
Uniform Priors for Impulse Responses

Jonas E. Arias,1 Juan F. Rubio-Raḿırez,2 Daniel F. Waggoner2
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Motivation
▶ SVARs identified with sign restrictions are popular:

y′
tA0 = x′

tA++ε′t.

▶ Many researchers use the conventional methods by Faust (1998), Canova and
De Nicoló (2002), Uhlig (2005), and Rubio-Raḿırez et al. (2010).

▶ They can be used to independently draw from any posterior distribution over the
parameterization of interest subject to the identifying restrictions.

▶ Typically, the parameterization of interest is either the structural parameters or
the impulse responses and the posterior is conjugate.

▶ Independently draw from a conjugate posterior over the orthogonal reduced-form
parameterization and transform into the parameterization of interest:

y′
t = x′

tB+ε′tQ
′h(Σ).

▶ A central ingredient is the uniform prior distribution over the set of orthogonal
matrices with respect to the Haar measure.

▶ The normal-inverse-Wishart part of the prior is uncontroversial.
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Motivation

▶ Some researchers strongly caution against using it in applied work:

Figure 1 establishes that although the prior is uninformative about the angle of
rotation, it can be highly informative for the objects about which the researcher
intends to form an inference, namely the impulse response functions.(Page
1975 Baumeister and Hamilton, 2015)

the distributions in Figures 1 and 2 are simply an unintended side effect of the
Haar prior. (Pages 1978 Baumeister and Hamilton, 2015)

Good priors lead to good inference and conversely for bad priors. Sorting out
the good from the bad requires careful presentation and justification for the
prior actually used, a point forcefully and convincingly made in theory and
practice in Baumeister and Hamilton (2015, 2019). In this regard, the kinds
of flat (Haar) priors made on the rotation matrix ... seem counterproductive
(page 192). (Pages 192 Watson, 2020)
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Motivation
Summary of the line of reasoning underlying the critique

▶ Abstract from uncertainty about the reduced-form parameters by fixing them

▶ Draw orthogonal matrices from the uniform distribution and argue that the prior
distributions over the identified sets of individual impulse responses may be
nonuniform. Because the prior and the posterior coincide over the identified sets,
posterior distributions over the identified sets of individual impulse responses may
also be nonuniform.

▶ Consequently, they conclude that posterior inference could be governed by the
prior over the set of orthogonal matrices.
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This Paper has Three Objectives
Objective 1

▶ It is true that the conditional prior distributions of individual impulse responses are
nonuniform but the problem is not as severe as Baumeister and Hamilton (2015)
and Watson (2020) imply. Using Watson (2020) application we show:

1. The conditional prior distributions of individual impulse responses are different from
unconditional prior distributions of individual impulse responses.

2. The unconditional prior distributions of individual impulse responses do not drive
unconditional posterior distributions of individual impulse responses.
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This Paper has Three Objectives
Objective 2

▶ Baumeister and Hamilton (2015) and Watson (2020) have a reasonable concern:
it is not desirable that priors over identified sets are nonuniform.

▶ This could be an issue in uncommon large-sample settings.

▶ Inoue and Kilian (2022) argue this less problematic in tightly identified models.

▶ We show that the conventional method implies a uniform joint prior and posterior
distributions over the identified set for the vector of impulse responses.

▶ This is an “if and only if” result: If we want a uniform joint prior and posterior
distributions over the identified set for the vector of impulse responses we have to
have a uniform prior over the set of orthogonal matrices.

▶ Implications for Giacomini and Kitagawa (2021).

▶ Holds for other typical parameterizations of interest: the structural parameters.
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This Paper has Three Objectives
Objective 3

▶ We prove that the following conjecture by Baumeister and Hamilton (2015) is not
true:

Because the objects of interest in structural VARs are highly nonlinear functions
of the underlying parameters, the quest for ‘noninformative’ priors for structural
VARs is destined to fail (Pages 1979 Baumeister and Hamilton, 2015)

▶ We can have a uniform joint prior distribution for the vector of impulse responses.

▶ We need a particular prior distribution over the orthogonal reduced-form
parameterization.

▶ We can use the conventional methods to draw from the joint posterior distribution
for the vector of impulse responses implied by this prior.

▶ The key is to set a particular prior over the reduced-form parameters.

▶ We generalize it for a large class of parameterizations of interest.
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The Algorithm

The following algorithm independently draws from the NGN(ν̃, Φ̃, Ψ̃, Ω̃) posterior
distribution over the structural parameterization conditional on the sign restrictions.

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) posterior distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (A0,A+) = f−1
h (B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

We could easily modify the algorithm (Step 3) to consider the impulse response
parameterization.
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The IR Parameterization
▶ The natural parameterization for our analysis is the IR parameterization.

▶ The IR parameterization is (L0, · · · ,Lp, c).

▶ The matrices Lk are functions of the structural parameterization, L0 =
(
A−1

0

)′
and Lk =

∑k
ℓ=1

(
AℓA

−1
0

)′
Lk−ℓ, for 1 ≤ k ≤ p.

▶ The matrices Ak are also functions of the IR parameterization, A0 =
(
L−1
0

)′
and

Ak =
(
Lk L

−1
0

)′
A0−

∑k−1
ℓ=1

(
Lk−ℓ L

−1
0

)′
Aℓ, for 1 ≤ k ≤ p.

▶ Let L′
+ =

[
L′
1 · · · L′

p c′
]
, the IR parameterization is (L0,L+).

▶ We will denote the mapping from the IR parameterization to the structural
parameterization by fir.

▶ We will denote the mapping from the IR parameterization to the orthogonal
reduced-form parameterization by ϕh = fh ◦ fir.

▶ Marginal distributions of individual IRs are marginal distributions of individual
parameters in the IR parameterization.

▶ A joint distribution of IRs is a joint distribution over the IR parameterization.
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Revisiting
▶ The model used in the empirical section follows Watson (2020), quarterly U.S.

data over the period 1984Q1:2007Q4 on y′
t = (∆(yt − nt), nt,∆pt, i

L
t ) with 4

lags and an intercept. We use a Normal-Inverse Wishart prior over the
reduced-form parameters.

▶ Shocks identified with sign and zero restrictions.

Variable \Shock Technology Demand Monetary Policy Supply

Restrictions on 4-quarter ahead IRs

Output − − −
Price Level − −
Inflation +
10-Year Treasury Bond Rate − +

Restrictions on long-run IRs

Labor Productivity Growth 0 0 0
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Effects of Prior
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Effects of Prior
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Effects of Prior
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Effects of Prior
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Conditional Joint Prior for Impulse Responses

▶ Let fp denote the projection from the orthogonal reduced-form parameterization
onto the reduced-form parameters

▶ Then, ϕ = fp ◦ ϕh is the mapping from the IR parameterization to the
reduced-form parameters, and ϕ does not depend on h.

▶ The set ϕ−1(B,Σ) will be the submanifold that is the support of the joint
distribution of the IR parameterization conditional on (B,Σ).

▶ The submanifold structure induces the volume measure over ϕ−1(B,Σ).

▶ If π(L0,L+) is a density over the IR parameterization with respect to the
Lebesgue measure . . .

▶ . . . then the density conditional on (B,Σ) with respect to the volume measure
over ϕ−1(B,Σ) will be proportional to π(L0,L+).

▶ The density with respect to the volume measure over ϕ−1(B,Σ) will be uniform if
and only if π(L0,L+) is constant over ϕ

−1(B,Σ).
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Conditional Joint Prior for Impulse Responses

Proposition
For every density over the IR parameterization with respect to Lebesgue measure, the
density conditional on (B,Σ) with respect to the volume measure over ϕ−1(B,Σ) is
uniform for every (B,Σ) if and only if the induced distributions over the orthogonal
reduced-form parameters (B,Σ) and Q are independent and the distribution of Q is
uniform with respect to the Haar measure.

Proposition
For every density over the IR parameterization with respect to Lebesgue measure, the
density conditional on (B,Σ) with respect to the volume measure over ϕ−1(B,Σ) is
constant over observationally equivalent vectors of impulse responses if and only if the
induced distributions over the orthogonal reduced-form parameters (B,Σ) and Q are
independent and the distribution of Q is uniform with respect to the Haar measure.
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Conditional Joint Prior for Impulse Responses

▶ This is an “if and only if” result and holds for typical parameterizations of
interest: the structural parameters or the impulse responses.

▶ A uniform joint prior distribution over the identified set for the vector of impulse
responses one must use a uniform prior distribution over the orthogonal matrices.

▶ Any other choice of prior over the orthogonal matrices will imply a nonuniform
joint prior distribution over the identified set for the vector of impulse responses.

▶ This is true for any prior distribution over the reduced-form parameters.

▶ This result is important for the robust methodology in Giacomini and Kitagawa
(2021), they consider all possible priors over the orthogonal matrices.

▶ These are joint claims.
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Uniform Joint Prior for Impulse Responses

▶ We show that it is possible to conduct Bayesian inference based on a uniform
joint prior distribution for the vector of impulse responses and that such type of
prior can be implemented by slightly modifying the methods in Rubio-Raḿırez,
Waggoner, and Zha (2010).

▶ If π(B,Σ,Q) is any density over the orthogonal reduced-form parameterization,
the mapping ϕh = fh ◦ fir induces a distribution over the IR parameterization.

▶ The induced density over the IR parameterization will be
π(ϕh(L0,L+))vϕh

(L0,L+).

▶ The volume element is vϕh
(L0,L+) = 2

n(n+1)
2 | det(L0)|−(m−3).

▶ We also have vϕh
(ϕ−1

h (B,Σ,Q)) = 2
n(n+1)

2 |det(Σ)|−
(m−3)

2 .
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Uniform Joint Prior for Impulse Responses

▶ If π(L0,L+) is any density over the IR parameterization, then the induced density
over the orthogonal reduced-form parameterization will be

π(B,Σ,Q) =
π(ϕ−1

h (B,Σ,Q))

vϕh
(ϕ−1

h (B,Σ,Q))
=

π(ϕ−1
h (B,Σ,Q))

2
n(n+1)

2 | det(Σ)|−
(m−3)

2

.

Proposition
A density over the IR parameterization with respect to the Lebesgue measure is
uniform if and only if the induced prior distribution over the orthogonal reduced-form

parameterization has density proportional to |det(Σ)|
m−3

2 with respect to volume
measure.
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Uniform Joint Prior for Impulse Responses

Proposition (by DeJong (1992))

Let a > 2n+ 2 +m− T . If the reduced-form prior density is proportional to
| det(Σ)|−

a
2 , then the normal-inverse-Wishart posterior density over the reduced-form

is defined by
NIW(ν̂(a),Ŝ,B̂,(X′ X)−1)(B,Σ)

where ν̂(a) = T + a−m− n− 1.

Proposition
If the prior density over the orthogonal reduced-form parameterization is proportional

to |det(Σ)|
m−3

2 , the posterior density over the orthogonal reduced-form
parameterization is

UNIW(ν̂(−(m−3)),Ŝ,B̂,(X′ X)−1)(B,Σ).
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The Algorithm

The following algorithm independently draws from the posterior distribution over the
IR parameterization conditional on the sign restrictions implied by a uniform prior
distribution over the IR parameterization.

1. Draw (B,Σ) independently from the NIW
(
ν̂(−(m− 3)), Ŝ, B̂, (X′X)

−1
)

distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (L0,L+) = ϕ−1
h (B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.
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The Application

▶ Illustration uniform joint prior distribution for the vector of impulse responses.

▶ We begin by comparing the unconditional posterior distributions of individual
impulse responses implied by uniform joint prior distribution for the vector of
impulse responses and the commonly used Minnesota prior.

▶ Next we show the difference between marginal and joint inference.

▶ We finalize by comparing the joint posterior distribution for the vector of impulse
responses implied by uniform joint prior distribution for the vector of impulse
responses and the commonly used Minnesota prior.
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Marginals
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Marginal versus Joint
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Joints
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Objects of Interest
▶ The insights of the previous sections generalize to a general class of vectors of

objects of interest, Υ, that can be represented by a one-to-one and onto
continuously differentiable transformation of the orthogonal reduced-form
parameterization.

▶ Let us assume a simple model with two variables, no constant, and no lags:

y′
tA0 = ε′t.

▶ Let us assume that we want to define joint priors about individual elements of:
▶ A0

▶ L0

▶ In particular, we want to write a joint prior over:
▶ A0,1,1

▶ A0,2,2

▶ A0,2,1

▶ L0,1,1

▶ The object of interest is Υ = (A0,1,1, A0,2,2, A0,2,1, L0,1,1)
′.

▶ And we want to have a prior over the object of interest π(Υ).
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Uniform Joint Priors for Objects of Interest

▶ If π(B,Σ,Q) is any density over the orthogonal reduced-form parameterization,
the invertible mapping ϕo induces a distribution over Υ:

π(ϕo(Υ))vϕo(Υ).

▶ A prior over the vector of objects of interest implies:

π(B,Σ,Q) = π(ϕ−1
o (B,Σ,Q))vϕ−1

o
(B,Σ,Q).

▶ A uniform prior over the vector of objects of interest implies:

π(B,Σ,Q) ∝ vϕ−1
o
(B,Σ,Q).

▶ The induced density may depend on Q, hence the induced prior over the set of
orthogonal matrices is not uniform.
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Conditional Joint Prior for Objects of Interest

▶ Let fp denote the projection from the orthogonal reduced-form parameterization
onto the reduced-form parameters

▶ Then ϕ̂o = fp ◦ ϕo is the mapping from the vector of objects of interest to the
reduced-form parameters.

▶ The set ϕ̂−1
o (B,Σ) will be the submanifold that is the support of the joint

distribution of the vector of object of interest conditional on (B,Σ).

▶ The submanifold structure induces the volume measure over ϕ̂−1
o (B,Σ).

▶ If π(Υ) is a density over the vector of object of interest with respect to the
Lebesgue measure . . .

▶ . . . then the density conditional on (B,Σ) with respect to the volume measure
over ϕ̂−1

o (B,Σ) will be proportional to π(Υ).

▶ The density with respect to the volume measure over ϕ̂−1
o (B,Σ) will be uniform if

and only if π(Υ) is constant over ϕ̂−1
o (B,Σ).
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Conditional Joint Prior for Objects of Interest

Proposition
For every density over the vector of objects of interest with respect to Lebesgue
measure, the density conditional on (B,Σ) with respect to the volume measure over
ϕ̂−1
o (B,Σ) is uniform for every (B,Σ) if and only if the induced distribution over the

orthogonal reduced-form parameterization is such that π(Q |B,Σ) is proportional to
vϕ−1

o
(B,Σ,Q).

Proposition
For every density over the vector of objects of interest with respect to Lebesgue
measure, the density conditional on (B,Σ) with respect to the volume measure over
ϕ−1(B,Σ) is constant over observationally equivalent vectors of interest if and only if
the induced distributions over the orthogonal reduced-form parameters (B,Σ) and Q
are independent and the distribution of Q is such that π(Q |B,Σ) is proportional to
vϕ−1

o
(B,Σ,Q).
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An Algorithm

The following algorithm independently draws from the posterior distribution over the
vector of objects of interest conditional on the sign restrictions implied by a uniform
prior distribution over the vector of objects of interest.

1. Draw (B,Σ) independently from the NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ) distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. If Υ = ϕ−1
o (B,Σ,Q) satisfies the sign restrictions, then set its importance weight

to:
1

vϕ−1
o
(B,Σ,Q)

.

Otherwise, set its importance weight to zero.

4. Return to Step 1 until the required number of draws has been obtained.
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An Example
Consider a version of the two-variable SVAR described in Baumeister and Hamilton
(2015) in order to illustrate the algorithm. Accordingly, let

∆nt = kd + βd∆wt + bdw∆wt−1 + bdn∆nt−1 + σdudt , (1)

∆nt = ks + αs∆wt + bsw∆wt−1 + bsn∆nt−1 + σsust , (2)

where the vector
(
udt , u

s
t

)′
, conditional on past information and the initial conditions, is

Gaussian with mean zero and covariance matrix I2. Letting yt denote the endogenous
variables (i.e., yt = (∆wt,∆nt)

′), it should be clear that Baumeister and Hamilton’s
(2015) (A,D,Π) parameterization of Equations (1) and (2) is

Ayt = Πxt−1 + ut (3)

where ut =
(
udt , u

s
t

)′
, xt−1 = (yt−1, 1)

′, and

A =

[
−βd 1
−αs 1

]
,D =

[
σd 0
0 σs

]
, and Π′ =

[
bdw bdn kd

bsw bsn ks

]
.
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An Example
▶ For compactness, we let Υ =

(
βd, αs, σd, σs, bdw, b

d
n, k

d, bsw, b
s
n, k

s
)′

denote the
vector of objects of interest. Given Υ, we will construct a mapping fo from Υ to
the structural parameters and we will obtain the joint prior over the orthogonal
reduced-form parameterization implied by a uniform joint prior distribution for the
vector of objects of interest.

▶ The mapping fo is defined as follows:

fo(Υ) =

A′D−1︸ ︷︷ ︸
A0

,ΠD−1︸ ︷︷ ︸
A+

 .

The inverse of the fo mapping is given by:

f−1
o (A0,A+) = (−A(1, 1),−A(2, 1), diag(D), vec(Π))

where

D =

[
A−1

0 (2, 1) 0

0 A−1
0 (2, 2)

]
,A = DA′

0, and Π = A+D.
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An Example

▶ The volume element is vfo(Υ) = |σdσs|−6. This implies that the importance
weights are:

|σdσs|6.

▶ Finally, following Baumeister and Hamilton (2015), we impose the following sign
restrictions βd < 0 and αs > 0.

▶ We will compare the results to ones obtained with a conjugate
uniform-normal-inverse-Wishart prior distribution over the orthogonal
reduced-form parameterization where the normal-inverse-Wishart part of the prior
is a standard Minnesota.
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An Example
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Figure: Uniform joint prior distribution for the vector of objects of interest (Blue) versus
Minnesota prior. The 68 percent credible sets under the absolute value loss function using a
uniform joint prior distribution for the vector of objects of interest and a Minnesota prior over
the reduced-form parameters. 34 / 37



An Example

-5 -4 -3 -2 -1 0

d

0

0.5

1

1.5

2

2.5

3

3.5
s

(a) Elasticities

0 1 2 3 4

d

0

0.5

1

1.5

2

2.5

3

s

(b) Shock Sizes

Figure: The 68 percent credible sets under the absolute value loss function using a uniform
joint prior distribution for the vector of objects of interest.
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An Example
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Figure: The 68 percent credible sets under the absolute value loss function using a Minnesota
prior.
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Conclusions
▶ The conventional method implies prior and posterior distributions over the

identified sets of individual impulse responses that may be nonuniform.

▶ But, we should not discard the conventional method.

▶ It implies joint prior and posterior distributions over the identified set for the
vector of impulse responses that are uniform.

▶ The uniform distribution over the set of orthogonal matrices with respect to the
Haar measure is not only sufficient, it is also necessary.

▶ We can implement uniform joint prior distribution for the vector of impulse
responses using the conventional methods.

▶ Offers a practical complement to Giacomini and Kitagawa (2021).

▶ Their robust prior numerical method only marginal.

▶ We offer a compromise for researchers whose goal is to perform joint posterior
inference without favoring some vector of impulse responses over others a priori.
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