(
ξ′uξu ξ′uξW.u

ξ′W.uξu ξ′W.uξW.u

)∣∣∣∣∣ , (A.8)

26



where

ξu :=
(
Z ′Z

)−1/2
Z ′u/σ1/2

uu ∈ <k and ξW.u :=
(
Z ′Z

)−1/2
Z ′
(
W − uΣuVW

σuu

)
Σ
−1/2
VWVW .u ∈ <

k×mW .

(A.9)

Now,

E (ξu)=E
(
Z ′Z

)−1/2
Z ′Y (β − β0) /σ1/2

uu

=
(
Z ′Z

)1/2
ΠY (β − β0) /σ1/2

uu and

E (ξW.u)=
(
Z ′Z

)1/2(
ΠW −ΠY (β − β0)

ΣuVW

σuu

)
Σ
−1/2
VWVW .u. (A.10)

Hence,

Ξ := [ξu, ξW.u] ∼ N (M, Ikp) and Ξ′Ξ ∼ Wp

(
k, Ip,M′M

)
, where

M :=
(
Z ′Z

)1/2 [
ΠY (β − β0) /σ1/2

uu ,

(
ΠW −ΠY (β − β0)

ΣuVW

σuu

)
Σ
−1/2
VWVW .u

]
. (A.11)

Case 1) Assume that H0 in (2.3) holds. In that case u = ε and we write

Σ =

(
σεε ΣεVW

Σ′εVW ΣVWVW

)
(A.12)

and ΣVWVW .ε := ΣVWVW − Σ′εVWΣεVW σ
−1
εε . Defining

ΘW :=
(
Z ′Z

)1/2
ΠWΣ

−1/2
VWVW .ε ∈ <

k×mW , (A.13)

it follows that M = (0k,ΘW ).

Case 2) Assume instead that H ′0 in (2.17) holds. Note that

A = Z ′Z [ΠY (β − β0) + ΠWγ,ΠW ] (A.14)

and therefore for M defined in (A.11)

M =
(
Z ′Z

)−1/2
AT for T :=

 1/σ
1/2
uu −ΣuVW

σ
1/2
uu

Σ
−1/2
VWVW .u

−γ/σ1/2
uu (ImW + γ

ΣuVW

σ
1/2
uu

)Σ
−1/2
VWVW .u

 . (A.15)

Because (Z ′Z)−1/2 and T are both of full rank it follows that ρ (M) = ρ (A).14

14To see the former, note that T is of full rank iff

T̃ :=

(
1 −c′

−γ Σ
−1/2
VWVW .u + γc′

)
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A.3 The approximate conditional distribution

This section replicates the analysis in Muirhead (1978, Section 6). As a special case of (James,

1964, eq. (68)), the joint density of the eigenvalues κ̂1 and κ̂2 of Ξ′Ξ ∼ W2 (k, I2,M′M) can be

written as

fκ̂1,κ̂2 (x1, x2;κ1, κ2) =
π2

2kΓ2 (k/2) Γ2 (1)
exp

(
−1

2
(x1 + x2)

)
x
k−3
2

1 x
k−3
2

2 (x1 − x2) (A.16)

× exp
(
−1

2
(κ1 + κ2)

)
0F

(2)
1

(
1

2
k;

1

4

(
κ1

0

0

κ2

)
,

(
x1

0

0

x2

))

for x1 ≥ x2 ≥ 0, where Γm (a) := πm(m−1)/4
∏m
i=1 Γ

(
a− 1

2 (i− 1)
)

and 0F
(2)
1 is the hypergeometric

function of two matrix arguments. Thus, Γ2 (a) := π1/2Γ (a) Γ(a− 1
2), Γ2 (1) := π1/2Γ (1) Γ(1

2) = π

and Γ2 (k/2) = π1/2Γ (k/2) Γ(k−1
2 ). So, the joint density (A.16) can also be written as

π1/2

2kΓ (k/2) Γ
(
k−1

2

)exp(−1

2
(x1 + x2)

)
x
k−3
2

1 x
k−3
2

2 (x1 − x2)

× exp
(
−1

2
(κ1 + κ2)

)
0F

(2)
1

(
1

2
k;

1

4

(
κ1

0

0

κ2

)
,

(
x1

0

0

x2

))
. (A.17)

Under the assumption that κ1 > κ2 = 0, where κ1 is large, Leach (1969) has shown that

0F
(2)
1

(
1

2
k;

1

4

(
κ1

0

0

κ2

)
,

(
x1

0

0

x2

))
∼ 2

k−2
2

π
Γ (k/2) exp

(
(x1κ1)

1
2

)
(A.18)

× (κ1x1)
2−k
4 (κ1 (x1 − x2))−

1
2 .

Substituting equation (A.18) into equation (A.17) gives an asymptotic representation for the density

function of κ̂1 and κ̂2 under the assumption that κ1 is large,

π−1/2

2
k+2
2 Γ

(
k−1

2

) exp

(
−1

2
κ1

)
κ
− k

4
1 κ̂

k−4
4

1 exp

[
−1

2
x1 + (x1κ1)

1
2

]
(A.19)

× exp

(
−1

2
x2

)
x
k−3
2

2 (x1 − x2)
1
2 .

This is a special case of Muirhead (1978, (6.5)) with his k,m, and n corresponding to 1, p = 2, and

is of full rank, where c′ := ΣuVW
Σ
−1/2
VWVW .uσ

−1/2
uu . But whenever T̃ (a1, a

′
2)′ = 0p it follows that a1 − c′a2 = 0

and −γa1+Σ
−1/2
VWVW .ua2+γc′a2 = 0mW . Inserting the former into the latter equality yields Σ

−1/2
VWVW .ua2 = 0mW

and thus a2 = 0mW . The latter implies a1 = 0. Finally, (Z ′Z)
−1/2

is of full rank by Assumption A 2.

28



k, respectively, and using κ2 = 0. Integrating the second line of (A.19) w.r.t. x2 yields∫ κ̂1

0
exp

(
−1

2
x2

)
x
k−3
2

2 (x1 − x2)
1
2 dx2

=
π

1
2

2
x
k/2
1

Γ
(
k−1

2

)
Γ
(
k+2

2

) 1F1

(
k − 1

2
,
k + 2

2
;−x1

2

)
, (A.20)

where 1F1 (a, c; z) is the confluent hypergeometric function. Combined with (A.19), the approximate

conditional distribution of κ̂2 given κ̂1 is

f∗κ̂2|κ̂1 (x2|κ̂1) =
Γ
(
k+2

2

)
Γ
(
k−1

2

) 2 exp
(
−1

2x2

)
x
k−3
2

2 (κ̂1 − x2)
1
2

κ̂
k
2
1

√
π 1F1

(
k−1

2 , k+2
2 ;−

k
2
2

) . (A.21)

The last equation reduces to (2.12) if we use the definition of the density of χ2
k−1, fχ2

k−1
(x2) =

1

2
k−1
2 Γ( k−1

2 )
x
k−3
2

2 e−
x2
2 . Hence, the integrating constant g (κ̂1) in the approximate conditional density

(2.12) is given by

g (κ̂1) =
Γ
(
k+2

2

)
2
k+1
2

κ̂
k
2
1

√
π 1F1

(
k−1

2 , k+2
2 ;− κ̂1

2

) . (A.22)

The result that c1−α (∞, k − 1) = χ2
k−1,1−α follows from the fact that limκ̂1→∞ f

∗
κ̂2|κ̂1 (·|κ̂1) =

fχ2
k−1

(·) . This can be proven using the property that 1F1 (a, c;−z) za → Γ (c) /Γ (c− a) as z →∞

(Olver, 1997, p. 257, eq. 10.08). It follows that
2
k+1
2 (x1−x2)1/2Γ( k+2

2 )

x
k
2
1

√
π 1F1( k−1

2
, k+2

2
;−x1

2 )
→ 2

k+1
2 Γ( k+2

2
− k−1

2 )
√
π2

k−1
2

=
2Γ( 3

2)√
π

= 1 as x1 →∞.

A.4 Proof of Theorem 5

Uniformity Reparametrization To prove that the new subvector AR test has asymptotic size

bounded by the nominal size α we use a general result in Andrews, Cheng, and Guggenberger

(2011, ACG from now on). To describe it, consider a sequence of arbitrary tests {ϕn : n ≥ 1} of a

certain null hypothesis and denote by RPn(λ) the null rejection probability of ϕn when the DGP

is pinned down by the parameter vector λ ∈ Λ, where Λ denotes the parameter space of λ. By

definition, the asymptotic size of ϕn is defined as

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ). (A.23)
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Let {hn(λ) : n ≥ 1} be a sequence of functions on Λ, where hn(λ) = (hn,1(λ), ..., hn,J(λ))′ with

hn,1(λ) ∈ < ∀j = 1, ..., J. Define

H = {h ∈ (< ∪ {±∞})J : hwn(λwn)→ h for some subsequence {wn}

of {n} and some sequence {λwn ∈ Λ : n ≥ 1}} (A.24)

Assumption B in ACG: For any subsequence {wn} of {n} and any sequence {λwn ∈ Λ : n ≥ 1} for

which hwn(λwn)→ h ∈ H, RPwn(λwn)→ [RP−(h), RP+(h)] for some RP−(h), RP+(h) ∈ (0, 1).15

The assumption states, in particular, that along certain drifting sequences of parameters λwn

indexed by a localization parameter h the NRP of the test cannot asymptotically exceed a certain

threshold RP+(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption B in ACG holds.

Then, infh∈H RP
−(h) ≤ AsySz ≤ suph∈H RP

+(h).

We next verify Assumption B in ACG for the subvector AR test and establish that suph∈H RP
+(h) =

α when the test is implemented at nominal size α. To do so, we use Andrews and Guggenberger

(2015, AG from now on), namely Proposition 12.5 in AG, to derive the joint limiting distribution

of the eigenvalues κ̂in, i = 1, ..., p in (3.2). We reparameterize the null distribution F to a vector

λ. The vector λ is chosen such that for a subvector of λ convergence of a drifting subsequence of

the subvector (after suitable renormalization) yields convergence in distribution of the test statistic

and the critical value. For given F define

QF := (EFZiZ
′
i)

1/2 and UF := Ω(β0)−1/2 := (EFUiU
′
i)
−1/2. (A.25)

Let

BF denote a p× p orthogonal matrix of eigenvectors of U ′F (ΠWγ,ΠW )′Q′FQF (ΠWγ,ΠW )UF

(A.26)

ordered so that the p corresponding eigenvalues (η1F , ..., ηpF ) are nonincreasing. Let

CF denote a k × k orthogonal matrix of eigenvectors of QF (ΠWγ,ΠW )UFU
′
F (ΠWγ,ΠW )′Q′F .

16

(A.27)

The corresponding k eigenvalues are (η1F , ..., ηpF , 0, ..., 0). Let

(τ1F , ..., τpF ) denote the singular values of QF (ΠWγ,ΠW )UF ∈ <k×p, (A.28)

15By definition, the notation xn → [x1,∞, x2,∞] means that x1,∞ ≤ lim infn→∞ xn ≤ lim supn→∞ xn ≤
x2,∞.

16The matrices BF and CF are not uniquely defined. We let BF denote one choice of the matrix of
eigenvectors of U ′F (ΠW γ,ΠW )′Q′FQF (ΠW γ,ΠW )UF and analogously for CF .

Note that the role of EFGi in AG, Section 12, is played by (ΠW γ,ΠW ) ∈ Rk×p and the role of WF is
played by QF .
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which are nonnegative, ordered so that τjF is nonincreasing. (Some of these singular values may

be zero.) As is well-known, the squares of the p singular values of a k × p matrix A equal the p

largest eigenvalues of A′A and AA′. In consequence, ηjF = τ2
jF for j = 1, ..., p. In addition, ηjF = 0

for j = p+ 1, ..., k.

Define the elements of λ to be17

λ1,F := (τ1F , ..., τpF )′ ∈ <p,

λ2,F := BF ∈ <p×p,

λ3,F := CF ∈ <k×k,

λ4,F := (λ4,1F , ..., λ4,p−1F )′ :=

(
τ2F

τ1F
, ...,

τpF
τp−1F

)′
∈ [0, 1]p−1, where 0/0 := 0,

λ5,F := QF ∈ <k×k,

λ6,F := UF ∈ <p×p,

λ7,F := F, and

λ := λF := (λ1,F , ..., λ7,F ). (A.29)

The parameter space Λ for λ and the function hn(λ) (that appears in Assumption B in ACG)

are defined by

Λ := {λ : λ = (λ1,F , ..., λ7,F ) for some F ∈ F},

hn(λ) := (n1/2λ1,F , λ2,F , λ3,F , ..., λ6,F ). (A.30)

We define λ and hn(λ) as in (A.29) and (A.30) because, as shown below, the asymptotic

distributions of the test statistic and conditional critical values under a sequence {Fn : n ≥ 1} for

which hn(λFn)→ h depend on limn1/2λ1,Fn and limλm,Fn for m = 2, ..., 9. Note that we can view

h ∈ (< ∪ {±∞})J (for an appropriately chosen finite J ∈ N).

For notational convenience, for any subsequence {wn : n ≥ 1},

{λwn,h : n ≥ 1} denotes a sequence {λwn ∈ Λ : n ≥ 1} for which hwn(λwn)→ h. (A.31)

It follows that the set H defined in (A.24) is given as the set of all h ∈ (< ∪ {±∞})J such that

there exists {λwn,h : n ≥ 1} for some subsequence {wn : n ≥ 1}.
We decompose h analogously to the decomposition of the first six components of λ: h =

(h1, ..., h6), where λm,F and hm have the same dimensions for m = 1, ..., 6. We further decompose

the vector h1 as h1 = (h1,1, ..., h1,p)
′, where the elements of h1 could equal ∞. Again, by definition,

17For simplicity, as above, when writing λ = (λ1,F , ..., λ10,F ) or λ5,F = (λ5,1,F , ..., λ5,3,F ) (and likewise in
similar expressions) we allow the elements to be scalars, vectors, matrices, and distributions.
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under a sequence {λn,h : n ≥ 1}, we have

n1/2τjFn → h1,j ≥ 0 ∀j = 1, ..., p, λm,Fn → hm ∀m = 2, ..., 6. (A.32)

Note that h1,p = τpFn = 0 because ρ(ΠWγ,ΠW ) < p. By Lyapunov-type WLLNs and CLTs, using

the moment restrictions imposed in (3.1), we have under λn,h

n−1/2vec(Z ′U) =

(
n−1/2Z ′(ε+ VWγn)

vec
(
n−1/2Z ′VW

) )
→
d

(
ξε,h

ξVW ,h

)
∼ N

(
0pk×1, h−2

6 ⊗ h
2
5

)
,

λ−1
5,F (n−1Z ′Z)→

p
Ik, (A.33)

where the random vector (ξε,h, ξ
′
VW ,h)′ is defined here.

Asymptotic Distributions Let q = qh ∈ {0, ..., p− 1} be such that

h1,j =∞ for 1 ≤ j ≤ qh and h1,j <∞ for qh + 1 ≤ j ≤ p, (A.34)

where h1,j := limn1/2τjFn ≥ 0 for j = 1, ..., p by (A.32) and the distributions {Fn : n ≥ 1}
correspond to {λn,h : n ≥ 1} defined in (A.31). This value q exists because {h1,j : j ≤ p} are

nonincreasing in j (since {τjF : j ≤ p} are nonincreasing in j, as defined in (A.28)). Note that

q is the number of singular values of QFn(ΠWnγn,ΠWn)UFn ∈ <k×p that diverge to infinity when

multiplied by n1/2. Note again that q < p because ρ(ΠWnγn,ΠWn) < p.

An analogue to Lemma 12.4 in AG is given by the following statement. Define

D̂n := (Z ′Z)−1Z ′
(
Y 0,W

)
and Q̂n := (n−1Z ′Z)1/2. (A.35)

Lemma 1 Under all sequences {λn,h : n ≥ 1} with λn,h ∈ Λ, n1/2(D̂n − (ΠWnγn,ΠWn)) →d Dh,

where

Dh ∼ h−2
5 (ξε,h, vec

−1
k,mW

(ξVW ,h)) ∈ <k×p,

Û−2
n −Ω (β0)→p 0p×p, and Q̂n−QFn →p 0k×k, where vec−1

k,mW
(·) denotes the inverse vec operation

that transforms a kmW vector into a k ×mW matrix and Ûn is defined in (3.3).

Proof of Lemma 1: We have

n1/2(D̂n − (ΠWnγn,ΠWn))

=n1/2((Z ′Z)−1Z ′(y − Y β0,W )− (ΠWnγn,ΠWn))

=n1/2((Z ′Z)−1Z ′(ZΠWnγn + VWγn + ε, ZΠWn + VW )− (ΠWnγn,ΠWn))

=(n−1Z ′Z)−1n−1/2Z ′(VWγn + ε, VW )→d Dh, (A.36)
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where the first equality uses the definition of D̂n in (A.35), the second equality uses the formulas in

(2.1), and the convergence results holds by the (triangular array) CLT and WLLN in (A.33). Also,

Û−2
n =(n− k)−1

(
Y 0,W

)′
MZ

(
Y 0,W

)
=(n− k)−1(VWγn + ε, VW )′MZ(VWγn + ε, VW )

=(n− k)−1(VWγn + ε, VW )′(VWγn + ε, VW ) + op(1), (A.37)

where the first equality uses the formulas in (2.1) and the fact that MZZ = 0n×k and the second

equality follows directly from (A.33). Because Ω (β0) = E(V ′W,iγ + εi, V
′
W,i)

′(V ′W,iγ + εi, V
′
W,i) an

application of WLLNs as in (A.33) yields the desired convergence result. Likewise, an application

of a WLLN using the uniform moment conditions on Zi in F in (3.1) and the continuous mapping

theorem immediately imply the desired result Q̂n −QFn →p 0k×k. �

Note that the matrix nÛnD̂
′
nQ̂nQ̂nD̂nÛn equals the matrix Ûn

(
Y 0,W

)′
PZ
(
Y 0,W

)
Ûn that

appears in (3.2). Thus, κ̂in for i = 1, ..., p equals the ith eigenvalue of nÛ ′nD̂
′
nQ̂
′
nQ̂nD̂nÛn, ordered

nonincreasingly, and κ̂pn is the subvector AR test statistic. To describe the limiting distribution of

(κ̂1n, ..., κ̂pn) we need additional notation, namely:

h2 = (h2,q, h2,p−q), h3 = (h3,q, h3,k−q),

h�1,p−q : =


0q×(p−q)

Diag{h1,q+1, ..., h1,p−1, 0}
0(k−p)×(p−q)

∈ <k×(p−q),

∆h : = (∆h,q,∆h,p−q) ∈ <k×p, ∆h,q := h3,q ∈ <k×q,

∆h,p−q := h3h
�
1,p−q + h5Dhh6h2,p−q ∈ <k×(p−q), (A.38)

where h2,q ∈ <p×q, h2,p−q ∈ <p×(p−q), h3,q ∈ <k×q, h3,k−q ∈ <k×(k−q), ∆h,q ∈ <k×q, and ∆h,p−q ∈
<k×(p−q).18

Let Tn := BFnSn and Sn := Diag{(n1/2τ1Fn)−1, ..., (n1/2τqFn)−1, 1, ..., 1} ∈ <p×p. The same

proof as the one of Lemma 12.4 in AG shows that n1/2QFnD̂nUFnTn →d ∆h under all sequences

{λn,h : n ≥ 1} with λn,h ∈ Λ. The following proposition is an analogue to Proposition 12.5 in AG.

Proposition 2 Under all sequences {λn,h : n ≥ 1} with λn,h ∈ Λ,

(a) κ̂jn →p ∞ for all j ≤ q,
(b) the (ordered) vector of the smallest p−q eigenvalues of nÛ ′nD̂

′
nQ̂nQ̂nD̂nÛn, i.e., (κ̂(q+1)n, ...,

κ̂pn)′, converges in distribution to the (ordered) p−q vector of the eigenvalues of ∆
′
h,p−qh3,k−qh

′
3,k−q

×∆h,p−q ∈ <(p−q)×(p−q),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 1, and

18There is some abuse of notation here. E.g., h2,q and h2,p−q denote different matrices even if p− q equals
q.
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(d) under all subsequences {wn} and all sequences {λwn,h : n ≥ 1} with λwn,h ∈ Λ, the results

in parts (a)-(c) hold with n replaced with wn.

Comments. 1. The proof of Proposition 2 follows directly from Proposition 12.5 in AG. Note

that Assumption WU in AG is fulfilled with the roles of W2F , WF , U2F , and UF in AG played

here by QF , QF , UF = Ω(β0)−1/2, and UF while the roles of W1 and U1 in AG are played by the

identity function. The roles of Ŵ2n and Ŵn in AG are both played by Q̂n and those of both Û2n

and Ûn by Ûn. Lemma 1 shows consistency Ŵ2n −W2Fn →p 0k×k and Û2n − U2Fn →p 0p×p under

sequences {λn,h : n ≥ 1} with λn,h ∈ Λ and trivially the functions W1 and U1 are continuous in our

case. Note that by the restrictions in F in (3.1) the requirements in the parameter space FWU in

AG, namely “κmin(QF ) and κmin(UF ) are uniformly bounded away from zero and ||QF || and ||UF ||
are uniformly bounded away from infinity”, are fulfilled.

2. Proposition 2 yields the desired joint limiting distribution of the p eigenvalues in (3.2). Using

repeatedly the general formula (C ′⊗A)vec(B) = vec(ABC) for three conformable matrices A,B,C,

we have

vec(h5Dhh6)=vec(h−1
5 (ξε,h, vec

−1
k,mW

(ξVW ,h)) h6)

=(h6 ⊗ h−1
5 )

(
ξε,h

ξVW ,h

)
∼vec(v1, ..., vp), (A.39)

where, by definition, vj , j = 1, ..., p are i.i.d. normal k-vectors with zero mean and covariance

matrix Ik, and the distributional statement follows by straightforward calculations using (A.33).

Therefore, by Lemma 1, the definition of ∆h,p−q in (A.38), and by noting that

h′3,k−qh3h
�
1,p−q =

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
(A.40)

we obtain

h′3,k−q∆h,p−q =

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
+ h′3,k−q(v1, ..., vp)h2,p−q

∼

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
+ (w1, ..., wp−q), (A.41)

where, by definition, wj , j = 1, ..., p−q are i.i.d. normal (k−q)-vectors with zero mean and covariance

matrix Ik−q. The distributional equivalence in the second line holds because (v1, ..., vp)h2,p−q ∼
(ṽ1, ..., ṽp−q), where ṽj , j = 1, ..., p − q are i.i.d. N(0k, Ik) as h2,p−q has orthogonal columns of

length 1. Analogously, h′3,k−q(ṽ1, ..., ṽp−q) ∼ (w1, ..., wp−q) because h3,k−q has orthogonal columns

of length 1.
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E.g. when q = p−1 = mW (which could be called the ”strong IV” case), we obtain from (A.41)

h′3,k−q∆h,p−q = w1 ∈ <k−mW . Therefore ∆
′
h,p−qh3,k−qh

′
3,k−q∆h,p−q ∼ χ2

k−mW and thus by part (b)

of Proposition 2 the limiting distribution of the subvector AR statistic is χ2
k−mW in that case, while

all the larger roots in (3.2) converge in probability to infinity by part (a).

Proof of Theorem 5. By construction, for α ∈ (0, 1), c1−α(z, k−mW ) is an increasing continuous

function in z on (0,∞), where c1−α(z, k−mW ) is defined in (2.13) with κ̂1 replaced by z. Further-

more, c1−α(z, k −mW )→ χ2
k−mW ,1−α as z →∞. Thus, defining c1−α(∞, k −mW ) := χ2

k−mW ,1−α,

we can view c1−α(z, k − mW ) as a continuous function in z on (0,∞]. Finally, for α ∈ (0, 1) we

have P (κ̂p = c1−α(κ̂1, k −mW )) = 0 whenever κ̂p and κ̂1 are the smallest and largest eigenvalues

of the Wishart matrix Ξ′Ξ ∼ Wp (k, Ip,M′M) and any choice of eigenvalues (κ1, ..., κmW , 0) of

M′M∈ <p×p.
According to Proposition 1 in order to show that AsySz ≤ α it is sufficient to establish that

RP+(h) ≤ α for all h ∈ H, where RP+(h) appears in Assumption B in ACG. We therefore need

to establish that for every drifting sequence {λwn,h ∈ Λ : n ≥ 1} the null rejection probability

of the conditional subvector AR test RPwn(λwn,h) satisfies RPwn(λwn,h) → [RP−(h), RP+(h)] for

some RP+(h) ≤ α. We also show that under strong IV sequences the limiting rejection probability

equals α which then implies that the asymptotic size equals α. For notational simplicity we write

n instead of wn.

By the discussion below Proposition 2 when q = p− 1 = mW , the strong IV case, ARn (β0)→d

χ2
k−mW under {λn,h ∈ Λ : n ≥ 1} while the largest root κ̂1n goes off to infinity in probability. Thus,

by the definition of convergence in distribution and the features of c1−α(z, k−mW ) described above

RPn(λn,h) = PFn(ARn(β0) > c1−α(κ̂1n, k −mW ))→ RP+(h) = P (χ2
k−mW > χ2

k−mW ,1−α) = α.

(A.42)

When 0 < q < mW , then, just like above, the largest root κ̂1n goes off to infinity in prob-

ability and c1−α(κ̂1n, k − mW ) →p χ2
k−mW ,1−α. By Proposition 2(b) the limiting distribution

of κ̂pn = ARn(β0) in (3.2) equals the distribution of the smallest eigenvalue, κ(p − q) say, of

∆
′
h,p−qh3,k−qh

′
3,k−q∆h,p−q ∈ <p−q×p−q, where h′3,k−q∆h,p−q = (w̃1, ..., w̃p−q), where w̃j ∈ <k−q for

j = 1, ..., p − q are independent N(mj , Ik−q) with mj = (0j−1′, h1,q+j , 0
k−q−j′)′ for j < p − q and

mp−q = 0k−q, respectively. Therefore,

RPn(λn,h) = PFn(ARn(β0) > c1−α(κ̂1n, k−mW ))→ RP+(h) = P (κ(p−q) > χ2
k−mW ,1−α), (A.43)

where the convergence holds by the features of c1−α(z, k − mW ) described above. Consider a

finite-sample scenario as in (2.9) in Section 2 with the roles of k, p,Ξ and M played by k − q, p−
q, h′3,k−q∆h,p−q, and (m1, ...,mp−q), respectively. From the discussion below Theorem 3 we know

that P (κ(p−q) > c1−α(κ(1), k−mW )) ≤ α for any choice of κ(1) ≥ 0, where κ(1) denotes the largest

eigenvalue of ∆
′
h,p−qh3,k−qh

′
3,k−q∆h,p−q. But given that c1−α(κ(1), k − mW ) is increasing in κ(1)
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and converges to χ2
k−mW ,1−α as κ(1)→∞, it must also hold that P (κ(p− q) > χ2

k−mW ,1−α) ≤ α.
By Proposition 2(b) when q = 0, the limiting distribution of the two roots (κ̂1n, ARn(β0))

in (3.2) equals the distribution of the largest and smallest eigenvalues, κ(1) and κ(p) say, of

∆
′
h,ph3,kh

′
3,k∆h,p ∈ <p×p, where h′3,k∆h,p = (w̃1, ..., w̃p), where w̃j ∈ <k for j = 1, ..., p are in-

dependent N(mj , Ik) with mj = (0j−1′, h1,j , 0
k−j′)′ for j < p and mp = 0k, respectively. Con-

sider a finite-sample scenario as in (2.9) in Section 2 with the roles of Ξ and M played by

h′3,k∆h,p and (m1, ...,mp), respectively. From the discussion below Theorem 3 we know that

P (κ(p) > c1−α(κ(1), k −mW )) ≤ α. Therefore,

RPn(λn,h) = PFn(ARn(β0) > c1−α(κ̂1n, k−mW ))→ RP+(h) = P (κ(p) > c1−α(κ(1), k−mW )) ≤ α,
(A.44)

where the convergence holds again from the features of c1−α(z, k −mW ) described above. �

B Computational details

B.1 Computation of the hypergeometric function

The function 0F
(2)
1 of two matrix arguments, which appears in the kernel of the density (A.16),

involves an infinite series of Jack functions that converge very slowly and it is notoriously hard to

compute accurately. We use the recently developed algorithm of Koev and Edelman (2006) which

is efficient and fast. The algorithm approximates 0F
(2)
1 using a finite sum of terms M terms, so

we need to choose M large enough for an accurate approximation. By extensive experimentation

with different values of M up to 500, we found that M = 200 seems to be sufficiently large for all

the cases we considered, because the results are unchanged when M is increased further. Hence,

we used M = 200 in all calculations.

B.2 Size calculations

The computation of the NRP in Section 2 was conducted using numerical integration of the exact

density (A.17). Their accuracy depends in part on the accuracy of the computation of 0F
(2)
1 . To

assess that, we compare in Figure 7 the NRP computed using Monte Carlo integration with 1 million

replications to the one reported in Figure 2. The results are essentially identical to 3 decimals.

Further results on the size of conditional subvector AR test are given in Section D.1.

B.3 Power bounds

In this section, we explain how we compute bounds to the power of the rank testing problem

in Section 2.4 using the methods of (Andrews et al., 2008, Section 4.2) and Elliott et al. (2015)
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Figure 7: Comparison of estimates of NRP obtained by numerical integration (NI) and Monte Carlo
simulaiton (MC) with 1 million draws. NRP of 5% level conditional (2.15) (red solid) and GKMC
subvector AR (blue dotted) tests as a function of the nuisance parameter κmW , The number of
instruments is k = 5 and the number of nuisance parameters is mW = 1.

(henceforth AMS and EMW respectively). The testing problem is

H0 : κ2 = 0, κ1 ≥ 0 versus H1 : κ2 > 0, κ1 ≥ κ2,

where κ1, κ2 are the eigenvalues of the noncentrality parameter κi (M′M) of the 2× 2 noncentral

Wishart matrix Ξ′Ξ ∼ W2 (k, I2,M′M) , and κ̂i = κi (Ξ′Ξ). The joint density of the eigenvalues

fκ̂1,κ̂2 (x1, x2;κ1, κ2) is given in (A.17).

All simulations in this section are performed using importance sampling. The parameter space

for κ1 under H0 is discretized into Nκ1 = 42 points, in the same way as for the size calculations

before, i.e., κ1 ∈
{
κ1,1, ..., κ1,Nκ1

}
, where κ1,j are equally spaced in log-scale between 0 and 100.

We will compute point-optimal power bounds over a grid of point alternatives. Let F denote

a distribution over H1, so that H1,F ∈ H1 is a point alternative, and let g denote the density

of the data under H1,F . For the power envelope, we consider one-point distributions F , whose

support varies over the range κ2 ∈ [0.1, κ̄2 (k)] , discretized into 30 equally spaced points, and

κ1 − κ2 ∈ {0, 1, 2, 4, 8, 16, 32, 64} . We do not consider greater values of κ1 − κ2 because the power

curves of κ2 are already indistinguishable at κ1 − κ2 = 64. The upper bound of κ2 under H1,

κ̄2 (k) , is chosen to be about just high enough for the power of the conditional subvector AR test

ϕc to be above 0.99, and it necessarily varies with k (larger values are needed for higher k). With

some experimentation, we picked κ̄2 (2) = 25, κ̄2 (5) = 30, κ̄2 (10) = 38, κ̄2 (20) = 46. We index the

density of the data under the alternative by r = 1, ..., Nr = 30×8, so that gr (·) = fκ̂1,κ̂2 (·;κ1,r, κ2,r) .

Let xi,j ∈ <2 denote a draw from W2 (k, I2, diag (κ1,j , 0)) . We draw N0 simulations from each

of Nκ1 data generating processes (DGPs). We abbreviate by fl (xi,j) the joint density (A.17) at
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parameter l evaluated at the ith draw xi,j from DGP j, i.e.,

fl (xi,j) = fκ̂1,κ̂2 (x1,i,j , x2,i,j ;κ1,l, 0) ,

xs,i,j = κs (Xi) , s = 1, 2 Xi ∼ W2 (k, I2, diag (κ1,j , 0)) ,

l, j = 1, ..., Nκ1 , i = 1, ..., N0.

The rejection probability of any test ϕ (x) , under DGP j, RPj (ϕ) , is computed by Monte Carlo

integration with importance sampling using the formula

R̂P j (ϕ) =
1

Nκ1N0

Nκ1∑
l=1

N0∑
i=1

fj (xi,l)

f̄ (xi,l)
ϕ (xi,l) , (B.1)

where f̄ (·) = N−1
κ1

∑Nκ1
j=1 fj (·) .

Let Λ denote a distribution over the space of the nuisance parameter κ1, i.e., a distribution over

H0. A point null hypothesis H0,Λ ∈ H0 is defined by the distribution
∫
fκ1dΛ, and is approximated

here by
∑Nκ1

l=1 fl (·)wl,Λ, where wl,Λ, l = 1, ..., Nκ1 are the weights over the (discretized) support of

Λ. A least favorable distribution ΛLF for testing H0 against a particular point alternative H1,F (if

it exists) is such that the α-level Neyman-Pearson test of H0,ΛLF against H1,F has size α under H0.

The least favorable distribution ΛLF is not known in this application. As shown in (Elliott

et al., 2015, Lemma 1), any Neyman-Pearson test ϕΛ of size α under H0,Λ will provide an upper

bound on the power of tests of H0. But the power bound may be quite conservative in the sense

that it could be far above the least upper bound. The procedures in AMS and EMW are designed

to produce bounds that are close to the least upper bound obtained using ΛLF . AMS consider one-

point distributions Λ, and provide upper and lower bounds on the power envelope. The upper bound

is obtained by looking for the (one-point) distribution Λ∗ that gives the smallest size under H0, i.e.,

maxκ1 Eκ1 (ϕΛ∗) ≤ maxκ1 Eκ1 (ϕΛ) for all one-point distributions Λ, where Eκ1 (·) is expectation

w.r.t. the Null distribution indexed by κ1. When the size of ϕΛ∗ exceeds α this bound may be

too high. We will report here only the upper bound of AMS, because it is close to, and often

indistinguishable from, the bound obtained by the ALFD method of EMW.

B.3.1 AMS bound

The AMS algorithm for the upper bound on power, with a slight modification to do importance

sampling, is as follows.

1. For each j, j = 1, ..., Nκ1 , generate N0 draws xi,j , i = 1, ..., N0 with density fj . The draws

must be independent across i and j.

2. Compute and store the importance sampling weights ωl,i,j = fl (xi,j) /f̄ (xi,j) , l, j = 1, ..., Nκ1 ,

i = 1, ..., N0.
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3. Set r = 1.

4. Compute LRl (xi,j) = gr (xi,j) /fl (xi,j) , l, j = 1, ..., Nκ1 , i = 1, ..., N0.

5. Computation of cvs under H0: For each l = 1, ..., Nκ1 , find κl by solving R̂P l (ϕl) = α, where

ϕl := 1 [LRl > κl] is the LR test of fl against gr with critical value κl, and R̂P l (ϕl) is the

Monte Carlo estimate (B.1) with the weights ωl,i,j computed in step 2.

6. Computation of size of each test: For each l, j = 1, ..., Nκ1 , compute R̂P j (ϕl) , and obtain

Dl = maxj∈{1,...,Nκ1}
[
R̂P j (ϕl)− α

]
.

7. Find test with size closest to α: l∗ = arg minl∈{1,...,Nκ1}Dl.

8. Compute the AMS upper bound π̄r = N−1
1

∑N1
i=1 ϕl∗ (xi) , where xi are i.i.d. draws of (κ̂1, κ̂2)

with density gr.

9. If r < Nr, set r = r + 1 and go to step 4.

All the reported results are based on N0 = 10000 and N1 = 100000. (we can use a smaller

number of simulations under H0 for a similar level of precision due to importance sampling.)

Because the size of the test ϕl∗ can exceed α, the AMS upper bound π̄ may be higher than the

least upper bound. To gauge this, Figure 8 plots (Monte Carlo estimates of) the size of ϕl∗ across

the different alternatives r. Note that for most alternatives the size of the test ϕl∗ is close to α, so

π̄r could be close to the least upper bound in those cases. However, for alternatives close to H0

the size of ϕl∗ deviates substantially from α, and the AMS upper bound π̄r may be higher than the

least upper bound. These are precisely the cases in which the conditional subvector AR test has

the highest deviations from the power bound.

B.3.2 EMW bound

The PO power bound reported in Figure 3 is based on the ALFD approach of EMW. The ALFD

is designed to produce tests that are at most ε away from the true (unknown) power envelope. We

apply the algorithm with a slight modification to allow ε to vary across alternatives – for some

alternatives we may be able to get closer to the least upper bound than for others.

We use the following modified version of the algorithm in (Elliott et al., 2015, Appendix A.2)

without switching, assuming the parameter space for the nuisance parameter is compact. The

modification relates to steps 6 to 8 of the original algorithm and cannot underestimate the true

power bound.

1. For each j, j = 1, ..., Nκ1 , generate N0 draws xi,j , i = 1, ..., N0 with density fj . The draws

must be independent across i and j.

2. Compute and store fl (xi,j) and f̄ (xi,j) , l, j = 1, ..., Nκ1 , i = 1, ..., N0.
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Figure 8: Size of the AMS test for each point under H1, κ2 ∈ [0.1, κ̄2 (k)] , κ̄2 (2) = 25,
κ̄2 (5) = 30, κ̄2 (10) = 38, κ̄2 (20) = 46, discretized into 30 equally spaced points, and κ1 − κ2 ∈
{0, 1, 2, 4, 8, 16, 32, 64} . Calculated over 42 points of the nuisance parameter under H0, using 10000
Monte Carlo replications with importance sampling.
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3. Set r = 1.

4. Set µ(0) = (−2, . . . ,−2) ∈ <Nκ1 .

5. Compute µ(s+1) from µ(s) via µ
(s+1)
j = µ

(s)
j + ω

(
R̂P j

(
ϕ(s)

)
− α

)
and ω = 2, where ϕ(s) :=

1 [gr >
∑Nκ1

i=1 exp
(
µ

(s)
i

)
fi

]
and R̂P l

(
ϕ(s)

)
is the Monte Carlo estimate (B.1) with weights

computed in step 2, and repeat this step O = 600 times. Denote the resulting element in the

simplex by Λ̂∗ =
(
λ̂1, . . . λ̂Nκ1

)
, where λ̂j = exp

(
µ

(O)
j

)
/
∑Nκ1

i=1 exp
(
µ

(O)
i

)
.

6. Compute the number κ∗ such that the test ϕΛ̂∗ := 1
[
gr > κ∗

∑Nκ1
i=1 λ̂

∗
i fi

]
is exactly of (Monte

Carlo) level α when x is drawn with density
∑Nκ1

i=1 λ̂
∗
i fi, that is, solve

∑Nκ1
j=1 λ̂

∗
j

(
R̂P j

(
ϕΛ̂∗

)
− α

)
= 0.

7. Compute the estimate of the power bound π̄r = N−1
1

∑N1
i=1 ϕΛ̂∗ (xi) , where xi are i.i.d. draws

of (κ̂1, κ̂2) with density gr.

8. Compute the number κ such that the test ϕ̃Λ̂∗ = 1
[
gr > κ

∑Nκ1
i=1 λ̂

∗
i fi

]
is exactly of (Monte

Carlo) level α when x is drawn with density fi, i = 1, ..., Nκ1 , that is, solve maxj∈{1,...,Nκ1}(
R̂P j

(
ϕ̃Λ̂∗

)
− α

)
= 0.

9. Compute another estimate of the power bound π̃r = N−1
1

∑N1
i=1 ϕ̃Λ̂∗ (xi) , where xi are the

i.i.d. draws in step 7, and εr = π̄r − π̃r.

10. If r < Nr, set r = r + 1 and go to step 4.

All the reported results are based on N0 = 10000 and N1 = 100000. (we can use a smaller

number of simulations under H0 for a similar level of precision due to importance sampling.)

Up to step 7, the algorithm is identical to EMW (Appendix A.2.1). The difference is in step 7,

which replaces steps 6 to 8 of the original algorithm. The number εr is an estimate of the maximum

distance of the power bound π̃r from the unknown least upper bound. π̃r is the PO power bound

used in Figure 3. Figure 9 plots εr across all alternatives. In most cases εr is equal to zero to 3

decimals, indicating that the ALFD upper bound is essentially least favorable. The only exceptions

are for a handful of alternatives very close to the null. Hence, the ALFD upper bound is arguably

a good approximation of the PO power envelope.

The bound π̄r (which is obtained from step 5 in the original EMW algorithm) can also serve

as an upper bound on the power, similar to the AMS bound in the previous section. The only

difference is the use of a distribution Λ∗ with full support on the discretized H0, as opposed to

a one-point candidate least favorable distribution in AMS. But as for AMS, π̄r can be far from

the least upper bound if ϕΛ̂∗ is oversized under H0. To gauge this, Figure 10 plots (Monte Carlo

estimates of) the size of ϕΛ∗ across the different alternatives r. The figure is directly comparable
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Figure 9: Estimates of the distance of the ALFD power bound from the least favorable bound,
ε = π̄ − π̃, for each point under H1, κ2 ∈ [0.1, κ̄2 (k)] , κ̄2 (2) = 25, κ̄2 (5) = 30, κ̄2 (10) = 38,
κ̄2 (20) = 46, discretized into 30 equally spaced points, and κ1 − κ2 ∈ {0, 1, 2, 4, 8, 16, 32, 64} .
Calculated over 42 points of the nuisance parameter under H0, using 10000 Monte Carlo replications
with importance sampling.
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Figure 10: Size of the test ϕΛ̂∗ in step 5 of EMW’s ALFD algorithm for each point under H1,
κ2 ∈ [0.1, κ̄2 (k)] , κ̄2 (2) = 25, κ̄2 (5) = 30, κ̄2 (10) = 38, κ̄2 (20) = 46, discretized into 30 equally
spaced points, and κ1 − κ2 ∈ {0, 1, 2, 4, 8, 16, 32, 64} . Calculated over 42 points of the nuisance
parameter under H0, using 10000 Monte Carlo replications with importance sampling.
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to Figure 8 for the AMS algorithm in the previous subsection. Compared to AMS, the EMW

procedure has size much closer to α across most (but not all) alternatives.

Let π̄AMS
r and π̄EMW

r denote the power bounds obtained from the AMS and EMW algorithms,

respectively. Since they are both upper bounds to the true PO power envelope, so is their minimum,

π̄min
r = min

(
π̄AMS
r , π̄EMW

r

)
. We can therefore use π̄min

r as a possibly tighter upper bound on the

power envelope.

C Tables of critical values

10%, 5% and 1% conditional critical values c1−α (κ̂1, k −mW ) were computed by numerically

integrating the density (2.12) at different values of the conditioning variable κ̂1 for the cases

k − mW = 1, ..., 20. The results are reported in Tables 3 to 22. The conditional quantiles are

rounded upwards to one decimal place, and the initial value of κ̂1 in each table is the smallest κ̂1

for which the rounded quantile is less than κ̂1.
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k −mW = 1

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.3 0.2 0.9 0.6 1.7 1.0 2.7 1.4 4.0 1.8 6.4 2.2 15.2 2.6
0.4 0.3 1.1 0.7 1.9 1.1 3.0 1.5 4.5 1.9 7.4 2.3 27.6 2.7
0.5 0.4 1.3 0.8 2.1 1.2 3.3 1.6 5.0 2.0 8.8 2.4 1000 2.703
0.7 0.5 1.5 0.9 2.4 1.3 3.6 1.7 5.6 2.1 11.0 2.5 ∞ 2.706

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.5 0.4 1.3 1.0 2.3 1.6 3.6 2.2 5.5 2.8 9.8 3.4 ∞ 3.841
0.6 0.5 1.5 1.1 2.5 1.7 3.9 2.3 6.0 2.9 11.4 3.5
0.7 0.6 1.6 1.2 2.7 1.8 4.1 2.4 6.5 3.0 13.9 3.6
0.9 0.7 1.8 1.3 2.9 1.9 4.4 2.5 7.0 3.1 18.5 3.7
1.0 0.8 2.0 1.4 3.1 2.0 4.8 2.6 7.8 3.2 29.7 3.8
1.2 0.9 2.1 1.5 3.4 2.1 5.1 2.7 8.6 3.3 1000 3.838

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.0 0.9 2.0 1.8 3.2 2.7 4.5 3.6 6.2 4.5 9.0 5.4 19.3 6.3
1.1 1.0 2.1 1.9 3.3 2.8 4.7 3.7 6.5 4.6 9.5 5.5 23.8 6.4
1.2 1.1 2.2 2.0 3.4 2.9 4.8 3.8 6.7 4.7 10.0 5.6 32.2 6.5
1.3 1.2 2.4 2.1 3.6 3.0 5.0 3.9 7.0 4.8 10.6 5.7 53.1 6.6
1.4 1.3 2.5 2.2 3.7 3.1 5.2 4.0 7.2 4.9 11.3 5.8 1000 6.628
1.5 1.4 2.6 2.3 3.9 3.2 5.4 4.1 7.5 5.0 12.2 5.9 ∞ 6.635
1.6 1.5 2.8 2.4 4.0 3.3 5.6 4.2 7.9 5.1 13.3 6.0
1.8 1.6 2.9 2.5 4.2 3.4 5.8 4.3 8.2 5.2 14.7 6.1
1.9 1.7 3.0 2.6 4.3 3.5 6.0 4.4 8.6 5.3 16.6 6.2

Table 3: 1 − α quantile of the conditional distribution, with density given in (2.12),
cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by numer-
ical integration.
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k −mW = 2

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.5 0.4 1.4 1.1 2.5 1.8 3.9 2.5 5.7 3.2 9.2 3.9 47.2 4.6
0.6 0.5 1.6 1.2 2.7 1.9 4.1 2.6 6.1 3.3 10.1 4.0 1000 4.601
0.7 0.6 1.7 1.3 2.9 2.0 4.3 2.7 6.5 3.4 11.2 4.1 ∞ 4.605
0.8 0.7 1.9 1.4 3.1 2.1 4.6 2.8 6.9 3.5 12.7 4.2
1.0 0.8 2.0 1.5 3.3 2.2 4.8 2.9 7.3 3.6 15.0 4.3
1.1 0.9 2.2 1.6 3.5 2.3 5.1 3.0 7.9 3.7 18.6 4.4
1.3 1.0 2.4 1.7 3.7 2.4 5.4 3.1 8.5 3.8 25.9 4.5

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.7 0.6 1.6 1.4 2.7 2.2 4.0 3.0 5.5 3.8 7.8 4.6 13.0 5.4
0.8 0.7 1.8 1.5 2.9 2.3 4.2 3.1 5.8 3.9 8.2 4.7 14.5 5.5
0.9 0.8 1.9 1.6 3.0 2.4 4.3 3.2 6.0 4.0 8.6 4.8 16.5 5.6
1.0 0.9 2.0 1.7 3.2 2.5 4.5 3.3 6.3 4.1 9.1 4.9 19.5 5.7
1.1 1.0 2.2 1.8 3.3 2.6 4.7 3.4 6.5 4.2 9.7 5.0 24.7 5.8
1.3 1.1 2.3 1.9 3.5 2.7 4.9 3.5 6.8 4.3 10.3 5.1 35.4 5.9
1.4 1.2 2.4 2.0 3.6 2.8 5.1 3.6 7.1 4.4 11.0 5.2 1000 5.985
1.5 1.3 2.6 2.1 3.8 2.9 5.3 3.7 7.5 4.5 11.9 5.3 ∞ 5.991

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.6 1.5 2.9 2.7 4.6 4.1 6.5 5.5 9.2 6.9 15.3 8.3 ∞ 9.210
1.7 1.6 3.1 2.9 4.8 4.3 6.9 5.7 9.7 7.1 17.5 8.5
1.8 1.7 3.3 3.1 5.1 4.5 7.2 5.9 10.3 7.3 21.1 8.7
2.0 1.9 3.6 3.3 5.4 4.7 7.5 6.1 11.0 7.5 28.3 8.9
2.2 2.1 3.8 3.5 5.6 4.9 7.9 6.3 11.7 7.7 49.5 9.1
2.4 2.3 4.1 3.7 5.9 5.1 8.3 6.5 12.6 7.9 89.0 9.2
2.7 2.5 4.3 3.9 6.2 5.3 8.7 6.7 13.8 8.1 1000 9.201

Table 4: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 3

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.6 0.5 1.7 1.4 2.9 2.3 4.4 3.2 6.2 4.1 9.1 5.0 18.8 5.9
0.7 0.6 1.8 1.5 3.1 2.4 4.6 3.3 6.5 4.2 9.6 5.1 22.6 6.0
0.8 0.7 1.9 1.6 3.2 2.5 4.7 3.4 6.8 4.3 10.2 5.2 29.6 6.1
0.9 0.8 2.1 1.7 3.4 2.6 4.9 3.5 7.0 4.4 10.8 5.3 46.0 6.2
1.0 0.9 2.2 1.8 3.5 2.7 5.1 3.6 7.3 4.5 11.5 5.4 1000 6.245
1.2 1.0 2.3 1.9 3.7 2.8 5.3 3.7 7.6 4.6 12.3 5.5 ∞ 6.251
1.3 1.1 2.5 2.0 3.9 2.9 5.6 3.8 8.0 4.7 13.3 5.6
1.4 1.2 2.6 2.1 4.0 3.0 5.8 3.9 8.3 4.8 14.6 5.7
1.5 1.3 2.8 2.2 4.2 3.1 6.0 4.0 8.7 4.9 16.3 5.8

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.9 0.8 2.1 1.9 3.5 3.0 5.1 4.1 7.1 5.2 10.2 6.3 20.9 7.4
1.0 0.9 2.3 2.0 3.7 3.1 5.3 4.2 7.4 5.3 10.6 6.4 24.5 7.5
1.1 1.0 2.4 2.1 3.8 3.2 5.5 4.3 7.6 5.4 11.1 6.5 30.4 7.6
1.2 1.1 2.5 2.2 3.9 3.3 5.6 4.4 7.8 5.5 11.6 6.6 41.9 7.7
1.3 1.2 2.6 2.3 4.1 3.4 5.8 4.5 8.1 5.6 12.1 6.7 73.6 7.8
1.4 1.3 2.7 2.4 4.2 3.5 6.0 4.6 8.3 5.7 12.8 6.8 1000 7.807
1.5 1.4 2.9 2.5 4.4 3.6 6.2 4.7 8.6 5.8 13.5 6.9 ∞ 7.815
1.6 1.5 3.0 2.6 4.5 3.7 6.3 4.8 8.9 5.9 14.4 7.0
1.8 1.6 3.1 2.7 4.7 3.8 6.5 4.9 9.2 6.0 15.4 7.1
1.9 1.7 3.3 2.8 4.8 3.9 6.7 5.0 9.5 6.1 16.7 7.2
2.0 1.8 3.4 2.9 5.0 4.0 6.9 5.1 9.8 6.2 18.5 7.3

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.2 2.1 3.7 3.5 5.5 5.1 7.6 6.7 10.3 8.3 15.1 9.9 1000 11.334
2.3 2.2 3.9 3.7 5.8 5.3 7.9 6.9 10.7 8.5 16.3 10.1 ∞ 11.345
2.4 2.3 4.1 3.9 6.0 5.5 8.2 7.1 11.2 8.7 17.7 10.3
2.6 2.5 4.4 4.1 6.3 5.7 8.5 7.3 11.6 8.9 19.8 10.5
2.8 2.7 4.6 4.3 6.5 5.9 8.8 7.5 12.2 9.1 22.9 10.7
3.0 2.9 4.8 4.5 6.8 6.1 9.2 7.7 12.8 9.3 28.3 10.9
3.2 3.1 5.0 4.7 7.1 6.3 9.5 7.9 13.4 9.5 40.3 11.1
3.5 3.3 5.3 4.9 7.3 6.5 9.9 8.1 14.2 9.7 85.4 11.3

Table 5: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 4

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.8 0.7 2.1 1.8 3.5 2.9 5.2 4.0 7.2 5.1 10.3 6.2 19.7 7.3
0.9 0.8 2.2 1.9 3.7 3.0 5.3 4.1 7.4 5.2 10.7 6.3 22.4 7.4
1.0 0.9 2.3 2.0 3.8 3.1 5.5 4.2 7.7 5.3 11.1 6.4 26.6 7.5
1.1 1.0 2.5 2.1 3.9 3.2 5.7 4.3 7.9 5.4 11.6 6.5 33.9 7.6
1.2 1.1 2.6 2.2 4.1 3.3 5.8 4.4 8.2 5.5 12.1 6.6 49.3 7.7
1.3 1.2 2.7 2.3 4.2 3.4 6.0 4.5 8.4 5.6 12.7 6.7 1000 7.772
1.5 1.3 2.8 2.4 4.4 3.5 6.2 4.6 8.7 5.7 13.4 6.8 ∞ 7.779
1.6 1.4 3.0 2.5 4.5 3.6 6.4 4.7 9.0 5.8 14.2 6.9
1.7 1.5 3.1 2.6 4.7 3.7 6.6 4.8 9.3 5.9 15.1 7.0
1.8 1.6 3.2 2.7 4.8 3.8 6.8 4.9 9.6 6.0 16.3 7.1
1.9 1.7 3.4 2.8 5.0 3.9 7.0 5.0 9.9 6.1 17.7 7.2

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.2 1.1 2.5 2.3 4.2 3.7 6.2 5.1 8.6 6.5 12.5 7.9 39.9 9.3
1.3 1.2 2.7 2.5 4.5 3.9 6.5 5.3 9.0 6.7 13.4 8.1 57.4 9.4
1.4 1.3 3.0 2.7 4.7 4.1 6.8 5.5 9.4 6.9 14.5 8.3 1000 9.478
1.6 1.5 3.2 2.9 5.0 4.3 7.1 5.7 9.9 7.1 15.9 8.5 ∞ 9.488
1.8 1.7 3.5 3.1 5.3 4.5 7.4 5.9 10.5 7.3 17.9 8.7
2.1 1.9 3.7 3.3 5.6 4.7 7.8 6.1 11.1 7.5 20.9 8.9
2.3 2.1 4.0 3.5 5.9 4.9 8.2 6.3 11.7 7.7 26.5 9.1

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.7 2.6 4.4 4.2 6.4 6.0 8.7 7.8 11.4 9.6 16.0 11.4 83.7 13.2
2.8 2.7 4.6 4.4 6.6 6.2 8.9 8.0 11.8 9.8 16.8 11.6 1000 13.264
2.9 2.8 4.8 4.6 6.9 6.4 9.2 8.2 12.2 10.0 17.8 11.8 ∞ 13.277
3.1 3.0 5.0 4.8 7.1 6.6 9.5 8.4 12.6 10.2 19.1 12.0
3.3 3.2 5.3 5.0 7.4 6.8 9.8 8.6 13.0 10.4 20.7 12.2
3.5 3.4 5.5 5.2 7.6 7.0 10.1 8.8 13.5 10.6 22.9 12.4
3.7 3.6 5.7 5.4 7.9 7.2 10.4 9.0 14.0 10.8 26.3 12.6
3.9 3.8 5.9 5.6 8.1 7.4 10.7 9.2 14.6 11.0 32.0 12.8
4.1 4.0 6.2 5.8 8.4 7.6 11.1 9.4 15.2 11.2 44.1 13.0

Table 6: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 5

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

0.9 0.8 2.2 2.0 4.0 3.4 6.0 4.8 8.4 6.2 12.4 7.6 34.8 9.0
1.0 0.9 2.5 2.2 4.3 3.6 6.3 5.0 8.9 6.4 13.2 7.8 74.9 9.2
1.1 1.0 2.7 2.4 4.5 3.8 6.6 5.2 9.3 6.6 14.3 8.0 1000 9.227
1.3 1.2 3.0 2.6 4.8 4.0 6.9 5.4 9.8 6.8 15.6 8.2 ∞ 9.236
1.5 1.4 3.2 2.8 5.1 4.2 7.3 5.6 10.4 7.0 17.4 8.4
1.8 1.6 3.5 3.0 5.4 4.4 7.7 5.8 11.0 7.2 20.1 8.6
2.0 1.8 3.7 3.2 5.7 4.6 8.0 6.0 11.6 7.4 24.6 8.8

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.4 1.3 2.9 2.7 4.8 4.3 6.9 5.9 9.5 7.5 13.4 9.1 31.8 10.7
1.5 1.4 3.1 2.9 5.0 4.5 7.2 6.1 9.8 7.7 14.1 9.3 49.1 10.9
1.6 1.5 3.4 3.1 5.3 4.7 7.5 6.3 10.2 7.9 15.0 9.5 73.0 11.0
1.8 1.7 3.6 3.3 5.6 4.9 7.8 6.5 10.7 8.1 16.0 9.7 1000 11.060
2.0 1.9 3.8 3.5 5.8 5.1 8.1 6.7 11.1 8.3 17.3 9.9 ∞ 11.070
2.2 2.1 4.1 3.7 6.1 5.3 8.4 6.9 11.6 8.5 18.9 10.1
2.5 2.3 4.3 3.9 6.3 5.5 8.8 7.1 12.1 8.7 21.2 10.3
2.7 2.5 4.5 4.1 6.6 5.7 9.1 7.3 12.7 8.9 24.9 10.5

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.2 3.1 5.1 4.9 7.3 6.9 9.7 8.9 12.7 10.9 17.3 12.9 62.8 14.9
3.3 3.2 5.3 5.1 7.5 7.1 10.0 9.1 13.0 11.1 18.0 13.1 90.8 15.0
3.4 3.3 5.5 5.3 7.7 7.3 10.2 9.3 13.4 11.3 18.8 13.3 1000 15.072
3.6 3.5 5.7 5.5 8.0 7.5 10.5 9.5 13.7 11.5 19.8 13.5 ∞ 15.086
3.8 3.7 5.9 5.7 8.2 7.7 10.8 9.7 14.1 11.7 21.1 13.7
4.0 3.9 6.2 5.9 8.5 7.9 11.1 9.9 14.6 11.9 22.6 13.9
4.2 4.1 6.4 6.1 8.7 8.1 11.4 10.1 15.0 12.1 24.7 14.1
4.4 4.3 6.6 6.3 9.0 8.3 11.7 10.3 15.5 12.3 27.7 14.3
4.6 4.5 6.8 6.5 9.2 8.5 12.0 10.5 16.0 12.5 32.5 14.5
4.8 4.7 7.1 6.7 9.5 8.7 12.3 10.7 16.6 12.7 41.4 14.7

Table 7: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 6

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.1 1.0 2.6 2.4 4.6 4.0 6.8 5.6 9.5 7.2 13.7 8.8 39.4 10.4
1.2 1.1 2.9 2.6 4.9 4.2 7.1 5.8 9.9 7.4 14.5 9.0 81.9 10.6
1.3 1.2 3.1 2.8 5.1 4.4 7.4 6.0 10.3 7.6 15.5 9.2 1000 10.634
1.5 1.4 3.4 3.0 5.4 4.6 7.7 6.2 10.8 7.8 16.6 9.4 ∞ 10.645
1.7 1.6 3.6 3.2 5.7 4.8 8.0 6.4 11.3 8.0 18.1 9.6
2.0 1.8 3.8 3.4 5.9 5.0 8.4 6.6 11.8 8.2 20.1 9.8
2.2 2.0 4.1 3.6 6.2 5.2 8.7 6.8 12.4 8.4 23.0 10.0
2.4 2.2 4.3 3.8 6.5 5.4 9.1 7.0 13.0 8.6 28.2 10.2

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.6 1.5 3.3 3.1 5.4 4.9 7.7 6.7 10.4 8.5 14.4 10.3 30.9 12.1
1.7 1.6 3.5 3.3 5.6 5.1 7.9 6.9 10.8 8.7 15.1 10.5 41.6 12.3
1.8 1.7 3.7 3.5 5.9 5.3 8.2 7.1 11.1 8.9 15.8 10.7 75.0 12.5
2.0 1.9 4.0 3.7 6.1 5.5 8.5 7.3 11.5 9.1 16.7 10.9 1000 12.579
2.2 2.1 4.2 3.9 6.4 5.7 8.8 7.5 11.9 9.3 17.7 11.1 ∞ 12.592
2.4 2.3 4.4 4.1 6.6 5.9 9.1 7.7 12.4 9.5 18.9 11.3
2.6 2.5 4.7 4.3 6.9 6.1 9.4 7.9 12.8 9.7 20.4 11.5
2.9 2.7 4.9 4.5 7.1 6.3 9.7 8.1 13.3 9.9 22.5 11.7
3.1 2.9 5.1 4.7 7.4 6.5 10.1 8.3 13.9 10.1 25.7 11.9

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.7 3.6 5.5 5.4 7.8 7.5 10.3 9.6 13.1 11.7 17.1 13.8 28.7 15.9
3.8 3.7 5.9 5.7 8.2 7.8 10.7 9.9 13.6 12.0 17.9 14.1 35.5 16.2
4.0 3.9 6.2 6.0 8.5 8.1 11.1 10.2 14.1 12.3 18.8 14.4 52.4 16.5
4.3 4.2 6.5 6.3 8.9 8.4 11.5 10.5 14.6 12.6 19.8 14.7 159.8 16.8
4.6 4.5 6.8 6.6 9.2 8.7 11.9 10.8 15.2 12.9 21.1 15.0 1000 16.796
4.9 4.8 7.2 6.9 9.6 9.0 12.3 11.1 15.7 13.2 22.8 15.3 ∞ 16.812
5.2 5.1 7.5 7.2 9.9 9.3 12.7 11.4 16.4 13.5 25.1 15.6

Table 8: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 7

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.2 1.1 2.9 2.7 5.1 4.5 7.5 6.3 10.3 8.1 14.7 9.9 38.5 11.7
1.3 1.2 3.2 2.9 5.3 4.7 7.7 6.5 10.7 8.3 15.5 10.1 65.0 11.9
1.4 1.3 3.4 3.1 5.6 4.9 8.0 6.7 11.1 8.5 16.3 10.3 112.1 12.0
1.6 1.5 3.6 3.3 5.8 5.1 8.3 6.9 11.5 8.7 17.3 10.5 1000 12.005
1.8 1.7 3.9 3.5 6.1 5.3 8.7 7.1 12.0 8.9 18.4 10.7 ∞ 12.017
2.0 1.9 4.1 3.7 6.4 5.5 9.0 7.3 12.4 9.1 19.9 10.9
2.3 2.1 4.3 3.9 6.6 5.7 9.3 7.5 12.9 9.3 21.8 11.1
2.5 2.3 4.6 4.1 6.9 5.9 9.6 7.7 13.5 9.5 24.7 11.3
2.7 2.5 4.8 4.3 7.2 6.1 10.0 7.9 14.1 9.7 29.3 11.5

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.9 1.8 3.8 3.6 6.1 5.6 8.6 7.6 11.5 9.6 15.9 11.6 35.6 13.6
2.0 1.9 4.0 3.8 6.3 5.8 8.9 7.8 11.9 9.8 16.5 11.8 49.0 13.8
2.1 2.0 4.3 4.0 6.6 6.0 9.1 8.0 12.2 10.0 17.2 12.0 94.6 14.0
2.3 2.2 4.5 4.2 6.8 6.2 9.4 8.2 12.6 10.2 18.0 12.2 1000 14.053
2.5 2.4 4.7 4.4 7.1 6.4 9.7 8.4 13.0 10.4 19.0 12.4 ∞ 14.067
2.7 2.6 4.9 4.6 7.3 6.6 10.0 8.6 13.4 10.6 20.1 12.6
2.9 2.8 5.2 4.8 7.5 6.8 10.3 8.8 13.9 10.8 21.4 12.8
3.1 3.0 5.4 5.0 7.8 7.0 10.6 9.0 14.3 11.0 23.2 13.0
3.4 3.2 5.6 5.2 8.1 7.2 10.9 9.2 14.8 11.2 25.6 13.2
3.6 3.4 5.9 5.4 8.3 7.4 11.2 9.4 15.3 11.4 29.3 13.4

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.2 4.1 6.4 6.2 9.0 8.6 11.8 11.0 15.1 13.4 20.1 15.8 62.0 18.2
4.3 4.2 6.7 6.5 9.3 8.9 12.1 11.3 15.6 13.7 21.0 16.1 117.1 18.4
4.5 4.4 7.0 6.8 9.6 9.2 12.5 11.6 16.1 14.0 22.2 16.4 1000 18.459
4.8 4.7 7.3 7.1 10.0 9.5 12.9 11.9 16.6 14.3 23.6 16.7 ∞ 18.475
5.1 5.0 7.6 7.4 10.3 9.8 13.3 12.2 17.2 14.6 25.5 17.0
5.4 5.3 8.0 7.7 10.7 10.1 13.7 12.5 17.8 14.9 28.1 17.3
5.7 5.6 8.3 8.0 11.0 10.4 14.2 12.8 18.5 15.2 32.4 17.6
6.0 5.9 8.6 8.3 11.4 10.7 14.6 13.1 19.2 15.5 40.5 17.9

Table 9: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 8

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.4 1.3 3.3 3.1 5.7 5.1 8.3 7.1 11.4 9.1 16.1 11.1 47.8 13.1
1.5 1.4 3.6 3.3 5.9 5.3 8.6 7.3 11.8 9.3 16.9 11.3 93.3 13.3
1.6 1.5 3.8 3.5 6.2 5.5 8.8 7.5 12.2 9.5 17.7 11.5 1000 13.348
1.8 1.7 4.0 3.7 6.4 5.7 9.1 7.7 12.6 9.7 18.6 11.7 ∞ 13.362
2.0 1.9 4.3 3.9 6.7 5.9 9.4 7.9 13.0 9.9 19.7 11.9
2.2 2.1 4.5 4.1 6.9 6.1 9.7 8.1 13.4 10.1 21.0 12.1
2.4 2.3 4.7 4.3 7.2 6.3 10.1 8.3 13.9 10.3 22.7 12.3
2.7 2.5 5.0 4.5 7.5 6.5 10.4 8.5 14.4 10.5 25.1 12.5
2.9 2.7 5.2 4.7 7.7 6.7 10.7 8.7 14.9 10.7 28.7 12.7
3.1 2.9 5.4 4.9 8.0 6.9 11.1 8.9 15.5 10.9 34.8 12.9

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.1 2.0 4.2 4.0 6.7 6.2 9.4 8.4 12.5 10.6 17.1 12.8 37.6 15.0
2.2 2.1 4.4 4.2 6.9 6.4 9.6 8.6 12.9 10.8 17.7 13.0 50.0 15.2
2.3 2.2 4.6 4.4 7.1 6.6 9.9 8.8 13.2 11.0 18.4 13.2 86.5 15.4
2.5 2.4 4.9 4.6 7.4 6.8 10.2 9.0 13.6 11.2 19.1 13.4 155.6 15.5
2.7 2.6 5.1 4.8 7.6 7.0 10.4 9.2 13.9 11.4 19.9 13.6 1000 15.492
2.9 2.8 5.3 5.0 7.9 7.2 10.7 9.4 14.3 11.6 20.9 13.8 ∞ 15.507
3.1 3.0 5.5 5.2 8.1 7.4 11.0 9.6 14.7 11.8 22.0 14.0
3.3 3.2 5.8 5.4 8.4 7.6 11.3 9.8 15.1 12.0 23.4 14.2
3.5 3.4 6.0 5.6 8.6 7.8 11.6 10.0 15.6 12.2 25.2 14.4
3.8 3.6 6.2 5.8 8.9 8.0 11.9 10.2 16.1 12.4 27.7 14.6
4.0 3.8 6.4 6.0 9.1 8.2 12.2 10.4 16.6 12.6 31.4 14.8

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.7 4.6 6.8 6.7 9.4 9.1 12.2 11.5 15.2 13.9 19.3 16.3 28.5 18.7
4.8 4.7 7.2 7.0 9.7 9.4 12.5 11.8 15.7 14.2 19.9 16.6 31.8 19.0
5.0 4.9 7.5 7.3 10.1 9.7 12.9 12.1 16.1 14.5 20.6 16.9 37.2 19.3
5.3 5.2 7.8 7.6 10.4 10.0 13.2 12.4 16.6 14.8 21.4 17.2 48.4 19.6
5.6 5.5 8.1 7.9 10.8 10.3 13.6 12.7 17.0 15.1 22.4 17.5 82.9 19.9
5.9 5.8 8.4 8.2 11.1 10.6 14.0 13.0 17.6 15.4 23.4 17.8 118.4 20.0
6.2 6.1 8.8 8.5 11.4 10.9 14.4 13.3 18.1 15.7 24.7 18.1 1000 20.073
6.5 6.4 9.1 8.8 11.8 11.2 14.8 13.6 18.7 16.0 26.3 18.4 ∞ 20.090

Table 10: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 9

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.5 1.4 3.4 3.2 5.7 5.2 8.2 7.2 11.0 9.2 14.6 11.2 21.6 13.2
1.6 1.5 3.6 3.4 5.9 5.4 8.4 7.4 11.3 9.4 15.1 11.4 23.0 13.4
1.7 1.6 3.9 3.6 6.2 5.6 8.7 7.6 11.6 9.6 15.6 11.6 24.8 13.6
1.9 1.8 4.1 3.8 6.4 5.8 9.0 7.8 11.9 9.8 16.1 11.8 27.3 13.8
2.1 2.0 4.3 4.0 6.7 6.0 9.2 8.0 12.3 10.0 16.6 12.0 31.0 14.0
2.3 2.2 4.5 4.2 6.9 6.2 9.5 8.2 12.6 10.2 17.3 12.2 37.3 14.2
2.5 2.4 4.8 4.4 7.2 6.4 9.8 8.4 13.0 10.4 17.9 12.4 50.3 14.4
2.8 2.6 5.0 4.6 7.4 6.6 10.1 8.6 13.4 10.6 18.7 12.6 91.8 14.6
3.0 2.8 5.2 4.8 7.7 6.8 10.4 8.8 13.8 10.8 19.5 12.8 1000 14.669
3.2 3.0 5.5 5.0 7.9 7.0 10.7 9.0 14.2 11.0 20.5 13.0 ∞ 14.684

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.3 2.2 4.5 4.3 7.2 6.7 10.0 9.1 13.4 11.5 18.1 13.9 36.9 16.3
2.4 2.3 4.8 4.6 7.5 7.0 10.4 9.4 13.8 11.8 18.9 14.2 53.5 16.6
2.6 2.5 5.1 4.9 7.8 7.3 10.8 9.7 14.3 12.1 19.9 14.5 154.4 16.9
2.9 2.8 5.5 5.2 8.2 7.6 11.2 10.0 14.9 12.4 21.0 14.8 1000 16.903
3.2 3.1 5.8 5.5 8.6 7.9 11.6 10.3 15.4 12.7 22.4 15.1 ∞ 16.919
3.5 3.4 6.1 5.8 8.9 8.2 12.0 10.6 16.0 13.0 24.1 15.4
3.8 3.7 6.5 6.1 9.3 8.5 12.5 10.9 16.6 13.3 26.5 15.7
4.2 4.0 6.8 6.4 9.7 8.8 12.9 11.2 17.3 13.6 30.2 16.0

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

5.2 5.1 7.6 7.5 10.5 10.2 13.6 12.9 17.1 15.6 22.1 18.3 44.1 21.0
5.3 5.2 8.0 7.8 10.9 10.5 14.0 13.2 17.6 15.9 22.9 18.6 61.9 21.3
5.5 5.4 8.3 8.1 11.2 10.8 14.4 13.5 18.1 16.2 23.8 18.9 143.4 21.6
5.8 5.7 8.6 8.4 11.5 11.1 14.7 13.8 18.5 16.5 24.8 19.2 1000 21.647
6.1 6.0 8.9 8.7 11.9 11.4 15.1 14.1 19.0 16.8 26.0 19.5 ∞ 21.666
6.4 6.3 9.2 9.0 12.2 11.7 15.5 14.4 19.6 17.1 27.5 19.8
6.7 6.6 9.6 9.3 12.6 12.0 15.9 14.7 20.1 17.4 29.4 20.1
7.0 6.9 9.9 9.6 12.9 12.3 16.3 15.0 20.7 17.7 32.2 20.4
7.3 7.2 10.2 9.9 13.3 12.6 16.7 15.3 21.4 18.0 36.4 20.7

Table 11: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 10

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.7 1.6 3.9 3.7 6.7 6.1 9.7 8.5 13.2 10.9 18.4 13.3 54.4 15.7
1.8 1.7 4.3 4.0 7.0 6.4 10.1 8.8 13.7 11.2 19.4 13.6 98.3 15.9
2.0 1.9 4.6 4.3 7.4 6.7 10.5 9.1 14.2 11.5 20.5 13.9 1000 15.971
2.3 2.2 4.9 4.6 7.8 7.0 10.9 9.4 14.8 11.8 21.9 14.2 ∞ 15.987
2.6 2.5 5.3 4.9 8.1 7.3 11.3 9.7 15.4 12.1 23.6 14.5
2.9 2.8 5.6 5.2 8.5 7.6 11.8 10.0 16.1 12.4 26.0 14.8
3.3 3.1 6.0 5.5 8.9 7.9 12.2 10.3 16.8 12.7 29.7 15.1
3.6 3.4 6.3 5.8 9.3 8.2 12.7 10.6 17.5 13.0 36.6 15.4

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.5 2.4 5.0 4.8 8.0 7.5 11.2 10.2 15.0 12.9 20.8 15.6 183.9 18.3
2.6 2.5 5.3 5.1 8.3 7.8 11.6 10.5 15.5 13.2 21.8 15.9 1000 18.289
2.8 2.7 5.6 5.4 8.7 8.1 12.0 10.8 16.0 13.5 23.0 16.2 ∞ 18.307
3.1 3.0 6.0 5.7 9.0 8.4 12.4 11.1 16.6 13.8 24.4 16.5
3.4 3.3 6.3 6.0 9.4 8.7 12.8 11.4 17.1 14.1 26.3 16.8
3.7 3.6 6.6 6.3 9.7 9.0 13.2 11.7 17.7 14.4 28.9 17.1
4.0 3.9 7.0 6.6 10.1 9.3 13.6 12.0 18.4 14.7 32.9 17.4
4.4 4.2 7.3 6.9 10.5 9.6 14.1 12.3 19.1 15.0 40.4 17.7
4.7 4.5 7.6 7.2 10.8 9.9 14.5 12.6 19.9 15.3 59.3 18.0

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

5.7 5.6 8.1 8.0 11.0 10.7 14.0 13.4 17.4 16.1 21.6 18.8 30.6 21.5
5.8 5.7 8.5 8.3 11.3 11.0 14.4 13.7 17.8 16.4 22.2 19.1 33.0 21.8
6.0 5.9 8.8 8.6 11.7 11.3 14.7 14.0 18.2 16.7 22.9 19.4 36.7 22.1
6.3 6.2 9.1 8.9 12.0 11.6 15.1 14.3 18.6 17.0 23.6 19.7 42.7 22.4
6.6 6.5 9.4 9.2 12.3 11.9 15.5 14.6 19.1 17.3 24.4 20.0 54.9 22.7
6.9 6.8 9.7 9.5 12.7 12.2 15.8 14.9 19.6 17.6 25.2 20.3 90.9 23.0
7.2 7.1 10.0 9.8 13.0 12.5 16.2 15.2 20.0 17.9 26.2 20.6 221.2 23.2
7.5 7.4 10.4 10.1 13.3 12.8 16.6 15.5 20.5 18.2 27.4 20.9 1000 23.190
7.8 7.7 10.7 10.4 13.7 13.1 17.0 15.8 21.1 18.5 28.8 21.2 ∞ 23.209

Table 12: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 11

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.8 1.7 4.0 3.8 6.7 6.2 9.6 8.6 12.8 11.0 17.1 13.4 25.7 15.8
1.9 1.8 4.3 4.1 7.1 6.5 10.0 8.9 13.3 11.3 17.7 13.7 28.3 16.1
2.1 2.0 4.7 4.4 7.4 6.8 10.3 9.2 13.8 11.6 18.5 14.0 32.4 16.4
2.4 2.3 5.0 4.7 7.8 7.1 10.7 9.5 14.2 11.9 19.3 14.3 40.1 16.7
2.7 2.6 5.3 5.0 8.1 7.4 11.1 9.8 14.8 12.2 20.2 14.6 60.3 17.0
3.0 2.9 5.7 5.3 8.5 7.7 11.6 10.1 15.3 12.5 21.2 14.9 112.6 17.2
3.4 3.2 6.0 5.6 8.8 8.0 12.0 10.4 15.8 12.8 22.4 15.2 1000 17.258
3.7 3.5 6.4 5.9 9.2 8.3 12.4 10.7 16.4 13.1 23.9 15.5 ∞ 17.275

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.8 2.7 5.3 5.1 8.2 7.8 11.4 10.5 14.9 13.2 19.7 15.9 32.8 18.6
2.9 2.8 5.6 5.4 8.6 8.1 11.7 10.8 15.4 13.5 20.4 16.2 38.3 18.9
3.1 3.0 5.9 5.7 8.9 8.4 12.1 11.1 15.8 13.8 21.2 16.5 49.8 19.2
3.4 3.3 6.3 6.0 9.3 8.7 12.5 11.4 16.3 14.1 22.0 16.8 86.7 19.5
3.7 3.6 6.6 6.3 9.6 9.0 12.9 11.7 16.8 14.4 23.0 17.1 127.1 19.6
4.0 3.9 6.9 6.6 10.0 9.3 13.3 12.0 17.3 14.7 24.1 17.4 1000 19.656
4.3 4.2 7.2 6.9 10.3 9.6 13.7 12.3 17.9 15.0 25.5 17.7 ∞ 19.675
4.6 4.5 7.6 7.2 10.7 9.9 14.1 12.6 18.4 15.3 27.2 18.0
5.0 4.8 7.9 7.5 11.0 10.2 14.5 12.9 19.1 15.6 29.4 18.3

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

6.1 6.0 8.9 8.8 12.3 12.0 16.0 15.2 20.1 18.4 26.5 21.6 208.0 24.7
6.2 6.1 9.4 9.2 12.8 12.4 16.4 15.6 20.8 18.8 27.7 22.0 1000 24.705
6.5 6.4 9.8 9.6 13.2 12.8 16.9 16.0 21.4 19.2 29.3 22.4 ∞ 24.725
6.9 6.8 10.2 10.0 13.7 13.2 17.4 16.4 22.1 19.6 31.3 22.8
7.3 7.2 10.6 10.4 14.1 13.6 17.9 16.8 22.8 20.0 34.2 23.2
7.7 7.6 11.1 10.8 14.6 14.0 18.5 17.2 23.6 20.4 38.9 23.6
8.1 8.0 11.5 11.2 15.0 14.4 19.0 17.6 24.4 20.8 48.3 24.0
8.5 8.4 11.9 11.6 15.5 14.8 19.6 18.0 25.4 21.2 75.7 24.4

Table 13: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 12

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.0 1.9 4.5 4.3 7.5 7.0 10.8 9.7 14.5 12.4 19.7 15.1 37.6 17.8
2.1 2.0 4.9 4.6 7.9 7.3 11.2 10.0 15.0 12.7 20.4 15.4 49.3 18.1
2.3 2.2 5.2 4.9 8.2 7.6 11.6 10.3 15.5 13.0 21.3 15.7 89.6 18.4
2.6 2.5 5.5 5.2 8.6 7.9 12.0 10.6 16.0 13.3 22.3 16.0 139.0 18.5
2.9 2.8 5.9 5.5 9.0 8.2 12.4 10.9 16.5 13.6 23.4 16.3 1000 18.531
3.2 3.1 6.2 5.8 9.3 8.5 12.8 11.2 17.1 13.9 24.8 16.6 ∞ 18.549
3.6 3.4 6.5 6.1 9.7 8.8 13.2 11.5 17.7 14.2 26.5 16.9
3.9 3.7 6.9 6.4 10.0 9.1 13.6 11.8 18.3 14.5 28.8 17.2
4.2 4.0 7.2 6.7 10.4 9.4 14.1 12.1 18.9 14.8 32.0 17.5

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.0 2.9 5.8 5.6 9.1 8.6 12.5 11.6 16.6 14.6 22.2 17.6 56.7 20.6
3.1 3.0 6.1 5.9 9.4 8.9 12.9 11.9 17.0 14.9 23.0 17.9 109.1 20.9
3.3 3.2 6.4 6.2 9.7 9.2 13.3 12.2 17.5 15.2 23.9 18.2 181.6 21.0
3.6 3.5 6.8 6.5 10.1 9.5 13.7 12.5 18.0 15.5 25.0 18.5 1000 21.006
3.9 3.8 7.1 6.8 10.4 9.8 14.1 12.8 18.5 15.8 26.2 18.8 ∞ 21.026
4.2 4.1 7.4 7.1 10.8 10.1 14.5 13.1 19.0 16.1 27.6 19.1
4.5 4.4 7.7 7.4 11.1 10.4 14.9 13.4 19.6 16.4 29.5 19.4
4.8 4.7 8.1 7.7 11.5 10.7 15.3 13.7 20.2 16.7 32.0 19.7
5.2 5.0 8.4 8.0 11.8 11.0 15.7 14.0 20.8 17.0 35.8 20.0
5.5 5.3 8.7 8.3 12.2 11.3 16.1 14.3 21.5 17.3 42.4 20.3

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

6.6 6.5 9.4 9.3 12.8 12.5 16.4 15.7 20.4 18.9 25.7 22.1 45.5 25.3
6.7 6.6 9.9 9.7 13.2 12.9 16.8 16.1 20.9 19.3 26.7 22.5 61.7 25.7
7.0 6.9 10.3 10.1 13.7 13.3 17.3 16.5 21.5 19.7 27.7 22.9 136.8 26.1
7.4 7.3 10.7 10.5 14.1 13.7 17.8 16.9 22.1 20.1 28.9 23.3 232.0 26.2
7.8 7.7 11.1 10.9 14.6 14.1 18.3 17.3 22.7 20.5 30.4 23.7 1000 26.197
8.2 8.1 11.5 11.3 15.0 14.5 18.8 17.7 23.4 20.9 32.2 24.1 ∞ 26.217
8.6 8.5 12.0 11.7 15.5 14.9 19.3 18.1 24.1 21.3 34.8 24.5
9.0 8.9 12.4 12.1 15.9 15.3 19.8 18.5 24.9 21.7 38.6 24.9

Table 14: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 13

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.1 2.0 4.9 4.7 8.3 7.7 11.9 10.7 16.1 13.7 22.2 16.7 109.7 19.7
2.2 2.1 5.3 5.0 8.6 8.0 12.2 11.0 16.5 14.0 23.1 17.0 192.2 19.8
2.4 2.3 5.6 5.3 9.0 8.3 12.6 11.3 17.0 14.3 24.1 17.3 1000 19.793
2.7 2.6 5.9 5.6 9.3 8.6 13.0 11.6 17.6 14.6 25.4 17.6 ∞ 19.812
3.0 2.9 6.3 5.9 9.7 8.9 13.4 11.9 18.1 14.9 26.8 17.9
3.3 3.2 6.6 6.2 10.0 9.2 13.8 12.2 18.7 15.2 28.7 18.2
3.6 3.5 6.9 6.5 10.4 9.5 14.3 12.5 19.3 15.5 31.1 18.5
4.0 3.8 7.3 6.8 10.7 9.8 14.7 12.8 19.9 15.8 34.8 18.8
4.3 4.1 7.6 7.1 11.1 10.1 15.1 13.1 20.6 16.1 41.2 19.1
4.6 4.4 7.9 7.4 11.5 10.4 15.6 13.4 21.4 16.4 55.3 19.4

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.2 3.1 6.0 5.8 9.2 8.8 12.6 11.8 16.4 14.8 21.3 17.8 32.0 20.8
3.3 3.2 6.3 6.1 9.5 9.1 13.0 12.1 16.8 15.1 21.9 18.1 34.9 21.1
3.5 3.4 6.6 6.4 9.9 9.4 13.3 12.4 17.3 15.4 22.6 18.4 39.3 21.4
3.8 3.7 6.9 6.7 10.2 9.7 13.7 12.7 17.7 15.7 23.3 18.7 47.4 21.7
4.1 4.0 7.3 7.0 10.6 10.0 14.1 13.0 18.2 16.0 24.0 19.0 66.2 22.0
4.4 4.3 7.6 7.3 10.9 10.3 14.5 13.3 18.6 16.3 24.9 19.3 154.5 22.3
4.7 4.6 7.9 7.6 11.2 10.6 14.8 13.6 19.1 16.6 25.9 19.6 1000 22.341
5.0 4.9 8.2 7.9 11.6 10.9 15.2 13.9 19.6 16.9 27.0 19.9 ∞ 22.362
5.3 5.2 8.6 8.2 11.9 11.2 15.6 14.2 20.2 17.2 28.3 20.2
5.7 5.5 8.9 8.5 12.3 11.5 16.0 14.5 20.7 17.5 29.9 20.5

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

7.1 7.0 9.9 9.8 13.3 13.0 16.8 16.2 20.7 19.4 25.5 22.6 35.6 25.8
7.2 7.1 10.3 10.2 13.7 13.4 17.3 16.6 21.2 19.8 26.2 23.0 38.9 26.2
7.5 7.4 10.8 10.6 14.2 13.8 17.7 17.0 21.7 20.2 27.1 23.4 44.4 26.6
7.9 7.8 11.2 11.0 14.6 14.2 18.2 17.4 22.3 20.6 28.0 23.8 55.8 27.0
8.3 8.2 11.6 11.4 15.0 14.6 18.7 17.8 22.9 21.0 29.0 24.2 90.7 27.4
8.7 8.6 12.0 11.8 15.5 15.0 19.2 18.2 23.5 21.4 30.2 24.6 162.1 27.6
9.1 9.0 12.4 12.2 15.9 15.4 19.6 18.6 24.1 21.8 31.6 25.0 1000 27.668
9.5 9.4 12.9 12.6 16.4 15.8 20.1 19.0 24.8 22.2 33.3 25.4 ∞ 27.688

Table 15: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 14

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.3 2.2 5.1 4.9 8.4 7.9 11.9 10.9 15.9 13.9 21.1 16.9 34.9 19.9
2.4 2.3 5.4 5.2 8.8 8.2 12.3 11.2 16.4 14.2 21.8 17.2 39.9 20.2
2.6 2.5 5.8 5.5 9.1 8.5 12.7 11.5 16.8 14.5 22.6 17.5 49.5 20.5
2.9 2.8 6.1 5.8 9.5 8.8 13.1 11.8 17.3 14.8 23.4 17.8 75.4 20.8
3.2 3.1 6.4 6.1 9.8 9.1 13.5 12.1 17.8 15.1 24.3 18.1 145.2 21.0
3.5 3.4 6.8 6.4 10.1 9.4 13.8 12.4 18.3 15.4 25.3 18.4 1000 21.044
3.8 3.7 7.1 6.7 10.5 9.7 14.2 12.7 18.8 15.7 26.4 18.7 ∞ 21.064
4.2 4.0 7.4 7.0 10.9 10.0 14.6 13.0 19.3 16.0 27.8 19.0
4.5 4.3 7.8 7.3 11.2 10.3 15.1 13.3 19.9 16.3 29.5 19.3
4.8 4.6 8.1 7.6 11.6 10.6 15.5 13.6 20.5 16.6 31.7 19.6

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.4 3.3 6.5 6.3 10.0 9.6 13.8 12.9 18.0 16.2 23.7 19.5 43.4 22.8
3.5 3.4 6.8 6.6 10.4 9.9 14.1 13.2 18.4 16.5 24.3 19.8 53.7 23.1
3.7 3.6 7.1 6.9 10.7 10.2 14.5 13.5 18.9 16.8 25.1 20.1 80.3 23.4
4.0 3.9 7.4 7.2 11.0 10.5 14.9 13.8 19.3 17.1 25.9 20.4 145.9 23.6
4.3 4.2 7.8 7.5 11.4 10.8 15.2 14.1 19.8 17.4 26.8 20.7 1000 23.663
4.6 4.5 8.1 7.8 11.7 11.1 15.6 14.4 20.3 17.7 27.9 21.0 ∞ 23.685
4.9 4.8 8.4 8.1 12.0 11.4 16.0 14.7 20.8 18.0 29.1 21.3
5.2 5.1 8.7 8.4 12.4 11.7 16.4 15.0 21.3 18.3 30.5 21.6
5.5 5.4 9.1 8.7 12.7 12.0 16.8 15.3 21.8 18.6 32.3 21.9
5.9 5.7 9.4 9.0 13.1 12.3 17.2 15.6 22.4 18.9 34.6 22.2
6.2 6.0 9.7 9.3 13.4 12.6 17.6 15.9 23.0 19.2 38.0 22.5

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

7.6 7.5 10.8 10.7 14.6 14.3 18.6 17.9 23.1 21.5 29.3 25.1 75.0 28.7
7.7 7.6 11.3 11.1 15.1 14.7 19.1 18.3 23.6 21.9 30.3 25.5 216.0 29.1
8.0 7.9 11.7 11.5 15.5 15.1 19.5 18.7 24.2 22.3 31.5 25.9 1000 29.120
8.4 8.3 12.1 11.9 15.9 15.5 20.0 19.1 24.8 22.7 32.8 26.3 ∞ 29.141
8.8 8.7 12.5 12.3 16.4 15.9 20.5 19.5 25.5 23.1 34.4 26.7
9.2 9.1 12.9 12.7 16.8 16.3 21.0 19.9 26.1 23.5 36.6 27.1
9.6 9.5 13.4 13.1 17.2 16.7 21.5 20.3 26.8 23.9 39.5 27.5

10.0 9.9 13.8 13.5 17.7 17.1 22.0 20.7 27.6 24.3 44.2 27.9
10.4 10.3 14.2 13.9 18.2 17.5 22.5 21.1 28.4 24.7 53.0 28.3

Table 16: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 15

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.4 2.3 5.5 5.3 9.2 8.6 13.0 11.9 17.4 15.2 23.5 18.5 55.6 21.8
2.5 2.4 5.9 5.6 9.5 8.9 13.4 12.2 17.9 15.5 24.3 18.8 91.2 22.1
2.7 2.6 6.2 5.9 9.8 9.2 13.8 12.5 18.3 15.8 25.1 19.1 224.8 22.3
3.0 2.9 6.5 6.2 10.2 9.5 14.1 12.8 18.8 16.1 26.1 19.4 1000 22.286
3.3 3.2 6.8 6.5 10.5 9.8 14.5 13.1 19.3 16.4 27.1 19.7 ∞ 22.307
3.6 3.5 7.2 6.8 10.9 10.1 14.9 13.4 19.8 16.7 28.4 20.0
3.9 3.8 7.5 7.1 11.2 10.4 15.3 13.7 20.4 17.0 29.9 20.3
4.2 4.1 7.8 7.4 11.6 10.7 15.7 14.0 20.9 17.3 31.7 20.6
4.6 4.4 8.1 7.7 11.9 11.0 16.1 14.3 21.5 17.6 34.2 20.9
4.9 4.7 8.5 8.0 12.3 11.3 16.6 14.6 22.1 17.9 37.8 21.2
5.2 5.0 8.8 8.3 12.6 11.6 17.0 14.9 22.8 18.2 43.7 21.5

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.7 3.6 7.0 6.8 10.9 10.4 14.9 14.0 19.6 17.6 26.2 21.2 104.1 24.8
3.8 3.7 7.4 7.2 11.3 10.8 15.4 14.4 20.2 18.0 27.2 21.6 146.4 24.9
4.1 4.0 7.8 7.6 11.7 11.2 15.9 14.8 20.8 18.4 28.5 22.0 1000 24.973
4.5 4.4 8.3 8.0 12.2 11.6 16.4 15.2 21.4 18.8 29.9 22.4 ∞ 24.996
4.9 4.8 8.7 8.4 12.6 12.0 16.9 15.6 22.1 19.2 31.7 22.8
5.3 5.2 9.1 8.8 13.1 12.4 17.4 16.0 22.8 19.6 34.1 23.2
5.7 5.6 9.5 9.2 13.5 12.8 18.0 16.4 23.5 20.0 37.5 23.6
6.1 6.0 10.0 9.6 14.0 13.2 18.5 16.8 24.3 20.4 43.4 24.0
6.6 6.4 10.4 10.0 14.5 13.6 19.0 17.2 25.2 20.8 56.2 24.4

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

8.1 8.0 11.3 11.2 15.1 14.8 19.0 18.4 23.4 22.0 29.0 25.6 44.5 29.2
8.2 8.1 11.7 11.6 15.5 15.2 19.5 18.8 23.9 22.4 29.8 26.0 51.8 29.6
8.5 8.4 12.2 12.0 16.0 15.6 20.0 19.2 24.5 22.8 30.7 26.4 67.8 30.0
8.9 8.8 12.6 12.4 16.4 16.0 20.4 19.6 25.0 23.2 31.6 26.8 129.2 30.4
9.3 9.2 13.0 12.8 16.8 16.4 20.9 20.0 25.6 23.6 32.8 27.2 185.6 30.5
9.7 9.6 13.4 13.2 17.3 16.8 21.4 20.4 26.2 24.0 34.1 27.6 1000 30.557

10.1 10.0 13.8 13.6 17.7 17.2 21.9 20.8 26.8 24.4 35.7 28.0 ∞ 30.578
10.5 10.4 14.3 14.0 18.1 17.6 22.4 21.2 27.5 24.8 37.7 28.4
10.9 10.8 14.7 14.4 18.6 18.0 22.9 21.6 28.2 25.2 40.4 28.8

Table 17: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 16

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.6 2.5 5.7 5.5 9.3 8.8 13.1 12.1 17.3 15.4 22.7 18.7 34.9 22.0
2.7 2.6 6.0 5.8 9.6 9.1 13.5 12.4 17.8 15.7 23.4 19.0 38.0 22.3
2.9 2.8 6.4 6.1 10.0 9.4 13.8 12.7 18.2 16.0 24.0 19.3 42.9 22.6
3.2 3.1 6.7 6.4 10.3 9.7 14.2 13.0 18.6 16.3 24.7 19.6 51.8 22.9
3.5 3.4 7.0 6.7 10.7 10.0 14.6 13.3 19.1 16.6 25.5 19.9 73.1 23.2
3.8 3.7 7.3 7.0 11.0 10.3 15.0 13.6 19.6 16.9 26.3 20.2 184.3 23.5
4.1 4.0 7.7 7.3 11.4 10.6 15.3 13.9 20.0 17.2 27.2 20.5 1000 23.519
4.4 4.3 8.0 7.6 11.7 10.9 15.7 14.2 20.5 17.5 28.3 20.8 ∞ 23.542
4.8 4.6 8.3 7.9 12.0 11.2 16.1 14.5 21.0 17.8 29.5 21.1
5.1 4.9 8.7 8.2 12.4 11.5 16.5 14.8 21.6 18.1 30.9 21.4
5.4 5.2 9.0 8.5 12.8 11.8 16.9 15.1 22.1 18.4 32.6 21.7

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.9 3.8 7.2 7.0 11.0 10.6 15.0 14.2 19.5 17.8 25.3 21.4 40.8 25.0
4.0 3.9 7.6 7.4 11.5 11.0 15.5 14.6 20.1 18.2 26.1 21.8 48.1 25.4
4.3 4.2 8.0 7.8 11.9 11.4 16.0 15.0 20.6 18.6 27.0 22.2 65.4 25.8
4.7 4.6 8.4 8.2 12.3 11.8 16.5 15.4 21.2 19.0 28.0 22.6 153.6 26.2
5.1 5.0 8.9 8.6 12.8 12.2 17.0 15.8 21.8 19.4 29.1 23.0 1000 26.272
5.5 5.4 9.3 9.0 13.2 12.6 17.4 16.2 22.4 19.8 30.5 23.4 ∞ 26.296
5.9 5.8 9.7 9.4 13.7 13.0 17.9 16.6 23.1 20.2 32.0 23.8
6.3 6.2 10.2 9.8 14.1 13.4 18.5 17.0 23.8 20.6 34.0 24.2
6.8 6.6 10.6 10.2 14.6 13.8 19.0 17.4 24.5 21.0 36.7 24.6

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

8.5 8.4 12.0 11.9 16.2 15.9 20.6 19.9 25.5 23.9 32.5 27.9 175.4 31.9
8.6 8.5 12.6 12.4 16.8 16.4 21.2 20.4 26.2 24.4 33.8 28.4 1000 31.979
9.0 8.9 13.1 12.9 17.3 16.9 21.8 20.9 27.0 24.9 35.4 28.9 ∞ 32.000
9.5 9.4 13.6 13.4 17.8 17.4 22.4 21.4 27.7 25.4 37.4 29.4

10.0 9.9 14.1 13.9 18.4 17.9 23.0 21.9 28.5 25.9 40.0 29.9
10.5 10.4 14.6 14.4 18.9 18.4 23.6 22.4 29.4 26.4 44.0 30.4
11.0 10.9 15.2 14.9 19.5 18.9 24.2 22.9 30.3 26.9 51.4 30.9
11.5 11.4 15.7 15.4 20.0 19.4 24.9 23.4 31.4 27.4 69.6 31.4

Table 18: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 17

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.7 2.6 6.0 5.8 9.9 9.4 14.1 13.0 18.7 16.6 24.8 20.2 44.6 23.8
2.8 2.7 6.4 6.2 10.4 9.8 14.5 13.4 19.3 17.0 25.7 20.6 58.2 24.2
3.1 3.0 6.9 6.6 10.8 10.2 15.0 13.8 19.8 17.4 26.7 21.0 112.6 24.6
3.5 3.4 7.3 7.0 11.3 10.6 15.5 14.2 20.5 17.8 27.8 21.4 166.2 24.7
3.9 3.8 7.7 7.4 11.7 11.0 16.0 14.6 21.1 18.2 29.1 21.8 1000 24.745
4.3 4.2 8.2 7.8 12.2 11.4 16.5 15.0 21.7 18.6 30.6 22.2 ∞ 24.769
4.7 4.6 8.6 8.2 12.6 11.8 17.1 15.4 22.4 19.0 32.5 22.6
5.2 5.0 9.0 8.6 13.1 12.2 17.6 15.8 23.2 19.4 34.9 23.0
5.6 5.4 9.5 9.0 13.6 12.6 18.1 16.2 24.0 19.8 38.5 23.4

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.1 4.0 7.4 7.2 11.2 10.8 15.2 14.4 19.5 18.0 24.7 21.6 34.3 25.2
4.2 4.1 7.8 7.6 11.6 11.2 15.6 14.8 20.0 18.4 25.5 22.0 36.5 25.6
4.5 4.4 8.2 8.0 12.1 11.6 16.1 15.2 20.5 18.8 26.2 22.4 39.6 26.0
4.9 4.8 8.6 8.4 12.5 12.0 16.6 15.6 21.1 19.2 27.0 22.8 44.5 26.4
5.3 5.2 9.1 8.8 12.9 12.4 17.0 16.0 21.6 19.6 27.9 23.2 53.8 26.8
5.7 5.6 9.5 9.2 13.4 12.8 17.5 16.4 22.2 20.0 28.8 23.6 78.9 27.2
6.1 6.0 9.9 9.6 13.8 13.2 18.0 16.8 22.8 20.4 29.9 24.0 167.6 27.5
6.5 6.4 10.3 10.0 14.3 13.6 18.5 17.2 23.4 20.8 31.1 24.4 1000 27.562
7.0 6.8 10.8 10.4 14.7 14.0 19.0 17.6 24.1 21.2 32.5 24.8 ∞ 27.587

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

9.0 8.9 12.5 12.4 16.7 16.4 21.1 20.4 25.8 24.4 32.1 28.4 55.9 32.4
9.1 9.0 13.0 12.9 17.2 16.9 21.6 20.9 26.5 24.9 33.2 28.9 79.5 32.9
9.5 9.4 13.6 13.4 17.8 17.4 22.2 21.4 27.2 25.4 34.4 29.4 298.9 33.4

10.0 9.9 14.1 13.9 18.3 17.9 22.8 21.9 27.9 25.9 35.8 29.9 1000 33.388
10.5 10.4 14.6 14.4 18.8 18.4 23.4 22.4 28.6 26.4 37.4 30.4 ∞ 33.409
11.0 10.9 15.1 14.9 19.4 18.9 24.0 22.9 29.4 26.9 39.6 30.9
11.5 11.4 15.7 15.4 19.9 19.4 24.6 23.4 30.3 27.4 42.5 31.4
12.0 11.9 16.2 15.9 20.5 19.9 25.2 23.9 31.1 27.9 47.1 31.9

Table 19: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 18

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

2.9 2.8 6.2 6.0 10.1 9.6 14.2 13.2 18.6 16.8 24.2 20.4 35.2 24.0
3.0 2.9 6.6 6.4 10.5 10.0 14.6 13.6 19.2 17.2 25.0 20.8 38.2 24.4
3.3 3.2 7.1 6.8 11.0 10.4 15.1 14.0 19.7 17.6 25.8 21.2 42.8 24.8
3.7 3.6 7.5 7.2 11.4 10.8 15.6 14.4 20.3 18.0 26.7 21.6 51.6 25.2
4.1 4.0 7.9 7.6 11.9 11.2 16.1 14.8 20.9 18.4 27.6 22.0 75.2 25.6
4.5 4.4 8.4 8.0 12.3 11.6 16.6 15.2 21.5 18.8 28.7 22.4 158.1 25.9
4.9 4.8 8.8 8.4 12.8 12.0 17.1 15.6 22.1 19.2 29.9 22.8 1000 25.965
5.4 5.2 9.2 8.8 13.2 12.4 17.6 16.0 22.8 19.6 31.3 23.2 ∞ 25.989
5.8 5.6 9.7 9.2 13.7 12.8 18.1 16.4 23.5 20.0 33.0 23.6

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.3 4.2 8.0 7.8 12.2 11.8 16.7 15.8 21.6 19.8 27.9 23.8 48.8 27.8
4.4 4.3 8.4 8.2 12.7 12.2 17.1 16.2 22.1 20.2 28.8 24.2 61.3 28.2
4.7 4.6 8.8 8.6 13.1 12.6 17.6 16.6 22.7 20.6 29.7 24.6 101.2 28.6
5.1 5.0 9.2 9.0 13.5 13.0 18.1 17.0 23.2 21.0 30.7 25.0 190.8 28.8
5.5 5.4 9.7 9.4 14.0 13.4 18.5 17.4 23.8 21.4 31.8 25.4 1000 28.843
5.9 5.8 10.1 9.8 14.4 13.8 19.0 17.8 24.4 21.8 33.1 25.8 ∞ 28.869
6.3 6.2 10.5 10.2 14.8 14.2 19.5 18.2 25.1 22.2 34.7 26.2
6.7 6.6 10.9 10.6 15.3 14.6 20.0 18.6 25.7 22.6 36.6 26.6
7.1 7.0 11.4 11.0 15.7 15.0 20.5 19.0 26.4 23.0 39.1 27.0
7.6 7.4 11.8 11.4 16.2 15.4 21.0 19.4 27.2 23.4 42.7 27.4

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

9.5 9.4 13.0 12.9 17.2 16.9 21.5 20.9 26.2 24.9 32.0 28.9 45.2 32.9
9.6 9.5 13.5 13.4 17.7 17.4 22.1 21.4 26.8 25.4 32.9 29.4 50.5 33.4

10.0 9.9 14.1 13.9 18.2 17.9 22.6 21.9 27.5 25.9 33.9 29.9 61.4 33.9
10.5 10.4 14.6 14.4 18.8 18.4 23.2 22.4 28.1 26.4 35.0 30.4 93.8 34.4
11.0 10.9 15.1 14.9 19.3 18.9 23.8 22.9 28.8 26.9 36.3 30.9 1000 34.785
11.5 11.4 15.6 15.4 19.9 19.4 24.4 23.4 29.6 27.4 37.7 31.4 ∞ 34.805
12.0 11.9 16.1 15.9 20.4 19.9 25.0 23.9 30.3 27.9 39.5 31.9
12.5 12.4 16.7 16.4 20.9 20.4 25.6 24.4 31.1 28.4 41.9 32.4

Table 20: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 19

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.0 2.9 6.7 6.5 11.0 10.5 15.6 14.5 20.7 18.5 27.4 22.5 57.3 26.5
3.1 3.0 7.1 6.9 11.5 10.9 16.1 14.9 21.2 18.9 28.4 22.9 90.4 26.9
3.4 3.3 7.6 7.3 11.9 11.3 16.5 15.3 21.8 19.3 29.4 23.3 280.9 27.2
3.8 3.7 8.0 7.7 12.4 11.7 17.0 15.7 22.4 19.7 30.5 23.7 1000 27.178
4.2 4.1 8.4 8.1 12.8 12.1 17.5 16.1 23.0 20.1 31.8 24.1 ∞ 27.204
4.6 4.5 8.9 8.5 13.3 12.5 18.0 16.5 23.7 20.5 33.3 24.5
5.0 4.9 9.3 8.9 13.7 12.9 18.5 16.9 24.3 20.9 35.1 24.9
5.5 5.3 9.7 9.3 14.2 13.3 19.0 17.3 25.1 21.3 37.5 25.3
5.9 5.7 10.2 9.7 14.6 13.7 19.6 17.7 25.8 21.7 40.9 25.7
6.3 6.1 10.6 10.1 15.1 14.1 20.1 18.1 26.6 22.1 46.3 26.1

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.5 4.4 8.2 8.0 12.4 12.0 16.8 16.0 21.6 20.0 27.4 24.0 39.0 28.0
4.6 4.5 8.6 8.4 12.8 12.4 17.2 16.4 22.1 20.4 28.1 24.4 41.9 28.4
4.9 4.8 9.0 8.8 13.3 12.8 17.7 16.8 22.6 20.8 28.9 24.8 46.3 28.8
5.3 5.2 9.4 9.2 13.7 13.2 18.2 17.2 23.1 21.2 29.7 25.2 54.0 29.2
5.7 5.6 9.8 9.6 14.1 13.6 18.6 17.6 23.7 21.6 30.6 25.6 71.5 29.6
6.1 6.0 10.3 10.0 14.6 14.0 19.1 18.0 24.3 22.0 31.5 26.0 146.7 30.0
6.5 6.4 10.7 10.4 15.0 14.4 19.6 18.4 24.8 22.4 32.6 26.4 229.3 30.1
6.9 6.8 11.1 10.8 15.4 14.8 20.1 18.8 25.4 22.8 33.8 26.8 1000 30.116
7.3 7.2 11.5 11.2 15.9 15.2 20.6 19.2 26.1 23.2 35.2 27.2 ∞ 30.144
7.8 7.6 12.0 11.6 16.3 15.6 21.0 19.6 26.7 23.6 36.9 27.6

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

10.0 9.9 14.0 13.9 18.7 18.4 23.6 22.9 29.1 27.4 36.9 31.9 201.8 36.1
10.1 10.0 14.6 14.4 19.3 18.9 24.2 23.4 29.8 27.9 38.2 32.4 1000 36.171
10.5 10.4 15.1 14.9 19.8 19.4 24.8 23.9 30.5 28.4 39.8 32.9 ∞ 36.191
11.0 10.9 15.6 15.4 20.3 19.9 25.4 24.4 31.2 28.9 41.7 33.4
11.5 11.4 16.1 15.9 20.9 20.4 25.9 24.9 32.0 29.4 44.3 33.9
12.0 11.9 16.6 16.4 21.4 20.9 26.5 25.4 32.8 29.9 48.1 34.4
12.5 12.4 17.1 16.9 22.0 21.4 27.2 25.9 33.7 30.4 54.5 34.9
13.0 12.9 17.7 17.4 22.5 21.9 27.8 26.4 34.7 30.9 68.2 35.4
13.5 13.4 18.2 17.9 23.1 22.4 28.4 26.9 35.7 31.4 116.7 35.9

Table 21: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.
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k −mW = 20

α = 10%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

3.1 3.0 6.8 6.6 11.1 10.6 15.6 14.6 20.5 18.6 26.6 22.6 39.9 26.6
3.2 3.1 7.2 7.0 11.5 11.0 16.0 15.0 21.0 19.0 27.4 23.0 43.8 27.0
3.5 3.4 7.7 7.4 12.0 11.4 16.5 15.4 21.6 19.4 28.2 23.4 50.3 27.4
3.9 3.8 8.1 7.8 12.4 11.8 17.0 15.8 22.1 19.8 29.1 23.8 64.4 27.8
4.3 4.2 8.5 8.2 12.9 12.2 17.5 16.2 22.7 20.2 30.1 24.2 114.8 28.2
4.7 4.6 8.9 8.6 13.3 12.6 18.0 16.6 23.3 20.6 31.1 24.6 273.1 28.4
5.1 5.0 9.4 9.0 13.8 13.0 18.5 17.0 23.9 21.0 32.3 25.0 1000 28.385
5.5 5.4 9.8 9.4 14.2 13.4 19.0 17.4 24.6 21.4 33.7 25.4 ∞ 28.412
6.0 5.8 10.2 9.8 14.7 13.8 19.5 17.8 25.2 21.8 35.3 25.8
6.4 6.2 10.7 10.2 15.1 14.2 20.0 18.2 25.9 22.2 37.3 26.2

α = 5%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

4.8 4.7 8.9 8.7 13.5 13.1 18.4 17.5 23.8 21.9 30.8 26.3 64.7 30.7
4.9 4.8 9.3 9.1 14.0 13.5 18.8 17.9 24.3 22.3 31.7 26.7 101.7 31.1
5.2 5.1 9.7 9.5 14.4 13.9 19.3 18.3 24.8 22.7 32.6 27.1 299.7 31.4
5.6 5.5 10.1 9.9 14.8 14.3 19.8 18.7 25.4 23.1 33.7 27.5 1000 31.382
6.0 5.9 10.6 10.3 15.3 14.7 20.3 19.1 26.0 23.5 34.8 27.9 ∞ 31.410
6.4 6.3 11.0 10.7 15.7 15.1 20.7 19.5 26.6 23.9 36.2 28.3
6.8 6.7 11.4 11.1 16.1 15.5 21.2 19.9 27.2 24.3 37.8 28.7
7.2 7.1 11.8 11.5 16.6 15.9 21.7 20.3 27.9 24.7 39.8 29.1
7.6 7.5 12.2 11.9 17.0 16.3 22.2 20.7 28.5 25.1 42.4 29.5
8.1 7.9 12.7 12.3 17.5 16.7 22.7 21.1 29.3 25.5 46.1 29.9
8.5 8.3 13.1 12.7 17.9 17.1 23.2 21.5 30.0 25.9 52.3 30.3

α = 1%

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

10.4 10.3 14.4 14.3 19.1 18.8 24.0 23.3 29.3 27.8 36.3 32.3 72.0 36.8
10.5 10.4 14.9 14.8 19.6 19.3 24.5 23.8 29.9 28.3 37.3 32.8 126.7 37.3
10.9 10.8 15.5 15.3 20.2 19.8 25.1 24.3 30.6 28.8 38.5 33.3 231.5 37.5
11.4 11.3 16.0 15.8 20.7 20.3 25.7 24.8 31.3 29.3 39.9 33.8 1000 37.547
11.9 11.8 16.5 16.3 21.2 20.8 26.2 25.3 32.0 29.8 41.5 34.3 ∞ 37.566
12.4 12.3 17.0 16.8 21.8 21.3 26.8 25.8 32.8 30.3 43.6 34.8
12.9 12.8 17.5 17.3 22.3 21.8 27.4 26.3 33.6 30.8 46.3 35.3
13.4 13.3 18.1 17.8 22.9 22.3 28.0 26.8 34.4 31.3 50.2 35.8
13.9 13.8 18.6 18.3 23.4 22.8 28.6 27.3 35.3 31.8 57.1 36.3

Table 22: 1 − α quantile of the conditional distribution, with density given in
(2.12),cv=c1−α (κ̂1, k −mW ) at different values of the conditioning variable κ̂1. Computed by
numerical integration.

64



α

k 0.1 0.05 0.01

2 0.1000 0.0500 0.0100
3 0.1000 0.0504 0.0100
4 0.1000 0.0500 0.0100
5 0.1000 0.0500 0.0100
6 0.1000 0.0500 0.0100
7 0.1000 0.0500 0.0100
8 0.1000 0.0502 0.0100
9 0.1000 0.0500 0.0101

10 0.1001 0.0505 0.0101
11 0.1005 0.0504 0.0100

α

k 0.1 0.05 0.01

12 0.1003 0.0504 0.0101
13 0.1004 0.0504 0.0102
14 0.1007 0.0506 0.0102
15 0.1007 0.0503 0.0102
16 0.1013 0.0507 0.0101
17 0.1006 0.0509 0.0101
18 0.1014 0.0508 0.0101
19 0.1017 0.0508 0.0101
20 0.1014 0.0511 0.0102
21 0.1019 0.0510 0.0102

Table 23: Size of the conditional subvector AR test with nominal size α for different k with mW = 1,
using critical values given in Tables 3 to 22 and linear interpolation. Computed using 1 million
Monte Carlo replications.

D Additional numerical results

D.1 Size

We computed the size of ϕc at significance levels 1%, 5% and 10% for k = 2, ..., 21 and mW = 1

using a grid of 42 points in κ1 equally spaced in log-scale between 0 and 100. The reported size is

the maximum of α or the estimated NRPs. The results are reported in Table 23. In all cases, the

size of the test is controlled to two decimals, in accordance with Theorem 2.

D.2 Power

Here, we report supplementary power comparisons for Section 2.4. The power of the conditional

subvector AR test ϕc and the unconditional test ϕGKMC are compared to the ALFD estimate of

the point-optimal power envelope for k = 2, 5, 10, and 20.

Figure 11 gives the difference between the power of 5% level ϕc test and the point-optimal ALFD

power bound π̃ defined in the step 9 of the algorithm in Section B.3.2, across all alternatives. The

power of ϕc is well within 1% of the power bound except for alternatives very close to H0. The

largest deviations from the power bound occur when κ1 = κ2.

Figure 12 repeats the comparison of the power of ϕc but with π̃ replaced by min
(
π̄AMS , π̄EMW

)
,

where π̄AMS , π̄EMW are computed using the algorithms in sections B.3.1 and B.3.2, respectively.

Since min
(
π̄AMS , π̄EMW

)
≥ π̃, the differences are larger than in Figure 11, but not by much.

Figures 13 through 16 report power comparisons in 2D, where κ1 − κ2 is kept fixed in each

figure, and the alternative only varies across κ2. The figures plot the power curves of both test

ϕc, ϕGKMC at 5% level, and both power bounds, min
(
π̄AMS , π̄EMW

)
and π̃. We notice that the

power of ϕc is very close to both power bounds, which are in turn very close to each other, while the

power of the unconditional subvector AR test ϕGKMC is noticeably below the power bounds. As
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Figure 11: Power of 5% level conditional subvector AR test ϕc minus the ALFD power bound π̃
computed by the algorithm in Section B.
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Figure 12: Power of 5% level conditional subvector AR test ϕc minus min
(
π̄AMS , π̄EMW

)
power

bound, where π̄AMS , π̄EMW were computed by the algorithms in Section B.
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κ1−κ2 increases, both power curves get closer to the power bounds, and they essentially collapse on

top of each other when κ1−κ2 = 64. This is why we do not consider values higher than that in the

simulations. The distance of ϕGKMC from ϕc and the power bounds is also somewhat increasing

in k.
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Figure 13: Power curves and power bounds of 5% level ϕc and ϕGKMC tests as a function of κ2,
at different values of κ1 − κ2 when the number of instruments k = 2.

E The ACZ test reported in section 4

The test is constructed as follows:
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1. Compute Cγ =
{
γ : AR (β0, γ) < χ2

k−1,α1

}
.

2. Reject H0 if minγ∈Cγ ARβ (β0; γ) > χ2
1,α2

.

The ARβ (β0; γ) statistic is a C (α) score test in the present case because the model is just-

identified. It is defined as

ARβ (β0; γ) = ng̃ (β0, γ)′MD(β0,γ)g̃ (β0, γ)

g̃ (β, γ) = Σ̂ (θ)−1/2
n∑
i=1

gi (θ) /n, θ = (β, γ)′ ,

gi (θ) = Z ′i(yi − Yiβ −Wiγ), ĝn (θ) = n−1
n∑
i=1

Z ′i(yi − Yiβ −Wiγ)

Σ̂ (θ) = n−1
n∑
i=1

(gi (θ)− ĝn (θ)) (gi (θ)− ĝn (θ))′ ,

D (θ) = −n−1Z ′W − Γ̂ (θ) Σ̂ (θ)−1 ĝn (θ) ,

Γ̂ (θ) = −n−1
n∑
i=1

(
Z ′iWi − n−1Z ′W

)
gi (θ) .

The second step size α2 is chosen as

α2 =

{
α− α1, if ICS ≤ KL

α, if ICS > KL,

where

ICS =

(
W ′ZΣ̂ (β0, γ)−1 Z ′W

)1/2

nσ̂γ

σ̂2
γ = n−1

n∑
i=1

(∥∥Z ′iWi

∥∥− n−1
n∑
i=1

∥∥Z ′iWi

∥∥)2

and KL = 0.05 (Andrews, 2017 p. 34).
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Figure 14: Power curves and power bounds of 5% level ϕc and ϕGKMC tests as a function of κ2,
at different values of κ1 − κ2 when the number of instruments k = 5.
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Figure 15: Power curves and power bounds of 5% level ϕc and ϕGKMC tests as a function of κ2,
at different values of κ1 − κ2 when the number of instruments k = 10.
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Figure 16: Power curves and power bounds of 5% level ϕc and ϕGKMC tests as a function of κ2,
at different values of κ1 − κ2 when the number of instruments k = 20.
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