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Abstract

A uni�ed theory of estimation and inference is developed for an autoregressive process
with root in (�1;1) that includes the stable, unstable, explosive and all intermediate
regions. The discontinuity of the limit distribution of the t-statistic along autoregressive
regions and its dependence on the distribution of the innovations in the explosive regions
(�1;�1) [ (1;1) are addressed simultaneously. A novel estimation procedure, based on
a data-driven combination of a near-stationary and a mildly explosive endogenously con-
structed instrument, delivers an asymptotic mixed-Gaussian theory of estimation and gives
rise to an asymptotically standard normal t-statistic across all autoregressive regions indepen-
dently of the distribution of the innovations. The resulting hypothesis tests and con�dence
intervals are shown to have correct asymptotic size (uniformly over the parameter space)
both in autoregressive and in predictive regression models, thereby establishing a general
and uni�ed framework for inference with autoregressive processes. Extensive Monte Carlo
experimentation shows that the proposed methodology exhibits very good �nite sample prop-
erties over the entire autoregressive parameter space (�1;1) and compares favourably to
existing methods within their parametric (�1; 1] validity range. We demonstrate that a
�rst-order di¤erence equation for the number of infections with an explosive/stable root re-
sults naturally after linearisation of an SIR model at the outbreak and apply our procedure
to Covid-19 infections to construct con�dence intervals on the model�s parameters, includ-
ing the epidemic�s basic reproduction number, across a panel of countries without a priori
knowledge of the model�s stability/explosivity properties.
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1 Introduction
Inference in the �rst-order autoregressive process, arguably the prototypical time series model,

has a long history dating back to at least Mann and Wald (1943) for stationary autoregression,

White (1958) for explosive autoregression and Phillips (1987a) for unit-root autoregression. The

variety of stochastic behaviour arising from di¤erent autoregressive regimes has resulted in a

number of important applications in macroeconomics and �nance: nonstationary autoregressive

processes played a fundamental role in the development of the theory of cointegration and causal

inference in systems of macroeconomic and �nancial variables. Autoregressive processes with co-

e¢ cients in the explosive region (1;1) have been employed for the modelling of phenomena whose
temporal evolution exhibits stochastic exponential growth, from the rate of epidemic infection to

the formation of �nancial and commodity bubbles during periods of market exuberance.

While convenient from a modelling point of view, the di¤erent stochastic properties arising

from di¤erent regions of the autoregressive parameter space present a major challenge for in-

ference, with standard econometric methodology (such as least squares or maximum likelihood)

applying only under a priori knowledge of the parameter region, with misspeci�cation resulting to

asymptotically invalid con�dence intervals (CIs) and hypothesis tests. Early work on obtaining CIs

for an autoregressive coe¢ cient in (�1; 1], thereby accommodating stationary autoregressions and
unit root processes, includes Stock (1991), Andrews (1993), Hansen (1999) and Romano and Wolf

(2001). Mikusheva (2007) develops the �rst general methodology for establishing uniform prop-

erties of CIs in autoregressive processes with root in (�1; 1] and proposes a correction of Stock
(1991)�s method that achieves uniform asymptotic validity. Subsequent work by Andrews and

Guggenberger (2009, 2014) establishes methodology for CI construction with correct asymptotic

size uniformly over the above region under the potential presence of conditional heteroskedasticity

of unknown form. Uncertainty over the persistence degree of a stochastic regressor poses similar

di¢ culties for hypothesis testing in a regression model and a literature on inference in a predictive

regression with a near-nonstationary regressor was developed in parallel with the aforementioned

advances in autoregressive inference. Notable contributions include Campbell and Yogo (1996),

Jansson and Moreira (2006) as well as bootstrap methods based on the theoretical results of Cav-

aliere and Georgiev (2020). Hypothesis testing procedures that achieve robust inference with time

series regressors with persistence ranging from stationarity to (near) unit root nonstationarity are

those of Elliott, Müller and Watson (2015) and Kostakis, Magdalinos and Stamatogiannis (2015).

The latter paper builds on the IVX procedure of Phillips and Magdalinos (2009), which has been

extended in a number of directions by Breitung and Demeterscu (2015), Yang, Long, Peng and

Cai (2020), Magdalinos and Phillips (2020), Demeterscu, Georgiev, Rodrigues and Taylor (2022).

Both strands of the literature on inference in autoregressions and predictive regressions dis-

cussed above restrict the autoregressive parameter space to (�1; 1]; the aim of this paper is to

develop hypothesis tests and CIs with uniform asymptotic validity over the entire autoregressive

parameter space (�1;1) and over the space of a wide class of innovation distribution functions.
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We propose a novel data-generated instrumental variable (IV) procedure that tackles two im-

portant inference problems in autoregressions and predictive regressions simultaneously: �rstly,

it delivers a uni�ed asymptotic theory of inference and CI construction that covers the entire

autoregressive spectrum of stationary, nonstationary, explosive processes and all intermediate re-

gions; secondly, it provides a solution to the long-standing problem of distribution-free asymptotic

inference in explosive autoregressions1.

The key idea of our approach is to �lter the regressor�s autoregressive data generating process

(DGP) through a time series that acts as an endogenously generated instrument constructed to

behave asymptotically as: (i) a near-stationary process2 when the DGP lies close to the stationary

region; (ii) a mildly explosive process when the DGP lies close to the explosive region; (iii) a random

linear combination of (i) and (ii) when the DGP is in the near-nonstationary region de�ned by

at most local departures from unity. The resulting IV estimator inherits the desirable asymptotic

properties of near-stationary and mildly explosive processes and is asymptotically mixed-Gaussian

along the entire autoregressive parameter space (�1;1) independently of the distribution of the
innovations of the autoregressive process. The asymptotic mixed-Gaussianity property implies that

the IV-based t-statistic is asymptotically standard normal and can be employed for CI construction

based on N (0; 1) quantiles. Moreover, we show that the proposed IV-based test has uniformly

correct size and gives rise to CIs with uniformly correct asymptotic coverage. To our knowledge,

our procedure provides the �rst uni�ed, distribution-free treatment of �rst-order autoregression

exhibiting arbitrary stochastic characteristics ranging from stationarity to explosivity.

Extensive Monte Carlo experimentation reveals good �nite sample properties for the proposed

IV-based hypothesis tests and CIs that compare favourably to the leading procedures for inference

in autoregression (Andrews and Guggenberger (2014)) and predictive regression (Elliott et al.

(2015)) in their parametric validity range (�1; 1] while providing correct inference in (�1;�1] [
(1;1), where no existing alternative approach has general asymptotic validity.
Oscillating processes with roots in (�1; 0) arise naturally in series which exhibit seasonality

at certain frequency, and seasonal unit root tests are routinely used to test hypotheses on whether

shocks have permanent e¤ect on the seasonal pattern of the series. Autoregressive processes with

roots potentially exceeding unity for a non-trivial fraction of the sample are popular for modelling

and date stamping of �nancial and commodity price bubbles (Phillips and Yu (2011), Phillips,

Wu and Yu (2011) among others). Further empirically relevant applications include series that

exhibit stochastic exponential growth, for example, epidemiological models of disease transmission.

In this paper, we consider a susceptible-infected-removed (SIR) model of temporal evolution of

disease transmission and show that, upon linearisation around the disease-free equilibrium, the

1Anderson (1959) shows that, in the explosive case, the limit distributions of the OLS estimator and the
associated t-statistic are not invariant to deviations from the assumptions of i.i.d. Gaussian errors and zero initial
condition; in general, they are of unknown form driven by the distribution of the innovations in the autoregression.

2Near-stationary and mildly explosive processes, introduced by Phillips and Magdalinos (2007), are AR(1)
processes with sample-size dependent root �n satisfying �n ! 1 and: n (�n � 1)! �1 in the near-stationary case
or n (�n � 1)!1 in the mildly explosive case.
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model-implied number of active infections evolves as a �rst order autoregressive process with an

explosive (stable) root whenever the basic reproduction number r0 is above (below) unity. In

Section 6, we employ our procedure to model the early dynamics of the Covid-19 epidemic across

a panel of countries and construct CIs for r0 and the other epidemiological parameters of the

model without a priori knowledge of whether the epidemic is in a controllable or uncontrollable

stage, i.e. without restricting the parameter space.

The paper is organised as follows: Section 2 presents a general framework of autoregression

(Section 2.1), predictive regression (Section 2.2) and sets out the dynamic behaviour of a basic SIR

epidemiological model (Section 2.3). Section 3.1 introduces our novel IV procedure of combined

near-stationary/mildly explosive instrumentation. Section 3.2 presents the main results on uniform

asymptotic inference in autoregression and predictive regression (Theorems 1 and 2) and applies

them to the SIR model of Section 2.3 (Corollary 1). Section 3.3 establishes the asymptotic mixed-

Gaussianity property of the IV estimators that drives the asymptotic results of Section 3.2. Section

4 discusses implementation of the procedure and conducts Monte Carlo experiments to assess the

�nite sample properties of our CIs and hypothesis tests in comparison to the leading existing

inference procedures in autoregressions and predictive regressions. Section 5 applies the CIs of

Corollary 1 to Covid-19 infections across a panel of countries and Section 6 concludes. The proofs

of the main results (Theorems 1-3) are provided in Appendix A. The proofs of all remaining

statements of the paper (Lemmata 1-6 and Corollary 1) are provided in the supplementary online

Appendix B, which also contains auxiliary mathematical results and additional simulation results.

2 A model of general autoregressive dependence
2.1 Probabilistic framework for autoregression
We consider a �rst order autoregressive process with an intercept

xt = �+Xt; Xt = �nXt�1 + ut; t 2 f1; :::; ng (1)
with (possibly sample-size-dependent) autoregressive root �n in (�1;1), with an innovation
sequence (ut)t2N and an initialisation X0.

Assumptions maintained on �n, (ut)t2N and X0 are presented in Assumptions 1, 2 and 3 below.

Assumption 1a (AR parameter space). The parameter space of the autoregressive parameter

in (1) has the following form: (�n)n2N is a sequence of real numbers satisfying �n ! � 2 (�1;1) :
Assumption 1a considers drifting sequences of autoregressive parameters of su¢ cient general-

ity to ensure the uniform asymptotic validity of critical regions and CIs over an autoregressive

parameter space consisting of an arbitrary closed subinterval of (�1;1): see (25) and Theorems
1 and 2 below. In order to establish the asymptotic theory of estimation of Theorem 3, it is con-

venient to strengthen Assumption 1a in a way that categorises autoregressive processes according

to their stochastic properties.

Assumption 1b (AR categories). In addition to (�n)n2N satisfying Assumption 1a, the limit

c := limn!1 n (j�nj � 1) exists in R [ f�1;1g.
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Under Assumption 1b, the process xt in (1) belongs to one of the following classes:

C(i) near-stationary processes if (�n)n2N in (1) satis�es Assumption 1b with c = �1
C(ii) near-nonstationary processes if (�n)n2N in (1) satis�es Assumption 1b with c 2 R
C(iii) near-explosive processes if (�n)n2N in (1) satis�es Assumption 1b with c =1.

Each of the above autoregressive classes may be partitioned into a regular subclass when � � 0

and an oscillating subclass when � < 0: C(i) = C+(i) [ C�(i), C(ii) = C+(ii) [ C�(ii) and
C(iii) = C+(iii)[C�(iii), with C+(.) denoting the relevant subclass of processes when � � 0 and
C�(.) denoting the relevant subclass of processes when � < 0. We further denote the subclass

of C(i) consisting of purely stationary processes and the subclass of C(iii) consisting of purely

explosive processes by:

C0(i) (�n)n2N in (1) satis�es �n ! � 2 (�1; 1)
C0(iii) (�n)n2N in (1) satis�es �n ! � with j�j > 1:
When j�j = 1 in Assumption 1a, Assumption 1b is more restrictive than Assumption 1a

(Assumptions 1a and 1b are equivalent when j�j 6= 1): for example, the sequence
�n = 1 + (�1)

n =kn kn !1 (2)
satis�es Assumption 1a but not Assumption 1b. However, sequences of autoregressive parameters

satisfying Assumption 1a satisfy Assumption 1b subsequentially, in the following sense.

Lemma 1. Let (�n)n2N satisfy Assumption 1a. For any subsequence
�
�mn

�
n2N of (�n)n2N there

exists a further subsequence
�
�sn
�
n2N of

�
�mn

�
n2N such that

�
�sn
�
n2N satis�es Assumption 1b.

We will see in Sections 3.2 and 3.3 below that, while Assumption 1b is needed to establish

the asymptotic mixed-Gaussianity of the proposed IV estimator of Theorem 3, studentisation

and Lemma 1 may be employed to weaken the requirement on (�n)n2N to Assumption 1a for the

(uniform) asymptotic validity of the test statistics and CIs of Theorems 1 and 2.

Assumption 2 (innovation sequence). Given a �ltration (Ft)t2Z, ut in (1) is an Ft-martingale
di¤erence sequence such that EFt�1 (u2t ) = �2 for all but �nitely many t a:s:,

lim inft!1 EFt�1 jutj > 0 a:s: (3)
and (u2t )t2Z is a uniformly integrable sequence.

Assumption 3 (initial condition). The initial condition X0 (n) of the stochastic di¤erence

equation (1) is a F0-measurable random process X0 (n) satisfying
X0 (n) = max

�
Op (1) ; op

�
�1=2n

�	
, where �n := jj�nj � 1j

�1 ^ n: (4)
Under C0(iii) assume that X0 (n)!p X0 where X0 is a F0-measurable random variable.

We provide a brief discussion of the model in (1) and Assumptions 1-3. The process gener-

ated by (1) consists of all types of �rst-order autoregressive processes employed in statistics and

econometrics. The parametrisation of Assumption 1b follows Andrews and Guggenberger (2012).

The class C(i) of near-stationary processes consists of the subclass of autoregressions in (1) that

behave asymptotically as ergodic processes, in the sense that n�1 (1� �2n)
Pn

t=1 x
2
t satis�es a law

of large numbers and n�1=2 (1� �2n)
1=2Pn

t=1 xt�1ut satis�es a central limit theorem and consists

of stable and near-stable processes. It was introduced by Phillips and Magdalinos (2007) and
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the autoregressive parametrisation was generalised by Giraitis and Phillips (2006) and Andrews

and Guggenberger (2012). Limit theory of non-linear functionals of near-stationary processes has

been derived by Du¤y and Kasparis (2021). For the class C(ii) of near-nonstationary processes,

introduced by Phillips (1987b) and Chan and Wei (1987), the above ergodicity property is lost

and limit theory of estimation and inference is non-Gaussian. The class C(iii) constitutes the

class of �rst-order autoregressive processes exhibiting stochastic exponential growth: Phillips and

Magdalinos (2007) show that processes in C(iii) satisfy xn � (�n � 1)
�1=2 �nn when �n ! 1, the

same rate that applies under the prototypical explosive autoregression C0(iii) of White (1958) and

Anderson (1959) which is a subclass of C(iii). The validity of CI methods for an autoregressive

parameter in (�1; 1] (covering the autoregressive regions C(i) and the part of C+(ii) to the left of
unity) has been established by Mikusheva (2007) and by Andrews and Guggenberger (2014); the

current paper proposes a CI for the autoregressive parameter with uniform coverage probability

over arbitrary closed subintervals of (�1;1).
The modelling choice on the intercept � in (1) yields an autoregressive process

xt = � (1� �n) + �nxt�1 + ut (5)

= �+ (X0 (n)� �) �tn + x0t; x0t =
Pn

j=1 �
t�j
n uj (6)

where x0t denotes the autoregression (1) when � = 0 andX0 = 0. This autoregressive speci�cation,

designed to introduce an intercept while maintaining the stochastic structure of a nonstationary

autoregression3 by reducing the contribution of the intercept as the autoregressive parameter

approaches unity, is standard in the literature: see Andrews (1993), Mikusheva (2007), Andrews

and Guggenberger (2009, 2014). Since �n ! �1 does not increase the order of magnitude of the
non-stochastic component of xt that is driven by the intercept (as happens when �n ! 1), no

adjustment is required in the nonstationary oscillating case.

Assumption 2 requires ut to be a conditionally homoskedastic4 martingale di¤erence sequence

that satis�es a uniform integrability assumption for (u2t ). The above conditions guarantee the

validity of a law of large numbers n�1
Pn

t=1 u
2
t !L1 �

2 and a functional central limit theorem for

the partial sum process of (ut). Condition (3) together with EFj�1
�
u2j
�
= �2 ensure that in the

explosive case C0(iii) the random variable
X1 =

�
�2 � 1

�1=2 �P1
j=1 �

�juj +X0 � �
�

(7)
is non-zero a:s:: see Corollary 2 of Lai and Wei (1983).

An additional complication to the di¤erent rates of convergence and limit distributions among

the autoregressive classes C(i)-C(iii) arises from the fact that, within class C(iii), the subclass

C0(iii) of purely explosive processes exhibits di¤erent asymptotic behaviour than mildly explosive

3It is wel-known that a process of the form xt = �+ �xt�1+ut behaves asymptotically as a linear deterministic
trend when � = 1. Our procedure for con�dence interval construction can accommodate such degeneracies of
autoregressive stochastic behaviour (in the sense that Theorem 1 continues to hold) but we omit the details as such
deterministic trends have limited relevance for economic modelling.

4The main results of the paper continue to hold under stationary conditional heteroskedasticity, e.g. when ut is
a stationary GARCH process, at the cost of higher moment assumptions: see Andrews and Guggenberger (2012),
Magdalinos (2020) and Hu, Kasparis and Wang (2021).
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processes. The asymptotic distribution of the OLS estimator in the explosive case, when it exists,

is entirely driven by the distribution of the innovation process (ut): no central limit theory applies

and sample moments converge as L2-bounded martingales to random variables such as X1 in (7)

whose distribution changes with the distribution of (ut). As Anderson (1959) shows, the well known

Cauchy limit distribution for the normalised and centred OLS estimator and the corresponding

standard normal limit distribution for the t-statistic only apply when the innovation process ut in

(1) is i.i.d. Gaussian and the explosive time series is initialised at X0 = 0. For a non-identically

distributed sequence of innovations, the distributional limit of the t-statistic based on the OLS may

not even exist. On the other hand, the class of mildly explosive autoregressions (processes in C(iii)

satisfying j�nj ! 1) behaves more regularly, with sample moments converging in distribution via

a martingale central limit theorem established by Phillips and Magdalinos (2007) and extended in

various directions by Aue and Horvath (2007), Magdalinos (2012) and Arvanitis and Magdalinos

(2019). The subsequent Cauchy and standard normal limit distributions for the OLS estimator and

the t-statistic respectively are invariant to the distribution of the innovations ut, the (stationary)

dependence structure of ut and the initialisation X0. These desirable properties of mildly explosive

autoregressions are employed by our instrument in the estimation procedure of Section 3 below to

�regularise�the asymptotic behaviour of sample moments generated by explosive time series into

a distribution-free asymptotic mixed-Gaussian framework.

Assumption 3 is standard for C(i) and C(ii) and mildly explosive processes but removes the

X0 = 0 condition employed in the explosive case C0(iii): see Wang and Yu (2015) for the e¤ect of

X0 in the limit distributions of OLS estimators and test statistics in the explosive case.

2.2 Predictive regression framework
In many economic and �nancial applications, the econometric model takes the form

yt = 
 + �xt�1 + "t (8)
driven by an autoregressive process xt in (1). While the parameter of interest in such models is �

and the AR root of (1) is a nuisance parameter, the validity of inference procedures on � is subject

to a degree of knowledge of the stochastic properties of xt; see e.g. Campbell and Yogo (1996).

Recent inference procedures that provide valid inference on � when the process xt lies in the regions

C(i) and C+(ii) include: Jansson and Moreira (2006), Phillips and Magdalinos (2009), Elliott et al.

(2015), Magdalinos and Phillips (2020) and Hu, Kasparis and Wang (2021). The nonstationary

and near-explosive regions C�(ii) and C(iii) are not considered by the above papers, and the right

side of the local-to-unity region C+(ii) is also ruled out in most of the literature. OLS-based

inference on � in the purely explosive region C0(iii) su¤ers from the same problem as OLS-based

inference on �n, with standard inference applying only under i.i.d. Gaussian innovations "t. The

inference procedure on � in the predictive regression model (1) and (8) proposed in this paper

can accommodate regressors along the entire spectrum of autoregressive processes, as de�ned by

Assumption 1a, and we establish its asymptotic validity uniformly over the autoregressive regime.

Inference on � is possible under weaker assumptions on ut than maintained by Assumption 2.
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Assumption 4. The innovation sequence (ut)t2N in (1) is a stationary linear process of the form

ut =
P1

j=0 cjet�j, where (cj)j�0 is a sequence of constants satisfying
P1

j=0 jcjj < 1,
P1

j=0 jc
2
j <

1, c0 = 1 and C (1) =
P1

j=0 cj 6= 0; for j�j > 1 C� (1) =
P1

j=0 �
�jcj 6= 0. Given a �ltration

(Ft)t2Z, the sequence vt := ("t; et)
0 is an Ft-martingale di¤erence sequence satisfying EFt�1 (vtv0t) =

�v > 0 a:s: for all t, (3) with ut replaced by et, and
�
kvtk2

�
t2Z is a uniformly integrable sequence.

2.3 An epidemiological model of infection growth
Variants of the susceptible-infected-removed (SIR) model, originally introduced by Kermack

and McKendrick (1927), constitute the main paradigm for modelling the evolution of epidemics.

In this section, we consider a standard discrete-time SIR model and demonstrate that upon lin-

earisation around the disease-free equilibrium (DFE), whenever the model�s basic reproduction

number (BRN) is above unity, the model-implied dynamics for the number of infected will nec-

essarily display a �rst-order di¤erence equation with an explosive root, implying an exponential

growth for infections at the outbreak of the epidemic. Moreover, we show that at the DFE, the

dynamics of the �rst di¤erences of the number of recovered and deceased are both characterised by

a predictive regression with the lag of the (potentially explosive) process of infections as regressor.

We brie�y describe the model below. The number of infected, susceptible, recovered and de-

ceased individuals at time t, denoted by It, St, Rt and Dt respectively, evolves according to the

following non-linear system of di¤erence equations:
It+1 = It (1 + �St=N � 
 � �) (9)

St+1 = St (1� �It=N) ; Rt+1 = Rt + 
It; Dt+1 = Dt + �It
with non-negative initial conditions S0; I0; R0; D0 satisfying St + It +Rt +Dt = N for all t; where

N denotes the constant population size (births or deaths by other causes are ruled out or cancel

perfectly in each period). Since at each period; St is a linear combination of the remaining states

St = N � It � Rt � Dt; we substitute this identity in the equation for It+1 and work with the

reduced system of It; Rt and Dt: The choice for removing St facilitates estimation since data on

susceptibles are unavailable.

The model�s dynamics is governed by the parameters �; 
; � 2 (0; 1]: � is the contact rate, i.e.
the average number of individuals an infected person passes the infection in a period; 
 is the

recovery rate and � is the death rate. There is no heterogeneity, each individual is equally likely

to contract the disease with no possibility of re-infection. The model�s dynamics is driven by the

BRN which in the model (9) is given by
r0 = �= (
 + �) ; (10)

measuring the number of infections per infected individual. When r0 � 1 the underlying disease
escalates into an epidemic and continues to spread and when r0 < 1 the growth of infections can

be contained. Epidemiologists consider r0 the key parameter for determining whether an epidemic

is controllable and for understanding its transmission mechanism.

In order to study the dynamics implied by this basic dynamic nonlinear model, we use next

generation matrix (NGM) approach and linearise the system in (9) around the DFE (I = R =
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D = 0; S = N)5. Such an approximation is accurate at early stages of an epidemic outbreak,

when the number of susceptibles is large relatively to the total number of infected, recovered and

deceased. The resulting linear system takes a triangular form Yt = JYt�1; with Yt = [It; Rt; Dt]
0

and J the Jacobian matrix evaluated at the DFE:

J =

264 1 + � � 
 � � 0 0


 1 0

� 0 1

375 ;
where the equation for It is a �rst-order di¤erence equation with root � = 1 + � � 
 � �; which

(in view of (10)) satis�es the following: � > 1 whenever r0 > 1; � = 1 whenever r0 = 1; and � < 1

whenever r0 < 1: In other words, at an outbreak of an epidemic, the number of infections displays

exponential growth, a general result that applies to a variety of models (see e.g. Theorem 2.1 in

Allen and Van den Driessche (2008)).

The standard way to add a stochastic component to the model is by adding zero-mean mea-

surement error to the system, which corresponds to assuming that the linearised model holds on

average. The resulting stochastic system that we take to the data is264 It

�Rt

�Dt

375 =
264 1 + � � 
 � � 0 0


 0 0

� 0 0

375
264 It�1

Rt�1

Dt�1

375+
264 u1t

u2t

u3t

375 ; (11)

with stochastic dynamic behaviour, formalised by the following assumption, which combines As-

sumptions 1 and 3 for the autoregressive process It and a vector-valued version of Assumption 2

for the innovation sequence in (11).

Assumption 5. The autoregressive parameter �n := 1 + � � 
 � � of It in (11) satis�es As-

sumption 1a; I0 satis�es Assumption 3. The innovation sequence ut = [u1t; u2t; u3t]
0 in (11) is

an Ft-martingale di¤erence sequence satisfying EFt�1 (utu0t) = � > 0 for all t a:s:, (3) with jutj
replaced by ju1tj and

�
kutk2

�
t2Z is a uniformly integrable sequence.

The advantage of the inference procedure developed by this paper over existing procedures is

that it is valid for any �n ! � 2 (0;1) ; which includes all three parameter regions of empirical
interest and relevance during the Covid-19 epidemic outbreak. While this is a simple stylised

model, it serves as a demonstration of the scope of the inference procedure of this paper and

the advantages that its robustness and distribution-free properties provide. We are not aware

of any alternative statistical procedure which can achieve this throughout the range � 2 (0;1)
without restricting attention to a particular region of the parameter space and without imposing

parametric assumptions on the distribution of ut in the explosive region (1;1).

3 General asymptotic inference with autoregressions
3.1 Combined near-stationary/explosive instrumentation
This section introduces new estimators of the autoregressive root �n of (1) and the slope para-

meter � in (8) that deliver a uni�ed asymptotic theory of hypothesis testing and CI construction

5The model can be linearised at any other point (I = iN;R = rN;D = dN; S = (1� i� r � d)N) for fractions
i; r and d of the population N of It; Rt and Dt respectively; but the DFE is usually the chosen for early analysis.
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for �n and � over the entire parameter space de�ned in Assumption 1a. The idea behind the

estimation procedure is to �lter the autoregression xt in (1) through a time series that acts as

an instrument and is constructed to behave asymptotically as: a near-stationary process when

xt belongs to the near-stationary class C(i); a mildly explosive process when xt belongs to the

near-explosive class C(iii); a (random) linear combination of the above when xt belongs to the

near-nonstationary class C(ii). In addition, the instrument process is designed to emulate the

regular/oscillating behaviour of xt for all autoregressive classes apart from the purely stationary

subclass C0(i) (where employing both regular and oscillating near-stationary instrument results to

IV estimators that are asymptotically equivalent to OLS). The resulting instrumental variable es-

timator inherits the desirable asymptotic properties of near-stationary/mildly-explosive processes

and is asymptotically mixed-Gaussian along all autoregressive classes C(i)-C(iii), independently

of the distribution of the innovations ut in (1). Large sample distributional invariance is crucial

for the explosive region C0(iii), where the asymptotic distributions of the OLS estimator and the

resulting t-statistic are of unknown form that depends on the innovations�distribution.

Successful instrumentation based on a combined near-stationary/near-explosive process re-

quires statistical information separating the near-stationary autoregressive class C(i) from the

near-explosive class C(iii) in large samples. Such information is available in the OLS estimator �̂n
of �: for each n 2 N, de�ne the event

Fn = fn (j�̂nj � 1) � 0g ; (12)
its complement �Fn, and the events F+n = Fn\f�̂n � 0g, F�n = Fn\f�̂n < 0g, �F+n = �Fn\f�̂n � 0g
and �F�n = �Fn \ f�̂n < 0g. Clearly,

�
F+n ; F

�
n ;
�F+n ;

�F�n
	
is a collection of disjoint events that parti-

tions the sample space that supports the autoregressive process xt. Asymptotic separation of the

C(i) and C(iii) classes can be achieved by employing (12): under C(i) n (j�̂nj � 1)!p �1 which

implies that 1 �Fn = 0 for all but �nitely many n with probability tending to 1 (w.p.t. 1) whereas

under C(iii) n (j�̂nj � 1)!p 1 which implies that 1Fn = 0 for all but �nitely many n w.p.t. 1. On

the other hand, asymptotic separation between regular and oscillating autoregressions outside the

stationary region (�1; 1) may be achieved by employing the event f�̂n � 0g and its complement.
Lemma 2 below shows that this asymptotic separation, required for successful instrumentation, is

achieved at arbitrary rate.

Lemma 2. Let (mn)n2N be an arbitrary sequence of positive numbers such that mn !1. Under
Assumption 4: (i) if (�n)n2N belongs to C(i) then mn1 �F+n !p 0 and mn1 �F�n !p 0; (ii) if (�n)n2N
belongs to C(iii) then mn1F+n !p 0 and mn1F�n !p 0; (iii) if �n ! � � 1 then mn1F�n !p 0 and

mn1 �F�n !p 0 ; (iv) if �n ! � � �1 then mn1F+n !p 0 and mn1 �F+n !p 0.

We now present our instrumentation procedure. Given a sequence (vt), we denote �vn�j :=

n�1
Pn

t=j+1 vt�j and vt�j := vt�j � �vn�j for j 2 f0; :::; t� 1g. Subtracting �xn from (5):
xt = �nxt�1 + ut; (13)

and the OLS estimator for �n and the resulting residuals are given by
�̂n =

�Pn
t=1 x

2
t�1
��1Pn

t=1 xtxt�1 and ût = xt � �̂nxt�1: (14)
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Recalling the events
�
F+n ; F

�
n ; �F

+
n ; �F

�
n

	
below (12) and letting rvt := vt + vt�1, we de�ne

~ut = �xt1F+n +rxt1F�n + ût1 �F+n + ût1 �F�n (15)

�nz = '1n1F+n + '�1n1F�n + '2n1 �F+n + '�2n1 �F�n (16)
where ('1n)n2N and

�
'�1n
�
n2N are chosen sequences in C(i) (so that n (j'1nj � 1) ! �1 and

n
���'�1n��� 1�! �1) with '1n ! 1 and '�1n ! �1; ('2n)n2N and

�
'�2n
�
n2N are chosen sequences

in C(iii) (so that n (j'2nj � 1) ! 1 and n
���'�2n��� 1� ! 1) with '2n ! 1 and '�2n ! �1. We

construct an instrument process by accumulating the stochastic sequence ~ut in (15) according to

a �rst order autoregressive process
~zt = �nz~zt�1 + ~ut =

Pt
j=1 �

t�j
nz ~uj (17)

with chosen root �nz in (16), initialised at ~z0 = 0. It is easy to see that the instrument process in

(17) admits an orthogonal decomposition
~zt = ~z1t1F+n + ~z

�
1t1F�n + ~z2t1 �F+n + ~z

�
2t1 �F�n (18)

where ~z1t employs a root '1n chosen in the regular near-stationary region C+(i), ~z
�
1t employs a

root '�1n chosen in the oscillating near-stationary region C�(i), ~z2t employs a root '2n chosen

in the regular near-explosive region C+(iii) and ~z�2t employs a root '
�
2n chosen in the oscillating

near-explosive region C�(iii):
~z1t = '1n~z1t�1 +�xt and ~z�1t = '�1n~z

�
1t�1 +rxt (19)

~z2t = '2n~z2t�1 + ût and ~z�2t = '�2n~z
�
2t�1 + ût: (20)

The proposed estimator for �n after instrumenting xt by ~zt takes the form of a standard instru-

mental variable (IV) estimator:

~�n =

Pn
t=1 xt~zt�1Pn
t=1 xt�1~zt�1

= ~�1n1F+n + ~�
�
1n1F�n + ~�2n1 �F+n + ~�

�
2n1 �F�n (21)

where ~�jn =
Pn

t=1 xt~zjt�1=
Pn

t=1 xt�1~zjt�1 and ~�
�
jn =

Pn
t=1 xt~z

�
jt�1=

Pn
t=1 xt�1~z

�
jt�1 employ the (reg-

ular/oscillating) near-stationary instruments in (19) for j = 1 and the (regular/oscillating) near-

explosive instruments in (20) for j = 2. Filtering in (17) and (21) is similar in spirit to the

IVX procedure of Phillips and Magdalinos (2009) and the instrument process ~z1t in (18) is pre-

cisely the IVX instrument on the aforementioned paper. However, the IVX instrument ~z1t is

designed to achieve robust inference in the C+(i)-C+(ii) classes of regular near-stationary and

near-nonstationary processes, and it is invalid for oscillating processes in C�(i) when � = �1
as well as for near-nonstationary processes in C�(ii). For such cases, ~z�1t is designed to use rxt
instead of the �rst di¤erence �xt as �residuals�for the instrument construction6 and employs a

root '�1n ! �1 so that the instrument process emulates the oscillation of the original process xt.
The selection between ~z1t and ~z�1t becomes irrelevant when xt belongs to the stationary subclass

C0(i) with � 2 (�1; 1) because the IV estimators ~�1n and ~��1n based on regular and oscillating near-
stationary instruments are both asymptotically equivalent to OLS. Moreover, the IVX procedure

of Phillips and Magdalinos (2009) is not suited for inference in near-explosive classes C+(iii) and

C�(iii), and the new mildly explosive instrument process ~z2t in (18) is designed for conducting

inference in the near-explosive class C+(iii) and local-to-unity class C+(ii) while the oscillating

6If � = �1 in (13), rxt = ut � �un = ut +Op
�
n�1=2

�
, behaves asymptotically as an innovation.
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mildly explosive instrument ~z�2t in (18) is designed for conducting inference in C�(iii) and C�(ii).

The IV estimators based on ~z2t and ~z�2t di¤er from the IVX estimator based on ~z1t (and its os-

cillating version ~z�1t) in two important ways: �rstly, the instrument construction is based on the

OLS residuals ût which (unlike �xt and rxt) approximate well the true innovation process ut in
(1) in class C(iii); secondly, a mildly explosive (instead of a near-stationary) root is employed in

the instrument generation.

The genuine novelty of the approach lies not so much in the construction of these three new

instrument processes, but in the data-driven combination of the novel near-explosive instruments

~z2t and ~z�2t for regions C(ii) and C(iii) with the near-stationary instruments ~z1t and ~z
�
1t in order

to achieve correct asymptotic inference for autoregressive roots in (�1;1) without a priori
knowledge of which persistence region the true process belongs to.

Combining ~z1t with ~z2t (and the oscillating ~z�1t with ~z
�
2t) to unify inference on both sides of

(negative) unity and combining the regular instruments ~z1t and ~z2t with their oscillating versions

~z�1t and ~z
�
2t to unify inference on regular and oscillating processes is intuitively appealing but the

asymptotic validity of such an approach is not obvious: the asymptotic mixed-Gaussianity (AMG)

property of the estimator in (21) is established in Section 3.3. An essential step is provided by

the asymptotic separation property of Lemma 2, which implies that the asymptotic behaviour of

~�n in (21) will be driven exclusively by: (i) the component ~�1n (~�
�
1n) involving the near-stationary

(oscillating) instrument ~z1t (~z�1t) when xt is in C+(i) (C�(i)) and (ii) the component ~�2n (~�
�
2n)

involving the mildly explosive (oscillating) instrument ~z2t (~z�2t) when xt is in C+(iii) (C�(iii)).

The fact that the contribution of both components (or their oscillating versions) in the near-

nonstationary case C+(ii) (C�(ii)) preserves the AMG property of the IV estimator in (21) is a

central result of Theorem 3.

For the predictive regression model (1), (8), the instrument (17) gives rise to the estimator

~�n =

Pn
t=1 yt~zt�1Pn

t=1 xt�1~zt�1
= ~�1n1F+n +

~�
�
1n1F�n +

~�2n1 �F+n +
~�
�
2n1 �F�n (22)

where (~�jn; ~�
�
jn) are de�ned in the same way as

�
~�jn; ~�

�
jn

�
with xt replaced by yt in the numerator.

3.2 Asymptotic inference for autoregression and predictive regression
Estimation of the autoregressive root in (1) by the IV estimator in (21) has the advantage

that the limit distribution of the normalised and centred estimators ~�n and ~�n belongs to the

mixed-Gaussian family of distributions in all C(i)-C(iii) cases, independently of the distribution

of the innovations ut and "t. This is in contrast to the OLS estimators which do not have a

mixed-Gaussian limit distribution in the near-nonstationary cases C+(ii) and C�(ii) and whose

asymptotic behaviour is entirely driven by the distribution of the innovations (ut) in the explosive

case C0(iii). We defer the technical exposition of the AMG property of the IV estimators ~�n and
~�n to Section 3.3. In this section, we focus on the main implication of the AMG property: that

the t-statistics based on ~�n in (21) and ~�n in (22) have a standard normal limit distribution and

achieves uniform inference along the entire autoregressive parameter space independently of the

distribution of the innovations in (1).
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Denoting the lagged data vectorsX = (x1; :::; xn�1)
0, ~Z = (~z1; :::; ~zn�1)

0 andX = (x1 � �xn�1; :::; xn�1 � �xn�1)0,
we de�ne a t-statistic based on ~�n as follows:

~Tn (�n) =
(X 0P ~ZX)

1=2

�̂n
(~�n � �n) (23)

where P ~Z = ~Z
�
~Z 0 ~Z
��1

~Z 0 and �̂2n is the OLS estimator of the variance of ut in (1). The t-statistic

in (23) can be used to test hypotheses or to construct a (1� �)% CI:
In (~�n; �) = [~�n � cn (�) ; ~�n + cn (�)] ; cn (�) = (X

0P ~ZX)
�1=2

��1 (1� �=2) �̂n (24)
where � denotes the N (0; 1) distribution function. By combining the AMG property of ~�n (es-

tablished by Theorem 3 below under Assumption 1b) and Lemma 1, the t-statistic in (23) is

asymptotically N (0; 1) along all drifting sequences of autoregressive parameters (�n)n2N satisfy-

ing Assumption 1a. Consequently, the t-test in (23) has uniform asymptotic size and the CI in

(24) have uniform asymptotic coverage over the parameter space
� = [�M;M ] for any M > 0: (25)

Denote by Rn =
n��� ~Tn (�n)��� > ��1 (1� �=2)

o
the critical region (CR) of the t-test in (23).

Theorem 1. Consider the process (1) satisfying Assumptions 2 and 3, the process ~zt de�ned in

(15)-(17) and the IV estimator ~�n in (21).

(i) Under Assumption 1a, the t-statistic in (23) satis�es ~Tn (�n)!d N (0; 1) as n!1.
(ii) The CR Rn is asymptotically similar with correct asymptotic size over the parameter space

� in (25): lim infn!1 inf�2� P� (Rn) = lim supn!1 sup�2� P� (Rn) = �:

(iii) The CI in (24) satis�es limn!1 inf�2� P� [� 2 In (~�n; �)] = 1� �.

Remarks.
1. Theorem 1 shows that the methodology of the paper delivers uniform and distribution-free

inference over an autoregressive parameter space in (25) that consists of arbitrarily large closed

subintervals of (�1;1). In the terminology of Andrews, Cheng and Guggenberger (2020), the
CRRn and the CI In (~�n; �) are uniformly asymptotically similar over �. To our knowledge, this is

the �rst procedure that provides a uni�ed framework of inference and CI construction when data

originate from autoregressive time series encompassing the stationary, nonstationary, explosive

and all intermediate regions described in C+(i)-C+(iii) as well as their oscillating counterparts in

C�(i)-C�(iii), without a priori knowledge or the need for pre-testing.

2. It is possible to extend the uniformity in Theorem 1 over a space of distribution functions

on R1 of the innovation sequence (ut)t2N. The details of such an extension are elaborate and we

omit them for brevity.

3. The uni�ed asymptotic inference framework provided by Theorem 1 is achieved due to the

crucial AMG property of the IV estimator ~�n in (21), established by Theorem 3. The instrumen-

tation by a combination of a near-stationary and mildly explosive process and their oscillating

counterparts in (17) serves this purpose by design: it employs information from a non-AMG pro-

cedure (the OLS estimator is not AMG in regions C(ii) and C0(iii)) to construct an estimator (21)

that enjoys the AMG property across all autoregressive classes C(i)-C(iii).
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4. The inferential framework of (21), (23) and (24) constitutes the �rst procedure that achieves
inference with general asymptotic validity in the explosive region C0(iii). This provides a solution

to a long-standing problem in explosive autoregression, pointed out by Anderson (1959), namely

that the asymptotic distribution of estimators and tests based on least squares (when they exist)

are entirely driven by the distribution of the innovations (ut) in (1). Wang and Yu (2015) derive

explicit expressions of the dependence of the standard OLS t-statistic limit distribution on the

distribution of the innovations of (1) and the initial condition X0 for the case � > 1. As Theorem

3 shows, the IV estimator ~�n in (21) has the AMG property irrespective of the distribution of

(ut) giving rise to a distribution-free and correctly-sized asymptotic CI in (24). To our knowledge,

the t-statistic in (23) and the associated CI in (24) provide the �rst solution to the problem of

distribution-free asymptotic inference in the explosive (oscillating) autoregression.

5. The asymptotic normality result of Theorem 1 includes oscillating sequences for �n under

Assumption 1a for which the t-statistic based on the OLS estimator may not converge in distrib-

ution. As an example, consider the sequence (�n)n2N in (2) with kn = n. The standard t-statistic

Tn (�n) based on the OLS estimator �̂n does not converge in distribution: T2n (�2n) !d R1 and

T2n�1
�
�2n�1

�
!d R�1 where Rc =

�
�2
R 1
0
Jc (r)

2 dr
��1=2 R 1

0
Jc (r) dB (r) : While the IV estimator

~�n � �n in (21) also has, after normalisation, two accumulation points in distribution, both dis-

tributions have the AMG property; as a result, both subsequences ~T2n (�2n) and ~T2n�1
�
�2n�1

�
converge in distribution to N (0; 1) ; implying that ~Tn (�n) !d N (0; 1). The proof of Theorem 1

employs Lemma 1 to show that the above asymptotic behaviour of the t-statistic in (23) is typical

and only requires the weaker Assumption 1a.

6. The generality of our methodology makes it suitable for various empirical application such as
testing for episodes of bubbles in �nancial asset prices, where the existing approaches (e.g. Phillips

and Yu (2011), Phillips et al. (2011)) model bubbles as mildly explosive episodes but assume away

the purely explosive case � > 1; due to lack of asymptotic validity of existing approaches in this

region. Another important application involves the stochastic evolution of epidemics, e.g. Covid-

19, where the basic reproduction number r0 of infections has widely been reported in the explosive

region in highly infectious periods and in the stationary region in periods of remission; see Section

5 for further details.

For the predictive regression model in (1) and (8), we employ a similar studentisation to (23)

based on the IV estimator ~�n in (22):

~Tn (�n) =
(X 0P ~ZX)

1=2

�̂"

�
~�n � �n

�
(26)

where �̂2" is the OLS estimator of the variance of "t in (8), �
2
" = E ("2t ). While the t-statistic in

(26) is shown to be asymptotically standard normal in Theorem 2 below, the estimation of the

intercept in (8) induces a �nite sample size distortion when xt has a positive unit root and a near-

stationary instrument is employed, as documented by Kostakis et al. (2015), Hosseinkouchack and

Demetrescu (2021) and Harvey, Leybourne and Taylor (2021). The problem occurs because the

sample moment that drives mixed normality is given by
Pn

t=1 ~z1t�1"t�n�z1n�1�"n and, while the �rst
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term on the right-hand side dominates and is asymptotically normally distributed, n�zn�1�"n is not

asymptotically mixed-Gaussian and has more pronounced �nite sample e¤ects when xt is a positive

unit root process (in which case n�xn�1�"n contributes to the OLS limit distribution, see Remark

2 below). Given that the �nite sample distortion only occurs very close to 1, one solution is to

employ the fully-modi�ed (FM) transformation of Phillips and Hansen (1990) that orthogonalises

the innovations "t of (8) with respect to the innovations ut of (1) and, hence, transform the non-

AMG lower order term �zn�1�"n into an AMG component for regressors very close to a unit root.

The FM-corrected IV estimator ~�1n in (22) (the component of ~�n generated by a near-stationary

regular instrument) takes the form

��1n =

�Pn
t=1 yt~z

0
1t�1 + �̂"u

�̂"
!̂u
xn�z

0
1n�1

��Pn
t=1 xt�1~z

0
1t�1
��1

where �̂2", !̂
2
u and �̂"u are consistent estimators of �

2
", !

2
u =

P1
k=�1 E (utut�k) and �"u = corr ("t; ut).

With the above correction, the IV estimator of � becomes
��n = 1F+n �

�
1n +

~�
�
1n1F�n +

~�2n1 �F+n +
~�
�
2n1 �F�n (27)

with ~�
�
1n;
~�2n and ~�

�
2n are de�ned as in (22). A computation of the standard error of the estimator

��n above gives rise to the following t-statistic:

T �n (�n) = Nn (�
�
n � �n) ; Nn := �̂�1"

�
nP
t=1

~z2t�1 � n�z21;n�1
�
1� �̂2"u

�
1F+n

��1=2 nP
j=1

xj�1~zj�1: (28)

Denote by ~Rn =
n��� ~Tn (�n)��� > ��1 (1� �=2)

o
and R�

n = fjT �n (�n)j > ��1 (1� �=2)g the CRs of

the t-tests in (26) and (28) and the corresponding CIs by In
�
~�n; �

�
and In (�

�
n; �): In

�
~�n; �

�
is

de�ned as in (24) with (~�n; �̂n) replaced by
�
~�n; �̂"

�
; In (�

�
n; �) is de�ned as in (24) with (~�n; cn (�))

replaced by (��n;�
�1 (1� �=2)N�1

n ).

Theorem 2. Consider the predictive regression model (1) and (8) satisfying Assumptions 3 and

4, the �ltered process ~zt de�ned by (15)-(17) and the IV estimators ~�n and �
�
n in (22) and (27).

(i) Under Assumption 1a, the statistics in (26) and (28) satisfy ~Tn (�n) !d N (0; 1) and

T �n (�n)!d N (0; 1).

(ii) The CRs ~Rn and R�
n associated with (26) and (28) are asymptotically similar with correct

asymptotic size uniformly over � in (25): for Rn 2
n
~Rn;R�

n

o
lim infn!1 inf�2� P� (Rn) = lim supn!1 sup�2� P� (Rn) = �:

(iii) The CIs In
�
~�n; �

�
and In (�

�
n; �) associated with (26) and (28) have correct asymptotic

coverage uniformly over �: inf�2� P�[� 2 In(~�n; �)] and inf�2� P� [� 2 In (��n; �)] both converge
to 1� � as n!1.
Remarks.
1. The asymptotic inference based on the t-statistics in (26) and (28) is invariant to the

stochastic properties of the autoregression in (1) and is shown to give rise to correct asymptotic size

and coverage probability uniformly over the autoregressive parameter space �. To our knowledge,

this is the �rst inference procedure that accommodates this level of generality. Extension of the

uniformity over a space of distribution functions of (ut)t2N and ("t)t2N is possible (see Remark 2
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to Theorem 1) but omitted for brevity.

2. While T �n (�n) and ~Tn (�n) have the same limit distribution, the test based on ~Tn (�n) may
su¤er from �nite sample distortion due to the fact that the estimation of the intercept 
 in (8)

does not feature in the �rst-order asymptotic theory. This only becomes an issue under C+(ii)

where estimation of 
 features more prominently: in particular, the contribution of the non-AMG

term n�z1n�1�"n is not re�ected in the limit distribution of Theorem 2. While this contribution is

op (1), n��1n �z1n�1�"n = Op(n
�1=2 (1� '1n)

�1=2) under C+(ii) in the notation of Theorem 3, n�z1n�1�"n
is asymptotically equivalent to (1� '1n)

�1 xn
Pn

t=1 "t and the correlation between xn and
Pn

t=1 "t

distorts mixed-Gaussianity in �nite samples. As a result, the t-statistic based on ~Tn (�n) exhibits

�nite sample distortions when the following occur jointly: (i) the autoregressive root of xt is very

close to 1; (ii) �"u = corr ("t; ut) is close to 1 in absolute value; (iii) '1n is chosen close to 1.

The FM transformation of Phillips and Hansen (1990), "0t = "t � !�1E ("tut)ut, orthogonalises
n�1=2

Pn
t=1 "0t and n

�1=2Pn
t=1 ut asymptotically when xt is a unit root process and transforms the

non-AMG term n�z1n�1�"n into a AMG term n�z1n�1�"0n with a remainder that becomes smaller the

closer xt is to a unit root process, thereby addressing the issues in (i) and (ii) above simultaneously.

The estimator ��n arising from employing the FM transformation and the corresponding t-statistic

T �n (�n) have signi�cantly improved �nite sample properties whenever �n is close to 1 with large

j�"uj, while both ~Tn (�n) and T �n (�n) perform equally well in all other cases. It is worth noting

that the terms arising from the estimation of the intercept in both IV and OLS, n�z1n�1�"n and

n�xn�1�"n, have reduced order of magnitude for an autoregressive root close to �1, so no �nite
sample adjustment is necessary under C_(ii).

3. Practical implementation of the test procedures of Theorems 1 and 2 requires a choice for
'1n; '

�
1n; '2n and '�2n in (15) for the construction of the instrument ~zt. Since our procedure

is designed to work across the autoregressive parameter space (�1;1) ; we require a single
instrument that will perform well across C(i)-C(iii) both for the autoregression and predictive

regression problems. We base our choice for '1n and '2n on the principle of controlling the worst

�nite sample distortion that occurs in the case of a unit root regressor with large correlation j�"uj
(Remark 2 above). We conduct a grid search Monte Carlo to select the maximal values of '1n and

'2n (by Theorem 3, these achieve maximal power) subject to a satisfactory test size in the above

least favourable case and we set '�1n = �'1n and '�2n = �'2n; a detailed analysis of the choice of
'1n and '2n can be found in Section 4.1. We demonstrate that the proposed choice of instrument

in Section 4.1 works very well (in terms of size and power) both in the autoregression and in the

predictive regression setups and across all persistence regions considered.

4. The above methodology may be extended to multivariate predictive regression models where
both xt and yt in (1) and (8) are vector-valued and the statistical problem consists of testing a

set of q restrictions on vec (�). A model along the lines of Magdalinos and Phillips (2020) (that

assumes away cointegrating relationships between elements of the VAR(1) process for xt) extended

to account for regressors with autoregressive eigenvalues in (�1;1) may be considered with the
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asymptotically N (0; 1) t-statistics of Theorem 2 replaced by asymptotically �2 (q)Wald statistics

based on the combined (vector-valued) instrument (15)-(17) of Section 3.1. The fact that the

methodology of this paper extends directly to multivariate systems is a major advantage over

existing methods, including Campbell and Yogo (2006) and Elliott et al. (2015). A multivariate

extension is not pursued here as it would be a deviation from the main focus of the paper (the

construction of CIs for � and � with uniform asymptotic validity). Another major advantage of

our inference procedures in Theorems 1 and 2 is their simplicity and ease of implementation: they

employ closed-form linear estimators and N (0; 1) critical values, rendering implementation of the

procedures by practitioners natural and straightforward.

We now brie�y turn to the problem of conducting inference for the parameters of the epi-

demiological model in (11) and, in particular, of constructing robust CIs for the BRN r0 in (10)

regardless of whether r0 is above, equal or below unity. Denoting the autoregressive parameter of

It in the �rst equation of (11) by �n := 1 + � � 
 � �, (11) can be expressed as a system of three

equations, It = �nIt�1 + u1t, �Rt = 
It�1 + u2t and �Dt = �It�1 + u3t, with each equation being

estimated using the instrumental variable procedure in (17)-(21):

~�n =

Pn
t=1 It~zt�1Pn
t=1 It�1~zt�1

; ~
n =

Pn
t=1�Rt~zt�1Pn
t=1 It�1~zt�1

and ~�n =

Pn
t=1�Dt~zt�1Pn
t=1 It�1~zt�1

(29)

where the instrument ~zt is constructed from the �rst equation of (11) by
~zt = �nz~zt�1 + ~u1t; ~u1t = �It1F+n + û1t1 �F+n ;

û1t are the OLS residuals obtained from the �rst equation of (11), the events F+n and �F+n are

de�ned in (12), �nz is chosen as in (15) and we impose that 1F�n = 1 �F�n = 0 since � � 0. The

remaining parameters r0 and � may be estimated from the identity r0 = 1 + (�n � 1) = (
 + �)

(obtained by dividing �n by 
 + �) as:
~rn = 1 + (~�n � 1) =

�
~
n + ~�n

�
and ~�n = ~�n � 1 + ~
n + ~�n (30)

where ~�n, ~
n and ~�n are the IV estimators in (29). Adjusting for the asymptotic variance of ~rn
and ~�n, we may construct studentised version of these estimators as follows:h

Tn (~rn) ; Tn

�
~�n

�
; Tn (~
n) ; Tn

�
~�n

�i
= (X 0P ~ZX)

1=2

"
~rn � r0
�̂r0

;
~�n � �

�̂�
;
~
n � 


�̂

;
~�n � �

�̂�

#
(31)

where X = [I1; :::; In�1]
0, ~Z = [~z1; :::; ~zn�1]

0, �̂2r0 = �̂0n�̂n�̂n, �̂
2
� = �0�̂n�; �̂

2

 = e02�̂ne2, �̂

2
� = e03�̂ne3,

�̂n = n�1
Pn

t=1 ûtû
0
t with ût denoting the OLS residuals of (11), � = [1; 1; 1]0, e2 = [0; 1; 0]0 ;

e3 = [0; 0; 1]
0 and �̂n =

h
1=(
̂n + �̂n); (1� �̂n) =(
̂n + �̂n)

2; (1� �̂n) =(
̂n + �̂n)
2
i0
based on the OLS

estimators �̂n, 
̂n and �̂n in (11). Letting c
g
n (�) = (X

0P ~ZX)
�1=2��1

�
1� �

2

�
�̂g for g 2 fr0; �; 
; �g

and denoting [a� b] = [a� b; a+ b] for brevity, we may construct CIs based on the studentised

estimators in (31): In(~rn; �) = [~rn � cr0n (�)], In(~�n; �) = [~�n � c�n (�)], In (~
n; �) = [~
n � c
n (�)]

and In
�
~�n; �

�
= [~�n � c�n (�)]. The analysis leading to Theorem 1 yields the following.

Corollary 1. Consider the model (It; Rt; Dt) in (11) satisfying Assumption 5 with parameters

r0, �, 
 and � estimated in (29) and (30). The t-statistics in (31) all converge in distribution to

N (0; 1) and the CIs In(~rn; �), In(~�n; �), In(~
n; �) and In(~�n; �) all have asymptotic probability of

containment equal to 1� �:
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3.3 Asymptotic mixed-normality of the IV estimator
In this section, we establish the AMG property of the IV estimators of the paper. We begin by

focusing on the regular regimes C+(i)-C+(iii): we �rst provide a brief discussion of the behaviour

of the instrument process ~zt in (17) and then establish formally the asymptotic behaviour of

sample moments of the instrument under C+(i)-C+(iii) (Lemmata 3-5). In Lemma 6, we show

how the asymptotic behaviour of the oscillating classes C�(i)-C�(iii) may be derived from that

of their regular counterparts C+(i)-C+(iii) via a simple transformation. The results in Lemmata

3-6 provide an insight into the mechanics of the instrument ~zt and facilitate the proof of the main

result of this section: the AMG property of the normalised and centred IV estimators in (21), (22)

and (27), formally stated in Theorem 3 below.

While the arti�cial instrument�s autoregressive roots '1n and '2n in (16) may be chosen freely

within the near-stationary/near-explosive range, the processes ~z1t and ~z2t in (19) are not near-

stationary/near-explosive because the residuals �xt and ût used in the instrument construction

are not innovations. For xt in the classes C+(i)-C+(ii), Magdalinos and Phillips (2020) show that:

(i) ~z1t can be asymptotically approximated by a near-stationary process
z1t = '1nz1t�1 + ut =

Pt
j=1 '

t�j
1n uj (32)

when the instrument in (19) is less persistent than the original process xt in (1) (i.e. when �n
is closer to 1 than '1n) and (ii) ~z1t reduces asymptotically to the original process xt (necessarily

near-stationary by the choice of ('1n)n2N in C+(i)) when '1n is closer to 1 than �n. The above

property is a consequence of employing �xt is the construction of ~z1t. On the other hand, as a

consequence of employing the OLS residuals ût in their construction, the instruments ~z2t and ~z�2t
in (20) are always approximated by the mildly explosive processes

z2t = '2nz2t�1 + ut and z�2t = '�2nz
�
2t�1 + ut (33)

in all sample moments. A precise statement on the approximation of ~z2t by z2t can be found in

part (iv) of Lemma B2 in Appendix B.

By Lemma 2, sample moments involving the near-stationary instrument ~z1t contribute as-

ymptotically when the original process xt belongs to the classes C+(i)-C+(ii) whereas sample

moments involving the mildly-explosive instrument ~z2t make an asymptotic contribution for the

classes C+(ii)-C+(iii). The next two results, Lemmata 3 and 4, discuss the asymptotic behaviour

of sample moments involving ~z1t and ~z2t for classes C+(i)-C+(ii) and C+(ii)-C+(iii) respectively.

Under Assumption 4, denote the autocovariance function and long-run variance of (ut) by 
u (�)
and !2 =

P1
k=�1 
u (k) = C (1)2 �2 respectively and let

�n =
P1

k=1 �
k�1
n 
u (k) and � = lim

n!1
�n =

P1
k=1 �

k�1
u (k) (34)
with � 2 R by Assumptions 1a, 4 and the dominated convergence theorem. When � = 1, � =P1

k=1 
u (k) is the one-sided long-run covariance of (ut). Let W (t) denote a standard Brownian

motion on [0; 1] and B (t) = !W (t); when c 2 R in Assumption 1b, de�ne
Wc (t) =

R t
0
ec(t�s)dW (s) ; Jc (t) =

R t
0
ec(t�s)dB (s) and Kc =

R 1
0
Jc (r) dB (r) =

R 1
0
Jc (r)

2 dr: (35)

Lemma 3. The following hold under Assumptions 3 and 4 and C+(i)-C+(ii) of Assumption 1b:

(i) n�1 (1� �2n'
2
1n)
Pn

t=1 xt�1~z1t�1 =
~	n + op (1)!d

~	 (c) where
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~	 (c) = �2 + 2�� +
�
Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

�
1 fc 2 Rg, x0t is de�ned in (6) and

~	n = (1 + �n)
�
�2 + 2�n�n + (2�n � 1)

�
n�1

Pn
t=1 x0t�1ut � �n

��
��n

�
1� �2n

�
n�1

Pn
t=1 x

2
0t�1 � 2

�
n�1=2x0n

�
n�3=2

Pn
j=1 x0j�1: (36)

(ii) n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
1t !p �

2 + 2��

(iii) n�1=2 (1� �2n'
2
1n)

1=2Pn
t=1 ~z1t�1et !d N (0; (�2 + 2��)�2e)

where �n and � are de�ned in (34), Jc (�) in (35) and �2e = Ee2t .
Next, we turn to the discussion of the asymptotic behaviour of sample moments of ~z2t: In order

to maintain a common asymptotic development for autoregressions in the near-nonstationary and

near-explosive classes C(ii)-C(iii), we de�ne the convergence rates
�n =

�
�2n � 1

��1=2 j�njn 1 fc =1g+ n1=21 fc 2 Rg and �n;z =
�
�22n � 1

��1=2 j�2njn (37)
where c denotes the limit in Assumption 1b and �2n = '2n1 f� � 0g+ '�2n1 f� < 0g ; and

sn = (�n�2n � 1)
�1 �n;z�n: (38)

Under C+(ii)-C+(iii), the limit theory for the mildly explosive instrument�s sample moments will

be driven by the stochastic sequences
[Yn; Y

"
n ; Zn] :=

�
'22n � 1

�1=2 hPn
t=1 '

�(n�t)�1
2n ut;

Pn
t=1 '

�(n�t)�1
2n "t;

Pn
j=1 '

�j
2nuj

i
: (39)

By Anderson (1959), Phillips (1987b) and Phillips and Magdalinos (2007), the autoregressive

sample moments will be driven by
Xn :=

xn
�n
=
�
�2n � 1

�1=2 �Pn
j=1 �

�j
n uj +X0 (n)� �

�
1 fc =1g+ xnp

n
1 fc 2 Rg : (40)

The following result characterises the joint asymptotic behaviour of the sequences Yn, Zn and Xn

and the instrument sample moment asymptotics for the autoregressive classes C+(ii)-C+(iii).

Lemma 4. Let X1 be the random variable de�ned in (7) and Yn, Y "
n , Zn and Xn be the stochastic

sequences in (39) and (40), let Y; Z;X denote N (0; !2) random variables and let Y " be N (0; �2").

Under Assumptions 3 and 4 and C+(ii)-C+(iii) of Assumption 1b, the following hold as n!1:
(i) [Yn; Zn]!d [Y; Z], [Y "

n ; Zn]!d [Y
"; Z] with Z independent of (Y; Y ") and"

'22n � 1
'n2n

Pn
t=1 z2t�1ut;

('22n � 1)
2

'2n2n

Pn
t=1 z

2
2t�1; s

�1
n

Pn
t=1 xt�1z2t�1

#
=
�
YnZn; Z

2
n; XnZn

�
+ op (1) :

(ii) Under C+(iii) with �n ! 1, [Yn; Xn] !d [Y;X] and [Y "
n ; Xn] !d [Y

"; X], with X inde-

pendent of (Y; Y ").

(iii) Under C+(iii) with �n ! � > 1, Xn !p X1, X1 6= 0 a:s:; for any continuous function
g : Rn f0g ! R, g (Xn)Yn !d g (X1)Y and g (Xn)Y

"
n !d g (X1)Y

" where both g (X1)Y and

g (X1)Y
" are MN (0; !2g2 (X1)) and MN (0; �2"g

2 (X1)) variables.

Part (iii) of Lemma 4 deserves special attention because it establishes a CLT to a mixed-

Gaussian distribution in the purely explosive case C0(iii) when � > 1 and it is precisely the result

that allows us to incorporate the purely explosive case in the distribution-free mildly explosive

framework of asymptotic inference. To provide some insight into the role of the result for infer-

ence, we will see that the normalised and centred estimator ~�n in (21) behaves asymptotically as

Yn=Xn in Theorem 3 below. The conclusion of Lemma 4(iii) implies that the ratio Yn=Xn has

aMN (0; �2=X2
1) limit distribution in the explosive case, establishing the AMG property of ~�n
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independently of the distribution of the innovation sequence in (1).

Establishing the AMG property of ~�n in the local-to-unity class C+(ii) is more challenging as

both components ~z1t and ~z2t of the instrument in (18) feature in the limit theory, their relative

contribution weighted by the sequence of events F+n and �F+n in (12). Additional complication is

introduced by the randomness of the signals�limits (2	n !d �
2 + Jc (1)

2 from ~z1t and XnZn !d

Jc (1)Z from ~z2t) which are required to be independent from the Gaussian distributional limit

of the normalised
Pn

t=1 zt�1ut (U (1) and Y below) for AMG property of ~�n. Since, by standard

local-to-unity manipulations (see Phillips (1987b) or Chan and Wei (1987)), the sequences F+n ;

	n and Xn in (12), (36) and (40) can be expressed as non-stochastic functionals of the partial

sum process Bn (�) of ut and Bn (s) ) B (s) on D [0; 1], it su¢ ces to prove the independence of

[U (1) ; Y ] and the Brownian motion B; this is established in the following result.

Lemma 5. De�ne the following random elements in D [0; 1]: Bn (s) = n�1=2
Pbnsc

t=1 ut, Un (s) =

(n (1� '21n)
�1
)�1=2

Pbnsc
t=1 z1t�1et and Yn (s) = ('

2
2n � 1)

1=2Pbnsc
t=1 '

�(bnsc�t)�1
2n ut: Under Assumption

4, [Un (s) ; Bn (s) ; Yn (s)] ) [U (s) ; B (s) ; Y ] on D [0; 1], where U (s) and B (s) are independent

Brownian motions with EU (s)2 = s�2e!
2 and EB (s)2 = s!2, and Y is a N (0; !2) random

variable independent of [U (s) ; B (s)].

We have thus far concentrated our attention to the asymptotic behaviour of sample moments

based on the regular autoregressive classes C+(i)-C+(iii). The asymptotic analysis of an oscillating

autoregression xt in classes C�(i)-C�(iii) may be derived from its regular counterpart via the

transformation xt 7! (�1)t xt. Denoting by x0t in (6) an oscillating (zero-mean) autoregression
with �n < 0, it is easy to see that x

+
t := (�1)

t x0t satis�es the recursion
x+t = j�njx+t�1 + (�1)

t ut; (41)
which de�nes a regular autoregression since j�nj � 0, and the sequence

�
(�1)t ut : t 2 N

	
satis�es

Assumption 2 and 4 whenever (ut)t2N does so. The same transformation applies to the oscillating

instrument processes generated by x0t: denoting by ~z�0t the instrument ~z
�
1t (19) when � = x0 = 0

(so that rxt = rx0t) and by z�2t the oscillating mildly explosive process in (33), the transformed
processes ~z+0t := (�1)

t ~z�0t and z
+
2t := (�1)

t z�2t satisfy
~z+0t =

��'�1n�� ~z+0t�1 +�x+t and z+2t =
��'�2n�� z+2t�1 + (�1)t ut (42)

where û+t = x+t � �̂+nx
+
t�1 and �̂

+
n =

Pn
t=1 x

+
t x

+
t�1=

Pn
t=1

�
x+t�1

�2
is the OLS estimator from (41).

In other words, the transformation xt 7! (�1)t xt has the property of transforming an oscillating
autoregression to a regular autoregression and an oscillating instrument to a regular instrument.

Given the event Fn in (12), de�ne the normalisation sequence

�n =

8><>:
n1=2

�
1� �2n�

2
1n

��1=2
; under C(i)

n1=2
�
1� �21n

��1=2
1Fn + 2n

1=2
�
�22n � 1

��1=2
1 �Fn ; under C(ii)�

�22n � 1
�1=2

(j�nj j�2nj � 1)
�1 (�2n � 1)

�1=2 j�nj
n ; under C(iii).

(43)

where �1n = '1n1 f� � 0g+ '�1n1 f� < 0g, �2n = '2n1 f� � 0g+ '�2n1 f� < 0g.
Let ~�+1n =

Pn
t=1 x

+
t ~z

+
0t�1=

Pn
t=1 x

+
t�1~z

+
0t�1 and ~�

+
2n =

Pn
t=1 x

+
t z

+
2t�1=

Pn
t=1 x

+
t�1z

+
2t�1 be generated

by (41) and (42), de�ne
�
F++n ; �F++n

�
in the same way as

�
F+n ; �F

+
n

�
with �̂n replaced by �̂

+
n and

de�ne (~�
+

1n;
~�
+

2n) in the same way as
�
~�+1n; ~�

+
2n

�
with x+t replaced in the numerator by y

+
t = (�1)

t�1 yt
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under the restriction 
 = � = 0 in (1)-(8).

The following result (Lemma 6) shows how to obtain the limit distribution of the IV estimators

based on an oscillating instrument
�
~��1n; ~�

�
2n

�
and (~�

�
1n;
~�
�
2n) from the limit distribution of the IV

estimators based on its regular instrument counterparts
�
~�+1n; ~�

+
2n

�
and (~�

+

1n;
~�
+

2n).

Lemma 6. Consider an oscillating autoregression (1) with �n < 0, the OLS estimators �̂n and

the IV estimators ~��jn =
Pn

t=1 xt~z
�
jt�1=

Pn
t=1 xt�1~z

�
jt�1 and ~�

�
jn �

Pn
t=1 yt~z

�
jt�1=

Pn
t=1 xt�1~z

�
jt�1 in

(21) and (22) for j 2 f1; 2g. Under C�(i)-C�(iii) of Assumption 1b,
�n
��
~��1n � �n

�
1F�n ;

�
~��2n � �n

�
1 �F�n

�
= ��n

��
~�+1n � j�nj

�
1F++n

;
�
~�+2n � j�nj

�
1 �F++n

�
+ op (1)

�n[(~�
�
1n � �)1F�n ; (

~�
�
2n � �)1 �F�n ] = ��n[(~�

+

1n � �)1F++n
; (~�

+

2n � �)1 �F++n
] + op (1) :

Next, we employ the limit theory of Lemmata 2-6 to establish the main result of this section:

the AMG property of the IV estimators ~�n in (21) and ~�n in (22) along all the classes C(i)-C(iii).

For c 2 R, de�ne the random variables 	+ (c) =Wc (1)�
R 1
0
Wc (r) dr1 f� = 1g

	� (c) =
�
�2 + 2��

�
=!2 +Wc (1)

2 � 2Wc (1)
R 1
0
Wc (r) dr1 f� = 1g (44)

and 	(c) = 	� (c)1Fc + 	+ (c)1 �Fc, where Wc (�), Kc and the event Fc = fKc + c � 0g and its
complement �Fc are de�ned in (35).

Theorem 3. Consider the autoregression (1) and the predictive regression model (8) under As-

sumptions 1b and 3, and the IV estimators ~�n in (21), ~�n in (22) and ��n in (27). Given the

normalisation sequence �n in (43), �n (~�n � �n) !d L1 =d MN (0; V1) under Assumption 2 and

�n(~�n � �)!d L2 =d MN (0; V2) under Assumption 4, where:

(i) Under part C(i) of Assumption 1b, V1 = 1 and V2 = �2"= (�
2 + 2��).

(ii) Under part C(ii) of Assumption 1b, V1 = 	(c)
�2 and V2 = (�2"=!

2)	 (c)�2.

(iii) Under part C(iii) of Assumption 1b, L1 = Y=X, L2 = ~Y =X, V1 = �2=X2, and V2 =

�2"=X
2, where Y =d N (0; �2), ~Y =d N (0; �2"), and X is independent of

�
Y; ~Y

�
with X =d

N (0; !2) when j�nj ! 1 and X = X1 in (7) when j�nj ! j�j > 1.
Moreover, under parts C(i)-C(iii) of Assumption 1b, �n(~�n � ��n)!p 0.

Remarks.

1. The IV procedure proposed in the paper guarantees that the resulting estimators ~�n and
~�n in (21), and (22) respectively exhibit a AMG property along the entire spectrum of autoregres-

sive regressor processes, including stationary, non-stationary, explosive processes, all intermediate

regimes and their oscillating counterparts. Importantly, the AMG property is derived via central

limit theory and does not depend on the distribution of the innovation sequences (ut) and ("t) in

(1) and (8): the only requirements imposed on (ut) and ("t) are Assumption 2 and 4 respectively,

which allow the innovations to be non-Gaussian, dependent, non-identically distributed and, as

far as inference on � is concerned, ut may be a linear process under Assumption 4. The only

component that depends on the distribution of (ut) is the mixing variate X1 in the explosive case

C0(iii) which does not the a¤ect the AMG property and, upon studentisation of ~�n and ~�n is scaled

out of the limit distribution of self-normalised test statistics, such as the t-statistic of Theorems

1 and 2. This desirable property of the proposed estimator ~�n and ~�n is in sharp contrast to
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the dependence of large sample OLS inference on the distribution of (ut) and ("t) in explosive

autoregressions. Hence, in addition to producing robust inference along all autoregressive classes,

our proposed estimation procedure is the �rst to achieve distribution-free asymptotic inference in

explosive autoregressions and is asymptotically invariant to the initialisation X0 in (1).

2. The key element of the procedure that delivers the AMG property and the distribu-

tional invariance to the innovations across the autoregressive classes C(i)-C(iii) is the newly pro-

posed combined instrument ~zt in (15)-(17). This instrument employs information from the OLS

estimator of the AR parameter (through the events Fn and Lemma 2) to determine whether

c = limn!1 n (j�nj � 1) takes the value �1 or 1. When c = �1, ~zt takes the form of a near-

stationary instrument which is: (i) regular ~z1t when � = 1; (ii) oscillating ~z�1t when � = �1; (iii)
either ~z1t or ~z�1t when � 2 (�1; 1) ; in which case, the IV estimator ~�n based on both is asymptoti-
cally equivalent to the (asymptotically normal) OLS estimator. When c =1, ~zt takes the form of:
(i) a mildly-explosive instrument ~z2t when � � 1 and (ii) an oscillating mildly-explosive instrument
~z�2t when � � �1: The resulting IV estimators ~�n and ~�n based on ~z2t and ~z�2t are shown to achieve
distribution-free inference in the near-explosive region C(iii), including the purely explosive sub-

region C0(iii). Finally, when c 2 R, the autoregression is of the local-to-unity type C(ii) in which
case ~zt takes the form of: (i) a random linear combination of ~z1t and ~z2t when � = 1 and (ii) a

random linear combination of ~z�1t and ~z
�
2t when � = �1. This random combination, re�ected in the

random normalisation �n of part (ii) of Theorem 3, depends on the limit distribution of the OLS

estimator �̂n through the events F
+
n and F�n in (12) which, like the limit distribution of 	n in

(36), can be expressed as a non-stochastic functional of the Brownian motion B; the asymptotic

independence of the normalised
Pn

t=1 ~zt�1ut and the Brownian motion B, established by Lemma

5, implies that the additional randomness introduced by the combination of ~z1t and ~z2t (and ~z�1t
and ~z�2t when � < 0) does not a¤ect the AMG property of ~�n and ~�n. The AMG property across

the entire range of autoregressive classes C(i)-C(iii) of Theorem 3 is the key feature of our estima-

tion procedure that delivers the uniform and distribution-free inference based on the t-statistic of

Theorems 1 and 2.

3. It is worth providing a brief explanation of how distribution-free asymptotic inference is
achieved in the explosive case j�nj ! j�j > 1. By employing the residuals ût and a (regular or

oscillating) mildly explosive root '2n or '
�
2n for the construction of the instrument ~z2t in (17), the

instrumentation of this paper and Lemma 2 ensure that, under C(iii), the limit distribution of

~�n is driven by the mildly explosive component z2t (or its oscillating counterpart z
�
2t) in (33) and

inherits the desirable AMG property of mildly explosive martingale transforms even when xt in

(1) is a purely explosive process. The price paid for this asymptotic distributional invariance is a

reduction in the convergence rate of ~�n� �n by an order of
�
�22n � 1

��1=2
compared to the �nn-OLS

rate. Given that the above order satis�es o
�
n1=2

�
and that the exponential part �nn of the OLS

rate is maintained in the convergence rate of Theorem 3 part (iii), the e¢ ciency loss associated

with employing the IV estimators ~�n and ~�n is small compared to the bene�t from an estimation
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procedure that gives rise to test statistics and CIs of general asymptotic validity. In the case when

j�nj ! 1 under C(iii), the limit distributions Y=X and !
�"
~Y =X are Cauchy.

4 Monte Carlo Simulations
In this section, we design a Monte Carlo exercise to study the �nite sample properties of the

IV estimators introduced in this paper and how they compare to alternative approaches. We �rst

discuss the instrument selection and provide a simple guide on how to implement the proposed

inference procedure in Section 4.1. We demonstrate that with the above instrument choice, our

procedure exhibits good small sample properties for autoregressive regimes covering the entire

range from stationarity to (oscillating) explosivity. In Section 4.2 we provide an illustration of

the failure of general asymptotic inference based on the OLS estimator in the explosive regions:

in particular, we show that misspecifying the variance of a single observation can have severe

consequences for the size and coverage rates of OLS-based inference that do not improve with the

sample size, both in the autoregressive and predictive regression models. On the other hand, we

demonstrate that the IV procedure of Theorems 1 and 2 continues to provide correct inference.

Next, we compare the �nite sample properties of our procedure to leading existing approaches: in

Section 4.3.1, we provide a comparison of our CIs in (24) for the AR parameter to Andrews and

Guggenburger (2014)�s procedure; in Section 4.3.2, we compare the size and power of our testing

procedure in (28) in the predictive regression setup to the procedure proposed by Elliott et al.

(2015). In both cases, we demonstrate that the IV procedure delivers: (i) correct size across all

autoregressive regimes considered, and (ii) superior power in all cases of roots in [�1; 1] (including
local-to-unity, near- and purely stationary regions) except for the case of exact unit root, where

the di¤erences in power are negligible. Crucially, our procedure also provides correct inference on

the right side of unity and on the left side of �1, in the local-to-unity, mildly and purely explosive
regions, where no existing alternative approach has general asymptotic validity.

4.1 Practical implementation and instrument selection
Practical implementation of our procedure requires a choice for '1n; '

�
1n; '2n and '

�
2n in (15)

for the instrument construction in (17). While theoretically, any values of '1n ! 1 belonging to

C+(i), '�1n ! �1 belonging to C�(i), '2n ! 1 belonging to C+(iii) and '�2n ! �1 belonging to
C�(iii) deliver correct asymptotic inference, �nite sample performance may vary considerably with

the choice for particular values. For simplicity and symmetry, we set '�1n = �'1n and '�2n = �'2n:
Choosing

'1n = 1� 1=nb1 ; '2n = 1 + 1=nb2 (45)

reduces the problem to selecting values for b1 and b2 in (0; 1) : We adopt a conservative approach:

(i) Remark 2 to Theorem 2 indicates that inference based on T �n (�n) su¤ers the worst �nite sample

distortion in the predictive regression case when �n = 1 with large correlation �"u between the

innovations "t and ut in (1) and (8)7; (ii) Theorem 3 shows that the power of the t-tests ~Tn (�n)

7When � = �1; such �nite sample distortions are not present since the oscillating behaviour of xt reduces the
order of magnitude of �xn and �z

�
1n, and, hence, the distorting e¤ect of the intercept, see Remark 2 to Theorem 2.

23



and T �n (�n) is always increasing with b1 and is increasing with b2 in the regions C(i)-C(ii) (in

C(iii) the exponential rate �nn in �n is independent of b2, so the choice of b2 has only a minor e¤ect

on power). Given (i) and (ii), we base our selection of b1 and b2 on the principle of selecting the

maximal values of b1 and b2 for which the size in the worst case scenario (i) is controlled. This

amounts to a two-dimensional grid search problem outlined below.

We consider a grid of values for b1 and b2 in (45) generated by (1)-(8) with a unit root �n = 1

and very strong positive and negative correlation �"u 2 f0:99;�0:99g. Tables B1 and B2 of

Appendix B contain the empirical size of the two-sided t-test based on T �n (�n) in (28) for testing

� = 0 for n = 1; 000 based on 10; 000 replications for various combinations of b1 and b2. The

power plots for the grid points can be found in Figure B1 of Appendix B and are increasing both

in b1 and b2: Our task is to select the largest values for b1 and b2; subject to the size being close

to the nominal 5%. Imposing a 5.99% threshold on empirical size for these most unfavourable

cases, our grid search procedure yields the following selection in (45): b1 = 0:85 and b2 = 0:7. We

recommend this choice for the implementation of Algorithm 1 and use it throughout the Monte

Carlo section and the empirical application in Section 5. In Section 4.3. we demonstrate that this

choice works well for all autoregressive speci�cations in both a PR and AR setup.

Implementation of our procedure can be summarised by the following algorithm.

� � Algorithm 1 ��
1. Given a sample for xt; compute the OLS estimator �̂n and the OLS-based residuals ût.

2. Select '1n; '
�
1n; '2n and '

�
2n (e.g. from (45) with the recommended b1 = 0:85 and b2 = 0:7),

compute �nz in (15) and build recursively the instrument ~zt in (17) initialising at ~z0 = 0.

3. Use the constructed instrument ~zt to compute the IV estimator ~�n in (21) for the AR setup,

or, given a sample for yt; compute the IV estimator �
�
n in (27) for the predictive regression setup.

4. Compute the IV-based t-statistic in (23) and the CI In (�n; �) of Theorem 1 for the AR

setup, or the IV-based t-statistic in (28) and the CI In (�
�
n; �) of Theorem 2 for the predictive

regression setup; conduct inference using N (0; 1) critical values.

� � � � � � � � � �

We �rst implement our choice of instrument in the predictive regression setup (8) along di¤erent

autoregressive regimes for xt in (1):
�n 2 {-1.06,-1.04,-1.02,-(1+10/n0.75),-(1+50/n),-(1+30/n),-(1+15/n),-1,-(1-15/n),-(1-30/n)

-(1-50/n),-(1-10/n0.75),-0.9,-0.7,-0.5, 0, 0.5, 0.7, 0.9, 1-10/n0.75 ,1-50/n,1-30/n,1-15/n, 1,

1+15/n,1+30/n, 1+50/n, 1+10/n0.75 , 1.02, 1.04, 1.06}, X0 = 0, � = �y = 0; (46)

"t � N
�
0; �2"

�
; ut � N

�
0; �2

�
; �" = � = 1; �"u 2 f�0:9;�0:45; 0; 0:45; 0:9g : (47)

For each speci�cation, we compute the empirical size of the 95% two-sided test statistic in (28)

based on 5,000 simulated samples for sample sizes n 2 f200; 500; 1000g. Throughout the entire
Monte Carlo section, we always use reduced8 sample sizes n 2 f100; 200; 500g for the explosive

8We do this for two reasons: (i) it facilitates comparison since the exponential rate of convergence for these
speci�cations implies extremely precise estimates with SEs of the range of 10�20 for n = 500, and (ii) it prevents
Matlab rounding such SEs to 0 (resulting to point CIs) without the need for committing excessive memory.
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speci�cations �n 2 �f1 + 50=n; 1 + 10=n0:75; 1:02; 1:04; 1:06g : Figures 1-3 display the rejection
probability of our test procedure in (28) under the null � = 0 for the di¤erent autoregressive re-

gions with 95% con�dence against the two-sided alternative � 6= 0 for di¤erent correlation between
the innovations �"u 2 f�0:9; 0; 0:9g : Figures 1-3 provide evidence that our procedure delivers sat-
isfactory empirical size throughout the di¤erent autoregressive speci�cations converging to the

nominal 5% as the sample size increases.

Appendix B contains two additional sets of results for moderate negative and positive correlation

�"u 2 f�0:45; 0:45g as well as the proportion of times each of the instruments is chosen throughout
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the di¤erent autoregressive speci�cations. As expected, the (oscillating) mildly explosive instru-

ment is never chosen in the stationary region C(i) even for small samples, and is chosen in the

(negative) pure unit root case around 33% of the time (since the OLS distribution in this case is

left-skewed with values below unity occurring with probability 2/3).

4.2 Invalidity of OLS in the explosive regions
In this section, we brie�y discuss the relative performance of OLS and our procedure in the

explosive regions (�1; 1) [ (1;1) and provide an illustration of the invalidity of OLS-based in-
ference even in large samples. The lack of central limit theory for the numerator of the OLS

estimators of �n and � implies that the asymptotic distribution of the t-statistic based on the

OLS is carried entirely by the last few observations for the innovations, and a change in the dis-

tribution of the last innovation in the sample, for example, distorts OLS-based inference even

asymptotically. We simulate data from the predictive regression model in (8), with "t � N (0; 1) ;

ut�1 � N (0; 1) for t = 1; :::; n � 1 and we draw the last observation of the innovations from

"n � N (0; �2") ; un�1 � N (0; �2) with �" = � = 3 instead. In the presence of CLT (as is the

case for our IV estimator), misspeci�cation of any �nite number of terms will vanish asymptot-

ically by virtue of uniform asymptotic negligibility (u.a.n.) implied by the CLT. In the absence

of u.a.n. and hence a CLT (as is the case with OLS), this type of misspeci�cation may a¤ect

the limit and invalidate inference. In Figure 4, we report the 90%, 95% and 99% coverage rates

of the IV and OLS estimators of �n respectively for di¤erent sample sizes (as in Section 4.1, we

work with the autoregressive speci�cations in (46) and reduced sample sizes for the explosive

processes). We compute the coverage rates as the proportion of time that the true �n �nds itself

in the 90%, 95% and 99% CIs implied by the IV and OLS respectively, based on 5,000 replications.
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From Figure 4, it is clear that the OLS su¤ers large �nite sample distortions in the local-to-unity

region, as well as in the (negative) mildly and purely explosive regions. For sample size n = 100;

the IV procedure is also a¤ected by this end-of-sample problem and this is expected since our

near-explosive instrument exhibits some explosive properties especially when n is small. How-

ever, as the sample size increases, the coverage rates of the IV procedure converge to the nominal

levels, as Theorem 1 suggests. The coverage rates of OLS for the mildly explosive speci�cation

�n = � (1 + 10=n0:75) also improve as expected (although very slowly). Crucially, for the purely
explosive DGPs, the OLS distortions do not improve even for larger samples. For example, when

�n = �1:06; the 90% OLS CI contains the truth 70% of the time irrespective of increases in the

sample size.

We �nd similar results in the predictive regression setup. In Figure 5, we report the rejec-

tion probability of the OLS under the null � = 0 against a two-sided alternative9 for the same

speci�cations and sample sizes. We present the rejection probability of the IV procedure for the

choice of instrument in Section 4.1 as well as two other choices of instrument, increasing �2 to

0:85 and 0:95 respectively. As it can be seen from Figure 5, the empirical size of the OLS for the

purely explosive regions is distorted and crucially the distortions deteriorate as the sample size

increases; the size of our procedure on the other hand converges to the nominal size as the sample

size increases, as suggested by the theoretical results of Theorem 2.

9The online Appendix B contains additional comparison for the corresponding one-sided rejection probabilities.
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4.3 Comparisons with alternative methods in the literature
4.3.1 Inference in the autoregressive model
In this section, we present a comparison of our procedure to current state-of-the-art methodol-

ogy in the literature of robust inference in autoregressions and predictive regressions for � 2 (�1; 1].
We �rst evaluate our proposed autoregressive CIs in (24) and we compare them to the procedure by

Andrews and Guggenberger (2014)10 (henceforth AG), which constructs the intervals by inverting

the OLS t-statistic, which under the null is asymptotically nuisance-parameter-free.

In Figures 6 and 7, we report the coverage rates and lengths of the 90%, 95% and 99% CIs

respectively for the IV estimator and AG procedure for �n for di¤erent autoregressive regions and

for di¤erent sample sizes. For the AG procedure, we use the symmetric two-sided intervals im-

posing homoskedasticity as we found these to perform best in terms of coverage especially in the

local-to-unity regions; Appendix B also contains the equal-tailed two-sided intervals of Andrews

and Guggenberger (2014). Figure 6 presents evidence that our IV-based CIs are comparable to

the CIs based on the AG procedure in [�1; 1], while also providing correct coverage for �n in
(�1;�1] [ [1;1) in the local-to-unity, mildly and purely explosive regions. In terms of inter-
val length, Figure 7 shows that our intervals are shorter11 than those of AG (which translates

into higher power) for all speci�cations except for the exact (positive and negative) unit root case

j�j = 1; the di¤erences in length when j�j = 1 are not large and become negligible for large samples.
10The Gauss code for the procedure was kindly provided by Patrik Guggenberger and translated into Matlab.
11This result also holds for the equal-tailed two-sided intervals of AG; see Figures B6 and B7 of Appendix B.
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4.3.2 Size and power comparison in the predictive regression model
Next, we evaluate the performance of the IV-based t-statistic in (28) in the predictive regression

setup (8) and we compare it to the one-sided test procedure by Elliott et al. (2015)12, which, in

the presence of a nuisance parameter, is nearly-optimal when the innovations of the model are

Gaussian; Zhou et al. (2019) and Zhou and Werker (2021) provide extensions of this near-e¢ cient

testing procedure to non-Gaussian, fat-tailed or heteroskedastic innovations.

We generate data from the predictive model in (8) for the speci�cations of (46) and (47). We

found that in the one-sided test setup, our choice of instrument works well in all but one scenario:

the case with strong negative correlation, where our choice for b1 and b2 leads to small-sample

oversizing in the pure unit root case. Since in all other cases, our choice of instrument from Section

4.1 delivers good size, we prefer not to repeat the selection exercise of Section 4.1, since selecting

a more conservative instrument would lead to power loss even in cases where there is no size issue.

Instead, we propose using the following adaptive t-statistic:
TAn (�n) = 1 f�̂"u � L \ �̂n � 0gTn (�n (�z1;t)) + 1 f�̂"u > L [ �̂n < 0gTn (�n (�z2;t)) (48)

where Tn (�n (�z1;t)) and Tn (�n (�z2;t)) are the t-statistics in (28) based on two di¤erent choices

for instruments �z1;t and �z2;t; �̂"u is the sample correlation coe¢ cient between the OLS residuals

ût and "̂t; �̂n is the OLS estimator for �n and L is a threshold level below which a more con-

servative instrument selection is triggered. In this way, we can resolve the size distortion in the

positive unit root case under strong negative correlation, without a¤ecting power in all other cases.

We set L = �0:7 and use the values b1 = 0:55 and b2 = 0:65 in (45) for the construction of the
conservative instrument �z1;t. For �z2;t we continue to use the choice of instrument from Section 4.1

12The Matlab code for the procedure was downloaded from Ulrich Müller�s website and some additional proce-
dures were kindly provided by Bo Zhou.
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with b1 = 0:85 and b2 = 0:7. In the case of �"u = �0:9 in Figure 10, we display the rejection
probability under the null (with 95% con�dence against the one-sided alternative � > 0) of both

the original choice of instrument and the new adapted procedure based on (48) to illustrate the

e¤ect of using the adaptive procedure.
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For all other cases, Figures 8-9, we display the rejection probability under the null based on the

adaptive instrument which is nearly identical to the original choice of instrument in Section 4.1

since the sample correlation coe¢ cient �̂"u almost always exceeds the threshold -0.7. Figures 11-

13 present the corresponding power curves 13. We apply the procedure by Elliott et al. (2015)

(EMW) in all regions for comparison, stressing that their procedure is not designed to work (and

13Appendix B contains additional results for moderate negative and positive correlation �"u = �0:45:
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hence it is invalid) outside (�1; 1].
There are several important conclusions from the size and power comparisons in Figures 8-13.

First, our adaptive procedure in (48) performs well in terms of empirical size in all correlation

cases and in all persistence regions for the regressor and, as the sample size increases, any small

sample distortions vanish. Second, we �nd that the EMW procedure never rejects the null to the

right of unity (when the null is true and when it is not), except for a few cases with a small sample;

for example in the -0.9 correlation case, its size reaches 40% in the case of �n = 1:02 when n = 100;

but the oversizing disappears as n increases. Surprisingly, we �nd that the EMW procedure never

rejects the null (even under the alternative) for stationary speci�cations with AR roots in (�1; 0] ;
where it is expected to be valid, since, to our knowledge, it is supposed to switch to OLS. For this

reason, in Figures 11-13, we only present power comparison for the cases �n > 0; since EMW has

zero power for any alternative for all cases �n � 0: For the regions �n � 0; our IV procedure has
power curves that are a near mirror image of the corresponding non-oscillating cases �n > 0:

For the cases �n 2 (0; 1] ; we reach a very similar conclusion to the one in the comparison with
Andrews and Guggenberger (2014) in Section 4.3.1 in terms of power: namely, our procedure is

always more powerful than EMW in all autoregressive speci�cations (stationary, near-stationary

and left-side of local-to-unity regions) except in the case of an exact unit root. The di¤erences in

power in the unit root case are small particularly when the correlation in the innovations is moder-

ate. Moreover, in the purely stationary speci�cations, the power gains of our IV procedure relative

to EMW are very large even for large samples. This is another surprising feature of the EMW

procedure, since, to our knowledge, it is expected to switch to OLS in these regions, and hence

should be asymptotically equivalent to our IV procedure, which is also asymptotically equivalent

to OLS in these cases. Crucially, our procedure provides correct inference extending to all cases
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�n � 0; including seasonal (near) unit root and oscillating (mildly) explosive processes as well as
to the right of unity (the right-side of local-to-unity, mildly explosive and pure explosive regions)

for which no alternative approaches are valid.

5 Inference in a linearised SIR model
In this section, we apply the procedure proposed in the paper to the linearised SIR model (11)

on Covid-19 data in order to construct CIs for the parameters �; 
; � and for the BRN r0 across

a panel of countries. As discussed in Section 2.3, the triangular system in (11) implies that the

dynamics of the number of infections follows an AR(1) process with root � = 1+ �� 
 � �; which
in the early stages of the Covid-19 outbreak, before any government intervention, is expected to

be greater than unity (since r0 > 1 implies � > (
 + �)), and the aim of containment policies

was to reduce r0 below unity. After the Covid-19 outbreak, there has been a lot of interest

in epidemic modelling in econometrics, including versions of the SIR model (e.g., Liu, Moon

and Schorfheide (2021) perform a fully parametric Bayesian estimation of a piece-wise linear

approximation of a nonlinear SIR model, Li and Linton (2021) �t a nonstationary quadratic time

trend model on the number of infections). Linearising the model at the DFE reveals the inherently

nonstationary dynamics of the series at the outbreak and we stress that: (i) inference based on

standard procedures such as OLS/MLE in (11) is only valid when � < 1 corresponding to the case

r0 < 1 which is not empirically relevant at the outbreak (since it implies absence of an epidemic)

but may become relevant after government intervention, (ii) when � > 1, the series for It exhibit

explosive behaviour with exponential growth and standard semi-parametric procedures such as

OLS do not provide valid inference (e.g. CIs), unless i.i.d. Gaussianity assumption is imposed on

u1t; and (iii) when � is in vicinity of unity (i.e. when the contract rate � is approximately equal

to the removal rate 
 + �), OLS/MLE procedures involve nonstandard unit root or local-to-unity

asymptotics and so standard inference is invalid. Crucially, not only inference in the equation

for It but also in the equations for �Rt and �Dt (which resemble predictive regressions with

regressor It), and hence inference on 
 and �, is a¤ected by the level of persistence of It; and

consequently, OLS/MLE inference on 
 and � is only valid in the case r0 < 1. On the other

hand, the IV procedure proposed in this paper remains valid for all parameter regions for r0 and

without distributional or homogeneity assumptions of the innovations: Epidemiologists consider

r0 the key parameter for determining whether an epidemic is controllable and for understanding

its transmission mechanism and, therefore, being able to construct CIs with correct coverage

regardless of the value of r0 2 (0;1) and without distributional assumptions is of practical
importance for policy makers.

We use a dataset on daily number of con�rmed, recovered and deceased individuals obtained

from the John Hopkins University database (https://github.com/CSSEGISandData/COVID-19)

for Italy, Germany, Austria, Denmark, Israel and South Korea. The choice of countries is moti-

vated by the availability and quality of series on the number of recovered (e.g. for many countries,

recovered series are not reported, of poor quality or not updated at some point). We de�ne the
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number of active infections as the number of con�rmed cases minus the number of recovered cases

and deaths at each period. Our sample spans from 22/01/2020 until 04/08/202114. For each

country, we start our sample from the date of the �rst reported death; and we split the remainder

of the sample into four subperiods15 (�rst reported death: 24/07/2020; 25/07/2020:26/11/2020,

27/11/2020:31/03/2021, 01/04/2020:04/08/2021). Our choice to conduct inference over subsam-

ples is motivated by the unlikelihood that the model�s parameters have remained constant over

time; aggressive government policies aimed at containing the early epidemic�s dynamics aimed at

either reducing the number of new infections through imposing lockdowns and social distancing

measures (reducing �); through improved medical response to the outbreak: hospital bed availabil-

ity, improved treatment (increasing 
; reducing �); or later on, through vaccination by reducing

the proportion of susceptibles S0=N: We construct the CIs for �; 
,� and r0 for each country and

subsample, using the IV CIs in Corollary 1. For the instrument construction, we use (45) with

b1 = 0:85 and b2 = 0:7; which we show work well for all AR regions in the Monte Carlo exercise.

Figure 14 presents the IV estimates and 95% CIs for r0, �; �; and 
 for each country and sub-

sample. There are three main conclusions from our empirical analysis. First, the death rate has

considerably fallen over time in all countries, and the recovery rate has increased over time for

most countries; both due to availability of better medical treatment for the virus (the overall e¤ect

of those two con�icting e¤ects on the basic reproduction number r0 depends on the relative change

of �+
). Second, the contract rate is constant over time for countries like Germany and Denmark,

but increasing over time (especially during the winter of 2021) for Italy, Israel and Austria. Third,

we �nd very di¤erent values for the basic reproduction number across countries: r0 is relatively

constant over time for countries like Denmark, South Korea, Austria and Germany and while its

14Rt series after 08/2021 are unavailable. In late 2021, many re-infections are observed due to mutations, so an
SIS model (with probability of re-infection) may be more appropriate for analysis.
15To avoid arbitrary sample split, we use the same dates for all countries with roughly the same number of

observations in each subsample. Our results are robust to alternative sample splits.
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value is usually above unity, one is most of time included in the 95% CI. On the other hand, for

Italy, we �nd that r0 falls below unity in the period April-August 2021 while for Israel (whose

experience has been very di¤erent due to an early vaccination programme), r0 actually surges at

the summer of 2021, when cases of re-infection begin to be reported.

While the linearised SIR model in (11) is a very simple and stylised model and the Covid-19

data have been shown to su¤er from serious measurement errors and omissions, we make use of

the basic SIR model to illustrate the usefulness and empirical relevance of the uniform inference

procedure proposed in this paper. Its main advantage is that it gives rise to CIs for the parameters

of SIR-type models with correct coverage rates in both highly infectious and remissive periods, a

property of crucial empirical relevance as this section demonstrates: r0 may take values in (0; 1);

(1;1) as well as values in close vicinity to unity depending on the various stages of the epidemic.

6 Conclusion
The paper proposes a uni�ed, distribution-free framework for inference in both autoregressive

and predictive regression models, when the regressor�s autoregressive root is in (�1;1) : This
includes: (i) stable and near-stable processes, (ii) (seasonal) unit root and local-to-unity regressors,

and (iii) regressors that exhibit stochastic exponential growth (e.g. explosive and mildly explosive).

The uni�ed inference is based on a novel estimation method that employs an instrumental

variable approach with an arti�cially constructed instrument with a data-driven combination of a

(possibly oscillating) near-stationary and near-explosive root. The resulting IV estimators for the

AR parameter in the autoregression and the slope parameter in the predictive regression framework

are both shown to have a mixed-Gaussian limit distribution under all persistence regimes, and

independently of the distribution of the innovations and the initial condition. Consequently, the

t-statistic based on the new estimators is asymptotically standard normal with uniform size over

arbitrary closed subintervals of (�1;1) and gives rise to asymptotically correctly-sized CIs. To
our knowledge, this is the �rst method that delivers central limit theory and, consequently, general

distribution-free asymptotic inference with a regressor with autoregressive root in (�1;�1) [
(1;1) and achieves uniform asymptotic inference over the entire autoregressive range (�1;1).
We demonstrate that our inference procedure exhibits very good �nite sample properties in

an extensive Monte Carlo study and compares favourably to existing procedures for inference

in both autoregressions (Andrews and Guggenberger (2014)) and predictive regressions (Elliott

et al. (2015)) in their parametric validity range (�1; 1] while providing correct inference on
(�1;�1] [ (1;1), where no existing alternative approach has general asymptotic validity.
Finally, we show that the basic SIR model for modelling epidemics�dynamics, upon linearisa-

tion around DFE, reveals that the number of active infections evolves as a �rst order autoregressive

process with an explosive root whenever the basic reproduction number is above unity. We employ

our procedure to model early dynamics of the Covid-19 epidemic across countries and construct

CIs for the model�s parameters without restricting the parameter space, i.e. without a priori

knowledge of whether the epidemic is in a controllable or uncontrollable stage.
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Appendix A
This Appendix contains the mathematical proofs of Theorems 1-3 of the paper. Some auxiliary

results, as well as the proofs of Lemmata 1-6 and Corollary 1, can be found in Appendix B.

Proof of Theorem 3. Under C+(i)-C+(ii) of Assumption 1b,

n1=2
�
1� �2n'

2
1n

��1=2
(~�1n � �n) =

n�1=2 (1� �2n'
2
1n)

1=2
(
Pn

t=1 ~z1t�1ut � n�z1n�1�un)

n�1 (1� �2n'
2
1n)
Pn

t=1 xt�1~z1t�1
with Lemma 3(i) and �un = Op

�
n�1=2

�
implying that

n�1=2
�
1� �2n'

2
1n

�1=2
n�z1n�1�un = Op

�
n�1=2

�
1� �2n'

2
1n

��1=2�
+Op

�
n�1

�
1� '21n

��1�
= op (1)

and, similarly for ~�1n, n
�1=2 (1� �2n'

2
1n)

1=2
n�z1n�1�"n = op (1) : By Lemma 3(ii), the common de-

nominator of �n (~�1n � �n) and �n
�
~�1n � �

�
is asymptotically equivalent to ~	n in (36) we obtain,

under C+(i)-C+(ii),

n1=2
�
1� �2n'

2
1n

��1=2 h
~�1n � �n;

~�1n � �
i
= [1 + op (1)] ~	

�1
n

h
~Un (1) ; ~U

"
n (1)

i
(A.1)

where ~Un (�) is de�ned as Un (�) in Lemma 5 with z1t�1 replaced by ~z1t�1 (and et = ut under

Assumption 2) and ~U "
n (�) as ~Un (�) with et replaced by "t.

Under C+(i) and Assumption 2, ut = et and � = 0 so ~	 (c) = �2 and ~Un (1) !d N (0; �4) by

Lemma 3(iii), so substituting into (A.1) yields

n1=2
�
1� �2n'

2
1n

��1=2
(~�1n � �n)!d N (0; 1) : (A.2)

For ~�n under C+(i) and Assumption 4, ~	 (c) = �2 + 2�� by Lemma 3(i) and ~U "
n (1)!d N (0; v2")

with v2" = (�
2 + 2��)�2" by Lemma 3(iii) with the martingale di¤erence et replaced by "t, giving

n1=2
�
1� �2n'

2
1n

��1=2 �~�1n � �
�
!d N

�
0; �2"=

�
�2 + 2��

��
: (A.3)

Under C�(i) and Assumption 4, ~	n in (36) satis�es ~	n = ~	+n + op (1), where

~	+n =
1

n

�
1� �2n

��'�1n��2� nX
t=1

x+t�1~z
+
0t�1 = �2 + 2 j�nj�+n + op (1)

by Lemma 3(i) and (B.12), where, by Lemma 2.2(i) of MP(2020),

�+n = n�1
nX
t=1

x+t�1 (�1)
t ut !p

1X
k=1

j�jk�1 (�1)k 
u (k) = �� (A.4)

since j�j = ��; we conclude that ~	+n !p �
2 � 2 j�j� = �2 + 2��. We now prove part (i) of the

theorem for ~�n under C(i): by Lemma 2(i),

�n (~�n � �n) = �n (~�1n � �n)1F+n + �n
�
~��1n � �n

�
1F�n + op (1) (A.5)

under Assumption 4. When �n ! 1, Lemma 2(iii) implies that �n (~�n � �n) = �n (~�1n � �n) +

op (1)!d N (0; 1) by (A.2). When �n ! �1, Lemma 2(iv) and Lemma 6 imply that
�n (~�n � �n) = �n

�
~��1n � �n

�
1F�n + op (1) = ��n

�
~�+1n � j�nj

�
+ op (1)

since �̂+n !p j�nj = 1 implies that 1F++n
!p 1. From its de�nition in Lemma 6, ~�+1n is an IV

estimator generated by the (regular) C+(i) autoregression (41) and the regular near-stationary
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instrument ~z+0t in in (42); hence, (A.2) implies that �n
�
~�+1n � �n

�
!d N (0; 1), showing that

�n (~�n � �n) !d N (0; 1) when �n ! �1. To complete the proof of part (i) for ~�n, it remains to
deal with the stationary case �n ! � 2 (�1; 1), where under Assumption 2, �n � n1=2 (1� �2n)

�1=2,

1F+n !p 1f��0g and 1F�n = 1F++n
!p 1f�<0g by Lemma 2 and the consistency of �̂n; (A.5) and

Lemma 6 then yield

�n (~�n � �n) = �n (~�1n � �n)1f��0g � �n
�
~�+1n � j�nj

�
1f�<0g + op (1)!d N (0; 1)

since �n (~�1n � �n) !d N (0; 1) and �n
�
~�+1n � j�nj

�
!d N (0; 1) as established above for the reg-

ular C+(i) autoregression case. This completes the proof of part (i) for ~�n. The proof of part

(i) for ~�n follows a similar argument: since ~	
+
n !p �

2 + 2��, (A.3) holds with
�
'1n;

~�1n

�
re-

placed by
���'�1n�� ; ~�+1n� and the same argument then applies by replacing �~�n; ~�1n; ~��1n; ~�+1n� by�

~�n; ~�1n;
~�
�
1n;
~�
+

1n

�
. When �n ! � 2 (�1; 0) Lemma B1(iv) implies that �̂n � � = �

�
�̂+n � j�nj

�
+

op (1) = �= (�2 + 2��) ; i.e. �̂n !p �� := � + �= (�2 + 2��) under Assumption 4, which implies

that 1F+n !p 1f���0g and 1F�n = 1F++n
!p 1f��<0g. Hence,

�n

�
~�n � �

�
= �n

�
~�1n � �

�
1f���0g � �n

�
~�
+

1n � �
�
1f��<0g + op (1)!d N

�
0; �2"=

�
�2 + 2��

��
since both �n

�
~�1n � �

�
and �n

�
~�
+

1n � �
�
have the same limit distribution given in (A.3). This

completes the proof of part (i) of the theorem.

We proceed with the proof under C+(ii)-C+(iii). R1n = op (1) in Lemma B2(iv) implies

that ('22n � 1)'�n2n jn�z2n�1�un � �un
Pn

t=1 z2t�1j = op (1). Since ('22n � 1)'�n2n n�1=2
Pn

t=1 z2t�1 =

Op(n
�1=2 ('22n � 1)

�1=2
), we conclude that ('22n � 1)'�n2n (n�z2n�1�un) = op (1). By a similar ar-

gument for ~�2n: ('
2
2n � 1)'�n2n (n�z2n�1�"n) = op (1). The above and Lemma 4(i) imply that the

numerators of �n (~�2n � �n) and �n(~�2n � �) are asymptotically equivalent to�
'22n � 1

�
'�n2n [

Pn
t=1 ~z2t�1ut;

Pn
t=1 ~z2t�1"t] = [YnZn; Y

"
nZn] + op (1) : (A.6)

The approximation for R1n in Lemma B2(iv) and Lemma B1(i) give

n (�n'2n � 1) ��1n ��1n;z�xn�1�z2n�1 = [1 + op (1)]
�n
n
��1n;z (�n'2n � 1)

Pn
t=1 z2t�1

��1n
�n

Pn
j=1 xj�1 (A.7)

which is op (1) under C+(iii): Op (�n=n) if (�n � 1) = ('2n � 1) ! 0 and Op(('2n � 1)
�1 =n) if

('2n � 1) = (�n � 1) = O (1). Under C+(ii), (A.7) becomes Znn�3=2
Pn

j=1 xj�1 + op (1) by (B.41),

showing that (A.7) contributes asymptotically under C+(ii). Combining the above with the ap-

proximation of s�1n
Pn

t=1 xt�1z2t�1 in Lemma 4(i), we obtain that the common denominator of

�n (~�2n � �n) and �n
�
~�2n � �

�
satis�es

s�1n
Pn

t=1 xt�1z2t�1 = ZnXn + op (1) ; Xn := Xn � n�3=2
Pn

j=1 xj�1 (A.8)

under C+(ii)-C+(iii) and Assumption 4, where Zn and Xn are de�ned in (39) and (40). Recalling

the de�nition of sn in (38) and noting that �n'2n � 1 � '2n � 1 under C+(ii), the normalisation
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under C+(ii)-C+(iii) becomes sn=(('22n � 1)
�1
'n2n) = �n in (43). Combining (A.8) and (A.6),

('22n � 1)
1=2
�n

�n'2n � 1

h
~�2n � �n;

~�2n � �
i
=

1

Xn

[Yn; Y
"
n ] + op (1) (A.9)

under C+(ii)-C+(iii) and Assumption 4. We now prove part (iii) of Theorem 3: under C+(iii),

Xn = Xn+op (1) and applying parts (ii) and (iii) of Lemma 4 and the continuous mapping theorem

to (A.9) we obtain

�n (~�2n � �n)!d Y=X and �n

�
~�2n � �

�
!d Y

"=X (A.10)

where X =d N (0; !2) when �n ! 1 and X = X1 when �n ! � > 1, so that X 6= 0 a:s:

under C+(iii), X is independent of (Y; Y ") and Y =d N (0; �2), Y " =d N (0; �2") by Lemma 4.

Under Assumption 2, !2 = �2, so Y=X =d MN (0; �2=X2); under Assumption 4, Y "=X =d

MN (0; �2"=X
2). Thus, (A.10) gives the correct limit distributions for C+(iii), the theorem under

C+(iii) follows from the asymptotic equivalences �n (~�n � ~�2n) = op (1) and �n
�
~�n � ~�2n

�
= op (1)

by applying parts (ii) and (iii) of Lemma 2 to (21) and (22). Under C�(iii), parts (ii) and (iv) of

Lemma 2 imply that

�n

h
(~�n � �n) ;

�
~�n � �

�i
= �n

h�
~��2n � �n

�
;
�
~�
�
2n � �

�i
1 �F�n + op (1)

= ��n
h�
~�+2n � j�nj

�
;
�
~�
+

2n � �
�i
1 �F++n

+ op (1)

by Lemma 6. Since 1 �F++n
!p 1 by Lemma 2, and ~�+2n is generated by the regular C+(iii) au-

toregression (41) and the regular mildly explosive instrument z+2t in (42), (A.10) implies that

�n (~�n � �n) !d �Y=X =d Y=X and �n
�
~�n � �

�
!d �Y "=X =d Y

"=X by the symmetry of

MN (0; �2=X2) andMN (0; �2"=X
2) around 0. This proves part (iii) of the theorem.

We proceed to prove part (ii) of the theorem under Assumption C+(ii). In the notation of

(A.1) and Lemma 5,
��� ~Un (1)� Un (1)

��� = op (1) by the approximation for r1n of Lemma B2(ii) and

Lemma 3.2(i) of Magdalinos and Phillips (2020). Using Lemma 2(iii) and combining (21), (A.1)

and (A.9) and recalling (43) and the above approximation for ~Un (1), we obtain

�n (~�n � �n) = n1=2
�
1� '21n

��1=2
(~�1n � �n)1F+n + 2n

1=2
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(~�2n � �n)1 �F+n + op (1)

=
Un (1)
~	n

1Fn +
Yn (1)

Xn

1 �Fn + op (1) ; (A.11)

where Un (�) and Yn (�) are de�ned in Lemma 5 (with ut = et under Assumption 2) and the last line

follows since
��1F+n � 1Fn�� !p 0 and

��1 �F+n � 1 �Fn�� !p 0 by Lemma 2(iii). ~	n in (36), n�1=2xn; 1Fn

and 1 �Fn are functionals of Bn (s) = n�1=2
Pbnsc

t=1 ut, on D [0; 1], so the functional CLT of Lemma 5

on [Un (s) ; Bn (s) ; Yn (s)] and the continuous mapping theorem imply that
Un (1)
~	n

1Fn +
Yn (1)

Xn

1 �Fn !d
U (1)

!2	� (c)
1Fc +

Y

!	+ (c)
1 �Fc (A.12)

since, by Lemma 3(i), ~	n !d
~	 (c) with �2 + 2�� = !2 under C+(ii), ~	 (c) = !2	� (c) on

the event Fc and 2
�
Jc (1)�

R 1
0
Jc (r) dr

�
= 2!	+ (c) on the event �Fc. The continuous mapping
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theorem is applicable to (A.12) because x = 0 is the only discontinuity point of the function

x 7! 1(�1;0] (x) and P (Kc + c = 0) = 0 since Kc in (35) is a continuously distributed random

variable for all c 2 R. Denoting � := [��2U (1) ; ��1Y ]0, Lemma 5 implies that � is independent
of FB = � (B (s) : s 2 [0; 1]) and � =d N (0; I2). Since the random variables Jc (1), 	(c), 1Fc and

1 �Fc are FB-measurable (as non-stochastic functionals of B (r) on D [0; 1]) the independence of �
and FB implies the independence of the random vectors � and

h
Jc (1) ; ~	 (c) ;1Fc ;1 �Fc

i0
. Under

Assumption 2, !2 = �2 and we conclude that the limit in (A.12) is given by
h

1
	�(c)

1Fc ;
1

	�(c)
1 �Fc

i
�
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�
0; 1

	2�(c)
1Fc +

1
	2+(c)

1 �Fc

�
distribution as required by the theorem for �n (~�n � �n). For

�n

�
~�n � �

�
, the same argument applies with ~Un (s) and Yn replaced by ~U "

n (s) and Y
"
n in (A.11);

de�ning ~Un (s) and Y "
n (s) as Un (s) and Yn (s) with et replaced by "t, Lemma 5 implies that

�n

�
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�
!d

~U (1)
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!	+ (c)
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�
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	� (c)
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1

	+ (c)
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~�

where ~� =d N (0; I2), which yields the limit distribution under C+(ii).

Under C�(ii), Lemma 2 (iv) and Lemma 6 imply that

�n (~�n � �n) = �n
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1F�n + �n
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+ op (1) (A.13)

Now ~�+1n =
Pn

t=1 x
+
t ~z

+
0t�1=

Pn
t=1 x

+
t�1~z

+
0t�1 is an IV estimator generated by the (regular) C+ (ii)

autoregression (41) with � = 0 and the regular instrument ~z+0t in (42) with denominator satisfying

~	+n = ��2n
Pn

t=1 x0t�1~z0t�1 + op (1) = 2
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1� j�nj

��'�1n��� 1nPn
t=1 x
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+
0t�1 + op (1)

= �2 +
1
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x+20n + 2

1

n

Pn
t=1 z

+
1t�1 (�1)

t ut + op (1) (A.14)

with z+1t =
��'�1n�� z+1t�1 + (�1)t ut, by combining (B.9) and (B.12) in the proof of Lemma 3 applied

to the recursions for x+t and ~z
+
0t in (41) and (42). Hence, (A.11) and (A.12) imply that

n1=2
�
~�+1n � j�nj

�
(1�

��'�1n��2)1=2 1F++n
+
2n1=2 (~�2n � j�nj)
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��'�2n��2 � 1)1=2 1 �F++n

=
U+n (1)
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1Fn +
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n (1)

n�1=2x+n
1 �Fn + op (1) (A.15)

U+n (1) = n1=2(1�
��'�1n��2)1=2Pn

t=1 z
+
1t�1 (�1)

t ut, Y +
n (1) = (

��'�2n��2�1)1=2Pn
t=1

��'�2n���(n�t)�1 (�1)t ut;
the simpli�cation of the indicator functions on the right of (A.15) follows from

��1F++n
� 1Fn

��!p 0

and
��1 �F++n

� 1 �Fn
�� !p 0 in view of Lemma 2(iii). By a Lindeberg-type FCLT (e.g. Theorem 3.33

of Jacod and Shiryaev (2003)) n�1=2
Pbntc

j=1 (�1)
j uj = C (1)n�1=2

Pbntc
j=1 (�1)

j ej + op (1)) B+ (t)

where B+ (�) is a Brownian motion with variance !2 under Assumption 4 and, since n (1� j�nj) =
n (1 + �n)! �c by Assumption 1b, n�1=2x+bntc )

R t
0
ec(t�s)dB+ (s). Since fB+ (t) =d B (t) : t 2 [0; 1]g

and n�1
Pn

t=1 z
+
1t�1 (�1)

t ut !p �� by (A.4), we conclude by (A.14) that ~	+n !d �
2�2�+Jc (1)2.

Under Assumption 2, � = 0 and applying Lemma 5 to the right side of (A.15) and substituting
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into (A.13) we conclude that

�n (~�n � �n)!d �
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��2U (1)
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21Fc +
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Wc (1)
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�
=d MN

�
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1 +Wc (1)

2��2 1Fc +Wc (1)
�2 1 �Fc

�
by symmetry of a centred mixed Gaussian distribution around 0. The proof for ~�n under Assump-

tion 4 follows a similar argument with 	� (c) = �2 � 2� + Jc (1)2.
It remains to prove that �n

�
~�n � ��n

�
!p 0; since �

�
n =

~�n on the event �Fn [ f�̂n < 0g

by construction, it is enough to show the result under C+(i)-C+(ii): �n
�
~�1n � ��1n

�
!p 0 with

�n = n1=2 (1� �2n'
2
1n)

�1=2. From the de�nitions in (22) and (27)

�n

�
~�1n � ��1n

�
= ��1n xn�z1n�1

�
��2n

Pn
t=1 xt�1~z1t�1

��1
�̂"u�̂"=!̂u;

so it is enough to show that ��1n xn�z1n�1 !p 0. By Lemma B2(iii) and xn = Op(�
1=2
n ), xn�z1n�1 =

Op((1� �2n'
2
1n)

�1
); ��1n (1� �2n'

2
1n)

�1
= n�1=2 (1� �2n'

2
1n)

�1=2 ! 0 completes the proof.

Proof of Theorem 1 and Theorem 2. For i 2 f1; 2g, denote 	in = ��2n
Pn

t=1 xt�1~zit�1

and � in =
�
��2n

Pn
t=1 ~z

2
it�1
��1=2

��1n
Pn

t=1 ~zit�1vt, and by �
�
in and 	

�
in the oscillating counterparts

of � in and 	in with ~zit�1 replaced by ~z
�
it�1, where vt := ut=� for ~Tn (�n) and vt := "t=�" for

~Tn (�n). By using (18) and �̂n !p �, �̂" !p �" we obtain that ~Tn (�n) = [1 + op (1)]Tn, and

~Tn (�n) = [1 + op (1)]Tn where

Tn = T1n1F+n + T�1n1F�n + T2n1 �F+n + T�2n1 �F�n ; Tin =
j	inj
	in

� in T
�
in =

��	�in��
	�in

��in i 2 f1; 2g : (A.16)

Proving the more general result Tn !d N (0; 1) for any innovation sequence (vt) satisfying As-

sumption 2 with EFt�1 (v2t ) = 1 a:s: and xt generated by (1) with innovations (ut) satisfying

Assumption 4 will establish the N (0; 1) asymptotic distribution of both ~Tn (�n) under Assump-

tion 2 and ~Tn (�n) under Assumption 4.

We �rst prove that Tn !d N (0; 1) under the stronger Assumption 1b and then we employ

Lemma 1 to extend the validity of the theorem under Assumption 1a. Under C(i), both 	1n

and 	�1n = ~	+n + op (1) converge in probability to �2 + 2�� (Lemma 3(i) for 	1n and (A.4) for

	�1n), and both �1n and �
�
1n converge in distribution to a N (0; 1) (by Lemma 3 (ii) and (iii) with

�2e = EFt�1 (v2t ) = 1 for �1n and by (B.23), Lemma 6 and Lemma 3(ii) since r�2n = op (1) in Lemma

B2(ii) and
Pn

t=1 ~z
�2
0t�1 =

Pn
t=1 ~z

+2
0t�1 for �

�
1n). Lemma 2 implies that: under C(i) with � = 1,

Tn = T1n + op (1) = (1 + op (1)) �1n !d �1 and under C(i) with � = �1, Tn = T�1n + op (1) =

(1 + op (1)) �
�
1n !d �1, with �1 =d N (0; 1) as required. To complete the proof under C(i), we need

to show that Tn !d N (0; 1) when �n ! � 2 (�1; 1), in which case �̂n !p �� := �+�= (�2 + 2��)

under Assumption 4 and Lemma 2 implies that

Tn = T1n1F+n + T�1n1F�n + op (1) = (1 + op (1))
�
�1n1 f�� � 0g+ ��1n1 f�� < 0g

�
!d (1 f�� � 0g+ 1 f�� < 0g) �1 =d N (0; 1) :
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Under C(iii), Lemma 2 implies that Tn = T2n + op (1) when � � 1 and Tn = T�2n + op (1) when

� � �1; By Lemma 4, T2n = (1 + op (1)) (jXnj =Xn)Yn (v) with

Yn (v) =
�
'22n � 1

�1=2Pn
t=1 '

�(n�t)�1
2n vt !d �2 =d N (0; 1) (A.17)

from the convergence Yn !d Y with !2 = 1. Since [Xn; Yn (v)]!d [X; �2] where X 6= 0 a:s: and X
is independent of �2, T2n !d sign (X) �2 =d N (0; 1). By R�4n = op (1) in Lemma B2(iv), (B.23),

(B.24) and
Pn

t=1 z
�2
2t�1 =

Pn
t=1 z

+2
2t�1 we obtain

T�2n = �
��Pn

t=1 x
+
t�1z

+
2t�1
��Pn

t=1 x
+
t�1z

+
2t�1

 
nX
t=1

z+22t�1

!�1=2 nX
t=1

z+2t�1 (�1)
t vt + op (1) = �

jX+
n j

X+
n

Y +
n (v) + op (1)

with X+
n de�ned as Xn in (40) with (�n; ut) replaced by

�
j�nj ; (�1)

t ut
�
and Y +

n (v) de�ned as

Yn (v) in (A.17) with ('2n; vt) replaced by
���'�2n�� ; (�1)t vt� satisfying Y +

n (v) !d �
+
2 =d N (0; 1)

by (A.17). Using Lemma 4 as in the C+(iii) case yields T�2n !d sign (X) �
+
2 =d N (0; 1).

Under C+(ii), de�ning Ûn (�) and Ŷn (�) in the same way as Un (�) and Yn (�) in Lemma 5 with
ut replaced by vt, Lemmata 2, 3, 4 and 5 give

Tn = !�1
����~	n��� =~	n� Ûn (1)1F+n + (jXnj =Xn) Ŷn (1)1 �F+n + op (1)!d Tc (A.18)

where Tc := sign (	1) �11Fc + sign (	2) �21 �Fc, 	1 = !2 + Jc (1)
2 � 2Jc (1)

R 1
0
Jc (r) dr; 	2 =

Jc (1) �
R 1
0
Jc (r) dr and �1; �2 =d N (0; 1) with �1 independent of (	1; Fc) and �2 independent of�

	1; �Fc
�
. Since 	1 and 	2 are continuously distributed 	1	2 6= 0 a:s:. By independence of �1

and (	1; Fc) and the fact that ��1 =d N (0; 1) we obtain

P (�1sign (	1) � x; Fc) = P (�1 � x; Fc;	1 > 0) + P (��1 � x; Fc;	1 < 0)

= P (�1 � x)P (Fc;	1 > 0) + P (��1 � x)P (Fc;	1 < 0)

= � (x) [P (Fc;	1 > 0) + P (Fc;	1 < 0)] = � (x)P (Fc) :

The above argument also gives P
�
�2sign (	2) � x; �Fc

�
= �(x)P

�
�Fc
�
, so the distribution function

of the limit Tc in (A.18) is given by

P (Tc � x) = P (�1sign (	1) � x; Fc) + P
�
�2sign (	2) � x; �Fc

�
= �(x)

�
P (Fc) + P

�
�Fc
��
= �(x) :

Under C�(ii), (A.18) continues to hold with Xn; ~	n; Ûn (1) ; Ŷn (1) ; F
+
n replaced by n�1=2x+n , ~	

+
n ,

Û+n (1), Ŷ
+
n (1), F

�
n , de�ned in (41), (A.14) and Û+n (1), Ŷ

+
n (1) are de�ned in (A.15) with ut

replaced by vt. Since 1F�n !d 1Fc by Lemma 2(iv), the argument employed under C+(ii) continues

to apply with 	1 and 	2 replaced by 	+1 = �2 � 2� + Jc (1)
2 and 	+2 = Jc (1) and shows that

T+c := sign
�
	+1
�
�11Fc + sign

�
	+2
�
�21 �Fc =d N (0; 1).

The above argument proves that Tn in (A.16) satis�es Tn !d N (0; 1) for any (vt) satisfying

Assumption 2 with EFt�1 (v2t ) = 1 a:s: under Assumption 1b, when (�n)n2N in (1) belongs to one

of the autoregressive classes C(i)-C(iii) of Assumption 1b.

Now suppose that (�n)n2N in (1) satis�es Assumption 1a and consider an arbitrary subsequence
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�
�kn
�
n2N of (�n)n2N and (Tkn)n2N of (Tn)n2N. By Lemma 1, there exists a further subsequence�

�mn

�
n2N of

�
�kn
�
n2N satisfying Assumption 1b; as a result,

�
�mn

�
n2N belongs to one of the classes

C(i)-C(iii) and the preceding argument shows that Tmn !d N (0; 1). We conclude that for any

subsequence (Tkn)n2N of (Tn)n2N there exists a further subsequence (Tmn)n2N of (Tkn)n2N such that

Tmn !d N (0; 1); but this implies that the entire sequence (Tn)n2N satis�es Tn !d N (0; 1).

Using the argument following (A.16), we conclude that ~Tn (�n)!d N (0; 1) under Assumptions

1a and 2-3 and ~Tn (�n)!d N (0; 1) under Assumptions 1a and 3-4. To prove T �n (�n)!d N (0; 1),

we �rst show that ~Tn (�n) � T �n (�n) !p 0 under Assumption 1b. Since T �n (�n) = ~Tn (�n) on the

event �Fn[f�̂n < 0g, it su¢ ces to show that ~T1n�T �1n !p 0 (in the notation of (A.16)) under C(i)-

C(ii) of Assumption 1b. Since n�z21n = op
�
n (1� �n'1n)

�1� = op (�
2
n) by Lemma B2(iii), the denom-

inator of T �1n in (28), v
2
1n :=

Pn
t=1 ~z

2
t�1�n�z21;n�1

�
1� �̂2"u

�
1Fn, satis�es �

�2
n

�Pn
t=1 ~z

2
1t�1 � v21n

�
!p 0.��� ~T1n � T �1n

��� � 1

�̂"

����2n Pn
t=1 xt�1~z1t�1

�� [�n ���~�1n � ��1n

��� (��2n Pn
t=1 ~z

2
1t�1)

�1=2 + op (1)] = op (1)

since �n
���~�1n � ��1n

��� !p 0 by Theorem 3 and the other sample moments are Op (1) by Lemma

3. This proves that T �n (�n) !d N (0; 1) under Assumption 1b and the subsequential argument

employed on Tn shows that T �n (�n)!d N (0; 1) under Assumption 1a.

Next, we prove part (ii) of Theorem 1 on the uniform asymptotic size and asymptotic simi-

larity of the CR Rn of Theorem 1 by verifying Assumptions A1 and S of Andrews, Cheng and

Guggenberger (2020), (henceforth ACG (2020)). Let (�n)n2N � � = [�M;M ]; any subsequence�
�wn
�
n2N of (�n)n2N is bounded so it has a convergent subsequence

�
�kn
�
n2N in [�M;M ]; since

�kn ! � 2 [�M;M ],
�
�kn
�
n2N satis�es Assumption 1a, so the asymptotic distribution of

~T�n (�n)

under Assumptions 1a, 2 and 3 implies that

limn!1 P�kn (Rkn) = limn!1 P�kn
���� ~Tkn ��kn���� > ��1 (1� �=2)

�
= �: (A.19)

Convergence in (A.19) proves simultaneously the validity of Assumptions A1 and S of ACG(2020)

over �, so part (ii) of Theorem 1 follows from Theorem 2.1(e) of ACG(2020). The uniformity

of the coverage of the CI In (~�n; �) of part (iii) of Theorem 1 may be proved along similar lines:

since P� [� 2 In (~�n; �)] = P� (jTn (~�n)j � ��1 (1� �=2)), we may employ the above argument by

replacingRn by fjTn (~�n)j � ��1 (1� �=2)g so that (A.19) holds with � replaced by 1��, verifying
Assumptions A1 and S of ACG(2020). This completes the proof of Theorem 1.

For Theorem 2, the asymptotic similarity of the critical regions ~Rn and R�
n over the parameter

space ~� may be proved along the same lines as the asymptotic similarity of Rn over � in Theorem

1: since T �n (�n) and ~Tn (�n) are asymptotically N (0; 1) for all drifting sequences (�n) satisfying

Assumption 1a from the �rst part of Theorem 2, the argument for Rn may be employed. The

proof for the CIs In
�
~�n; �

�
and In (�

�
n; �) is similar to that for In (~�n; �).
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Supplementary Online Appendix B
This online Appendix contains: (i) two auxiliary results (Lemma B2 and B2) in Section 1.1,

(ii) the proofs of Lemmata 1-6 and Corollary 1 of the main paper, as well as the proofs of Lemmata

B1 and B2 in Section 1.2, and (iii) some additional simulation results in Section 1.3 below.

1.1 Auxiliary mathematical results
Lemma B1 below is concerned with the limit distribution of the normalised and centred OLS

estimator �̂n in (14) obtained from the autoregression (5)/(13) under weakly dependent errors.

De�ne the normalisation sequence

cn =

8>>><>>>:
n1=2 (1� �2n)

�1=2
; under C(i) and Assumption 2

(1� �2n)
�1
; under C(i) and Assumption 4

n; under C(ii) and Assumption 4

(�2n � 1)
�1 j�nj

n ; under C(iii) and Assumption 4.

Lemma B1. Consider the autoregressions xt in (5)/(13) and x0t in (13) and the stochastic

sequences Xn in (40) and �n = (�2n � 1)
1=2Pn

t=1 �
�(n�t+1)
n ut. Under Assumptions 1b, 3 and 4,

the following hold:

(i) �xn�1 = [1 + op (1)] (�+ �x0n�1) under C+(i); �xn�1 = [1 + op (1)] �x0n�1 = Op

�
n�1 j�nj

n �
3=2
n

�
under C+(ii)-C+(iii); �xn�1 = �+ op (1) under C�(i)-C�(ii); �xn�1 = Op

�
n�1 j�nj

n (�2n � 1)
�1=2

�
under C�(iii). Under C(i)-C(iii) and Assumption 2 or C(ii)-C(iii) and Assumption 4

c�1n
Pn

t=1 xt�1ut = c�1n
Pn

t=1 x0t�1ut � 1fc2Rg�x0n�1�un + op (1) (B.1)

c�2n
Pn

t=1 x
2
t�1 = c�2n

Pn
t=1 x

2
0t�1 � 1fc2Rgn�1�x20n�1 + op (1) : (B.2)

Under C (i) and Assumption 4, (B.2) continues to hold, and (B.1) holds with c�1n replaced by n�1.

(ii) Under C+(i), cn (�̂n � �n) !d � with � = �= (�2 + 2��) under Assumption 4 and � =d

N (0; 1) under Assumption 2.

(iii) Under C+(iii), cn (�̂n � �n) = �n=Xn + op (1) and j�n=Xnj = Op (1). When �n ! 1,

�n=Xn !d C (standard Cauchy distribution); when �n ! � > 1 �n=Xn !d �1=X1 where

�1 =d X1 and the random variables X1 and Y1 are independent.

(iv) The OLS estimator from an oscillating autoregression xt in C�(i)-C�(iii) satis�es
cn (�̂n � �n) = �cn

�
�̂+n � j�nj

�
+ op (1)

where �̂+n is the OLS estimator of the autoregression (41) generated by x
+
t = (�1)

t x0t.

As a consequence of Lemma B1(iv), �̂n � �n requires the same normalisation when � � 0 and
� < 0 across the autoregressive classes C(i)-C(iii) of Assumption 1b. Also, Lemma B1 and Phillips

(1987b) imply that the following orders of magnitude apply under C(ii)-C(iii):Pn
t=1 xt�1ut = Op

�
�1=2n �n

�
;
Pn

t=1 x
2
t�1 = Op

�
�n�

2
n

�
and j�̂n � �nj = Op

�
��1=2n ��1n

�
: (B.3)

For the next result, Let x0t denote the autoregression in (6) when � = x0 = 0 and ~z0t =Pt
j=1 '

t�j
1n �x0j and ~z

�
0t =

Pt
j=1

�
'�1n
�t�jrx0j be the instruments in (19) generated by x0t.

Lemma B2. Consider the instruments in (19)-(20) and the processes z1t, and z2t in (32) and

(33). Under Assumptions 1b, 3 and 4, the following hold:

1



(i) [n (1� '1n)]
p 'n1n ! 0,

Pn
t=1 t

p't1n � (1� '1n)
�p�1 � (p+ 1) for any p � 0 and any se-

quence ('1n)n2N in C(i); [n ('2n � 1)]
p '�n2n ! 0,

Pn
t=1 t

p'�t2n � ('2n � 1)
�p�1 � (p+ 1) for any

p � 0 and any sequence ('2n)n2N in C(iii), where � (�) denotes the gamma function.
(ii) Let with �n = n1=2

�
1� �2n�

2
1n

��1=2
with �1n de�ned in (43). Under C(i)-C(ii), consider the

sequences r1n = ��1n
Pn

t=1 (~z1t�1 � ~z0t�1)ut, r2n = ��2n
Pn

t=1 (~z
2
1t � ~z20t), r3n = ��2n

Pn
t=1 (~z1txt � ~z0tx0t)

and r�1n; r
�
2n; r

�
3n with r

�
jn de�ned as rjn with (~z1t; ~z0t) replaced by

�
~z�1t; ~z

�
0t

�
. Then rjn = op (1) and

r�jn = op (1) for all j 2 f1; 2; 3g.
(iii) Under C(i)-C(ii) (1� �n'1n)

Pn
t=1 ~z1t = Op

�
n1=2

�
+ op

�
n�

�1=2
n

�
where (�n) is de�ned in

(4); under C(ii), (1� '1n)n
�1=2Pn

t=1 ~z1t = n�1=2x0n�1 + op (1).

(iv) Under C(ii)-C(iii), ~z2t = z2t � rnt and ~z�2t = z�2t � r�nt, where

rnt =
�̂n � �n
�2n � �n

(�2nz2t�1 � �nxt�1)1 fn j�2n � �nj ! 1g+ �t2ngn (B.4)

gn = op
�
n�1=2 (�2n � 1)

�1� independently of t and r�nt is given by (B.4) with z2t�1 replaced by z�2t�1.
Consider R1n = (�2n � 1) ��1n;z (

Pn
t=1 ~z2t �

Pn
t=1 z2t), R2n =

�
�22n � 1

�
j�2nj

�nPn
t=1 (~z2t�1 � z2t�1)ut,

R3n = s�1n
Pn

t=1 (~z2txt � z2tx0t), R4n =
�
�22n � 1

�2 j�2nj�2n (Pn
t=1 ~z

2
2t �

Pn
t=1 z

2
2t) and R�1n, R

�
2n,

R�3n, R
�
4n with R�jn de�ned as Rjn with (~z2t; z2t) replaced by

�
~z�2t; z

�
2t

�
. Then Rjn = op (1) and

R�jn = op (1) for all j 2 f1; 2; 3; 4g.
(v) De�ne

�
�Yn; �Zn

�
by replacing uj by C (1) ej in the expressions for (Yn; Zn) in (39). The

following approximation holds:
�
�Yn; �Zn

�
� (Yn; Zn)!p 0.

1.2 Mathematical Proofs
Proof of Lemma 1. Convergence of (�n)n2N to � 2 R ensures that Assumption 1b holds for
the entire sequence (�n)n2N when � 6= 1, so it is enough to show the result for � = 1. Denote

(cn)n2N := fn (j�nj � 1) : n 2 Ng. Given an arbitrary subsequence
�
�mn

�
n2N of (�n)n2N, (cmn)n2N

has a monotone subsequence (csn)n2N (by the monotone subsequence theorem for real sequences).

By monotonicity, (csn)n2N converges to c1 2 R [ f�1;1g; hence:
�
�sn
�
n2N belongs to C(i) if

c1 = �1, or
�
�sn
�
n2N belongs to C(ii) if c1 2 R, or

�
�sn
�
n2N belongs to C(iii) if c1 =1.

Proof of Lemma 2. Writing n (j�̂nj � 1) = n (j�̂nj � j�nj) + n (j�nj � 1) we obtain the identity
n (j�̂nj � 1) = n (j�nj � 1) (1� �n) ; �n =

j�̂nj � j�nj
1� j�nj

(B.5)

We �rst show that, under C(i) and C(iii),
lim sup
n!1

P (�n > 1� �) = 0 for some � 2 (0; 1) : (B.6)

The inequality jjxj � jyjj � jx� yj implies that j�nj � j�̂n � �nj j1� j�njj
�1 !p 0 under C(iii) and

Assumption 4 (j�̂n � �nj (j�nj � 1)
�1 = Op

�
j�nj

�n� by Lemma B1 (iii) and (iv)) and under C(i)
and Assumption 2 (j�̂n � �nj (1� j�nj)

�1 = Op(n
�1=2 (1� j�nj)

�1=2) by Lemma B1(ii) and (iv)),

showing (B.6) for the above cases. It remains to prove (B.6) under C(i) and Assumption 4: writing

�n =
1

j�̂nj+ j�nj
�̂2n � �2n
1� j�nj

=
�̂n + �n
j�̂nj+ j�nj

(1 + j�nj)
�
1� �2n

��1
(�̂n � �n)

� (1 + j�nj)
�
1� �2n

��1
(�̂n � �n) (B.7)

2



because
��� �̂n+�n
j�̂nj+j�nj

��� � 1. Lemma B1 (ii) and (iv) imply that
(1 + j�nj)

�
1� �2n

��1
(�̂n � �n)!p � (�) = �+ (�)1[0;1] (�) + �� (�)1[�1;0] (�) (B.8)

where �+ (�) =
(1+�)�
�2+2��

and �� (�) = � (1��)�
�2+2��

. We will prove (B.6) from (B.7) and (B.8) by showing

that sup�2[0;1] �+ (�) < 1 and sup�2[�1;0] �� (�) < 1. We may assume that � > 0 when � 2 [0; 1]
and � < 0 when � 2 [�1; 0] (otherwise �+ (�) � 0 and �� (�) � 0 and there is nothing to prove).
Di¤erentiating, �0+ (�) = � (�

2 � 2�) (�2 + 2��)�2 and �0� (�) = � (�2 + 2�) (�2 + 2��)
�2, so �0+ (�)

is increasing on [0; 1] if and only if �2 > 2� and �0� (�) is increasing on [�1; 0] if and only if
�2 < �2�. Hence, when �2 > 2�, sup�2[0;1] �+ (�) � �+ (1) = 2�= (�

2 + 2�) < 1; when �2 < 2�,

sup�2[0;1] �+ (�) � �+ (0) = 0 (since � = 0 when � = 0 by (34)); when �2 = 2�, �+ (�) = 1=2,

showing that sup�2[0;1] �+ (�) < 1. Similarly, when �2 < �2�, sup�2[�1;0] �� (�) � �� (0) = 0;

when �2 > �2�, sup�2[�1;0] �� (�) � �� (�1) = �2�= (�2 � 2�) < 1 (since � < 0); when �2 =

�2�, �� (�) = 1=2, showing that sup�2[�1;0] �� (�) < 1. We conclude that the limit in (B.8)

satis�es sup�2[�1;1] � (�) < 1, so the inequality (B.7) implies that (B.6) is satis�ed under C(i) and

Assumption 4 with � 2
�
0; 1� sup�2[�1;1] � (�)

�
. This completes the proof of (B.6).

For part (i), 1 �F+n � 1 �Fn and 1 �F�n � 1 �Fn so it is su¢ cient to show that mn1 �Fn !p 0. For some

� 2 (0; 1) that satis�es (B.6) and using (B.5), we obtain for any � > 0
P (mn1 �Fn > �) � P (mn1 �Fn > �; �n � 1� �) + P (�n > 1� �)

= P (mn1 fn (j�nj � 1) (1� �n) > 0g > �; �n � 1� �) + P (�n > 1� �)

� P (mn1 fn (j�nj � 1) � > 0g > �) + P (�n > 1� �)

� P (�n > 1� �)

for all n � n0 (�) because n (j�nj � 1) � ! �1, so 1 fn (j�nj � 1) � > 0g = 0 for all but �nitely

many n; since � satis�es (B.6), part (i) follows.

For part (ii), for some � satisfying (B.6) and any � > 0 we may write
P (mn1Fn > �) = P (mn1 fn (j�nj � 1) (1� �n) � 0g > �; �n � 1� �) + P (�n > 1� �)

� P (mn1 fn (j�nj � 1) � � 0g > �) + P (�n > 1� �)

= P (�n > 1� �)

for all n � n0 (�) because n (j�nj � 1) � ! 1, so 1 fn (j�nj � 1) � � 0g = 0 for all but �nitely

many n and part (ii) follows since � satis�es (B.6) and max
�
1F+n ;1F�n

�
� 1Fn.

For part (iii), mnmax
�
1 �F�n ;1F�n

�
� mn1 f�̂n < 0g; for arbitrary � > 0

P (mn1 f�̂n < 0g > �) = P (mn1 f�̂n < 0g > �; j�̂n � �nj < 1=2) + P (j�̂n � �nj � 1=2)
� P (mn1 f�̂n < 0g > �; �n � 1=2 < �̂n) + P (j�̂n � �nj � 1=2)
� P (mn1 f�n < 1=2g > �) + P (j�̂n � �nj � 1=2)
= P (j�̂n � �nj � 1=2)

for all n � n0 (�), since �n ! � � 1 so 1 f�n < 1=2g = 0 for all but �nitely many n. Part (iii) follows
since j�̂n � �nj !p 0 under Assumption 4 when �n ! � � 1. For part (iv), mnmax

�
1 �F+n ;1F+n

�
�
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mn1 f�̂n � 0g and the argument of part (iii) gives
P (mn1 f�̂n � 0g > �) � P (mn1 f�̂n � 0g > �; �̂n < �n + 1=2) + P (j�̂n � �nj � 1=2)

� P (mn1 f�n > �1=2g > �) + P (j�̂n � �nj � 1=2)
= P (j�̂n � �nj � 1=2)

for all n � n0 (�), since �n ! � � �1 so 1 f�n > �1=2g = 0 for all but �nitely many n; part (iv)
follows since j�̂n � �nj !p 0 under Assumption 4 when �n ! � � �1.

Proof of Lemma 3. Using the approximation for r3n in Lemma B2(ii), we may write

(1� �n'1n)
1

n

Pn
t=1 xt�1~zt�1 = (1� �n'1n)

1

n

Pn
t=1 x0t�1~z0t�1 + op (1)

= �2 +
1

n

Pn
t=1 ~z0t�1ut +

1

n
(2�n � 1)

Pn
t=1 x0t�1ut

+�n (�n � 1)
1

n

Pn
t=1 x

2
0t�1 + op (1) (B.9)

where the last asymptotic equivalence follows by equations (66)-(68) of Magdalinos and Phillips

(2020) (henceforth MP(2020)). Under Assumption 4 on (ut), n�1
Pn

t=1 ~z0t�1ut = �n + op (1) by

Lemma 3.1(ii) of MP(2020). Also, under C+(i), Lemma B2(iii) and �x0n�1 = Op

�
n�1=2�n

�
give

n�1 (1� �n'1n)n�z1n�1�xn�1 = Op (�n=n) + Op

�
n�1 (1� '1n)

�1� = op (1), since �n=n ! 0 under

C+(i). Under C+(ii), Lemma B2(iii) yields

n�1 (1� �n'1n)n�z1n�1�xn�1 =
x0n
n1=2

1

n3=2
Pn

j=1 x0j�1 + op (1) : (B.10)

Combining (B.9)-(B.10) and using (1� �2n'
2
1n) = (1� �n'1n) � 1 + �n, we obtain that�

1� �2n'
2
1n

� 1
n

Pn
t=1 xt�1~zt�1 =

~	n + op (1) (B.11)

with ~	n de�ned in (36) under C+(i)-C+(ii), with the term in (B.10) being op (1) under C+(i).

Under C+(i), n�1
Pn

t=1 x0t�1ut !p � by Lemma 2.2(i) of MP(2020), so the identity (obtained

from the recursion for x0t)
1

n

�
1� �2n

�Pn
t=1 x

2
0t�1 =

1

n

Pn
t=1 u

2
t + 2�n

1

n

Pn
t=1 x0t�1ut �

1

n
x20n !p �

2 + 2�� (B.12)

implies that ~	n !p �
2 + 2�� under C+(i). Under C+(ii), �n ! � and standard local to unit

asymptotics, e.g. Phillips (1987b), yield

~	n = 2

 
!2 +

1

n

Pn
t=1 x0t�1ut � �+ c

1

n2
Pn

t=1 x
2
0t�1 �

x0n
n1=2

Pn
j=1 x0j�1

n3=2

!
+ op (1)

!d 2
�
!2 +

R 1
0
Jc (r) dB (r) + c

R 1
0
Jc (r)

2 dr � Jc (1)
R 1
0
Jc (r) dr

�
= !2 + Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

where the last equality holds by applying the integration by parts formula to the stochastic in-

tegral
R 1
0
Jc (r) dB (r); see equation (79) of MP(2020). The expression for the weak limit ~	c

in the lemma follows since �2 + 2�� = !2 under C+(ii), completing the proof of part (i). For

part (ii), by the approximation for r2n in Lemma B2(ii), it is enough to show that ~v0n :=

(1� �2n'
2
1n)n

�1Pn
t=1 ~z

2
0t !p �

2+2��. The proof of Lemma 3.1(iv) of MP(2020) shows that ~v0n =

(1� '21n)n
�1Pn

t=1 z
2
1t + op (1) !p !

2 when (1� '1n)�n ! 1 and ~v0n = (1� �2n)n
�1Pn

t=1 x
2
0t +

op (1) when (1� '1n)�n ! 0. In both cases, ~v0n !p �
2 + 2��; by (B.12) when (1� '1n)�n ! 0

and the fact that (1� '1n)�n ! 1 implies that � = 1 and �2 + 2�� = !2. It remains to show
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that that (1� �2n'
2
1n)n

�1Pn
t=1 ~z

2
0t !p !

2 when (1� '1n) = (1� �n) ! � 2 (0;1): in this case,
(�n) belongs to C+(i) and equations (74) and (75) of MP(2020) imply that
1

n

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t�1 =

1� �2n'
2
1n

1� '21n

�
!2 � 2 1� �n

1� �2n'
2
1n

�
1� �2n'

2
1n

� 1
n

Pn
t=1 x0t�1~z0t�1

�
+op (1) :

Since n�1 (1� �2n'
2
1n)
Pn

t=1 x0t�1~z0t�1 !p !
2, the result follows from

1� �2n'
2
1n

1� '21n

�
1� 2 (1� �n)

1� �2n'
2
1n

�
� 2�n
1� '21n

(1� '1n)! 1

since '1n ! 1 and �n ! 1. For part (iii), in view of the approximation for r1n in Lemma B2(ii),

it is su¢ cient to show the result for
Pn

t=1 �nt with �nt := n�1=2 (1� �2n'
2
1n)

1=2
~z0t�1et. Since �nt is

an Ft-martingale array under Assumption 4 that satis�es the Lindeberg condition by Lemma 3.2
of MP(2020) andPn

t=1 EFn;t�1
�
�2nt
�
= �2e

�
1� �2n'

2
1n

� 1
n

Pn
t=1 ~z

2
0t�1 !p �

2
e

�
�2 + 2��

�
by part (ii) of the lemma, the result follows by a standard martingale central limit theorem (e.g.

Corollary 3.1 of Hall and Heyde (1980)).

Proof of Lemma 4. The statement for
�Pn

t=1 z2t�1ut;
Pn

t=1 z
2
2t�1
�
and

�
�Yn; �Zn

�
!d [Y; Z] follow

by Lemma 5 and Lemma 2 of Magdalinos (2012). Hence [Yn; Zn]!d [Y; Z] of part (i) follows from

the martingale approximation of Lemma B2(v). The only statement of part (i) that requires proof

is for s�1n
Pn

t=1 xt�1z2t�1: The recursions for xt and zt in (5) and (33) give
(�n'2n � 1)

Pn
t=1 xt�1z2t�1 = xnz2n � '2n

Pn
t=1 z2t�1ut � �n

Pn
t=1 xt�1ut �

Pn
t=1 u

2
t

+'2n� (�n � 1)
Pn

t=1 z2t�1 + � (�n � 1)
Pn

t=1 ut

= xnz2n + op (�n�n;z) (B.13)
where the order of magnitude follows from: ��1n (�n � 1)

Pn
t=1 ut is of orderOp(�

�n
n (n (�n � 1))

1=2) =

op (1) by Lemma B2(i) under C+(iii) and Op (n
�1) under C+(ii); ��1n ��1n;z

Pn
t=1 z2t�1ut is of or-

der Op[�
�1
n ('2n � 1)

�1=2] = op(�
�n
n [n (�n � 1)]

1=2) = op (1) under C+(iii) (by Lemma B2(i)) and

Op[(n ('2n � 1))
�1=2] under C+(ii); by (B.3) ��1n ��1n;z

Pn
t=1 xt�1ut = Op('

�n
2n [n ('2n � 1)]

1=2) =

op (1) by Lemma B2(i); �nally, the recursion (33) gives
��1n ��1n;z (�n � 1)

Pn
t=1 z2t�1 = ��1n ��1n;z (�n � 1) ('2n � 1)

�1 (z2n �
Pn

t=1 ut) = op
�
n�1=2

�
+ op

�
'�n2n

�
since z2n = Op (�n;z) and

Pn
t=1 ut = Op

�
n1=2

�
. The proof of (B.13) follows by Lemma B2(i) and

the fact that n ('2n � 1) ! 1. By (B.13), we conclude that s�1n
Pn

t=1 xt�1z2t�1 =
xn
�n

z2n
�n;z

+ op (1)

and the result follows from the de�nitions of Zn and Xn in (39) and (40).

For part (ii), the martingale approximation of Lemma B2(v) implies that

[Yn; Xn]
0 = C (1)

Pn
j=1 cnjej + op (1) with cnj =

h�
'22n � 1

�1=2
'
�(n�j)�1
2n ;

�
�2n � 1

�1=2
��jn

i0
(B.14)

(for Xn we may use the part of Lemma B2(v) corresponding to Zn replacing '2n with the

mildly explosive root �n). We apply a standard martingale central limit theorem, e.g. Corol-

lary 3.1 of Hall and Heyde (1980), to the martingale array in (B.14): the conditional variance

matrix Vn =
Pn

j=1 cnjc
0
njEFj�1

�
u2j
�
has typical elements: V (n)

11 = !2 ('22n � 1)
Pn

j=1 '
�2j
2n ! !2;

V
(n)
22 = !2 (�2n � 1)

Pn
j=1 �

�2j
n ! !2; V (n)

12 = (�2n � 1)
1=2
('22n � 1)

1=2
'�n�12n

Pn
j=1

�
'2n
�n

�j
. When

n j�n � '2nj ! 1, evaluating the geometric progression yields V (n)
12 = O

�
'�n2n

�
+ O (��nn ); when

j�n � '2nj = O (n�1),
Pn

j=1 ('2n=�n)
j � bn for some b > 0 and

���V (n)
12

��� � bn ('22n � 1)'�n�12n = o (1)
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by Lemma B2(i). In both cases V (n)
12 ! 0 so Vn ! !2I2 as required for the covariance matrix of

a random vector [Y;X]0 consisting of independent N (0; !2) variates. For the Lindeberg condition

associated with (B.14), the bound maxj�n kcnjk2 � 2�n with �n = ('22n � 1) _ (�2n � 1) yieldsPn
j=1 kcnjk

2 E
�
e2t1
�
kcnjk2 e2j > �

	�
� max

j�n
E
�
e2j1
�
e2j > ��1n �=2

	�Pn
j=1 kcnjk

2 ! 0

by uniform integrability of
�
e2j
�
j2N, since �

�1
n !1 when �n ! 1 and

Pn
t=1 kcntk

2 = O (1).

For part (iv), �n ! � > 1; X1 in (7) is well-de�ned a:s: because �n :=
Pn

j=1 �
�juj con-

verges a:s: under Assumption 4: P
�
supk�1



�n+k � �n



L1
> �
�
� ��1E

�
supk�1



�n+k � �n



L1

�
for any � > 0 and E

�
supk�1



�n+k � �n



L1

�
� supk�1 kukkL1

P1
j=n+1 j�j

�j ! 0. By the above

convergence of X1 and since X0 (n) !p X0 when �n ! � > 1 by Assumption 3, Xn !p X1

will follow from showing that
Pn

j=1 (�
�j
n � ��j)uj !L1 0, which, in turn, will follow from show-

ing that
Pn

j=1 j��jn � ��jj ! 0. To prove the last statement, we apply the mean value theo-

rem to the function x 7! x�j: ��jn � ��j = � (�n � �) j��j�1n for some �n ! �; hence, we

may choose � 2 (0; �� 1) and n0 (�) 2 N such that for all n � n0 (�): �n > � � � which

implies that
Pn

j=1 j��jn � ��jj = j�n � �j
Pn

j=1 j�
�j�1
n � j�n � �j

P1
j=1 j (�� �)�j�1 ! 0 since

� � � > 1 from the choice � 2 (0; �� 1). Next we show that X1 6= 0 a:s: under Assumption

4. Writing X1 = limn!1
Pn

i=1 �iei + Y0 a:s:, where �i = (�2 � 1)�1=2
�P1

j=0 �
�jcj

�
��i and

Y0 = (�2 � 1)�1=2
�P1

i=0

�P1
j=1 �

�jcj+i

�
e�i +X0 � �

�
satisfy

P1
i=1 j�ij < 1 and �i 6= 0 for

all i by Assumption 4 and is an F0-measurable random variable by Assumptions 3 and 4 (un-

der Assumption 2, �i = (�2 � 1)�1=2 ��i and Y0 = (�2 � 1)�1=2 (X0 � �)). By EFt�1 (e2t ) = �2

and lim inft!1 EFt�1 jetj > 0 a:s:, the martingale di¤erence sequence (et;Ft)t2N satis�es the local
Marcinkiewicz-Zygmund conditions (equation (1.1) of Lai and Wei (1983)), so applying Corollary

2 of Lai and Wei (1983) to X1 yields P (X1 = 0) = P (limn!1
Pn

i=1 �iei = �Y0) = 0.
We turn to the limit distribution of g (Xn)Yn. Let (kn)n2N � N be an increasing sequence

satisfying kn=n ! 0 and kn= ('22n � 1)
�1 ! 1 and let Y 0

n = ('
2
2n � 1)

1=2
C (1)

Pn
t=kn

'
�(n�t)�1
2n et:

It is easy to see that


 �Yn � Y 0

n




L2
= O

�
'�kn2n

�
= o (1) so Lemma B2(v) implies that kYn � Y 0

nk =
op (1). Also,

jXn �Xkn�1j �
�
�2n � 1

�1=2 �Pn
j=kn

��jn uj +X0 (n)�X0 (kn � 1)
�
!p 0

by Assumption 3. Using the fact that X1 6= 0 a:s: and the continuity of g away from zero,

jg (Xn)� g (Xkn�1)j !p jg (X1)� g (X1)j = 0, so we conclude that
g (Xn)Yn = g (Xkn�1)Y

0
n + op (1) =

Pn�kn
t=0 �n;t + op (1) (B.15)

where �n;t = C (1) �ntet+kn and �nt = ('22n � 1)
1=2
'
�(n�kn�t)�1
2n g (Xkn�1) : Since �nt is an Fkn�1-

measurable sequence for all n; t,
��
�n;t;Fn;t

�
: 0 � t � n� kn

	
with Fn;t = Ft+kn is a martingale

di¤erence array with Fn;t � Fn+1;t since the sequence (kn)n2N was chosen to be increasing. We
apply a martingale central limit theorem (Corollary 3.1 of Hall and Heyde (1980)) to a mixed

Gaussian distribution. The conditional variance of the martingale array in (B.15) is given byPn�kn
t=0 EFn;t�1

�
�2n;t
�
= !2

Pn�kn
t=0 �2nt = !2g2 (Xkn�1)

�
'22n � 1

�Pn�kn
t=0 '

�2(n�kn�t+1)
2n

!p !2g (X1)
2 : (B.16)

For the Lindeberg condition, Ln (�) :=
Pn�kn

t=0 EFn;t�1
�
�2n;t1

�
�2n;t > �

	�
!p 0 for all � > 0, let
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�n (�) := C (1)�1 ('22n � 1)
�1=2

�1=2 and note that �n (�)!1 for any � > 0. The estimation
1
�
�2n;t > �

	
� 1

�
g2 (Xkn�1) e

2
t+kn > �n (�)

2	 � 1�g2 (Xkn�1) > �n (�)
	
+ 1

�
e2t+kn > �n (�)

	
and Fkn�1-measurability of Xkn�1 imply that Ln (�) � L1n (�) + g2 (Xkn�1)L2n (�), where

L2n (�) = C (1)2
�
'22n � 1

�Pn
t=kn

'
�2(n�t+1)
2n EFt�1

�
e2t1
�
e2t > �n (�)

	�
!L1 0

since kL2n (�)kL1 � O (1)maxt�n E (e2t1 fe2t > �n (�)g)! 0 by UI of (e2t ) and
L1n (�) = !21

�
g2 (Xkn�1) > �n (�)

	Pn�kn
t=0 �2nt !p 0

since both g2 (Xkn�1) and
Pn�kn

t=0 �2nt converge in probability to g
2 (X1) < 1 a:s: and �n (�) !

1. We conclude that, for any � > 0, Ln (�) � op (1) + g2 (Xkn�1) op (1) = op (1) proving

the Lindeberg condition. In view of (B.16), the martingale central limit theorem applied toPn�kn
t=0 �n;t in (B.15) then implies that g (Xn)Yn !d  where  has characteristic function

� (x) = exp
�
�1
2
t2�2g (X1)

2	 i.e.  =d MN
�
0; �2g (X1)

2�. The statement for g (Xn)Y
"
n

follows by an identical argument by replacing C (1) et by "t in �Yn.

Proof of Lemma 5. Denote �nt =
�
�1;nt; �2;nt; �3;nt

�0
with �1;nt =

�
n (1� '21n)

�1
��1=2

z1t�1et,

�2;nt = C (1)n�1=2et and �3;nt = C (1) ('22n � 1)
1=2
'
�(bnsc�t)�1
2n et. The martingale approximation

of Lemma B2(v) for Yn (s) and a standard approximation for Bn (s) give
[Un (s) ; Bn (s) ; Yn (s)]

0 =
Pbnsc

t=1 �nt + op (1) : (B.17)
Since z1t�1 is Ft�1-measurable, �nt is a Ft-martingale di¤erence array and we may apply a
Lindeberg-type functional CLT for vector-valued martingale di¤erence arrays to (B.17): see The-

orem 3.33 (pp. 478) of Jacod and Shiryaev (2003). The conditional Lindeberg condition on k�ntk
2

(3.31 in Jacod and Shiryaev (2003)) is implied by the stronger unconditional Lindeberg condition

(LC) on k�ntk
2 which, in turn, is implied by establishing the LC on each of �21;nt, �

2
2;nt and �

2
3;nt.

The LC for �21;nt is established by Proposition A1 and Lemma 3.3 of MP(2020). The LC for �
2
2;nt

follows from the bound
Pbnsc

t=1 E
�
�22;nt1

�
�22;nt > �

	�
� C (1)2maxt�n E

�
e2t1
�
e2t > n�C (1)�2

	�
and

uniform integrability of (e2t )t2N. For the LC for �
2
3;nt, '

�2(bnsc�t+1)
2n � 1 for all t � bnsc and s 2 [0; 1]

implies thatPbnsc
t=1 E

�
�23;nt1

�
�23;nt > �

	�
� C (1)2max

t�n
E
�
e2t1
�
e2t > �n (�)

2	� �'22n � 1�Pn
t=1 '

�2t
2n (B.18)

where �n (�) = C (1)�1 ('22n � 1)
�1=2

�1=2 ! 1 for any � > 0. Since ('22n � 1)
Pn

t=1 '
�2t
2n =

O (1), (e2t )t2N is a UI sequence and �n (�)
2 ! 1, the right side of (B.18) is o (1). This es-

tablishes the LC for the martingale di¤erence array �nt in (B.17). The conditional variance

matrix of the array in (B.17) is given by V (n) :=
Pbnsc

t=1 EFt�1 (�nt�
0
nt); denoting the typical el-

ements of V (n) by
h
V
(n)
ij

i3
i;j=1

: V (n)
11 = �2"

1
n
(1� '21n)

Pbnsc
t=1 z

2
1t�1 !p �

2
e!

2s, by Lemma 3.1(iv)

of MP(2020); V (n)
22 = !2 bnsc =n ! !2s; V (n)

33 = !2 ('22n � 1)
Pbnsc

t=1 '
�2t
2n ! !2 for all s >

0; V (n)
23 = !2n�1=2 ('22n � 1)

1=2Pbnsc
t=1 '

�t
2n = O

�
[n (1� '2n)]

�1=2
�
= o (1); since

Pbnsc
t=1 z1t�1 =

Op

�
n1=2 (1� '21n)

�1
�
, V (n)

12 = !2 1
n
(1� '21n)

1=2Pbnsc
t=1 z1t�1 = Op

�
(n (1� '21n))

�1=2
�
= op (1);

V
(n)
13 = !2 ('22n � 1)

1=2
(1� '21n)

1=2
n�1=2

Pbnsc
t=1 '

�(bnsc�t+1)
2n z1t�1 satis�es


V (n)

13





L1
� C (1)�2emax

t�n




�1� '21n
�1=2

z1t





L2

�
'22n � 1

�1=2
n�1=2

Pn
t=1 '

�t
2n = O

�
(n ('2n � 1))

�1=2
�
:
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We conclude that V (n) !p diag (�
2
e!

2s; !2s; !2) for s 2 [0; 1], and applying Theorem 3.33 of

Jacod and Shiryaev (2003) to (B.17),
Pbnsc

t=1 �nt ) � (s) where � (s) is a continuous Gaussian

martingale with quadratic variation h�is = diag (�2e!
2s; !2s; !2). By Levy�s characterisation (e.g.

Theorem 4.4 II of Jacod and Shiryaev (2003), � (s) is characterised by its quadratic variation

process, � (s) =d [U (s) ; B (s) ; Y ]
0 with the right side de�ned in the statement of the lemma and

independence between the components of � (s) implied by the diagonality of the quadratic variation

matrix h�is.

Proof of Lemma 6. First, we prove (41) and (42). Since �n; '
�
1n; '

�
2n < 0

x+t = (�1)t x0t = ��n (�1)
t�1 x0t�1 + (�1)t ut = j�njx+t�1 + (�1)

t ut

z+2t = (�1)t z�2t =
��'�2n�� z+2t�1 + (�1)t ut

and

~z+1t = (�1)
t ~z�1t =

��'�1n�� (�1)t ~z�1t�1 + (�1)t (xt + xt�1) =
��'�1n�� ~z+1t�1 +�x+t

so the recursions for x+t in (41) and ~z
+
1t; z

+
2t are satis�ed. The identity �̂

+
n = ��̂n implies that

F�n = f�n (�̂n + 1) � 0g \ f�̂n < 0g =
�
�n
�
��̂+n + 1

�
� 0
	
\
�
�̂+n > 0

	
=

�
n
�
�̂+n � 1

�
� 0
	
\
�
�̂+n > 0

	
= F++n

and �F�n =
�
n
�
�̂+n � 1

�
> 0
	
\
�
�̂+n > 0

	
= �F++n . By summing the recursions for ~z�1t and ~z

�
2t in

(19)-(20), we obtain the identities

�z�1n�1 =
�
1� '�1n

��1 1
n

�
nP
t=1

rxt � ~z�1n
�
= �

�
1

2
+ o (1)

�
1

n
~z�1n (B.19)

�z�2n�1 =
�
1� '�2n

��1 1
n

�
nP
t=1

ût � ~z�2n
�
= �

�
1

2
+ o (1)

�
1

n
~z�2n (B.20)

because
Pn

t=1rxt = 0,
Pn

t=1 ût = 0 and 1� '�1n and 1� '�2n converge to 2. Write

��2n
nP
t=1

xt�1~z
�
1t�1 = ��2n

nP
t=1

x0t�1~z
�
0t�1 � n��2n �xn�1�z

�
1n�1 + r�3n (B.21)

where r�3n, de�ned in Lemma B1(ii), satis�es r
�
3n = op (1) under C�(i)-C�(ii).Together with part

(i) of Lemma B1, (B.19) implies that the second term of (B.21) satis�es: n��2n �xn�1�z
�
1n�11F�n =

Op

�
��2n

��~z�1n���1F�n = Op

�
n�1=2

�
under C�(i)-C�(ii) and ��2n



��~z�1n��

L1 1F�n !p 0 under C�(iii) by

Lemma 2, so that

��2n

���� nP
t=1

xt�1~z
�
1t�1 �

nP
t=1

x0t�1~z
�
0t�1

����1F�n !p 0 (B.22)

C�(i)-C�(iii). By Lemma B1(ii), r�1n = ��1n
Pn

t=1

�
~z�1t�1 � ~z�0t�1

�
ut = op (1) and ��1n n�un�z

�
1n�1 =

op (�
�1
n ) by (B.19) under C�(i)-C�(ii); hence

��1n







nX
t=1

~z�1t�1ut � n�un�z
�
1n�1 �

nX
t=1

~z�0t�1ut






1F�n !p 0 (B.23)

under C�(i)-C�(iii), with the claim under C�(iii) following by Lemma 2(i). Combining (B.22) and

(B.23), we obtain under C_(i)-C_(ii),

�n
�
~��1n � �n

�
1F�n =

��1n
Pn

t=1 ~z
�
0t�1ut

��2n
Pn

t=1 x0t�1~z
�
0t�1

1F�n + op (1) =
���1n

Pn
t=1 ~z

+
0t�1 (�1)

t ut

��2n
Pn

t=1 x
+
t�1~z

+
0t�1

1F++n
+ op (1)

= ��n
�
~�+1n � j�nj

�
1F++n

+ op (1) : (B.24)
Since, by Lemma 2, both sides of (B.24) are op (1) under C_(iii), (B.24) holds under C_(i)-C_(iii).
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Lemma B1(ii) and (B.20) imply that ns�1n �xn�1�z
�
2n�11 �F�n = op

�
s�1n
��~z+2n���1 �F�n = op (1) since

s�1n ~z
+
2n = op

�
n�1=2

�
under C�(ii), s�1n ~z

+
2n = Op

�
j�nj

�n� under C�(iii) and s�1n 

~z+2n

L1 1 �F�n !p 0

under C�(i) by Lemma 2. Using the above and R�3n = op (1) by Lemma B2(iv), we obtain

s�1n
nP
t=1

xt�1~z
�
2t�11 �F�n = s�1n

nP
t=1

x0t�1z
�
2t�11 �F�n + op (1) (B.25)

under C�(i)-C�(iii). By (B.20), n(
��'�2n��2�1) ��'�2n���n �un�z�2n�11 �F�n = Op(n

�1=2((
��'�2n��2�1) ��'�2n���n ~z�2n�1)1 �F�n

is op
�
n�1=2

�
under C_(ii)-C_(iii) and op (1) under C_(i) since



~z�2n�1

L1 1 �F�n !p 0 by Lemma 2;

the above and R�2n = op (1) by Lemma B2(iv) imply that, under C_(i)-C_(iii),�
'22n � 1

�
'�n2n







nX
t=1

~z�2t�1ut � n�un�z
�
2n�1 �

nX
t=1

z�2t�1ut






1 �F�n !p 0: (B.26)

Combining (B.25) and (B.26), since (
��'�2n��2 � 1) ��'�2n���n =s�1n = �n under C_(ii)-C_(iii),

�n
�
~��2n � �n

�
1 �F�n =

('22n � 1)'�n2n
Pn

t=1 z
�
2t�1ut

s�1n
Pn

t=1 x0t�1z
�
2t�1

1 �F�n + op (1)

=
� ('22n � 1)'�n2n

Pn
t=1 z

+
2t�1 (�1)

t ut

s�1n
Pn

t=1 x
+
t�1z

+
2t�1

1 �F++n
+ op (1)

= ��n
�
~�+2n � j�nj

�
1 �F++n

+ op (1) : (B.27)
Since, by Lemma 2, both sides of (B.27) are op (1) under C_(i), (B.27) holds under C_(i)-C_(iii).

Since ~�
�
jn� � has the same denominator as ~��jn� �n for j 2 f1; 2g, it is enough to examine the

numerators
Pn

t=1 ~z
�
jt�1"t � n�"n�z

�
jn�1: these can immediately be seen to satisfy (B.23) and (B.26)

with (ut; �un) replaced by ("t; �"n). Since, under the restrictions 
 = � = 0,
y+t = (�1)

t�1 = � (�1)t�1 x0t�1 + (�1)t�1 "t = �x+t�1 � (�1)
t "t

so that ~�
+

1n = ��
Pn

t=1 (�1)
t "t~z

+
0t�1=

Pn
t=1 x

+
t�1~z

+
0t�1 and ~�

+

1n = ��
Pn

t=1 (�1)
t "tz

+
2t�1=

Pn
t=1 x

+
t�1z

+
2t�1;

the result for �n(~�
�
jn � �) follows from (B.24) and (B.27) with ut replaced by "t.

Proof of Lemma B1. Denote x0 = X0 (n) for brevity. By employing (6), we obtain

�xn�1 = �+ �x0n�1 + (x0 � �)
1

n

Pn
t=1 �

t
n: (B.28)

�x0n�1 has exact rateOp(n
�1=2 (1� �n)

�1) under C+(i), Op

�
n1=2

�
under C+(ii), Op(n

�1�nn (�n � 1)
�3=2)

under C+(iii) all of which dominate the op
�
n�1�

3=2
n (�nn + 1)

�
order of the last term of (B.28).

�x0n�1 = Op

�
n�1�nn�

3=2
n

�
dominates � under C+(ii)-C+(iii) and also under C+(i) provided that

n�1=2 (1� �n)
�1 !1; when n�1=2 (1� �n)

�1 ! 0 (the half of the C(i) region closer to stationar-

ity), � is the dominant term in (B.28). Combining the above yields the result for �xn�1 for C+(i)-

C+(iii). When �n ! � � �1, �xn�1 looses rate:
Pn

t=1 x0t�1 = (1� �n)
�1
�Pn

j=1 uj � x0n

�
and

limn!1 (1� �n) � 2, imply that �x0n�1 = Op

�
n�1=2

�
under C�(i)-C�(ii) and �x0n�1 = Op (x

+
n =n)

under C�(iii). Similarly,
Pn

t=1 �
t
n = O (1 + j�nj

n) : Substituting the above rates into (B.28) yields

the result for �xn�1 for C�(i)-C�(iii). For the proof of (B.1) and (B.2), (6) implies the following

identities for
Pn

t=1 xt�1ut =
Pn

t=1 xt�1ut � n�xn�1�un and
Pn

t=1 x
2
t�1 =

Pn
t=1 x

2
t�1 � n�x2n�1:Pn

t=1 xt�1ut =
Pn

t=1 x0t�1ut + (X0 (n)� �)
Pn

t=1 �
t
nut � n (�xn�1 � �) �un (B.29)Pn

t=1 x
2
t�1 =

Pn
t=1 x

2
0t�1 � n

�
�x2n�1 � �2

�
+ 2�n�x0t�1 + 2 (x0 � �)

Pn
t=1 �

t
nx0t�1

+2� (x0 � �)
Pn

t=1 �
t
n + (x0 � �)2

Pn
t=1 �

2t
n : (B.30)
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Now c�1n (X0 (n)� �)
Pn

t=1 �
t
nut = op (1)

�
(1� �2n)

�1=2 ^ n1=2
�
c�1n
Pn

t=1 �
t
nut = op (1) under C(i)-

C(iii), and (B.28) gives

c�1n n (�xn�1 � �) �un = c�1n

�
�x0n�1 + (x0 � �)

1

n

1� �nn
1� �n

�Pn
t=1 ut = nc�1n �x0n�1�un +Op

�
n�1=2x0

�
under C(i)-C(iii). Under Assumption 2, the leading term is Op

�
n�1=2 j1� �2nj

�1=2
�
under C(i) and

C(iii), Op (n
�1) under C�(ii), whereas under C+(ii)

nc�1n �x0n�1�un = �x0n�1�un = n�3=2
Pn

t=1 x0t�1n
�1=2Pn

j=1 uj !d

Z 1

0

Jc (t) dtB (1) :

Substituting the above into to (B.29) proves (B.1) under Assumption 2. Under Assumption 4,

the same orders apply to nc�1n �x0n�1�un under C(ii)-C(iii) and (B.1) continues to hold. Under C(i),

cn = (1� �2n)
�1 gives nc�1n �x0n�1�un = Op (1); since cn = o (n), (B.1) continues to hold with c�1n

replaced by n�1. Turning to the right side of (B.30), the last term c�2n (x0 � �)2
Pn

t=1 �
2t
n dominates

the penultimate term and is Op (x
2
0 (�

2
n � 1)) = op (1) by Assumption 3 under C(i)-C(iii). For the

fourth term of (B.30),
c�2n jx0j



Pn
t=1 x0t�1�

t
n




L1
� c�2n jx0jmax

t�n
kx0tkL2

Pn
j=1 j�nj

j = jx0jO
��
�2n � 1

�1=2�
= op (1)

by Assumption 3 under C(i)-C(iii). For the third term of (B.30), c�2n n�x0t�1 = c�2n
Pn

t=1 x0t�1 is

Op

�
n�1=2

�
under C(i)-C(ii) and Op

�
(�2n � 1)

1=2
��nn

�
under C(iii). For the second term of (B.30),

n

c2n

�
�x2n�1 � �2

�
=

n

c2n
(�xn�1 � �) (�xn�1 + �) = [1 + op (1)]

n

c2n
�x0n�1 (�x0n�1 + 2�)

which is: Op

�
n�1 (1� �n)

�1� under C(i), Op (�n=n) under C(iii), op (n�1) under C�(ii) and
n

c2n

�
�x2n�1 � �2

�
=
1

n
�x20n�1 + op (1)!d

�Z 1

0

Jc (t) dt

�2
under C+(ii). Substituting the above to (B.30) proves (B.2).

For part (ii), n�1
Pn

t=1 x0t�1ut !p � under C+(i) and Assumption 4 by Lemma 2.2(i) of

MP(2020). Using the recursion for x0t, we obtain the identity
n�1

�
1� �2n

�Pn
t=1 x

2
0t�1 = n�1

Pn
t=1 u

2
t + 2�nn

�1Pn
t=1 x0t�1ut � n�1x20t�1 !p �

2 + 2��:

Hence, using (B.1) with c�1n replaced by n�1 and (B.2) we may write�
1� �2n

��1
(�̂n � �n) =

1
n

Pn
t=1 x0t�1ut

(1� �2n)
1
n

Pn
t=1 x

2
0t�1

+ op (1)!p
�

�2 + 2��
:

Under Assumption 2, using (B.1) and (B.2) we may write�
n
�
1� �2n

��1�1=2
(�̂n � �n) =

n�1=2 (1� �2n)
1=2Pn

t=1 x0t�1ut
n�1 (1� �2n)

Pn
t=1 x

2
0t�1

+ op (1)

and the last term converges in distribution to N (0; 1) under Assumption 2 by Giraitis and Phillips

(2006). For part (iii), using (B.1) and (B.2),�
�2n � 1

��1
�nn (�̂n � �n) =

(�2n � 1) ��nn
Pn

t=1 x0t�1ut

(�2n � 1)
2 ��2nn

Pn
t=1 x

2
0t�1

+ op (1)

=
�nXn

X2
n

+ op (1) =
�n
Xn

+ op (1)

form the approximations (�2n � 1)
2
��2nn

��Pn
t=1 x

2
0t�1 � x20n

�� = op (1) with ��nn x0n =
Pn

j=1 �
�j
n uj and�

�2n � 1
�
��nn

Pn
t=1 x0t�1ut =

�
�2n � 1

� �Pn
j=1 �

�j
n uj

�Pn
t=1 �

�(n�t+1)
n ut + op (1)

established in Phillips and Magdalinos (2007). When �n ! 1, Magdalinos (2012) shows that

[Xn;�n] !d N (0; �2I2) implying that �n=Xn !d C; when �n ! � > 1, Lemma 4(iii) shows that
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Xn !p X1 6= 0 a:s:, and E�2n ! �2, so in both cases j�n=Xnj = Op (1) and (�2n � 1)
�1
�nn (�̂n � �n) =

Op (1) over the C+(iii) range.

For part (iv) �n < 0 and �x0n�1 = Op

�
n�1=2

�
under C�(ii); hence, using (B.1) and (B.2) and

recalling the notation x+t = (�1)
t x0t of Lemma 6 we obtain

cn (�̂n � �n) =
c�1n
Pn

t=1 x0t�1ut
c�2n
Pn

t=1 x
2
0t�1

+ op (1) =
�c�1n

Pn
t=1 x

+
t�1 (�1)

t ut

c�2n
Pn

t=1 x
+2
t�1

+ op (1)

= �cn
�
�̂+n � j�nj

�
+ op (1)

as required. This completes the proof of Lemma B1.

Proof of Lemma B2. For part (i), write 'n1n = en log[1�(1�'1n))] = e�n(1�'1n)(1+o(1)) since

log (1� x) = �x + O (x2) as x ! 0; hence [n (1� '1n)]
p 'n1n = [n (1� '1n)]

pO
�
e�n(1�'1n)

�
! 0

for any p � 0 since n (1� '1n) ! 1 under C(i). Under C(iii), n ('2n � 1) ! 1 and '�n2n =

e�n log[1+('2n�1)] = O
�
e�n('2n�1)

�
shows that [n ('2n � 1)]

p '�n2n ! 0 for any p � 0. The orders ofPn
t=1 t

p't1n and
Pn

t=1 t
p't2n for p = 0 are trivial (geometric progression). For p > 0, employing an

Euler summation argument and the change of variables s = (1� '1n) tPn
t=1 t

p't1n =
R n+1
1

btcp 'btc1ndt

= (1� '1n)
�1�p R (n+1)(1�'1n)

1�'1n

 �
(1� '1n)

�1 s
�

(1� '1n)
�1

!p

'
b(1�'1n)�1sc
1n ds: (B.31)

Since 1� '1n ! 0; n (1� '1n)!1 and

'
b(1�'1n)�1sc
1n = (1� (1� '1n))

b(1�'1n)�1sc = exp
��
(1� '1n)

�1 s
�
log (1� (1� '1n))

	
= exp

�
�
�
(1� '1n)

�1 s
�
(1� '1n) +O ((1� '1n))

	
! e�s

the dominated convergence theorem implies that the integral on the right side of (B.31) converges

to
R1
0
spe�sds = � (p+ 1) ; and the claim for

Pn
t=1 t

p't1n follows from (B.31). The result forPn
t=1 t

p'�t2n can be derived in the same way by interchanging the roles of 1� '1n and '2n � 1.
For part (ii), applying (6) to the instrument ~z1t =

Pt
j=1 '

t�j
1n �xj in (19), we obtain

~z1t � ~z0t =
Pt

j=1 '
t�j
1n (�xj ��x0j) = (X0 (n)� �) (�n � 1)'t�11n

Pt�1
j=0 (�n='1n)

j :

Evaluating the geometric progression when n j'1n � �nj ! 1 and noting that
���Pt�1

j=0 (�n='1n)
j
��� �

bt for all t and some b 2 (0;1), we obtain the following decomposition for ~z1t:
~z1t = ~z0t + (X0 (n)� �) qnt; ~z0t =

Pt
j=1 '

t�j
1n �x0j; (B.32)

where qnt =
1��n
'1n��n

(�tn � 't1n) when n j'1n � �nj ! 1 and jqntj � bt (1� '1n)'
t
1n for all t � n

and some b 2 (0;1) when j'1n � �nj = O (n�1). Similarly, applying (6) to the instrument

~z�1t =
Pt

j=1

�
'�1n
�t�jrxj in (19), we obtain
~z�1t � ~z�0t = (X0 (n)� �) (1 + �n)

�
'�1n
�t�1Pt�1

j=0

�
�n='

�
1n

�j � �nt
where

�nt = 2

�
(X0 (n)� �)

1

n
�n
1� �nn
1� �n

+ �x0n

�
1�

�
'�1n
�t

1� '�1n
= Op

�
n�1=2

� �
1�

�
'�1n
�t�

(B.33)

satis�es maxt�n j�ntj = Op

�
n�1=2

�
because 1 � '�1n ! 2 and, when �n ! � 2 [�1; 1): j�x0nj =

Op

�
n�1=2

�
and supn�1 (1� �n)

�1 <1. The above yields the following decomposition for ~z�1t:
~z�1t = ~z

�
0t � (X0 (n)� �) qnt � �nt; ~z

�
0t =

Pt
j=1

�
'�1n
�t�jrx0j (B.34)

where maxt�n j�ntj = Op

�
n�1=2

�
, qnt =

1+�n
'1n��n

�
�tn �

�
'�1n
�t�

when n
��'�1n � �n

�� ! 1 and jqntj �

11



bt
�
1 + '�1n

� ��'�1n��t for all t � n and some b 2 (0;1) when
��'�1n � �n

�� = O (n�1). We may use a

common qnt in the decompositions (B.32) and (B.34) by de�ning

qnt =
1� j�nj
�1n � �n

�
�tn � �t1n

�
when n j�1n � �nj ! 1 (B.35)

(with �1n given in (43)) and jqntj � bt (1� j�1nj) j�1nj
t for all t � n and some b 2 (0;1) when

j�1n � �nj = O (n�1).

We �rst show that qnt and �n in (B.35) and (4) satisfy
[�1n; �2n] = n�1=2

h�
1� �2n�

2
1n

�1=2
�1=2n ;

�
1� �2n�

2
1n

�
o (�n)

i �Pn
t=1 q

2
nt

�1=2 ! 0: (B.36)

When n j�1n � �nj ! 1, �1n �
p
2 (�n j�1n � �nj)

�1=2 �n�1Pn
t=1

�
�2tn + �2t1n

��1=2 ! 0 and �2n =

o (1) (n�1
Pn

t=1 (�
2t
n + '2t1n))

1=2 ! 0. When j�1n � �nj = O (n�1),
Pn

t=1 t
2 j�1nj

2t = O
�
(1� j�1nj)

�3�
by part (i) and ��1n = O (1� j�1nj) imply that both �1n and �1n are O

�
n�1=2 (1� j�1nj)

�1=2
�
.

Now (B.32) and Assumption 3 give r1n = n�1=2
�
1� �2n�

2
1n

�1=2
op

�
�
1=2
n

�Pn
t=1 qntut. Since

k
Pn

t=1 qntutk
2

L2
� 2

Pn
s=1

Pn
t=s jqntj jqnsj j
u (t� s)j = 2

Pn
t=0 j
u (t)j

Pn�t
s=1 jqnt+sj jqnsj

� 2
Pn

t=0 j
u (t)j
�Pn�t

s=1 q
2
ns

�1=2 �Pn�t
s=1 q

2
n;t+s

�1=2 � 2Pn
s=1 q

2
ns

P1
t=0 j
u (t)j

and
P1

t=0 j
u (t)j < 1 by Assumption 4, r1n !p 0 follows from the fact that �1n ! 0 in (B.36).

By (B.34),
r�1n = r1n + ��1n

Pn
t=1 �ntut = r1n +Op

�
n�1=2

�
��1n

Pn
t=1

�
1�

�
'�1n
�t�

ut

by (B.33); since the second term on the right is Op (�
�1
n ), r1n !p 0 implies that r�1n !p 0.

For r2n, (B.32) gives
Pn

t=1 (~z
2
1t � ~z20t) = (X0 (n)� �)2

Pn
t=1 q

2
nt + 2 (X0 (n)� �)

Pn
t=1 ~z0tqnt with

(X0 (n)� �) j
Pn

t=1 ~z0tqntj � (
Pn

t=1 ~z
2
0t)

1=2 �
(X0 (n)� �)2

Pn
t=1 q

2
nt

�1=2
by the Cauchy-Schwarz in-

equality. We conclude that
jr2nj � �21n + 2

�
n�1

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t

�1=2 �
�21n
�1=2

= op (1)

by (B.36) since n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
0t = Op (1) by Lemma 3.1 in MP(2020). By (B.34),��r�2n�� � 2��2n (X0 (n)� �)2

Pn
t=1 q

2
nt + 2�

�2
n

Pn
t=1

�
�2nt + ~z

�
0t�nt

�
+ 2 jX0 (n)� �j��2n

Pn
t=1 ~z

�
0tqnt

= 2��2n
Pn

t=1 �
2
nt + 2�

�2
n

Pn
t=1 ~z

�
0t�nt + op (1)

from the estimation used to show that r2n !p 0; since maxt�n j�ntj = Op

�
n�1=2

�
the �rst term

on the right is Op (�
�2
n ) and the second term is Op

�
n1=2��2n maxt�n



~z�0t

L2� = op (n�
�2
n ) = op (1),

showing that r�2n !p 0.

For r3n = r03n + r003n, with
[r03n; r

00
3n] = n�1

�
1� �2n'

2
1n

�
[
Pn

t=1 (~z1t � ~z0t)xt;
Pn

t=1 (xt � x0t) ~z0t] ;

the Cauchy-Schwarz inequality and (B.32) imply that r03n � Op (1) �2n (n
�1��1n

Pn
t=1 x

2
t )
1=2
= op (1)

by (B.36) and n�1��1n
Pn

t=1 x
2
t = Op (1). For r003n, (6) and

Pn
t=1 ~z0t = Op

�
n1=2 (1� �2n'

2
1n)

�1
�
imply

that

r003n = op (1) r
000
3n +Op

�
n�1=2

�
; r0003n = n�1

�
1� �2n'

2
1n

�
�1=2n

Pn
t=1 ~z0t�

t
n: (B.37)

When j'1n � �nj = O (n�1), the Cauchy-Schwarz inequality and n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
0t = Op (1)

imply that r0003n � Op (1)
�
n�1 (1� �2n'

2
1n)�

1=2
n

Pn
t=1 �

2t
n

�1=2
= Op (1)

�
n�1 (1� '21n)

�1=2
�1=2

= op (1).

When n j'1n � �nj ! 1, the de�nition of ~z0t, the summation by parts formula and the Cauchy-

12



Schwarz inequality givePn
t=1 ~z0t�

t
n =

Pn
t=1

Pt
j=1 '

t�j
1n �x0j�

t
n =

Pn
j=1 �

j
n�x0j

Pn�j
t=0 ('1n�n)

t

= (1� '1n�n)
�1
�Pn

j=1 �
j
n�x0j � '1n�

n
n~z0n

�
= (1� '1n�n)

�1
h
(1� �n)

Pn
j=1 �

j
nx0j + �nn (x0n � '1n~z0n)

i
� (1� '1n�n)

�1
�
(1� �n)

�Pn
j=1 �

2j
n

�1=2 �Pn
j=1 x

2
0j

�1=2
+Op

�
�nn�

1=2
n

��
:

Since (1� �n)
�Pn

j=1 �
2j
n

�1=2
= O

�
�
�1=2
n

�
, jr0003nj � O (1)

�
n�2

Pn
j=1 x

2
0j

�1=2
+ Op (�

n
n) = Op (1) so

r3n = op (1) follows from (B.37). For r�3n, write r
�
3n = r03n+ r

00
3n, where r

0
3n; r

00
3n are de�ned as above

with (~z1t; ~z0t; '1n) replaced by
�
~z�1t; ~z

�
0t; '

�
1n

�
, with (B.34) and the Cauchy-Schwarz inequality onPn

t=1 qntxt and
Pn

t=1 �ntxt giving jr03nj �
h
Op (1) �2n + ��2n n1=2�

1=2
n (

Pn
t=1 �

2
nt)

1=2
i
(n�1��1n

Pn
t=1 x

2
t )
1=2

which is op (1) since �2n = op (1) and n�1��1n
Pn

t=1 x
2
t and

Pn
t=1 �

2
nt are Op (1). Hence, (B.37) con-

tinues to hold with (~z0t; '1n) replaced by
�
~z�0t; '

�
1n

�
, and recalling the notation ~z+0t = (�1)

t ~z�0t;

r0003n = ��2n �1=2n

Pn
t=1 ~z

�
0t�

t
n = ��2n �1=2n

Pn
t=1 ~z

+
0t j�nj

t = op (1)

from the computation used for r3n, completing the proof of r�3n = op (1).

For part (iii), (B.32) gives (1� �n'1n)
Pn

t=1 qnt � (1� '1n)
2Pn

t=1 t'
t
1n = O (1) by part

(i) when j'1n � �nj = O (n�1) and (1� �n'1n)
Pn

t=1 qnt = O (��1n )
Pn

t=1 (�
t
n � 't1n) = O (1) +

O((�n (1� '1n))
�1) when n j'1n � �nj ! 1. Substituting into (B.32), (1� �n'1n)

Pn
t=1 (~z1t � ~z0t) =

op(�
1=2
n ) + op(�

�1=2
n (1� '1n)

�1), and (1� �n'1n)
Pn

t=1 ~z0t = Op

�
n1=2

�
established in MP(2020)

proves the order of magnitude of part (iii). Under C(ii), n�1=2 (1� '1n)
Pn

t=1 (~z1t � ~z0t) = op (1).

The recursion ~z0t = '1n~z0t�1 + �x0t implies that (1� '1n)n
�1=2Pn

t=1 ~z0t�1 = n�1=2 (x0n � ~z0n)
and part (iii) follows from the fact that n�1=2~z0n !p 0.

For part (iv), applying the identity ût = ut � (�̂n � �n)xt�1 to ~z2t =
Pt

j=1 '
t�j
2n ûj and ~z

�
2t =Pt

j=1

�
'�2n
�t�j

ûj in (20), we obtain the decomposition
~z2t = z2t � (�̂n � �n) nt�1 + �t2ngn;t and ~z

�
2t = z�2t � (�̂n � �n) nt�1 + �t2ngn;t (B.38)

where �2n = '2n for ~z2t and �2n = '�2n for ~z
�
2t;  nt�1 =

Pt
j=1 �

t�j
2n xj�1, and the last term gn;t =

[(�̂n � �n) �xn�1 � �un]
�
1� ��t2n

�
= (�2n � 1) satis�es max1�t�n jgn;tj = Op

�
n�1=2 (�2n � 1)

�1� since
(�̂n � �n) �xn�1 = Op

�
�
1=2
n =n

�
by Lemma B1(i) under C(iii) and standard local to unity asymptot-

ics under C(ii). Note that max1�t�n jgn;tj = Op

�
n�1=2

�
when �2n = '�2n. When n j�2n � �nj ! 1,

(B.4) will follow from the following identity for  nt�1 in (B.38):

 nt�1 =
1

�2n � �n

�
�2nz2t�1 � �nxt�1 + �t2ng

0
n;t

�
(B.39)

where g0n;t = X0 (n)� �
�
1� �

�(t�1)
2n

�
�n�1
�2n�1

, with the order in (B.4) following from

(�2n � �n)
�1 (�̂n � �n)max1�t�n

��g0n;t�� = op

�
�
�1=2
n ��nn (�2n � 1)

�1
�
+ Op

�
��1n ��nn (�2n � 1)

�1� un-
der C(ii)-C(iii) with both orders being majorised under C(ii) to become op

�
n�1=2 (�2n � 1)

�1� and
Op

�
n�1 (�2n � 1)

�1�. To prove (B.39), substituting xt in (6) into the expression for  nt�1 in (B.38)

13



we obtain

 nt�1 = �t�12n X0 (n) + �
�t�12n � 1
�2n � 1

+ �t2n
Pt�1

i=1 �
�i�1
n ui

Pt
j=i+1

�
�n
�2n

�j
+�t2n�

�1
n (X0 (n)� �)

Pt
j=2

�
�n
�2n

�j
: (B.40)

Evaluating the geometric progressionPt
j=i+1 (�n=�2n)

j =
�2n

�2n � �n

n
(�n=�2n)

i+1 � (�n=�2n)
t+1
o

when n j�2n � �nj ! 1, we obtain

 nt�1 = �t�12n X0 (n)+�
�t�12n � 1
�2n � 1

+
1

�2n � �n

�Pt�1
i=1 �

t�i
2n ui �

Pt�1
i=1 �

t�i
n ui

	
+
(X0 (n)� �) �n

�2n � �n

�
�t�12n � �t�1n

�
and using the expression for xt in (6), z2t =

Pt
i=1 '

t�i
2n ui and z

�
2t =

Pt
i=1

�
'�2n
�t�i

ui proves (B.39).

This completes the proof of (B.4) when n j�2n � �nj ! 1.
When j�2n � �nj = O (n�1), �n=�2n = 1+(�n � �2n) =�2n = 1+O (n

�1) so
Pt

j=i+1 (�n=�2n)
j �

nb for all i < t � n and some b > 0: Substituting into (B.40) we conclude that
gn = (�̂n � �n) max

1�t�n

����t2n nt�1�� � 4bn (�̂n � �n) max
1�t�n

��Pt�1
i=1 �

�i�1
n ui

�� = Op

�
n j�nj

�n ��2n � 1�1=2�
= Op

�
n�1=2

�
�2n � 1

��1 j�nj�n n3=2 ��2n � 1�3=2� = op

�
n�1=2

�
�2n � 1

��1�
= op

�
n�1=2 (�2n � 1)

�1�
by Lemma B2(i) since j�2n � �nj = O (n�1) implies that (�n)n2N belongs to C(iii). This completes

the proof of (B.4) when j'2n � �nj = O (n�1).

For the remainder of part (iv), we employ (B.4) to each of R1n-R4n. Using (19),
('2n � 1) v�1n;z

Pn
t=1 z2t�1 = v�1n;zz2n � v�1n;z

Pn
t=1 ut = Zn + op (1) (B.41)

since n1=2v�1n;z = n1=2 ('2n � 1)
1=2 '�n2n ! 0 by Lemma B2(i); also

Pn
t=1 xt = Op (�n�n) by Lemma

B1(i). Using (B.4) and the above orders for
Pn

t=1 z2t�1 and
Pn

t=1 xt we obtain

R1n = gn�
�1
n;zO (j�2nj

n) + 1 fn j�2n � �nj ! 1gOp

 
(�2n � 1)�

�1=2
n ��1n;z�

�1
n

�2n � �n

!Pn
t=1 (z2t�1 + xt�1)

= Op

�
n�1=2 (�2n � 1)

�1=2
�
+ 1 fn j�2n � �nj ! 1gOp

�
n1=2 (�2n � 1)

1=2 '�n2n

�
= op (1)

by Lemma B2(i). Since
Pn

t=1 z
�
2t�1 = Op (vn;z), the above bounds for R1n also show that R�1n =

op (1). For R2n =
�
�22n � 1

�
��n2n

Pn
t=1 rnt�1ut, the second term arising from (B.4) satis�es�

�22n � 1
�
��n2n gn

Pn
t=1 �

t�1
2n ut = op

�
n�1=2

�
�22n � 1

��1=2
��n2n

�
= op (1)

by Lemma B2(i); for the �rst term, when n j'2n � �nj ! 1, (B.4) and the triangle inequality give
jR2nj �

j�̂n � �nj (�2n � 1)
j�2n � �nj j�2nj

n fj
Pn

t=1 z2t�2utj+ j
Pn

t=1 xt�2utjg+ op (1)

=
�2n � 1
j�2n � �nj

Op

�
j�2nj

�n ��1=2n ��1n
�n

Op

�
�1=2n �n

�
+Op

��
�22n � 1

��1=2
�n;z

�o
+ op (1)

by (B.3). The �rst term above is Op

�
j�2nj

�n� and the second term is Op

�
j�nj�n

�nj�2n��nj

�
which is

Op

�
j�nj

�n� under C(iii) and Op

�
n�1 j�2n � 1j

�1�; since both terms are op (1), jR2nj = op (1) under

C(ii)-C(iii). Since
Pn

t=1 z2t�2ut and
Pn

t=1 z
�
2t�2ut have the same order of magnitude, the same

bound shows that
��R�2n�� = op (1).

For R3n = R03n + R003n, where R
0
3n = s�1n

Pn
t=1 rntxt and R003n = s�1n

Pn
t=1 z2t (xt � x0t), we

14



estimate the two terms arising from (B.4) for R03n: by (6)
s�1n gn

Pn
t=1 �

t
2nxt = s�1n gn

�Pn
t=1 �

t
2nx0t + �

Pn
t=1 �

t
2n + (X0 � �)

Pn
t=1 (�2n�n)

t� : (B.42)

Using the rate of gn in (B.4), the third term on the right is op
�
n�1=2

�
�22n � 1

��1=2�
. The sec-

ond term is op
�
n�1=2

�
under C(ii) and op

�
�
�1=2
n (n=�n) j�nj

�n
�
= op

�
�
�1=2
n

�
under C(iii); the third

term is op
�
j�nj

�n �
�1=2
n

�
if (j�nj � 1) = (j�2nj � 1) = O (1) andOp

�
n�2 (�2n � 1)

�3=2 (n=�n)
3=2 ��nn

�
=

op
�
n�1=2

�
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which shows that the left side of (B.42) is op (1). When n j�2n � �nj ! 1, (B.4) gives
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for all but �nitely many n for some b > 0, because (13) gives j
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Applying the mean value theorem to the increasing function x 7! 'x2n around (0; t) we obtain
't2n � 1 � t't2n log'2n (B.47)
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and note that log'2n ! 0 since '2n ! 1. Choosing a sequence mn !1 and mn log'2n ! 0,
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and completes the proof of part (iv).
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1.3 Additional Simulation Results
In this section, we present some additional simulation results. Tables B1 and B2 below contain

the empirical size and Figure B1 displays the power of the two-sided test of our procedure for the

predictive regression slope parameter � for n = 1; 000 based on 10; 000 replications for a grid of

points for b1 and b2 for �"u = 0:99 and �"u = �0:99 respectively for the case � = 1; which we use
for the instrument selection of Section 4.1 of the main paper16.

Table B1: Empirical size, �"u=0:99;n=1;000

b1=b2 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.650 5.01% 5.25% 5.76% 5.62% 5.63% 6.35% 6.52% 6.63% 6.16% 5.44% 5.80% 5.80% 5.98%

0.675 5.17% 5.46% 5.71% 5.52% 6.03% 5.87% 6.73% 6.63% 6.02% 5.74% 5.84% 5.94% 6.02%

0.700 5.53% 5.39% 5.61% 5.73% 6.18% 6.70% 6.69% 6.66% 6.13% 5.73% 5.79% 5.93% 6.35%

0.725 5.42% 5.51% 5.95% 5.59% 6.00% 6.72% 6.75% 6.45% 6.30% 6.20% 5.80% 5.78% 6.25%

0.750 5.33% 5.48% 5.71% 6.08% 6.03% 6.46% 6.97% 6.91% 5.70% 5.95% 5.79% 6.28% 6.34%

0.775 5.65% 5.67% 5.44% 5.66% 6.13% 6.48% 6.98% 6.62% 6.01% 5.92% 5.85% 6.04% 6.41%

0.800 5.25% 5.85% 5.56% 6.16% 5.90% 6.90% 6.64% 6.89% 6.61% 5.99% 6.21% 6.29% 5.92%

0.825 5.68% 5.44% 5.80% 6.09% 6.39% 6.83% 7.01% 6.61% 6.37% 5.89% 6.11% 6.48% 6.24%

0.850 5.57% 6.21% 5.45% 6.07% 6.39% 6.78% 7.23% 7.15% 6.35% 5.94% 5.95% 6.19% 6.59%

0.875 5.87% 6.17% 6.00% 6.04% 6.13% 6.41% 6.82% 6.71% 6.60% 6.31% 6.02% 6.56% 6.10%

0.900 5.87% 6.04% 5.77% 6.37% 6.22% 6.84% 6.72% 7.17% 6.69% 5.98% 6.01% 6.06% 7.03%

0.925 6.01% 5.83% 5.78% 6.05% 6.33% 6.83% 7.08% 6.48% 6.60% 6.21% 6.08% 5.98% 6.87%

0.950 6.46% 6.19% 5.92% 6.19% 6.40% 6.24% 7.02% 7.04% 6.70% 6.17% 6.30% 6.86% 7.16%

Figures B2 and B3 contain the empirical size of our two-sided IV-based test for correlation �"u of

�0:45 and 0:45 respectively. Figure B4 displays the proportion of times the di¤erent instruments
are chosen. Figure B5 is a comparison of the length of CIs of IV and OLS under misspeci�cation

of the last observation (note, in this case, OLS has no valid coverage for the purely explosive spec-

i�cations). Figures B6 and B7 present the coverage and length of CIs of our IV-based CIs and the

equal-tailed two-sided intervals (ETCI) of Andrews and Guggenberger (2014) respectively. Figure

B8 displays the empirical size of the OLS- and IV-based one-sided test under misspeci�cation of

the last observation. Finally, Figures B9/B11 and B10/B12 contain the empirical size and power

of our one-sided IV-based test in comparison with the size and power of the Elliott et al. (2015)�s

procedure for correlation �"u of �0:45 and 0:45 respectively.
16We place more weight on large values for b1 rather than large values for b2 for three reasons: (i) power is always

non-decreasing in b1 for all autoregressive speci�cations, while in the explosive region power is decreasing in the
value of b2 (though this is not a serious issue since our procedure preserves the exponential rate of convergence in
the explosive region �nnn

�b2=2 regardless of the value of b2), (ii) for power maximisation in the case � = 1, the value
of b1 is relatively more important (as can be seen from the power plots in Appendix B), since the near-stationary
instrument is chosen 2/3 of the time, and (iii) values for b2 close to unity would make our mildly explosive instrument
near the boundary with local-to-unity region, which would cause the instrument to inherit local-to-unity properties
and potentially some of the associated small sample distortions when working with purely explosive regressor.
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Table B2: Empirical size, �"u=�0:99;n=1;000

b1=b2
0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.650 5.88% 5.20% 5.43% 5.72% 5.64% 5.92% 6.38% 6.83% 5.93% 5.48% 6.02% 5.38% 6.38%

0.675 5.26% 5.35% 5.50% 5.57% 6.09% 6.15% 6.53% 6.63% 6.49% 5.47% 5.51% 6.20% 6.05%

0.700 5.81% 5.59% 5.17% 6.00% 5.60% 6.41% 6.65% 6.82% 6.15% 5.95% 5.88% 6.02% 6.09%

0.725 5.31% 5.72% 5.41% 5.80% 6.44% 6.28% 6.67% 6.64% 6.60% 6.17% 5.63% 5.95% 6.68%

0.750 5.75% 5.53% 5.25% 5.84% 6.14% 6.37% 7.18% 6.66% 6.21% 5.74% 6.15% 6.03% 6.28%

0.775 5.51% 5.59% 5.90% 5.93% 6.17% 6.32% 7.00% 6.91% 6.07% 6.09% 5.79% 6.18% 6.22%

0.800 4.97% 5.70% 5.45% 5.67% 5.98% 6.71% 7.06% 6.85% 5.97% 5.93% 6.09% 6.28% 5.97%

0.825 5.89% 5.82% 5.81% 5.59% 6.06% 6.04% 6.56% 6.96% 6.22% 6.00% 5.97% 5.94% 6.67%

0.850 5.79% 5.49% 5.50% 5.69% 6.11% 6.62% 7.07% 6.88% 6.63% 6.26% 6.74% 5.79% 6.63%

0.875 6.10% 5.89% 5.85% 5.98% 6.23% 6.38% 7.03% 6.84% 6.51% 6.16% 6.81% 5.83% 6.57%

0.900 5.45% 6.48% 6.36% 6.25% 6.13% 6.88% 6.85% 6.98% 6.36% 6.66% 6.13% 6.27% 6.29%

0.925 6.11% 5.80% 6.29% 6.19% 6.35% 6.68% 6.65% 7.03% 6.23% 6.54% 6.07% 6.17% 6.65%

0.950 6.21% 6.27% 6.13% 6.42% 6.40% 6.71% 6.94% 6.64% 6.69% 6.23% 6.95% 6.46% 7.19%

Figure B1: Power at � = 1 over a grid for b1 and b2
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Figure B2: Empirical size of the two-sided test on �; �"u = �0:45

Figure B3: Empirical size of the two-sided test on �; �"u = 0:45
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Figure B4: Proportion of times ~z1t; ~z�1t; ~z2t and ~z
�
2t are chosen

Figure B5: Length of intervals of IV and OLS under misspeci�cation of the last observation
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Figure B6: Coverage of CIs of IV and ETCI of Andrews and Guggenberger (2014)

Figure B7: Length of CIs of IV and ETCI of Andrews and Guggenberger (2014)
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Figure B8: Size of OLS- and IV-based one-sided test under misspeci�cation of the last observation

Figure B9: Empirical size of the one-sided test on �; �"u = 0:45
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Figure B10: Empirical size of the one-sided test on �; �"u = �0:45

Figure B11: Power of the one-sided test on �; �"u = 0:45
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Figure B12: Power of the one-sided test on �; �"u = �0:45
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