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1 Introduction

� Why we care about business cycles? Why bout seasonal cycles?

� How do you measure business cycles? What are their features? Are they
di�erent from, say, �nancial cycles?

� Should we compute classical (level) or growth (detrended) cycles?



� Burns and Mitchell (BM) (1943):
"Business cycles are a type of 
uctuations found in the aggregate economic

activity of nations that organize their work mainly in business enterprises:

a cycle consists of expansions occurring at about the same time in many

economic activities, followed by similarly general recessions, contractions,

and revivals which merge into the expansion phase of the next cycle; this

sequence of changes is recurrent but not periodic; in duration business

cycles vary from more than one year to ten or twelve years; they are not

divisible into shorter cycles of similar characters with amplitudes approxi-

mating their own."



� Lucas (1977):
" Movements about trend in gross national product in any country can

be well described by a stochastically disturbed di�erence equation of very

low order. These movements do not exhibit uniformity of either period

or amplitude, which is to say, they do not resemble the deterministic

wave motions which sometimes arise in the natural sciences. Those

regularities which are observed are in the co-movements among di�erent

aggregative time series (....). There is, as far as I know, no need to

qualify these observations by restricting them to particular countries or

time periods: they appear to be regularities common to all decentralized

market economies. Though there is absolutely no theoretical reason to

anticipate it, one is led by the facts to conclude that, with respect to the

qualitative behavior of co-movements among series, business cycles are all

alike.



� Burns and Mitchell consider level data. Characterize the business cycle
of a nation by specifying interesting durations and looking at comovements

across series.

� Lucas looks at detrended data (growth cycles). Seek commonality across
series, time periods and, potentially, countries. Does not specify interesting

periodicities.





Wikipedia (mixing and confusing): "The business cycle, also known as the

economic cycle or trade cycle, is the downward and upward movement of

gross domestic product (GDP) around its long-term growth trend The

length of a business cycle is the period of time containing a single boom

and contraction in sequence. These 
uctuations typically involve shifts

over time between periods of relatively rapid economic growth (expansions

or booms) and periods of relative stagnation or decline (contractions or

recessions).

Business cycles are usually measured by considering the growth rate

of real gross domestic product. Despite the often-applied term cycles,

these 
uctuations in economic activity do not exhibit uniform or predictable

periodicity. The common or popular usage boom-and-bust cycle refers to


uctuations in which the expansion is rapid and the contraction severe.



NBER (methodology):

\The NBER's Business Cycle Dating Committee maintains a chronology

of the U.S. business cycle. The chronology comprises alternating dates of

peaks and troughs in economic activity. A recession is a period between

a peak and a trough, and an expansion is a period between a trough and

a peak. During a recession, a signi�cant decline in economic activity

spreads across the economy and can last from a few months to more

than a year. Similarly, during an expansion, economic activity rises sub-

stantially, spreads across the economy, and usually lasts for several years.

... The Committee applies its judgment based on the above de�nitions of

recessions and expansions and has no �xed rule to determine whether a

contraction is only a short interruption of an expansion, or an expansion

is only a short interruption of a contraction. .... The Committee does not

have a �xed de�nition of economic activity. It examines and compares



the behavior of various measures of broad activity: real GDP measured

on the product and income sides, economy-wide employment, and real

income. The Committee also may consider indicators that do not cover

the entire economy, such as real sales and the Federal Reserve's index of

industrial production (IP) ... a well-de�ned peak or trough in real sales or

IP might help to determine the overall peak or trough dates, particularly

if the economy-wide indicators are in con
ict or do not have well-de�ned

peaks or troughs".

CEPR (recessions):

\a signi�cant decline in the level of economic activity, spread across the

economy of the euro area, usually visible in two or more consecutive quar-

ters of negative growth in GDP, employment and other measures of aggre-

gate economic activity for the euro area as a whole"



Why we take deviations from trend?

� Data shows growth; and it has more than cyclical 
uctuations.

� Economic models typically stationary and built to explain cyclical 
uc-
tuations.

� To collect cyclical facts or to match models and the data need to de-
trend/�lter the data.

� Detrending and �ltering are di�erent operations!



Questions:

� If detrend: deterministic or stochastic trend? With breaks or without?

� If �ltering: which �lter? Which frequencies (cycles) to keep?

� Theories talk about permanent and transitory shocks. They discuss

"potential" and "e�cient" levels of the variables and "gaps" are deviations

of actual from potential/e�cient levels. How do they relate to statistical

"trends" and "cycles"?.

� How do we link "neutrality" propositions (e.g. long run money neutrality)
to "trend and cycle" decompositions?



General conundrums:

� What is the business cycle?

i) Burns-Mitchell/Harding-Pagan: the sequence of alternating, irregularly

spaced turning points and repetition of expansion/recession phases or 2

quarters minimum duration.

ii) Majority of macroeconomists: the presence variability, serial and cross

correlation in a vector of aggregate macroeconomic variables.

iii) Time series econometricians: spectral peak at cyclical frequencies in

one or more time series.

iv) Policymakers: business cycle = output gap? (see Canova, 2019)



� How do one measures the cycle?

i) Use a statistical or an economic model?

ii) If a statistical model: use a univariate or a multivariate approach?

iii) If an economic model:

- Should it feature unit root shocks? What frictions should be in there?

- Should one try to measure the gap? Transitory 
uctuations? Or cycles

of a particular length?



2 Generics

Assume (for simplicity) that the "trend" is everything that it is not the

"cycle", i.e., yt = y
x
t + y

c
t .

� Trend and Cycles are unobservable.

� Nature of the decompositions depends:

i) Assumed properties (de�nition) of the properties of yxt .

ii) Correlation trend-cycle (call it �).



3 Burns-Mitchell/Pagan Approach

� Pattern recognition exercise: �nd cycles, expansions, contractions in the
level of yit.

� Use judgemental rules (NBER/CEPR dating committees): persistent
periods (at least two quarters) of positive/negative growth. Arbitrary.

� Mechanical rules (Bry and Boschen (BB) algorithm): �nd peak and
through dates (local max and min of the series).

� Example: Let St = 1 if upturn occurs and zero otherwise (from some
external information).Then St(1� St+1) = 1 if there is a peak and (1-
St)St+1 = 1 if there is a through.

� Measure durations and amplitudes of expansions and contraction phases.



� BB algorithm rules:

1. Peaks and throughs must alternate.

2. Each phase (peak to through or through to peak) must have a duration

of at least six months (two quarters).

3. A cycle (peak to peak or through to through) must have a duration of

at least 15 months (5 quarters).

4. Turning points within six months (2 quarters) of the beginning or end of

the series are eliminated. Peaks or throughs within 24 months (8 quarters)

of the beginning or end of the sample are eliminated if any of the points

after or before are higher (or lower) than the peak (through).



� BB turning point dates may be di�erent than NBER/CEPR turning point
dates. Why?

� Peaks (throughs) may occur at negative (positive) values

� Recessions may be uniformly small ( no sharp through).



Turning point dates: Euro area
Phase CEPR Length BB (GDP) Length
Peak 1974:3 1973:4
Through 1975:1 2 1974:1 2
Peak 1980:1 20 1979:2 21
Through 1982:3 10 1979:4 2
Peak 1992:1 38 1991:2 46
Through 1993:3 6 1992:2 4
Peak 2008:1 58 2007:2 60
Through 2009:2 5 2008:3 5
Peak 2011:3 9 2010:4 9
Through 2013:1 6 2012:2 6



� How do you construct a synthetic BC indicator? Average-and-date or

date-and-average? i.e. Would cycles in one indicator su�cient? Or is it

better to date many series and take an average of turning points?

� Average-and-date. Take a standard coincident indicator (e.g. Conference
Board (TCB) Indicator in US); or pick one relevant series (GDP, IP). Com-

pute turning points. Compare with standard classi�cation (NBER/CEPR)

to check reasonableness of dates. Alternatives:

� Dynamic factor model (DFM):

yit = �ft + eit

ft = a(L)ft�1 + ut ut � (0; �2u)
eit = b(L)eit�1 + vit vit � iidN(0; �2v) (1)



� ISD (Index standard deviation weighting)

It = exp(
NX
i=1

�iyit) (2)

where �i =
s�1iPN
j=1 s

�1
j

and si is the standard deviation of yit.

� In the US, the time paths of ISD and TCB similar (factor and ISD weights
are very close).





� Date-and-average. Compute turning points � is for series i = 1; : : : ; ns in
episode s. Compute a location measure of the turning points distribution

for each identi�ed phase episode (e.g. NBER recession).

� If turning points are iid

n0:5s (�̂means � �means )
D! N(0; var(� is)) (3)

n0:5s (�̂medians � �medians )
D! N(0;

1

4(gs(�s))2
) (4)

(h3ns)
0:5(�̂modes � �modes )

D! N(0;
gs(�modes )

R
[K0(z)]2dz

g00s (�modes )
) (5)

where K(:) is a kernel, h the length of the kernel, gs(�) is the distribution

of � in episode s (see Stock and Watson, 2014).



� If certain types of series are over-represented in the sample relative to
the population (e.g. there too many IP series and too few employment

series) use weights; helps also if series do not have the same lengths.

� Weights

wi;s =
�mi
pmi;s

(6)

where �m is the population probability of classm series (IPs, employments,

interest rates, etc.) and pm;s is the sample probability of classm in business

cycle episode s.





Alternatives:

� Pagan and Harding (2016). Construct a "reference phase": at least 50
per cent of the series are in a particular BC phase.

� Pagan (2019): Reference turning point minimizes the discrepancy among
individual series turning points, i.e. if peaks are at 1973:1, 1973:5, 1973:9,

reference peak is 1973:5.

� Construct a weighted average of turning points; weight depends on the
(subjective) importance of individual series (GDP turning points have more

weights than, say, labor productivity turning points).



Pagan and Harding (2002, 2006): compute useful statistics out of turning

point classi�cation, constructed following BM and BB.

Algorithm 3.1 1. Smooth yt to eliminate outliers, high frequency varia-

tions and other uninteresting 
uctuations. Call ysmt the smoothed series.

2. Determine a potential set of turning points using a rule like, e.g. �2ysmt >

0(< 0);�ysmt > 0(< 0);�ysmt+1 < 0(> 0);�
2ysmt+1 < 0(> 0).

3. Add criteria to ensure that peaks and troughs alternate (may have

consecutive peaks) and that the duration and the amplitude of phases are

meaningful ( minimum duration)



Statistics

� Average durations (AD), i.e. the average length of time spent between
throughs and peaks or peaks and throughs.

� Average amplitudes (AA), i.e. the average size of the drop between
peaks and troughs or of the gain between troughs and peaks.

� Concordance index CIj;j0 = n�1[
P IjtIit � (1 � Ijt)(1 � Iit)]. Mea-

sures comovements over business cycle phases of two variables, where n
is the number of complete cycles and Iit = 1 in expansions and Iit = 0
in contractions. CI = 1(= 0) if the two series are perfectly positively
(negatively) correlated.

� Average cumulative changes over phases (CM = 0:5 � (AD � AA))
and excess average cumulative changes ECM = ((CM � CMA + 0:5 �
AA)=AD), where CMA is the actual average cumulative change.



Features

� No need to measure ycit.

� Can collect statistics even if no econometrician cycles are present (good
for DSGE models).

� Allows for asymmetries of cyclical phases.

� Results sensitive to dating rule [2.] and to minimum duration of phases

(Typically: two or three quarters - so that complete cycles should be at

least 5 to 7 quarters long) and to minimum amplitude restrictions (e.g.

peaks to troughs drops of less than one percent should be excluded).

� How to adapt the procedure to international comparisons? How does it
relates to the two-quarter negative/positive (NBER) rule?



� Euro data 1970:1-2017:4. Series: Y, C, Inv, Y/N, N, R, �.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
­4

­3

­2

­1

0

1

2

3

4
Distribution of Turning  points



� 1975:1 is it a though? Less than 50% of the series are in a downturn.

� 2008 is it a through?. Minimal distance through is 2009:2. (two series
have minimum in 2008:1 and two in 2010:3).

� Important to have a good number of coincident series in the exercise.



Euro area Business Cycle Statistics
AD (quarters) AA (percentage) ECM(percentage)CIj;j0 (phase)

PT TP PT TP PT TP
GDP 3.8 33.7 -2.5 20.9 6.7 1.9
C 5 36.6 -1.5 19.2 9.8 4.4 0.57
Inv 6.7 14.7 -7.2 14.7 14.9 1.1 0.52
Y/N 2.0 18.6 -1.2 8.9 1.7 10.15 0.61
N 9.0 22.8 -1.8 6.13 7.0 11.82 0.45
R 8.4 6.6 -3.1 2.69 10.5 7.80 0.04
� 9.0 6.9 -6.1 5.57 0.34 12.01 0.15

� Big asymmetries in durations and amplitudes.

� Output and consumption expansions longer and stronger than in other
series.

� Low concordance of real and nominal series.



� US data 1970:1-2019:3. Series: Y, U, C, Inv, CapU, R1, R10, �, C/Y,
I/Y, Term spread.
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US Business Cycle Statistics
AD (quarters) AA (percentage) ECM(percentage)CIj;j0 (phase)

PT TP PT TP PT TP
GDP 3.4 27.4 -0.02 0.2 3.3 13.2
C 3.7 42.6 -0.01 0.3 -15.7 7.5 0.41
Inv 4.9 10.2 -0.1 0.2 -15.8 8.4 -0.37
U 14.0 7.8 -2.2 2.8 19.3 5.6 0.29
capU 6.2 8.9 -6.6 6.0 -13.2 2.4 -0.02
� 5.3 6.8 -2.7 2.4 8.2 2.4 0.12
R 7.2 6.5 -3.6 2.8 15.2 2.8 -0.04

� Durations in U di�erent than durations in C, I, Y, capU.

� Asymmetries large except for nominal variables.

� Concordance low (negative for I and capU).



3.1 Predicting Downturns

� Use probit/logit model: P(1�St = 0jFt�1); Ft�1 info available at t�1.

� Borio et al. (2018): Ft�1 = �nancial cycle information.



� Report area under the receiver operating characteristic (ROC) curve
(Berge and Jorda, 2011).

� Curve maps out combinations of type I errors (missed recessions) and
type II errors (false alarms). The area under the curve (AUC) measures

the indicator's signalling quality.

� AUC=0.5 :Uninformative indicator; AUC=1.0: a perfect indicator. The
AUC of an informative indicator is statistically di�erent from 0.5.





Problems:

� Predicting 1� St di�erent than predicting the sign of �yt+1.

� What are we measuring? P(1 � St = 0j1 � St�1 = 1)= probability of

entering a recession; P(1 � St = 0j1 � St�1 = 0)= probability of staying

in a recession. If just use Ft�1 we are mixing these two probabilities.

� 1� St is a generated variable that depends on yt+k; k = 1; 2. Incorrect

to use it as conditioning variable in a VAR to see if ,e,g responses di�er in

recession and expansions.



4 How do macroeconomists think about cycles?

� Use some procedure to remove yxit.

� Compute var(ycit); auto(ycit), i=1,2...,N; corr(ycit; yc1t), i = 2; :::; N .

where yc1t is output. What is the pattern across i?

� Fix a t0 < t < t1 (�nancial crisis, recession, etc.): compute variability,

auto and cross correlations.

� Check if models can produce data 'patterns' (Pagan, 2013, 2019).

� What methods are available to estimate ycit?



Univariate (detrending) approaches

� Polynominal trend, � = 0.

� Segmented linear trend, � = 0.

� Di�erencing:RW trend, � = 0.

� Hamilton local projection, � = 0 (also multivariate)

� Unobservable components, � may be non-zero (also multivariate).

� Beveridge Nelson: � = 1 (also multivariate).



Univariate (�ltering) approaches

� Hodrick and Prescott, � = 0.

� Band pass, � = 0.

� Wavelets, � = 0.

� Butterworth, � = 0.

Multivariate (economic) approches

� Blanchard and Quah; KPSW, � 6= 0 (structural shocks could be uncor-

related or correlated).



4.1 Deterministic Polynomial Trend

yxt = a+ bt+ ct
2 + ::::

Estimate a; b; c; : : : in the regression

yt = a+ bt+ ct
2 + ::::+ et

by OLS. Set ŷct = yt � aOLS � bOLSt� cOLSt2 � : : :.

� Can perfectly predict trend in the future.

� No acceleration/deceleration in the trend is possible.

� Unless a; b; c recursively estimated, timing of information in ŷct and yt
di�ers.

� yct is typically nearly non-stationary.



4.2 Deterministically Breaking Linear Trend

yxt = a1 + b1t ift � t1 (7)

yxt = a2 + b2t ift > t1 (8)

� Estimate ai; bi by OLS. Set ŷct = yt � a1OLS � b1OLSt; t � t1; ŷ
c
t =

yt � a2OLS � b2OLSt; t > t1.

� What if t1 unknown? Select [ta; tb]. Run OLS for every t1 2 [ta; tb]. Use
F-test to check a1 = a2; b1 = b2 each t1. Break point is the t1 producing

maxF (t1) ! QML statistics (see Stock and Watson, 2002).

� Can still perfectly predict yt+h after the break. Solution: Markov switch-
ing trend (Hamilton, 1989).
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4.3 Di�erencing

� Trend estimate

yxt = yxt�d d = 1; 4; 8; 24; ::: (9)

� Cycle estimate: yct = �dyt,

� Long or short di�erencing? How do you choose d?

� For d=1 (quarter-on-quarter growth rates) cycles very volatile. Di�cult
to have models to explain them.

� If d > 1 arti�cial MA(d-1) components in yct .
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Trend and cycle: di�erencing

� Long di�erencing leaves a downward trend in �ltered data



4.4 Hamilton: local projection technique

� Same ideas used to compute impulse responses/ direct forecasts:

yt+h = �1h�yt + �2h�yt�1 + : : :+ �dh�
d�1yt + wt+h (10)

where, typically, h = 8 and d = 4. In practice run:

yt+h = �1hyt + �2hyt�1 + �3hyt�2 + �4hyt�3 + wt+h (11)

� wt+h is an estimate of yct+h.

� wt+h is a function of h; d.



Properties:

� wt+h is model free. Robust to misspeci�cation of the trend process.

� wt+h is stationary if yt has up to d unit roots.

� Can be applied to seasonally non-adjusted data; to data of any frequency
(quarter, month, week: adjust d and h).

� wt+h similar to those obtained with h di�erencing.





Questions

� Do cycles in wt+h have standard durations and amplitude?

� What kind of comovement does the procedure generates?

� Are their features dependent on h; d?

� What are the properties of the Hamilton trend? (Schuler, 2019)
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� Hamilton �lter is not a business cycle �lter. Peak is at 10.66 quarters.



4.5 Unobservable component methods

� State space model-based.

� Assume certain time series properties for the trend and cycle, e.g. trend
is a RW, cycle is an AR(2).

� Can be boosted up with observable regressors or additional features for
the error process, see e.g. Stock and Watson, 2016.

� Can be made multivariate, see e.g. Astrudillo and Roberts, 2016; Grant
and Chan, 2017a, 2017b. Can restrict trends to be common.



Two setups:

yt = � t + ct + ut

� t = � t�1 + �+ �t
ct = �1ct�1 + �2ct�2 + �t (12)

Estimate (�1; �2; �; �
2
u; �

2
�; �

2
�); � = corr(�t; �t) by KF-ML approach or by

MCMC with 
at prior.

yt = � t + ct + ut

� t = � t�1 + �+ �t
c1t = �((cos!)c1t�1 + (sin!)c2t) + �1t
c2t = �(�(sin!)c1t�1 + (cos!)c2t) + �2t (13)

ct = [c1t; c2t]. Fix 0 < ! < �, estimate (�; �; �2u; �
2
�; �

2
�1
; �2�1). (see

Runstler and Vlekke, 2018).



� Can use a more 
exible local linear trend speci�cation ( see next page)

� Can pick up more than one ! in the cycles in (13).

� Often omit ut (measurement error).

� Can allow breaks in the trend (�1(t < t0); �2(t � t0)), Markov switching
in �, rare events (jumps in ��), and stochastic volatility in �2� .
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� Contemporaneous correlation of cyclical outputs: 0.19579

� AR(1) of cyclical outputs: 0.96784 ; 0.99363

� Variabilities of cyclical output: 0.00015967; 0.015188

� Quite a lot of di�erences! Which one to choose?



Multivariate UC

yt = � t + ct + ut

� t = � t�1 + �t + �t
�t = �t�1 + �t
cit =

X
ji

�jcit�j + �it; i=1,2,...N (14)

where yt is N � 1, � t is a scalar. Here there is a common (stochastic)
local-linear trend. The model for the cycle is allowed to be series speci�c.

yt = � t + ct + ut

� it = � it�1 + �it; i=1,2,...N

ct =
X
j

�jct�j + �t (15)

where yt is N�1, ct is a scalar. Here there is common cyclical components
but there are variable-speci�c trends.



4.6 Beveridge-Nelson decomposition

� Trend is the long run forecastable component of yt

� It assumes yt features a unit root (otherwise long run forecastable com-
ponent is the mean of yt).

� Features of estimated yct depend on lag length of the estimating model
and sample size.

� Univariate setup :(�yt � �y) = A(`)�yt�1 + et, where et � iid(0;�e)

and all the roots of det(A(`)) are less than one.

� MA: (�yt � �y) � �y�t = D(`)et, where D(`) = (1� A(`))�1; D0 = I.

If D(1) 6= 0,



�y�t = D(1)et + (1� `)Dy(`)�et (16)

where Dy(`) = D(`)�D(1)
1�L . Cumulating

yt = (�y +D(1)
tX
j=1

ej) +D
y(`)et = yxt + y

c
t (17)

� Trend and cycle perfectly correlated, � = 1.

� Trend is a random walk with drift.

� Can be cast into a state space framework (see Morley, et al., 2003).

� Quality of the decomposition depends on the estimate of �y, the drift in
the random walk.
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Multivariate Beveridge-Nelson

� Let yt = [�y1t; y2t] (m� 1); where y1t are I(1); and y2t are I(0);

� Suppose yt = �y +D(`)et, where et � iid(0;�e) and D0 = I, the roots

of det(D(`)) are equal or greater than one; and that D1(1) 6= 0, where

D1(`) is m1 � 1 (�rst m1 rows of D(`)). Then 
�y1t
�y2t

!
=

 
�y1
�y2

!
+

 
D1(1)
0

!
et +

0@ (1� `)Dy1(`)
(1� `)Dy2(`)

1A�et (18)

D
y
1(`) =

D1(`)�D1(1)
1�` D

y
2(`) =

D2(`)
1�` , 0 < rank[D1(1)] � m1 and y

x
t =

[�y1 +D1(1)
P
s es; �y2]

0 is the permanent component of yt.

� Kambler et al., 2018: smooth BN decomposition (add penalty in the

estimation)



5 How do econometricians think about cycles?

� Stationary data summarized with the autocovariance function (ACF):

ACF (�) = Et(yt � Etyt)(yt�� � Etyt��) (19)

� ACF is symmetric, has correlated elements (E(ACF (�); ACF (� 0)) 6=
0; � 6= � 0).



� Alternatively, stationary data can be summarized with spectral density:

S(!) = 1

2�

�1X
�=�1

ACF (�)e�i!� ; (20)

! 2 [0; 2�]; i = (�1)0:5; e�i!� = cos(!�)� i sin(!�).

� Spectral density changes coordinates relative to ACF.

� If S(!) is evaluated at !� = 2��
T ; � = 0; : : : ; T�1 (Fourier frequencies):

i) S(!�) = S(!��) (symmetry around !� = 0).

ii) E(S(!�)S(!� 0)) = 0 (uncorrelatedness at two di�erent !� 's)



­π                                                           0 ω1 ω2 π

S(ω)

� Area under the spectral density (P! S(!)) is the variance of the process.
Given orthogonality (by i. of previous slide), can perform variance decom-

position by frequencies.

� S(! = 0) = P�1
�=�1ACF (�) measures of the persistence of yt.

� If yt has a unit root, Sy(! = 0) " 1 and for xt = �yt Sx(! = 0) = 0.



� How do I associate a frequency !� with the length of the 
uctuations?
The length of the 
uctuations at Fourier frequency !� is p =

2�
!�
= T

� .

Example 5.1 !� =
�
16 ! p = 32; !� =

�
2 ! p = 4 (quarters, years,etc.)

� Components of spectral density:

(1) Trends: !� 2 (0; !1) (low frequencies) (Not just S(0)).

(2) Cycles: !� 2 (!1; !2) (cyclical frequencies)

(3) Seasonals, irregulars: !� 2 (!2; �) (high frequencies)
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� Low frequencies (trends) associated with cycles featuring long periods of
oscillations (time series moves infrequently from peaks to throughs).

� High frequencies (irregulars) are associated with short cycles (time series
move frequently from peaks to throughs).



Multivariate analysis

� The spectral density matrix of a stationary N � 1 vector fytg1t=�1 is
S(!) = 1

2�

P
� ACF (�) exp(�i!�) where

S(!) =

26664
Sy1y1(!) Sy1y2(!) : : : Sy1ym(!)
Sy2y1(!) Sy2y2(!) : : : Sy2ym(!)
: : : : : : : : : : : :

SyNy1(!) SyNy2(!) : : : SyNyN (!)

37775
� Diagonal of the spectral density matrix real; o�-diagonal complex.

� The coherence between yit and yjt is Coyi;yj(!) =
jSyi;yj(!)j

(Syi;yi(!)Syj;yj(!))0:5
.

� It measures the strength of the association between yit; yjt at frequency
!.

R
Co(!)d! = �y1;y2: decomposition of correlation by frequency. Co(!)

is real since jyj = real part of complex number y.



Examples of univariate spectral densities
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Conclusions

� Displaying variability and serial correlation (e.g. AR(1) or MA(1) ) does
not generate cycles for econometricians.

� Alternating sequence of irregularly sparse turning points does not neces-
sarily generate cycles for econometricians.

� Need, at least, an AR(2) with complex roots to have econometrician
cycles.

� Need large coherence at certain frequencies to have yit and yjt comoving.



� Beaudry et al. (2019): labor market variables have econometrician cycles.

Note: cycle length reversed (left short cycle, right long cycles).



Filters

� Spectral densities de�ned only for stationary series.

� Interested in variability at certain frequencies (Why? Electrical engineers
arguments?)

� Filters may make yt stationary under certain assumptions.

� Filters eliminate variability at certain frequencies.

� Two birds with one stone!



� A �lter is a linear transformation of a primitive stochastic process yt.

y
f
t =

JX
�J
Bjyt�j = B(`)yt (21)

� The �lter is symmetric if Bj = B�j. Symmetric �lters have the property
that the timing of the cycles in yt and y

f
t is the same (zero phase shift).

� If PJ�J Bj = 0 and yt is non-stationary, y
f
t is stationary (�ltering de-

trends/stationarize time series with unit roots).



� Two MA �lters

1) y
f
t = yt +D1yt�1.

2) y
f
t =

PJ
j=�J yt�j. The larger is J the smoother is y

f
t .

� If CGFy(z) is the covariance generating function of yt, and yft = B(`)yt,
then CGFyf (z) = B(z)B(z�1)CGFy(z). When univariate CGFyf (z) =
jB(z)j2CGFy(z), where jB(z)j is the real part (modulus) of B(z).

Example 5.2 Let et be a white noise. Its spectrum is Se(!) = �2

2� (this is

the CGF for z = ei!). Let yt = a(`)et where a(`) = a0 + a1` + a2`
2 +

: : :. The spectrum of yt is Sy(!) = ja(e�i!)j2Se(!), where ja(e�i!)j2 =
a(e�i!)a(ei!).



Terminology

� The frequency response function of the �lter is B(!) = B0+2
P
j Bj cos(!j)

(i.e. set `j = ei!j); it measures the e�ect of a shock in yt on y
f
t at fre-

quency ! (IRF in frequency domain).

� jB(!)j is the gain (transfer) function; it measures how much the am-

plitude of the 
uctuations yft changes relative to the amplitude of yt at

frequency !.

� jB(!)j2 is the squared gain; it measures how much the variance of yft
changes relative to the variance of yt at frequency !.



5.1 The Hodrick and Prescott (HP) Filter

� Trends are smooth (variations are small; could be almost deterministic
or stochastic). Assumption formalized in the constrained problem:

min
yxt
f
TX
t=1

(yt � yxt )2 + �
TX
t=2

((yxt+1 � yxt )� (yxt � yxt�1))2g (22)

If � = 0, the solution is yxt = yt. As � "; yxt becomes smoother. If �!1,
yxt becomes linear (no variations). Typically: � = 1600 for quarterly data.

� Ravn and Uhlig (2002): if � = 129000 for monthly data and � = 6:25

for annual data, HP �lters picks cycles with similar periodicity for monthly,

quarterly and annual data.



Solution to the constrained optimization:

ŷx = Ay = (H 0H + �Q0Q)�1Hy (23)

ŷc = y � ŷx = (I �A)y (24)

where y = [yT ; : : : ; y1]
0 is a T � 1 vector, yx = [yxT ; : : : ; y

x
1 ; y

x
0 ; y

x
�1]

0 is a
(T + 2)� 1 vector, H = [I; 0] where I is a T � T identity matrix and 0
a T � 2 matrix of zeros and

Q =

2666666664

1 �2 1 0 0 : : : : : : 0
0 1 �2 1 0 : : : : : : 0
0 �0 1 �2 1 : : : : : : 0
: : : : : : : : : : : : : : : : : : : : : : : : : : :
0 0 0 0 : : : 2 1 0
0 0 0 0 : : : 1 �2 1

3777777775
� (23) is a "ridge" estimator (typically used for multicollinearity problems).

� Bayesian interpretation: �2yxt�1 = �t is a prior with �t � N(0; � � �2c).



� Alternative (UC) setup:

yt = yxt + y
c
t

�yxt = �t (25)

where both �t and y
c
t are white noise, uncorrelated with y

x
0 ; y

x
�1. Two

solutions (see literature on curve �tting, e.g. Wabha, 1980).

i) If C�10 = var(yx0 ; y
x
�1)

�1 ! 0, �nd at such that ~y
x
t = atyt by minE(y

x
t�

atyt)
2. Solution: ~yx = E(yxy0)E(yy0)�1y = ~Ay. If � =

�2c
�2�
, then A = ~A.

ii) (25)) is a state space system. Can use the Kalman smoother to solve

the signal extraction problem (still assuming large C0).



� � = 1600 means �c, the standard deviation of the cycle, is 40 times

larger than �� the standard deviation of the second di�erence of the trend.

� HP Solution is optimal when the cycle is a white noise.

� HP Solution: is time dependent (the cycle at t depends on how large is
T ). Beginning and end-of-sample problems.

� Premultiplying (23) by (H 0H + �Q0Q)�1 and letting T grow to in�nity
one can show that yct = Bc(`)yt, where

Bc(`) ' (1� `)2(1� `�1)2
1
� + (1� `)2(1� `�1)2

(26)



� When � = 1600, Bcj and the jBc(!)j2 looks like in the picture below.
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� Properties of HP �lter:

(i) It eliminates linear and quadratic trends from yt.

(ii) Stationarize yt with up to 4 unit roots (King and Rebelo, 1993).

� What happens if yt has less than 4 unit roots? Overdi�erencing.

� HP �lter may create spurious autocorrelation in yft (Slutzky e�ect).



� Intuition: yt = et � iid(0; �2). Then

�yt = et � et�1 correlation of order 1

�2yt = et � et�1 � (et�1 � et�2) correlation of order 2; etc:

� Di�erencing a stationary yt induces spurious serial correlation.

Example 5.3 Let yt be I(2) or I(4). Pass them through a HP �lter. The
�gure plots the ACF of y

f
t . The serial correlation in �ltered I(2) higher

then in the �ltered I(4).

5 10 15 20 25 30 35 40 45 50
­0.50

­0.25

0.00

0.25

0.50

0.75

1.00 I(0)
I(2)
I(4)



� It can create spurious variability in the �ltered data.

� If yt is stationary, the squared gain function is:

Bc(!) '
16 sin4(!2 )

1
� + 16 sin

4(!2 )
=

4(1� cos(!))2
1
� + 4(1� cos(!))2

:

� It damps 
uctuations with periodicity � 24-32 quarters per cycle, it

passes short cycles without changes.

� If yt is I(1) Bc(`) is a combination of two �lters: (1 � `) makes yt
stationary,

B(`)
1�` �lters �yt. When � = 1600 the gain function of

B(`)
1�` is

' 2(1 � cos(!))B(!), which peaks at !� = arccos[1 � ( 0:751600)
0:5] ' 30

periods:
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� If yt is I(1) HP damps long and short run growth cycles and ampli�es
business cycle frequencies (e.g. the variance of the cycles with average

duration of 7.6 years is multiplied by 13).

� Problem even larger if yt is I(2).

� Same problem if yt nearly integrated (�y = 0:95)? (see dotted line)



� What is the intuition for the increased variability?

� Suppose �yt = et � iid(0; �2). Then

var(�2yt) = var(et � et�1) = var(et) + var(et�1) = 2�2

var(�3yt) = var(et � 2et�1 + et�2) = 4�2

etc.. So the �lter
B(`)
1�` can augment the variability of �yt.



� It can produce spurious comovements among series.

Example 5.4 y1t and y2t are two uncorrelated random walks. Pass them

through a HP �lter. The �gure plots the cross correlation function of

yc1t; y
c
2t and a 95 percent asymptotic tunnel for the hypothesis of no cor-

relation.
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� What is the intuition for this result?

The two �ltered series have similar spectrum. Therefore, it is possible that

they go up and down together (Note: this does not happen all the times).

� Conclusions: The HP �lter has the potential to generate spurious

variability, spurious serial and cross variable correlations



Properties of HP �lter (continue)

iii) It leaves high frequency variability unchanged (high pass �lter).

iv) HP cyclical component predicts the future. Alternative to (26):

yct =
�(1� `)4

1 + �(1� `)2(1� `�1)2
yt+2 (27)

v) � = 1600 inconsistent with KF estimates of �2c; �
2
� and UC setups.





vi) Two-sided �lter (do not use yct in VARs!).

vii) Cross county comparisons di�cult because cycles may have di�erent

length. Marcet-Ravn (2000) solve

min
yxt

TX
t=1

(yt � yxt )2 (28)

V �
PT�2
t=1 (y

x
t+1 � 2yxt + yxt�1)2PT
t=1(yt � yxt )2

(29)

where V � 0 is a constant to be chosen by the researcher, V measures
the relative variability of the acceleration in the trend and the cycle,

and may be country speci�c.



Example 5.5 200 data points from a stationary RBC model with utility

U(ct; ct�1; Nt) =
c
1�'
t
1�' + log(1 � Nt) assuming � = 0:99; 'c = 2:0; � =

0:025; � = 0:64, steady state hours equal to 0.3, �� = 0:9; �g = 0:8; �� =

0:0066; �g = 0:0146. Table reports average unconditional moments across

100 simulations, before and after HP �ltering.

Simulated statistics
Raw HP �ltered

K W LP K W LP
cross (GDPt; xt) 0.49 0.65 0.09 0.84 0.95 -0.20
cross (GDPt+1; xt) 0.43 0.57 0.05 0.60 0.67 -0.38
St. Dev 1.00 1.25 1.12 1.50 0.87 0.50



5.2 One sided HP �lter

� The HP-�lter is two-sided and thus not very useful for real analysis and
forecasting. In addition, by construction, yct arti�cially predicts the future.

� There is a version of the HP �lter which is one-sided and does not feature
future predictability.

� The trend and the cycle can be estimated with standard Kalman �lter/
EM algorithm iterations, MCMC, or by serial implementation.



� The model is:

yt = y
x
t + y

c
t (30)

yxt = 2y
x
t�1 � yxt�2 + �t (31)

where �t; y
c
t are white noise sequences.

� State space representation (see Stock and Watson, 1999):



1. State Equation24 yxtjt
yxt�1jt

35 = "
2 �1
1 0

# 24 yxt�1jt�1
yxt�2jt�1

35+ "
�t
0

#
(32)

2. Observation Equation

yt =
h
1 0

i 24 yxtjt
yxt�1jt

35+ "
yct
0

#
(33)

� Can restrict � = �2c
�2�
with a prior, e.g. � � N(1600; 10).



� Serial implementation (Meyer-Gohde, 2010).

� Much faster than KF; gives almost identical results.

� fyxt gTt=1 is obtained calculating for each t the standard HP �ltered trend
using data up to that t and equating yxt with trend value for period t ( i.e.

compute T two-sided HP �lters trends).
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5.3 L1-HP �lter

� Standard problem:

min
yxt
f
TX
t=1

(yt � yxt )2 + �
TX
t=1

((yxt+1 � yxt )� (yxt � yxt�1))2g (34)

� L1 problem (Kim et al.,2009):

min
yxt
f
TX
t=1

(yt � yxt )2 + �
TX
t=1

j(yxt+1 � yxt )� (yxt � yxt�1)jg (35)

� Same features as standard HP.

� Non-linear �lter.



� Gives rise to piecewise linear segments:

yxt = ak + bkt; tk � t � tk+1; k = 1; : : : ; p� 1 (36)

and

ak + bktk+1 = ak+1 + bk+1tk+1 k = 1; : : : ; p� 1 (37)

� p is the number of break points where the estimated trend changes slope.

� The number of break points in yxt typically decreases as � increases.

� Used in (business) �nance to signal "changes in market trends".





5.4 Other MA �lters.

y
f
t =

JX
�J
Bjyt�j = B(`)yt (38)

� Symmetric MA �lters (Bj = B�j) with limJ!1
PJ
�J Bj = 0 preferred

because they maintain lead/lag relationships and eliminate unit roots.

� HP is a symmetric, truncated MA �lter. Other �lters?

Example 5.6 A symmetric (truncated) MA �lter: Bj = 1
2J+1; 0 � j � jJ j

and Bj = 0; j > jJ j. If yct = (1 � B(`))yt � Bc(`)yt the cyclical weights
are Bc0 = 1�

1
2J+1 and B

c
j = Bc�j = �

1
2J+1, j = 1; 2 : : : ; J .



Band Pass (BP) Filters

� Combination of high pass and low pass MA �lters.

� Low pass �lter: B(!) = 1 for j!j � !1 and 0 otherwise.

� High pass �lter: B(!) = 0 for j!j � !1 and 1 otherwise.

� Band pass �lter: B(!) = 1 for !1 � j!j � !2 and 0 otherwise.



 0 ω1 π
             Low Pass

    1

    0

0 ω2 π
       High Pass

    1

    0

  0 ω1 ω2 π
           Band Pass

1

 0

Time series representation of the weights of the �lters:

Low pass: Blp0 =
!1
�
; Blpj =

sin(j!1)
j�

; 0 < j <1, some !1.

High pass: Bhp0 = 1� Blp0 ; B
hp
j = �Blpj ; 0 < j <1.

Band pass: Bbp0 = B
lp
j (!2)� B

lp
j (!1); 0 < j <1; !2 > !1.

� j must go to in�nity. Hence, these �lters are not realizable for T �nite.



� Baxter and King (1994): for �nite T , cut at some �J <1.

� If the �lter is symmetric and P �J
� �J BJ = 0 a truncated BP makes sta-

tionary series with quadratic trends and with up to two unit roots.

� BK approximation has the same problems of HP �lter if yt is (nearly)

integrated.

� J needs to be large for the approximation to be good, otherwise leakage
and compression.
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� Christiano and Fitzgerald (2003): use a non-stationary, asymmetric
approximation which is optimal in the sense of making the approximation

error as small as possible.

� MA coe�cients depend on t and change magnitude and even sign.

� Better spectral properties (see picture) but:

a) Need to know the properties of time series before taking the approxi-

mation (need to know if it is a I(0) or I(1)).

b) Phase shifts may occur.

� Christiano and Fitzgerald approximation is the same as Baxter and King
if yt is a white noise. In general, they will di�er at the beginning and end

of the sample.



5.5 Wavelets �lter

Similar idea as BP �lters but:

� Implementation is in time domain and one-sided MA.

� Size of the MA window adjusted depending on the cycles one wants to
extract.

� Can be used on stationary and non-stationary series.

� Implementation: Haar wavelet �lter (see Lubik et al., 2019).



yt =
JX
j=1

Djt + SJ;t (39)

Djt = 1=(2j) � (
2j�1�1X
i=0

yt�i �
2j�1X
i=2j�1

yt�i) (40)

SJ;t = 1=(2J) � (
2J�1X
i=0

yt�i) (41)

� Typically J = 6. Low j's capture high frequency; j=3,4 business cycles

and j=5 low frequencies.

� SJt captures the long run component.



� 8-16 quarters cycles D3t = (1=8) � (yt + yt�1 + yt�2 + yt�3 � yt�4 �
yt�5 � yt�6 � yt�7).

� 16-32 quarters cycles D4t = (1=16) � (yt+ yt�1+ yt�2+ yt�3+ yt�4+
yt�5+yt�6+yt�7�yt�8�yt�9�yt�10�yt�11�yt�12�yt�13�yt�14�
yt�15).

� 32-64 quarters cycles D5t = (1=32) � (yt+ yt�1+ yt�2+ yt�3+ yt�4+
yt�5+yt�6+yt�7+yt�8+yt�9+yt�10+yt�11+yt�12+yt�13�yt�14�
yt�15� yt�16� yt�17� yt�18� yt�19+ yt�20� yt�21� yt�22� yt�23+
yt�24 � yt�25 � yt�26 � yt�27 + yt�28 � yt�29 � yt�30 � yt�31).

� Window changes with the components.



0 20 40 60 80 100 120 140 160
11.7

11.75

11.8

11.85

11.9

11.95

12
log  employment

data
BK
CF
WaveBC
WavelowBC

0 20 40 60 80 100 120 140 160 180 200
­0.02

0

0.02

0.04

0.06

BK
CF
WaveBC
WavelowBC

Log Employment; Wavelet and BP �lters



5.6 Butterworth �lters

� Designed as low pass; can be adapted to high pass, band pass and even
stop pass.

� Butterworth (1937): 'An ideal electrical �lter should not only completely
reject the unwanted frequencies but should also have uniform sensitivity
for the wanted frequencies'

� Squared gain function: G(!) = G0
1+( !!c)

2n where G0 is the gain at the

zero frequency, n is the (polynomial) order of the �lter and ! is a selected
frequency and !c a reference point ( typically !c = 1).

� Flexible. Can be designed to capture medium and low frequency varia-
tions. Can be designed to eliminate unit roots without a�ecting medium
frequencies.
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� Di�erent decays are possible depending on n.

� Scale depends on G0.

� Starting of decay depends on !

� Useful to extract components wiht power at all frequencies.



Matlab commands to build a Butterworth �lter

� [a,b]=butter(n,cuto�,type), where n is the degree of the polynomial,

cuto� is where the squared gain falls and type could be low, high, stop-

pass. If cuto� is a vector with two values, butter computes band pass

weights.

� y1=�lt�lt(a,b,y). Creates the �ltered series using an ARMA(a,b) with y
as input.

� Normalized to have G0 = 1. Rescale the b coe�cients to chnage G0
(up if coe�cients up you get lower squared gain).
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� Canova (2019b) BW good to extract gaps produced by economic models.

How does it perform on real data?



Analytical computation of statistics

� How to compute ACF of �ltered data?

� If yct = Bc(`)yt and Bc(`) known: ACFyc(�) = ACFy(0)
P1
i=�1BciBci��+P1

� 0=1ACFy(�
0)
P1
i=�1BciBci�� 0��+

P1
� 0=1ACFy(�

0)0
P1
i=�1BciBci�� 0�� .

� We need to truncate the sums at some �{, except in some special cases.



6 Economic Decompositions

� Use economic models to split yt into unobservable components.

� Leading examples: Blanchard and Quah (1989), trend random walk,

� 6= 0. King, Plosser, Stock and Watson (KPSW) (1991), cointegrated

trend, � 6= 0.

� Recover permanent-transitory components (not trend/cycle: permanent
may have cyclical features; not potential/gap: gap may have permanent

features).

� Results sensitive to model speci�cation and sample size.



� Example of a BQ decomposition: Fisher's model

gdpt = gdpt�1 + a(�
s
t � �st�1) + �st + �dt � �dt�1 (42)

unt = Nt �Nfe = ��dt � a�st (43)

d = demand, s = supply. This model implies that unt has no trend; the

trend in gdpt is gdp
x
t = gdpxt�1 + a(�

s
t � �st�1); and the cycle is gdpct =

�dt � �dt�1 + �st .

� Only supply shocks have long run e�ects on gdpt.

� Both supply and demand shocks have cyclical e�ects on gdpt.

� gdpxt and gdpct correlated (�s drives both).



� Example of KPSW decomposition: RBC model. yt = [gdpt; invi; Ct].

yt = y
x
t + y

c
t (44)

yxt a scalar, y
c
t a 3� 1 vector. �yt has a MA representation

�yt = �y +D(`)et (45)

� Trend component of yt identi�ed using D(1)et = [1; 1; 1]0ext , where e
x
t

is a permanent innovation (use Cholesky decomposition of D(1)�eD(1)0).

� Cyclical component yt � yxt .

� Implementation is like in multivariate BN but ext is a supply (technology)
disturbance (not a reduced form shock)



Alternative identi�cation assumptions

� The BQ decomposition implicitly normalizes the variance of structural

shocks to one and assumes that structural shocks are uncorrelated.

� Evidence suggests that long run and short run disturbances may be
correlated, e.g. Morley et et. (2003), Grant and Chan (2017a).

� Normalization chosen my matter (Waggoner and Zha, 2003).

� Cover et al. (2003): use alternative normalization plus identi�cation

assumptions that allow demand and supply shocks to be correlated.



� Structural model (� > 0, unitary slope AD)

gdpt = Et�1gdpt + �(pt � Et�1pt) + �1t (46)

gdpt = pt + Et�1(gdpt + pt) + �2t (47)

�1t; �2t potentially correlated; (46) is AS; (47) is AD.

� VAR : yt = a0 + a(L)yt�1 + et, yt = [gdpt; pt]0.

� Relationship VAR-structural model

e1t =
1

1 + �
�1t +

�

1 + �
�2t (48)

e2t = � 1

1 + �
�1t +

1

1 + �
�2t (49)

or et = B�t.



� Identi�cation: i) Normalization: �it; i = 1; 2 has a unitary e�ect on yt;

ii) slope of aggregate demand is unit ( demand shocks may be persistent);

iii) long run demand shock neutrality. i)-ii)-iii) imply:

� = � a12(1)

1� a22(1)
(50)

� Given (50) use (48) and (49), to recover structural shocks.

� Permanent/transitory components correlated. Permanent component:

yt = a0 + a(L)yt�1 +B1�1t (51)

where B1 is the �rst column of B.



� BQ setup:

e1t = c11�1t + c12�2t (52)

e2t = c21�1t + c22�2t (53)

Identi�cation: �2�i = 1;��1;�2 = 0; long run demand shock neutrality

c12(1� a22(1)) + c22a12(1) = 0 (54)

� Given (54), use (52), (53) to get the structural shocks ( 3 unknowns in
3 moments).

� Permanent and transitory components correlated because supply shocks
drive both even if supply and demand shocks are uncorrelated.



6.1 Are BQ estimates robust?

� Coibion et al (2018): BQ estimates of output gaps only depend on supply
shocks. Traditional estimates depend on both supply and demand shocks.

� Canova and Ferroni (2019): VAR estimates subject to deformation. Esti-
mates and inference about latent variables may depend on the VAR model

used.

� Deformation occurs if the DGP has more shocks than the variables of
the VAR.

� Cross sectional and time deformation could be present.



� Run a VAR with US output growth and unemployment. Compute the
permanent and the transitory components of output.

� Add to the VAR:
- investment/output ratio

- consumption/output ratio

- capacity utilization

- term spread (10 years bond rate -call rate)

- in
ation
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� Timing of peaks and throughs changes.

� Amplitude of cycles changes.

� End of the sample: transitory component is positive or negative ?
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7 How policymakers think about cycles?

� Policymakers interested in gaps. Very loosely de�ned.

� Gaps are meaningful only in terms of a model. Potential is the path of
the variables when nominal frictions are eliminated. Gap is the di�erence

of actual from potential level.

� How do DSGE-based estimates of gaps look like?



SW (2007) gap



JPT (2013) gap: model with two observable hours series



FGT (2020) gap: model with �nancial frictions



� Model chosen matters.

� Tend to have larger/longer swings than traditional statistical estimates:
amplitude and duration of phases change.

� If you do not trust a model, what do you do? Canova and Matthes

(2019) robust CL approach.



� What are the features of gaps? Are they similar to cycles obtained

detrending/�ltering the data? Are they similar to transitory 
uctuations?

Canova (2019b). NO

� Gaps depend on what frictions are included in the model but

i) Generally persistent and feature important low frequency variations.

ii) Have little power (variability) at business cycle frequencies.

iii) Are correlated with potentials.

iv) Do not look like standard gap measures (CBO, Fed measures (y-

potential)).
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8 Collecting cyclical information

� Approach one uses would not matter if cyclical statistics would be more
or less the same. Are they?

� When �ltering why do we concentrate on 8-32 quarter cycles? In de-

veloping countries the trend may be cycle: shocks may have permanent

features (Aguiar and Gopinath, 2007). Cycles in labor market data may

be longer than 8-32 quarters ( Beaudry, et al. 2019).

� How do you compare countries di�erent cyclical features (length)?

� Filtering and detrending subject to speci�cation errors and small sample
or truncation biases.



Canova (1998)-(1999) Business cycle facts depend:

� Assumptions about the trend and procedures used to remove it.

� Whether decompositions are univariate vs multivariate.

� Whether components are orthogonal vs. non-orthogonal.

� What portions of spectrum are emphasized.

� Sample size (in small samples cyclical coe�cients poorly estimated)



Summary statistics
Variability Relative Variability Contemporaneous Correlations Periodicity

Method GDP Consumption Real wage (GDP,C) (GDP,Inv) (GDP, W) (quarters)
HP1600 1.76 0.49 0.70 0.75 0.91 0.81 24
HP4 0.55 0.48 0.65 0.31 0.65 0.49 7
BN 0.43 0.75 2.18 0.42 0.45 0.52 5
BP 1.14 0.44 1.16 0.69 0.85 0.81 28
KPSW 4.15 0.71 1.68 0.83 0.30 0.89 6

� Di�erences present also in other statistics, e.g. dating of cyclical turning
points or measuring business cycle phases.



Conclusion

� Extraction of growth cycles and calculation of statistics problematic.

� Empirical facts should be collected without growth removal and should
be conditional (rather than unconditional).

� If you care about gaps, use models. If you do not trust models use

composite methods or BW �lters.



9 Business and �nancial cycles. Are they di�er-

ent?

� Are they di�erent? BIS: Financial cycles are longer than business cycles.
see Borio (2012)

� Lots of literature on the topic, see e.g. Runstler and Vlekke (2018).

� Compare credit to GDP to non�nancial corporations and output for

illustration.



Canova (2019a): Euro area data
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Variable % of variance % of variance Persistence
2-8 years cycles8-15 years cyclesAR1

Credit/GDP total 1.5 18.3 0.99
Credit/GDP households 1.6 19.0 0.99
Credit/GDP private non �nancial1.7 19.1 0.99
log(real GDP) 2.1 20.3 0.99
Labor Productivity 2.2 20.4 0.99
Unemployment rate 1.6 18.1 0.98
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Real and Financial cycles in models

� Use SW-FF (Del Negro et al, 2015) and CMR (Cristiano, et al. 2011)

� Do cycles look like those of the data?
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10 Fitting structural models to �ltered data

� Statistical �ltering: Find Bj such that y
f
t has S(!�) 6= 0 only for certain

!� 2 (!1; !2).

� Economic �ltering: yt = y1t + y2t = A(L)et + B(L)ut, where et are

permanent shocks, ut are transitory shocks or et are disturbances entering

the potential and ut disturbances entering the gap. Note ut and et may

overlap.

� In general, y2t 6= y
f
t since y1t; y2t have S(!�) 6= 0 for all !� 2 (0; �).
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Ideal case

� (Cyclical) model has most of the variability located at business cycle
frequencies. Statistical �ltering would ok.
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Realistic case

� If (cyclical) model is driven by persistent AR(1) shocks, lots of variability
in the low frequencies. Filtering throws away information.
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General case

� If (cyclical) model is driven by persistent AR(1) shocks, and permanent
shocks are cyclical, �ltering is distortive. Di�erent �lters will give di�erent

results.



� Typical solution: Build in a trend in a (cyclical) model. Transform the

data with a model consistent approach. Problems:

� Models with trends (in technology) imply balanced growth path. Typi-
cally violated in the data.

� Where do we put the trend (e.g. technology or preferences) matters for
estimates of the structural parameters - nuisance parameter problem.

� Should we use a unit root or trend stationary speci�cation?
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Filter LT HP FOD BP Ratio
Median (s.d.)Median (s.d.)Median (s.d.)Median (s.d.) Median(s.d.)

�c 2.19 (0.10) 2.25 (0.12) 2.54 (0.16) 2.21 (0.10) 1.69 (0.11)
�n 1.79 (0.08) 1.57 (0.10) 1.90 (0.19) 1.78 (0.08) 2.16 (0.10)
h 0.67 (0.01) 0.59 (0.03) 0.44 (0.03) 0.66 (0.02) 0.64 (0.02)
� 0.17 (0.03) 0.12 (0.02) 0.12 (0.03) 0.16 (0.02) 0.13 (0.02)
� 3.90 (0.12) 4.27 (0.14) 2.92 (0.11) 3.72 (0.05) 4.09 (0.12)
�r 0.16 (0.04) 0.52 (0.04) 0.22 (0.06) 0.49 (0.04) 0.22 (0.04)
�� 1.36 (0.08) 1.67 (0.04) 1.74 (0.05) 1.77 (0.08) 1.71 (0.05)
�y -0.15 (0.02) 0.35 (0.06) 0.13 (0.07) 0.44 (0.05) -0.02 (0.01)
�p 0.81 (0.01) 0.60 (0.03) 0.33 (0.03) 0.56 (0.03) 0.81 (0.01)
�� 0.76 (0.02) 0.59 (0.04) 0.29 (0.04) 0.82 (0.03) 0.82 (0.02)
�z 0.96 (0.01) 0.54 (0.05) 0.87 (0.05) 0.46 (0.05) 0.92 (0.01)
�� 0.23 (0.04) 0.37 (0.05) 0.23 (0.04) 0.20 (0.03) 0.95 (0.16)
�z 0.12 (0.02) 0.08 (0.01) 0.09 (0.01) 0.09 (0.01) 0.08 (0.01)
�mp 0.11 (0.01) 0.08 (0.01) 0.12 (0.02) 0.08 (0.01) 0.12 (0.01)
�� 30.54 (1.17) 1.01 (0.) 0.16 (0.03) 0.63 (0.21) 34.70 (1.04)

Posterior estimates NK model. For LT, HP, FOD and BP real variables detrended, nominal

demeaned. For Ratio, real variables are in terms of hours,all variables demeaned.

Which column should be trusted?



Alternatives:

� Use a data rich environment (Canova and Ferroni, 2011).

Let yit be the actual data �ltered with method i = 1; 2; :::; I and ydt =
[y1t ; y

2
t ; : : :]. Assume:

ydt = �0 + �1yt(�) + ut (55)

where �j; j = 0; 1 are matrices of parameters, measuring bias and correla-
tion between data and model based quantities, ut measurement errors and
� the structural parameters.

� Factor model setup a-la Boivin and Giannoni (2005).

� Can jointly estimate � and �'s.

� Same interpretation as GMM with many instruments.



� Bridge cyclical model and the raw data with a 
exible speci�cation

(Canova, 2014).

ydt = c+ y
T
t + y

m
t (�) + ut (56)

where ydt � ~ydt � E(~ydt ) the log demeaned vector of observables, c =

�y�E(~ydt ), yTt is the non-cyclical component, ymt (�) � S[yt; xt]0, where S
is a selection matrix, is the model based- cyclical component (the solution

of a DSGE model), ut is a iid (0;�u) (measurement) noise, y
T
t ; y

m
t (�) and

ut are mutually orthogonal.

� Non cyclical component

yTt = yTt�1 + �yt�1 + et et � iid (0;�2e) (57)

�yt = �yt�1 + vt vt � iid (0;�2v) (58)



� �2v > 0 and �2e = 0, yTt is a vector of I(2)processes.

� �2v = 0, and �2e > 0, yTt is a vector of I(1) processes.

� �2v = �2e = 0, yTt is deterministic.

� �2v > 0 and �2e > 0 and
�2vi
�2ei

is large, yTit is "smooth" and nonlinear ( as

in HP).

� Jointly estimate structural � and non-structural parameters (joint esti-
mation and �ltering)

� Equivalent to assume a rich measurement error structure.

How does the procedure do in a simple experimental design?



Small variance Large variance
True Median (s.e) True Median (s.e)

�c 3.00 3.68 (0.40) 3.00 3.26 ( 0.29)
�n 0.70 0.54 (0.14) 0.70 0.80 ( 0.13)
h 0.70 0.55 (0.04) 0.70 0.77 ( 0.04)
� 0.60 0.19 (0.03) 0.60 0.41 ( 0.04)
� 7.00 6.19 (0.07) 7.00 6.95 ( 0.09)
�r 0.20 0.16 (0.04) 0.24 0.31 ( 0.04)
�� 1.30 1.30 (0.04) 1.30 1.25 ( 0.03)
�y 0.05 0.07 (0.03) 0.05 0.08 ( 0.10)
�p 0.80 0.78 (0.04) 0.80 0.72 ( 0.02)
�� 0.50 0.53 (0.04) 0.50 0.69 (0.05)
�z 0.80 0.71 (0.03) 0.80 0.90 ( 0.03)
�� 0.011 0.012 (0.0003)0.011 0.012 ( 0.0003)
�z 0.005 0.006 (0.0001)0.005 0.007 ( 0.0001)
�mp0.001 0.002 (0.0004)0.001 0.002 (0.0004)
�� 0.206 0.158 (0.0006)0.206 0.1273 (0.0004)
�nc� 0.02 0.23

Parameters estimates using 
exible speci�cation. �nc� is the standard error of the shock

to the non-cyclical component.



Appendix: Other elements of Spectral Analysis

� The periodogram of yt is Pe(!) =
P
�
\ACF (�)e�i!� where\ACF (�) =

1
T

P
t(yt � �y)(yt�� � �y) and �y = 1

T

P
t yt.

� Periodogram is inconsistent estimator of the spectrum. Periodogram

consistently estimate only an average of the frequencies of the spectrum.

For consistency need to "smooth" periodogram with a �lter (kernel).

� A �lter is a kernel (denoted by KT (!)) if, as T ! 1, K(!�) =
1; for !� = ! and K(!�) = 0 otherwise.

� Kernels eliminate bias in \ACF (�). Since as T ! 1 bias disappears,

wants kernels to converge to ��function as T !1.



Two useful Kernels.

� Bartlett kernel: tent shaped, width 2J(T ); K(!j) = 1 � j!j
J(T )

. J(T )

chosen so that
J(T )
T ! 0 as T !1.

� Quadratic spectral kernel: wave with in�nite loops;
K(!j) = 25

12�2j2
sin(6�j=5)
(6�j)=5

� cos(6�j5 ).
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