Unilaterally Optimal Carbon Policy

Samuel Kortum and David Weisbach

Indiana University April 29, 2022

Kortum and Weisbach

Policy Dilemma

- Emissions of CO₂ are a *global externality*
 - harm doesn't depend on where the emissions originate •

Policy Dilemma

- Emissions of CO₂ are a global externality •
 - harm doesn't depend on where the emissions originate •
- Ideal policy is a global coalition with a harmonized carbon price lacksquare
 - little progress toward that ideal due to free riding or lack of political support •

- Emissions of CO₂ are a global externality \bullet
 - harm doesn't depend on where the emissions originate ullet
- Ideal policy is a global coalition with a harmonized carbon price \bullet
 - little progress toward that ideal due to free riding or lack of political support ullet
- If many countries don't participate, international trade generates carbon leakage \bullet
 - non-coalition countries increase emissions as coalition countries reduce them \bullet

- Emissions of CO₂ are a global externality \bullet
 - harm doesn't depend on where the emissions originate ullet
- Ideal policy is a global coalition with a harmonized carbon price \bullet
 - little progress toward that ideal due to free riding or lack of political support ullet
- If many countries don't participate, international trade generates carbon leakage ullet
 - non-coalition countries increase emissions as coalition countries reduce them \bullet
- We consider principles for design of a carbon tax in such a world

- Seminal paper on this issue: Markusen (1975)
- Specific issues: Hoel (1994), Keen and Kotsogiannis (2014), Balistreri, Kaffine, and Yonezawa (2014), Jakob, Steckel, and Edenhofer (2014)
- Larger issues: Farrokhi and Lashkaripour (2021), Fischer and Fox (2011), Fowlie (2009), ulletHarstad (2012), Nordhaus (2015), ...
- Talk today combines two papers: Kortum and Weisbach (2021) and Weisbach, Kortum, lacksquareWang, and Yao (2022)

1. Overview

2. Basic Model

3. Trade in Goods

4. Quantitative Illustration

Outline

- Our (2021) paper solves for a unilaterally optimal carbon policy
 - extraction and trade in fossil fuels and
 - goods produced with energy, traded as in Dornbusch, Fischer, and Samuelson (1977)

- Our (2021) paper solves for a unilaterally optimal carbon policy
 - extraction and trade in fossil fuels and
 - goods produced with energy, traded as in Dornbusch, Fischer, and Samuelson (1977)
- Our (2022) paper considers simpler policies that don't depend on the details lacksquare
 - only optimal given the set of taxes considered
 - yet they also relax constraints implicit in current tax proposals

- Our (2021) paper solves for a unilaterally optimal carbon policy lacksquare
 - extraction and trade in fossil fuels and
 - goods produced with energy, traded as in Dornbusch, Fischer, and Samuelson (1977)
- Our (2022) paper considers simpler policies that don't depend on the details \bullet
 - only optimal given the set of taxes considered
 - yet they also relax constraints implicit in current tax proposals
- Compare these policies to a bill in Congress
 - H.R. 2307: "Energy Innovation and Carbon Dividend Act of 2021"

	"Subtitle L-
1	AND
	"C
	"Chapter 10
2	"CHAPT
1	"(f) Covered
2	means—
3	"(1) in the
4	''(A)
5	States, an
6	''(B)
7	troleum p
8	"(2) in the
9	''(A)
10	United Sta
11	''(B)
12	States,
13	"(3) in the
14	''(A)
15	natural ga
16	system, ar
17	''(B)
18	United Sta

5 -CARBON DIVIDENDS D CARBON FEE

CHAPTER 101. CARBON FEES.

02. CARBON BORDER FEE ADJUSTMENT.

TER 101—CARBON FEES

D ENTITY.—The term 'covered entity'

e case of crude oil—

a refinery operating in the United

d

any importer of any petroleum or pe-

product into the United States,

e case of coal—

any coal mining operation in the tates, and

any importer of coal into the United

ne case of natural gas-

) any entity entering pipeline quality gas into the natural gas transmission and

any importer of natural gas into the tates,

1	"CHAPTER 102-		
2	AD		
3	"(c) IMPORTS TO		
4	(1) IMPORTI		
5	case of any perso		
6	States any covered		
7	equal to the total of		
8	on the fuel's green		
9	mestic carbon fee.		

---CARBON BORDER FEE JUSTMENT

THE UNITED STATES.—

ED COVERED FUELS FEE.—In the

on that imports into the United

fuel, there shall be imposed a fee

carbon fee that would be imposed

nhouse gas content under the do-

(2) IMPORTED CARBON-INTENSIVE PRODUCTS FEE.—In the case of any person that imports into the United States any carbon-intensive product, there shall be imposed a fee equal to the total carbon fee which would have accumulated upon the greenhouse gas content of the imported carbon-intensive product had the imported carbon-intensive product been produced domestically and subject to

1	"(d) REFUND
2 Sta	ATES.—
3	"(1) COVER
4	scribed by the S
5	fuel produced in
6	which the fee un
7	shall be allowed a
8	est) to any export
9	equal to the tota
10	ported covered fu
11	
12	"(2) CARBON
17	regulations presci
18	be allowed a cre
19	exporters of carbo
20	or produced in t
21	to the total carbon
22	house gas conten
23	product up to the

10

EXPORTS From UNITED ON

ED FUELS.—Under regulations pre-Secretary, in the case of a covered the United States with respect to nder section 9902 was paid, there as a credit or refund (without interter of such covered fuels an amount al carbon fee levied upon the exel up to the time of its exportation.

-INTENSIVE PRODUCTS.—Under ribed by the Secretary, there shall edit or refund (without interest) to on-intensive products manufactured the United States an amount equal n fees accumulated upon the greennt of the exported carbon-intensive he time of exportation.

- Tax domestic fossil fuels (extraction) and add border adjustments \bullet
 - imports of fossil fuels are taxed at the same rate
 - tax is refunded on fossil-fuel exports
 - ... implies tax is on energy use by producers; no *effective tax* on fossil-fuel extraction •
 - border adjustments on imports and exports of carbon-intensive products lacksquare
 - ... pushes tax from producers to consumers of those products •
 - all border adjustments are at the same rate as the underlying tax \bullet
- Compare to the unilateral optimal policy that we derive \bullet

Summary of H.R. 2307

• Tax energy extraction: tax rate equals marginal damages from global emissions

- Tax energy extraction: tax rate equals marginal damages from global emissions
- Partial border adjustments (BAs) on energy:
 - tax on energy imports and rebate tax on exports; partial: rate < extraction tax rate
 - pushes only part of the tax downstream from extractors to goods producers

- Tax energy extraction: tax rate equals marginal damages from global emissions
- Partial border adjustments (BAs) on energy:
 - tax on energy imports and rebate tax on exports; partial: rate < extraction tax rate
 - pushes only part of the tax downstream from extractors to goods producers
- Same partial BAs on carbon content of goods imports
 - import margin unchanged relative to no policy

- Tax energy extraction: tax rate equals marginal damages from global emissions
- Partial border adjustments (BAs) on energy:
 - tax on energy imports and rebate tax on exports; partial: rate < extraction tax rate
 - pushes only part of the tax downstream from extractors to goods producers
- Same partial BAs on carbon content of goods imports
 - import margin unchanged relative to no policy
- No BAs for exports of goods; instead a subsidy per unit for marginal exporters
 - export margin expands relative to no policy

Economic Rationale

- Extraction tax raises global energy price; production or consumption tax lowers it
 - partial BAs optimize the mix given foreign extraction and demand elasticities

Economic Rationale

- Extraction tax raises global energy price; production or consumption tax lowers it
 - partial BAs optimize the mix given foreign extraction and demand elasticities
- BAs on goods imports; mimics a consumption tax
 - avoids distorting consumption; incentivizes correct energy intensity by foreign producers

Economic Rationale

- Extraction tax raises global energy price; production or consumption tax lowers it
 - partial BAs optimize the mix given foreign extraction and demand elasticities
- BAs on goods imports; mimics a consumption tax
 - avoids distorting consumption; incentivizes correct energy intensity by foreign producers
- No BAs for goods exports; mimics a production tax
 - incentivizes correct energy intensity by domestic producers

- Extraction tax raises global energy price; production or consumption tax lowers it
 - partial BAs optimize the mix given foreign extraction and demand elasticities
- BAs on goods imports; mimics a consumption tax \bullet
 - avoids distorting consumption; incentivizes correct energy intensity by foreign producers
- No BAs for goods exports; mimics a production tax
 - incentivizes correct energy intensity by domestic producers
- Subsidy per unit exported expands the reach of domestic policy
 - crowds out foreign production of goods for foreign consumers

Basic structure of the tax is the same, which helps bridge the gap lacksquare

- Basic structure of the tax is the same, which helps bridge the gap \bullet
- Key lessons from the theory: \bullet
 - (1) partial BAs on energy; tax both demand side and supply side of energy market
 - (2) different BAs on goods imports and exports; tax both production and consumption •

- Basic structure of the tax is the same, which helps bridge the gap lacksquare
- Key lessons from the theory: \bullet
 - (1) partial BAs on energy; tax both demand side and supply side of energy market
 - (2) different BAs on goods imports and exports; tax both production and consumption •
- We can use simple models to investigate these key lessons •
 - that will be the focus today (as in our 2022 paper) •

- Basic structure of the tax is the same, which helps bridge the gap lacksquare
- Key lessons from the theory: \bullet
 - (1) partial BAs on energy; tax both demand side and supply side of energy market ullet
 - (2) different BAs on goods imports and exports; tax both production and consumption ullet
- We can use simple models to investigate these key lessons lacksquare
 - that will be the focus today (as in our 2022 paper) ullet
- Optimal subsidies to expand the reach of domestic policy require our Full Model \bullet

1. Overview

2. Basic Model

3. Trade in Goods

4. Quantitative Illustration

Outline

- Two countries extract fossil fuels, produce a numeraire service, and trade them \bullet
- Key to basic model is that energy is simply consumed (heating homes) lacksquare
 - in full model, energy is used to produce goods that are also traded.) •
- Home designs a climate policy while Foreign is passive \bullet
 - Home only considers Pareto improvements (maintains Foreign welfare) ullet
- Our results here can be found in Markusen (1975) and most directly in Hoel (1994) \bullet
- Illustrate with a set of figures

Home in Autarky

Home

NOT a Trade Equilibrium

Consumption Tax with Trade

Extraction Tax with Trade

- Countries endowed with labor L and fossil fuels \bullet
- Services and energy are costlessly traded
- Services produced one-for-one with labor
- Labor to extract energy (convex) ullet
- Global emissions \bullet
- \bullet
- Foreign response to energy price:

Model Elements

 $c(Q_{\rho}) \quad c^*(Q_{\rho}^*)$

 $E = Q_e^W = Q_e + Q_e^*$

Welfare (concave) $U = C_s + u(C_e) - \varphi E$ $U^* = C_s^* + u^*(C_e^*) - \varphi^* E$

 $Q_e^*(p_e)$ $C_e^*(p_e)$

Home's Planning Problem

- Home set's a global emission target \bar{E} and keeps Foreign welfare at \bar{U}^*
 - $C^*_{s}(p_{\rho},\bar{E})$ transfers services to Foreign
- $\max C_s + u(C_e) \varphi E$ Home solves ullet
 - subject to ullet

 p_e

$$C_e = \bar{E} - C_e^*(p_e)$$

First-order condition \bullet

 $(p_{\rho}-c')Q_{\rho}^*$

extraction wedge

$$) = \bar{U}^* + \varphi^* \bar{E} - u^* (C_e^*(p_e))$$

$C_{s} = L + L^{*} - c(\bar{E} - Q_{\rho}^{*}(p_{\rho})) - c^{*}(Q_{\rho}^{*}(p_{\rho})) - C_{s}^{*}(p_{\rho},\bar{E})$

$$' = (u' - p_e) |C_e^{*'}|$$

consumption wedge

Implications for Carbon Tax

- Home equates taxes with the corresponding wedges lacksquare
- Optimal ratio of extraction to consumption tax ullet

- If the emissions goal is set optimally ullet
- Implementation: \bullet
 - nominal tax on Home extraction \bullet
 - border adjustment on energy imports and exports \bullet
- Key takeaway for policy (partial BA) \bullet

$$\frac{t_e}{t_c} = \frac{|C_e^{*'}|}{Q_e^{*'}}$$

$$t_e + t_c = \varphi^W$$

$$\tau = t_e + t_c = \varphi^W$$

$$\beta_e = t_c$$

$$\beta_e < \tau$$

Optimal Mix of Taxes

- Suppose Foreign already had an extraction and consumption tax
 - $t_{\rho}^{*} +$ with ullet
- Home's optimal policy is then:

 $t_e = t_e^*$

 $t_c = t_c^*$

• If $\mu^* = \phi^W$ then get the global optimum

Policy Coordination

$$t_{c}^{*} = \mu^{*}$$

$$(\varphi^{W} - \mu^{*}) \frac{|C_{e}^{*'}|}{Q_{e}^{*'} + |C_{e}^{*'}|}$$

$$(\varphi^{W} - \mu^{*}) \frac{Q_{e}^{*'}}{Q_{e}^{*'} + |C_{e}^{*'}|}$$

1. Overview

2. Basic Model

3. Trade in Goods

4. Quantitative Illustration

Outline

- Add a manufacturing sector, with energy used in production of goods
- These goods are traded ullet
- Consumers want the goods, not energy itself \bullet
- Now we can distinguish a production tax from a consumption tax
- Maintain numeraire services, fossil-fuel extraction, and trade in energy \bullet
- Given a set of taxes, Home sets the rates

1. Carbon is pulled from the earth by energy extractors

- 1. Carbon is pulled from the earth by energy extractors
- 2. It's then embodied in energy trade

- 1. Carbon is pulled from the earth by energy extractors
- 2. It's then embodied in energy trade
- 3. Released into the atmosphere through combustion by goods producer, or utilities generating electricity for them

- 1. Carbon is pulled from the earth by energy extractors
- 2. It's then embodied in energy trade
- 3. Released into the atmosphere through combustion by goods producer, or utilities generating electricity for them
- 4. Carbon is embodied in these goods, which are traded prior to being consumed

- 1. Carbon is pulled from the earth by energy extractors
- 2. It's then embodied in energy trade
- 3. Released into the atmosphere through combustion by goods producer, or utilities generating electricity for them
- 4. Carbon is embodied in these goods, which are traded prior to being consumed
- carbon are ultimately consumed

Convenient to measure it, at each stage, in units of CO₂

5. Carbon can be tracked all the way from its extraction to where the goods embodying the

Carbon in the World

- Replace utility from energy consumption (in Basic Model) \bullet
 - with indirect utility from implicit consumption of energy used to produce goods
 - carbon taxes can make energy price different depending on where goods are produced

$$U = Y + \tilde{u} - \varphi E$$

- income in Home and Foreign Y = L
- Home transfer of services keep Foreign welfare constant •
- Home maximizes: $\mathscr{L} = R_e + R_e^* +$

$$U^{*} = Y^{*} + \tilde{u}^{*} - \varphi^{*}E$$

$$L + R_{e} + R_{t} - T \qquad Y^{*} = L^{*} + R_{e}^{*} + T$$

$$\tilde{u} + \tilde{u}^* - \varphi^W \bar{E} - \mu (E - \bar{E})$$

Market Economy with Carbon Taxes

- Unlike in the Basic Model, we need to spell out sources of income
- Rents to the energy sector $R_{e} = (p_{e} \bullet$
- Tax revenue in Home (consumption-tax case) \bullet
- Market clearing (consumption-tax case) lacksquare
- In general, taxes on domestic consumption, imports, and exports

Apply Roy's identity, Hotelling's lemma, and Shepard's lemma to simplify FOC's

$$-t_e)Q_e - c(Q_e)$$
 $R_e^* = p_e Q_e^* - c^*(Q_e^*)$

 $R_t = t_e Q_e + t_c C_e$

$$Q_e(p_e - t_e) + Q_e^*(p_e) = C_e(p_e + t_c) + C_e^*(p_e)$$

$$R_t = t_e Q_e + t_d C_e^d + t_m C_e^m + t_x C_e^x$$

Tax Extraction and Consumption

- Tax rates $t_c = t_d = t_m \qquad t_x = 0$ \bullet
- Optimal ratio is identical to that for the Basic Model •
 - spread the tax burden, although other taxes may be even better
- If we optimize the emissions goal \bullet
- Consumption tax is analytically attractive, doesn't mess with trade, no leakage lacksquare
 - relative prices of domestic and imported goods stay the same as without taxes \bullet
- Implement with nominal extraction tax
 - and partial border adjustments on both energy and goods \bullet

$$\frac{t_e}{t_c} = \frac{|C_e^{*'}|}{Q_e^{*'}}$$

$$t_e + t_c = \varphi^W$$

$$\tau = t_e + t_c$$

$$\beta_e = \beta_m = \beta_x = t_c$$

Tax Extraction and Production

- $t_p = t_d = t_x$ Tax rates ullet
- We now need to consider (marginal) leakage
- The optimal ratio becomes \bullet

- leakage gets you to shift toward an extraction tax ullet
- Also gets you to tax less in total \bullet
- Implementation is trivial; nominal extraction lacksquare
 - and partial border adjustment, only on ener \bullet

$$t_m = 0$$

tage
$$\Lambda = -\frac{\partial G_e^* / \partial t_p}{\partial G_e / \partial t_p} > 0$$

$$\frac{t_e}{t_p} = \frac{|G_e^{*'}| + \Lambda |G_e'|}{(1 - \Lambda)Q_e^{*'}}$$

$$t_e + t_p = \varphi^W - \frac{\Lambda \varphi^W Q_e^{*'}}{Q_e^{*'} + |G_e^{*'}| + \Lambda |G_e'|}$$

on tax
$$\tau = t_e + t_p$$

rgy
$$\beta_e = t_p$$
 $\beta_m = \beta_x = 0$

Tax Extraction, Consumption, and Production

- Initially unconstrained $t_c = t_d = t_r$
- Need to define Foreign (marginal) leakag ullet
- The optimal ratio becomes \bullet

- the production tax (only on Home exports)
- Get back full Pigouvian taxation ullet
- Implementation is more intricate; nominal extraction tax

$$f_{m} \qquad t_{p} = t_{x}$$

$$f_{p} = -\frac{\partial C_{e}^{f} / \partial t_{x}}{\partial C_{e}^{x} / \partial t_{x}} > 0$$

$$\frac{t_{e}}{t_{c}} = \frac{|C_{e}^{f'}| + \Lambda^{*} |C_{e}^{x'}|}{Q_{e}^{*'}}$$

$$t_{p} = t_{x} = (1 - \Lambda^{*})t_{c}$$

$$t_{e} + t_{c} = \varphi^{W}$$

 $\tau = t_{\rho} + t_{c}$

• partial BA on energy $\beta_e = t_c$, goods imports $\beta_m = t_c$, and goods exports $\beta_x = t_c - t_x$

Summary of Intermediate Model

Policy

Extraction-Production

Extraction-Consumption

Extraction-Production-Consum

	${\mathcal T}$	eta_e	eta_m	eta_x
	$t_e + t_p < \mu$	t_p	0	0
	$t_e + t_c = \mu$	t_c	t_c	t_c
ption	$t_e + t_c = \mu$	t_c	t_c	$t_c - t_x$

1. Overview

2. Basic Model

3. Trade in Goods

4. Quantitative Illustration

Outline

- Put back in the details from Kortum and Weisbach (2021)
- Impose functional forms for extraction and comparative advantage \bullet
 - constant supply elasticities, ϵ_S , ϵ_S^* and constant trade elasticity θ
- Calibrate to BAU using data above on carbon flows, for Home = OECD \bullet
 - can change the taxing coalition by simply plugging in new carbon flows matrix
- All results are relative to BAU competitive equilibrium, applying "hat algebra" lacksquare
 - we normalize BAU energy price = 1

Calibration Strategy

- Energy share in production \bullet
 - source: value of energy use and value added of production
- Elasticity of energy supply \bullet
 - oil fields from Asker, Collard-Wexler, and De Loecker (2018), but also try
- Elasticity of substitution in consumption ullet
 - changing this parameter makes little difference
- Trade elasticity lacksquare
 - source: Simonovska and Waugh (2014) ullet

Calibrated Parameters

$$1 - \alpha = 0.15$$

$$\epsilon_S = \epsilon_S^* = 0.5$$

 $\epsilon_{s}^{*} = 2$

$$\sigma = \sigma^* = 1$$

$$\theta = 4$$

Calibration of Energy Supply Elasticity

OECD as Home (low elasticity)

 $\varepsilon_{S} = 0.5, \varepsilon_{S}^{*} = 0.5$

OECD as Home (high elasticity)

 $\varepsilon_{S} = 0.5, \varepsilon_{S}^{*} = 2$

China Joins (low elasticity)

 $\varepsilon_{S} = 0.5, \varepsilon_{S}^{*} = 0.5$

China Joins (high elasticity)

- There's scope to improve the design of a carbon tax
 - to lower the cost of achieving a given reduction in global emissions
- Might simply lower the border adjustment on energy
- Also consider dropping BAs on goods, or at least drop rebates on goods exports •
- Empirical work can make these suggestions more precise quantitatively \bullet

