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Outline
e Intro and generics of the decompositions.
e Burns and Mitchell: turning point analysis.
e Lucas 1: LT, SEGM, FOD, Hamilton, UC, BN.
e Lucas 2: HP, BP, Wavelets, Butterworth.
e Economic model-based decompositions: BQ, KPSW.
e Collecting cyclical information: does it matter?
e Business and financial cycles.

e Fitting DSGE models to cyclical data.
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1 Introduction

e Why we care about business cycles? Why bout seasonal cycles?

e How do you measure business cycles? What are their features? Are they

different from, say, financial cycles?

e Should we compute classical (level) or growth (detrended) cycles?



e Burns and Mitchell (BM) (1943):

"Business cycles are a type of fluctuations found in the aggregate economic
activity of nations that organize their work mainly in business enterprises:
a cycle consists of expansions occurring at about the same time in many
economic activities, followed by similarly general recessions, contractions,
and revivals which merge into the expansion phase of the next cycle; this
sequence of changes is recurrent but not periodic; in duration business
cycles vary from more than one year to ten or twelve years; they are not
divisible into shorter cycles of similar characters with amplitudes approxi-

mating their own.”



e Lucas (1977):
" Movements about trend in gross national product in any country can
be well described by a stochastically disturbed difference equation of very
low order. These movements do not exhibit uniformity of either period
or amplitude, which is to say, they do not resemble the deterministic
wave motions which sometimes arise in the natural sciences. Those
regularities which are observed are in the co-movements among different
aggregative time series (....). There is, as far as | know, no need to
qualify these observations by restricting them to particular countries or
time periods: they appear to be regularities common to all decentralized
market economies. Though there is absolutely no theoretical reason to
anticipate it, one is led by the facts to conclude that, with respect to the
qualitative behavior of co-movements among series, business cycles are all

alike.



e Burns and Mitchell consider level data. Characterize the business cycle
of a nation by specifying interesting durations and looking at comovements

acCross series.

e Lucas looks at detrended data (growth cycles). Seek commonality across
series, time periods and, potentially, countries. Does not specify interesting

periodicities.
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Wikipedia (mixing and confusing): " The business cycle, also known as the
economic cycle or trade cycle, is the downward and upward movement of
gross domestic product (GDP) around its long-term growth trend The
length of a business cycle is the period of time containing a single boom
and contraction in sequence. These fluctuations typically involve shifts
over time between periods of relatively rapid economic growth (expansions
or booms) and periods of relative stagnation or decline (contractions or
recessions).

Business cycles are usually measured by considering the growth rate
of real gross domestic product. Despite the often-applied term cycles,
these fluctuations in economic activity do not exhibit uniform or predictable
periodicity. The common or popular usage boom-and-bust cycle refers to
fluctuations in which the expansion is rapid and the contraction severe.



NBER (methodology):

“The NBER's Business Cycle Dating Committee maintains a chronology
of the U.S. business cycle. The chronology comprises alternating dates of
peaks and troughs in economic activity. A recession is a period between
a peak and a trough, and an expansion is a period between a trough and
a peak. During a recession, a significant decline in economic activity
spreads across the economy and can last from a few months to more
than a year. Similarly, during an expansion, economic activity rises sub-
stantially, spreads across the economy, and usually lasts for several years.
... The Committee applies its judgment based on the above definitions of
recessions and expansions and has no fixed rule to determine whether a
contraction is only a short interruption of an expansion, or an expansion
is only a short interruption of a contraction. .... The Committee does not
have a fixed definition of economic activity. It examines and compares



the behavior of various measures of broad activity: real GDP measured
on the product and income sides, economy-wide employment, and real
income. The Committee also may consider indicators that do not cover
the entire economy, such as real sales and the Federal Reserve's index of
industrial production (IP) ... a well-defined peak or trough in real sales or
IP might help to determine the overall peak or trough dates, particularly
if the economy-wide indicators are in conflict or do not have well-defined
peaks or troughs”.

CEPR (recessions):

“a significant decline in the level of economic activity, spread across the
economy of the euro area, usually visible in two or more consecutive quar-
ters of negative growth in GDP, employment and other measures of aggre-
gate economic activity for the euro area as a whole”



Why we take deviations from trend?
e Data shows growth; and it has more than cyclical fluctuations.

e Economic models typically stationary and built to explain cyclical fluc-

tuations.

e To collect cyclical facts or to match models and the data need to de-

trend /filter the data.

e Detrending and filtering are different operations!



Questions:

e If detrend: deterministic or stochastic trend? With breaks or without?
e If filtering: which filter? Which frequencies (cycles) to keep?

e Theories talk about permanent and transitory shocks. They discuss
"potential”’ and " efficient” levels of the variables and " gaps” are deviations
of actual from potential /efficient levels. How do they relate to statistical

"trends” and "cycles” ?.

e How do we link " neutrality” propositions (e.g. long run money neutrality)
to "trend and cycle” decompositions?



General conundrums:

e What is the business cycle?

i) Burns-Mitchell/Harding-Pagan: the sequence of alternating, irregularly
spaced turning points and repetition of expansion/recession phases or 2

quarters minimum duration.

ii) Majority of macroeconomists: the presence variability, serial and cross
correlation in a vector of aggregate macroeconomic variables.

iii) Time series econometricians: spectral peak at cyclical frequencies in
one or more time series.

iv) Policymakers: business cycle = output gap? (see Canova, 2019)



e How do one measures the cycle?

i) Use a statistical or an economic model?

ii) If a statistical model: use a univariate or a multivariate approach?
iii) If an economic model:

- Should it feature unit root shocks? What frictions should be in there?

- Should one try to measure the gap? Transitory fluctuations? Or cycles
of a particular length?



2 Generics

Assume (for simplicity) that the "trend” is everything that it is not the
"cycle”, ie., yr = y¥ + yy.

e Trend and Cycles are unobservable.

e Nature of the decompositions depends:

i) Assumed properties (definition) of the properties of y.

ii) Correlation trend-cycle (call it p).



3 Burns-Mitchell/Pagan Approach

e Pattern recognition exercise: find cycles, expansions, contractions in the
level of y;+.

e Use judgemental rules (NBER/CEPR dating committees): persistent
periods (at least two quarters) of positive/negative growth. Arbitrary.

e Mechanical rules (Bry and Boschen (BB) algorithm): find peak and
through dates (local max and min of the series).

e Example: Let S; = 1 if upturn occurs and zero otherwise (from some
external information).Then S;(1— S;y1) = 1 if there is a peak and (1-
S¢)Str1 = 1 if there is a through.

e Measure durations and amplitudes of expansions and contraction phases.



e BB algorithm rules:
1. Peaks and throughs must alternate.

2. Each phase (peak to through or through to peak) must have a duration
of at least six months (two quarters).

3. A cycle (peak to peak or through to through) must have a duration of
at least 15 months (5 quarters).

4. Turning points within six months (2 quarters) of the beginning or end of
the series are eliminated. Peaks or throughs within 24 months (8 quarters)
of the beginning or end of the sample are eliminated if any of the points
after or before are higher (or lower) than the peak (through).
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e BB turning point dates may be different than NBER/CEPR turning point

dates. Why?

e Peaks (throughs) may occur at negative (positive) values

e Recessions may be uniformly small ( no sharp through).



Turning point dates: Euro area

Phase |CEPR|Length|BB (GDP)|Length
Peak 1974:3 1973:4
Through|1975:1] 2 1974:1 2
Peak 1980:1) 20 1979:2 21
Through|1982:3| 10 1979:4 2
Peak 1992:1| 38 1991:2 46
Through|1993:3] 6 1992:2 4
Peak 2008:1| 58 2007:2 60
Through|2009:2| 5 2008:3 5
Peak 2011:3| 9 2010:4 9
Through(2013:1] 6 2012:2 6




e How do you construct a synthetic BC indicator? Average-and-date or
date-and-average? i.e. Would cycles in one indicator sufficient? Or is it
better to date many series and take an average of turning points?

e Average-and-date. Take a standard coincident indicator (e.g. Conference
Board (TCB) Indicator in US); or pick one relevant series (GDP, IP). Com-
pute turning points. Compare with standard classification (NBER/CEPR)
to check reasonableness of dates. Alternatives:

e Dynamic factor model (DFM):

Yit = At + e
fi = a(L)fi—1+ur up~ (0,02)
eit = b(L)ej—1+vi vit ~ 1dN(0,02) (1)



e ISD (Index standard deviation weighting)

N
I = exp()_ ayit) (2)
1=1
3-_1
where a; = —x*——= and s; is the standard deviation of y;;.

j=19%;

e In the US, the time paths of ISD and TCB similar (factor and ISD weights
are very close).



Table 2

Average-then-date chronologies computed using three monthly coincident indexes and four measures of monthly GDP, as a lead (positive value) or lag (negative value) of

the NBER turning point.
NBER Coincident indexes Monthly GDP
Cl-TCB CHISD CI-DFM GDP(E) GDP(T) GDP(Avg) GDP-MA
1960:4 P -2 0 - -1 -2 -1
1961:2 T 0 0 0 -2 -2 -2
1969:12 P -2 -2 -4 -4 - -4
1970:1 T 0 0 0 -10 - 0
1973:11 P 0 0 0 1 0 1
1975:3 T 1 1 1 0 -1 0
1980:1 P 0 0 -10 - 0 -
1980:7 T 0 0 0 - -1 -
1981:7 P 0 1 0 2 1 2
1982:1 T 0 0 0 -6 0 -3
1990:7 P -1 -1 0 0 0 0
1991:3 T 0 0 0 0 -2 -2
2001:3 P -6 -6 -6 - 0 - -
2001:11 T 4 0 0 - -1 - -
2007:12 P -1 0 0 1 -12 0 1
2009:6 T 0 0 0 0 1 0 0
Mean -0.44 -044 -127 -158 -1.36 -075 050
MAE 1.06 0.69 140 225 1.64 1.25 0.50

Notes: Entries are the NBER turning point minus the series-specific Bry-Boschan turning point, in months. Episodes for which the series is available but does not have
a Bry-Boschan turning point are denoted by *-". The GDE), GDP(I), and GDP(Avg) monthly GDP series are from Stock and Watson (2010a). The GDP-MA series is the
Macroeconomic Advisors Monthly GDP series, which starts in 1992:4. The mean and mean absolute error (MAE) in the final two rows summarize the discrepancies of the
chronology for the column series, relative to the NBER chronology; episodes in which a series does not have a Bry-Boschan recession are excluded from the summary

statistics.



e Date-and-average. Compute turning points 7, for seriesz = 1,...,ng in
episode s. Compute a location measure of the turning points distribution
for each identified phase episode (e.g. NBER recession).

e If turning points are iid

n05(pmean _ pmeany B N(Q var(ris)) (3)

O 5(Amedzcm Tgnedian) g N( (4)

0, = )
"4(gs(Ts))?

+mode " \12d2
(n)08(pte — potey B (o, L R (o)

where K(.) is a kernel, h the length of the kernel, gs(7) is the distribution
of 7 in episode s (see Stock and Watson, 2014).



e If certain types of series are over-represented in the sample relative to
the population (e.g. there too many IP series and too few employment
series) use weights; helps also if series do not have the same lengths.

e Weights

T -
Wi g = — (6)
Pmj,s

where 7y, is the population probability of class m series (IPs, employments,
interest rates, etc.) and py, s is the sample probability of class m in business

cycle episode s.



Table 3
Date-then-average chronologies and standard errors computed using turning points of 270 disaggregated series, as a lead ( positive value) or lag (negative value) of the NBER
[urning point.

NBER Dates No adjustments (lass lag-adjusted Weighted estimation

Mean Median Mode Mean Median Mode Mean Median Mode
1960:4 P -18(06)  -20(07)  -14(05)  -25(07) -23(08) -25(03) -20(06)  -20(03)  -14(04)
19%1:2 T -03(04) 00(06)  -05(07)  -08(03) -1.1(05) -05(02) -03(03) 00(03)  -06(02)
196912 P -22(07)  -20(06)  -23(04)  -17(06) -18(07) -13(05) -17(08)  -20(04)  -24(59)
197001 T 1.2(06) 00(07)  -02(04) 1.7(06) 12(0.7) 07(03) 19(07) 1.0(06) 0.1(27)
197311 P 1.3(06) 20(06) 16(03) 19(056) 30(07) 22(03) 24(07) 30(07) 17(10)
1975:3 T 1.0(03) 00(0.3) 04(03) 16(03) 12(03) 1.0(0.1) 13(03) 1.0(04) 08(08)
1980:1 P -18(07)  -10(08)  -03(04)  -13(07) -12(09) 03(02) -18(09)  -20(08)  -01(02)
1980:7 T -09(05) 00(04)  -05(02)  -01(05) 02(03) 0.3(0.0) -05(07) 00(04) 00(02)
19817 P -07(05) 00(05)  -01(03)  -02(05) 02(05) 05(0.0) -0.1(05) 0.0(04) 0.1(44)
198211 T -06(06) 00(06) 1.1(04)  -02(06) 09(06) 19(02) -05(06) 0.0(05) 09(09)
1990:7 P -08(06) 00(07) 03(05)  -03(06) -12(08) 18(04) -11(06)  -10(05)  -03(02)
191:3 T 21(05) 10(04) 04(03) 2.1(04) 1.1(04) 04(0.1) 20(04) 1.0(04) 02(20)
200:3 P -37(05)  -30(06)  -22(03)  -41(05) -43(06) -32(02) -37(08)  -30(06)  -23(44)
2001:11 T 02(05) 1.0(05) 06(02) 05(05) 12(05) 15(0.1) 06(07) 1.0(07) 06(09)
2000:12 P -10(05)  -10(09)  -61(05)  -14(05) -18(0.7) -23(03) -14(05)  -20(09)  -60(L1)
0096 T 17(03) 10(05)  -01(02) 15(03) 1.7(04) 14(02) 16(03) 1.0(05)  -02(02)
Mean -039 -025 -059 -020 —0.20 0.10 -021 -025 -056
MAE 134 088 1.12 137 156 138 1.4 1.25 111

Notes: Entries are the NBER turning point minus the date-then-average chronology for that column, in months. Standard errors appear in parentheses. The mean and mean
absolute error (MAE) in the final two rows summarize the discrepancies of the chronology for the column series, relative to the NBER chronology.



Alternatives:

e Pagan and Harding (2016). Construct a "reference phase”: at least 50
per cent of the series are in a particular BC phase.

e Pagan (2019): Reference turning point minimizes the discrepancy among
individual series turning points, i.e. if peaks are at 1973:1, 1973:5, 1973:9,
reference peak is 1973:5.

e Construct a weighted average of turning points; weight depends on the
(subjective) importance of individual series (GDP turning points have more
weights than, say, labor productivity turning points).



Pagan and Harding (2002, 2006): compute useful statistics out of turning
point classification, constructed following BM and BB.

Algorithm 3.1 1. Smooth y; to eliminate outliers, high frequency varia-
tions and other uninteresting fluctuations. Call y;"" the smoothed series.

2. Determine a potential set of turning points using a rule like, e.g. Azy;fm >
0(< 0), Ayf™ > 0(< 0), Ays"y < 0(> 0), Ay < 0(> 0).

3. Add criteria to ensure that peaks and troughs alternate (may have
consecutive peaks) and that the duration and the amplitude of phases are

meaningful ( minimum duration)



Statistics

e Average durations (AD), i.e. the average length of time spent between
throughs and peaks or peaks and throughs.

e Average amplitudes (AA), i.e. the average size of the drop between
peaks and troughs or of the gain between troughs and peaks.

e Concordance index C1; ;1 = n_l[ZIthit — (1 —Z;)(1 — Z;)]. Mea-
sures comovements over business cycle phases of two variables, where n
is the number of complete cycles and Z;; = 1 in expansions and Z;; =
in contractions. CI = 1(= 0) if the two series are perfectly positively
(negatively) correlated.

e Average cumulative changes over phases (CM = 0.5 % (AD x AA))
and excess average cumulative changes ECM = ((CM — CM*A + 0.5 x
AA)/AD), where C M4 is the actual average cumulative change.



Features
e No need to measure yy;.

e Can collect statistics even if no econometrician cycles are present (good
for DSGE models).

e Allows for asymmetries of cyclical phases.

e Results sensitive to dating rule [2.] and to minimum duration of phases
(Typically: two or three quarters - so that complete cycles should be at
least 5 to 7 quarters long) and to minimum amplitude restrictions (e.g.
peaks to troughs drops of less than one percent should be excluded).

e How to adapt the procedure to international comparisons? How does it
relates to the two-quarter negative/positive (NBER) rule?



e Euro data 1970:1-2017:4. Series: Y, C, Inv, Y/N, N, R, 7.

A Distribution of Turning points
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-4
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020




e 1975:1 is it a though? Less than 50% of the series are in a downturn.

e 2008 is it a through?. Minimal distance through is 2009:2. (two series
have minimum in 2008:1 and two in 2010:3).

e Important to have a good number of coincident series in the exercise.



Euro area Business Cycle Statistics

AD (quarters) AA (percentage) ECM(percentage) CI; ;» (phase)
PT TP PT TP PT TP

GDP|3.8 33.7 |25 20.9 6.7 1.9

C 5 36.6 |-1.6 19.2 0.8 4.4 0.57

Inv 6.7 147 |-7.2 14.7 14.9 1.1 0.52

Y/N[20 186 [-1.2 3.9 1.7 10.15 0.61

N 9.0 228 |-1.8 6.13 7.0 11.82 0.45

R |84 6.6 -3.1 2.69 10.5 7.80 0.04

s 9.0 6.9 -6.1 5.57 0.34 12.01 0.15

e Big asymmetries in durations and amplitudes.

e Output and consumption expansions longer and stronger than in other
series.

e Low concordance of real and nominal series.



e US data 1970:1-2019:3. Series: Y, U, C, Inv, CapU, R1, R10, =, C/Y,
/Y, Term spread.

Distribqtion of Turning points
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US Business Cycle Statistics

AD (quarters) AA (percentage) ECM(percentage) CI; ;» (phase)
PT TP |PT TP |PT TP

GDP|3.4 27.4 |-0.02 0.2 3.3 13.2

C 3.7 426 [-0.01 0.3 -15.7 7.5 0.41

Inv (49 10.2 |-0.1 0.2 -15.8 3.4 -0.37

U 140 7.8 -2.2 2.8 19.3 5.6 0.29

capU| 6.2 3.9 -6.6 6.0 -13.2 2.4 -0.02

s 5.3 6.3 -2.7 2.4 3.2 2.4 0.12

R 7.2 6.5 -3.6 2.8 15.2 2.8 -0.04

e Durations in U different than durations in C, I, Y, capU.
e Asymmetries large except for nominal variables.

e Concordance low (negative for | and capU).



3.1 Predicting Downturns

e Use probit/logit model: P(1— Sy = 0|F;_1); F;_1 info available at ¢ — 1.
e Borio et al. (2018): F;_1 = financial cycle information.

Financial cycle proxies help in evaluating recession risk

Regression coefficients from panel probit models Table 1
Horizen Financial cycle? DSR  Termspread  Financial cycle  DSR and term
and term spread spread

Advanced economies

1 year Financial cycle 0.69%** 0.62***
DSR 0.61"** 0.57%*
Spread -0.35"* -0.21** -0.28™*
2 year Financial cycle 0.63*** 0.60"**
DSR 0.38"* 0.35™*
Spread -0.23™* -0.09" -0.17"*
3 year Financial cycle 0.43%** 0.44***
DSR 0.16*** 0.15™**

Spread -0.08 0.03 -0.06




e Report area under the receiver operating characteristic (ROC) curve
(Berge and Jorda, 2011).

e Curve maps out combinations of type | errors (missed recessions) and
type Il errors (false alarms). The area under the curve (AUC) measures
the indicator’s signalling quality.

e AUC=0.5 :Uninformative indicator; AUC=1.0: a perfect indicator. The
AUC of an informative indicator is statistically different from 0.5.



Financial cycle measures are useful for assessing recession risk around the globe

AUCs for different forecast horizons Graph 3
Advanced economies Emerging markets
08
07
06
| L
04
I tyear 1 2yeas 1 3yeas 1| 1year 2 years !
Area under the curve: 95% confidence interval: Area under the curve: 95% confidence interval:
BN Financial cycle — B Financial cycle and term spread  —
B DSk —_ DSR and term spread —_
Term spread —

The horizontal lines at 0.5 indicate the area under the curve (AUC) of an uninformative, random variable,



Problems:
e Predicting 1 — S; different than predicting the sign of Ay 1.

e What are we measuring? P(1 — S; = 0|1 — S;_1 = 1)= probability of
entering a recession; P(1 — Sy = 0|1 — S;_1 = 0)= probability of staying
in a recession. If just use F;_1 we are mixing these two probabilities.

e 1 — 5t is a generated variable that depends on y; 1,k = 1,2. Incorrect
to use it as conditioning variable in a VAR to see if ,e,g responses differ in

recession and expansions.



4 How do macroeconomists think about cycles?

e Use some procedure to remove y,.

o Compute var(ys,); auto(ys;), i=1,2...,N; corr(y5, y{;), ¢ = 2,...,N.
where y7, is output. What is the pattern across i?

e Fix a tg < t < t1 (financial crisis, recession, etc.): compute variability,
auto and cross correlations.

e Check if models can produce data 'patterns’ (Pagan, 2013, 2019).

e What methods are available to estimate y;,7



Univariate (detrending) approaches
e Polynominal trend, p = 0.
e Segmented linear trend, p = 0.
e Differencing:RW trend, p = 0.
e Hamilton local projection, p = 0 (also multivariate)
e Unobservable components, p may be non-zero (also multivariate).

e Beveridge Nelson: p = 1 (also multivariate).



Univariate (filtering) approaches
e Hodrick and Prescott, p = 0.
e Band pass, p = 0.
e Wavelets, p = 0.

e Butterworth, p = 0.

Multivariate (economic) approches

e Blanchard and Quah; KPSW, p # 0 (structural shocks could be uncor-
related or correlated).



4.1 Deterministic Polynomial Trend

yF =a+ bt + ct® + ...

Estimate a, b, c, ... in the regression

yt:a+bt+ct2—|—....—|—et
by OLS. Set 4y =yt —aprs — borst — COLSt2 — ...

e Can perfectly predict trend in the future.

e No acceleration/deceleration in the trend is possible.

e Unless a, b, c recursively estimated, timing of information in g7 and vy
differs.

e y; is typically nearly non-stationary.



4.2 Deterministically Breaking Linear Trend

yp = ar+bit ift <t (7)

yf = ap+bot ift >t (8)
e Estimate a;,b; by OLS. Set §f = vt — a101.5 — biorst, t < t1; U5 =
Yt — a20Ls — b2oLst, t > t1.

e What if t; unknown? Select [tq,ty]. Run OLS for every t1 € [tq, tp]. Use
F-test to check a; = ap,b; = by each t1. Break point is the t; producing
max F'(t1) — QML statistics (see Stock and Watson, 2002).

e Can still perfectly predict y;, after the break. Solution: Markov switch-
ing trend (Hamilton, 1989).
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4.3 Differencing

e ITrend estimate

yi = ypg d=1,4,8,24, .. (9)

e Cycle estimate: y; = A%y,
e Long or short differencing? How do you choose d?

e For d=1 (quarter-on-quarter growth rates) cycles very volatile. Difficult
to have models to explain them.

o If d > 1 artificial MA(d-1) components in ys.
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4.4 Hamilton: local projection technique

e Same ideas used to compute impulse responses/ direct forecasts:

_1
Yirh = K1pAY: + KopAyp—1 + ... + kan AV Ly + Wy py

where, typically, h = 8 and d = 4. In practice run:

Yt+h = O1pYt + OQRpYt—1 + Q3RYt—2 + C4pYt—3 + Wi p,

® w;p is an estimate of yy .

® wyp is a function of A, d.

(10)

(11)



Properties:
® wyp is model free. Robust to misspecification of the trend process.
® wy p Is stationary if y; has up to d unit roots.

e Can be applied to seasonally non-adjusted data; to data of any frequency
(quarter, month, week: adjust d and h).

® w;p similar to those obtained with h differencing.



Figure 6. Results of applying regression (black) and B-guarter-change (red) filters to 100 times the log of
components of U.5. national income and product accounts.




Questions
e Do cycles in wy,p have standard durations and amplitude?
e What kind of comovement does the procedure generates?
e Are their features dependent on h, d?

e What are the properties of the Hamilton trend? (Schuler, 2019)
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e Hamilton filter is not a business cycle filter. Peak is at 10.66 quarters.



4.5 Unobservable component methods

e State space model-based.

e Assume certain time series properties for the trend and cycle, e.g. trend
is a RW, cycle is an AR(2).

e Can be boosted up with observable regressors or additional features for
the error process, see e.g. Stock and Watson, 2016.

e Can be made multivariate, see e.g. Astrudillo and Roberts, 2016; Grant
and Chan, 2017a, 2017b. Can restrict trends to be common.



Two setups:

Yt = Tt+Ct+ ut
Tt = Ti—1+tu+mn
ct = 0O1c0 1+ 0 2+ € (12)

Estimate (61, 62, 1, a a 02) p = corr(n, €¢) by KF-ML approach or by
MCMC with flat prior.

Yt = Tt+Ct+ Ut

Tt = T¢—1+ K+

cit = 0O((cosw)cyr—1 + (sinw)er) + €1

cot = O(—(sinw)cys—1 + (cosw)eny) + ey (13)

¢t = [c1g,c0. Fix 0 < w < m, estimate (6, u,02 O' 061, ) (see
Runstler and Vlekke, 2018).



e Can use a more flexible local linear trend specification ( see next page)
e Can pick up more than one w in the cycles in (13).
e Often omit u; (measurement error).

e Can allow breaks in the trend (uq(t < tg), uo(t > tg)), Markov switching
2

in 1, rare events (jumps in oy), and stochastic volatility in oZ.
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e Contemporaneous correlation of cyclical outputs: 0.19579
e AR(1) of cyclical outputs: 0.96784 ; 0.99363

e Variabilities of cyclical output: 0.00015967; 0.015188

e Quite a lot of differences! Which one to choose?



Multivariate UC

Yt = Tt+ Ct+ ut

Tt = T¢—1+ Mg+ Mg

pe = g1t Ve

Cit — ijcit_j—l—eit, I:1,2,N (14)
Ji

where y¢ is N X 1, 7¢ is a scalar. Here there is a common (stochastic)
local-linear trend. The model for the cycle is allowed to be series specific.

Yt = T¢+ Ct+ ut

Tit = Ti—1+Mn4, 1=1,2,...N
Ct = Z PjCt—j T+ €t (15)
J

where y¢ is N X 1, ¢t is a scalar. Here there is common cyclical components
but there are variable-specific trends.



4.6 Beveridge-Nelson decomposition

e Trend is the long run forecastable component of

e It assumes y; features a unit root (otherwise long run forecastable com-
ponent is the mean of ;).

e Features of estimated y; depend on lag length of the estimating model
and sample size.

e Univariate setup :(Ay: — §) = A(l)Ay;_1 + e, where ex ~ 4id(0, X¢)
and all the roots of det(A(£)) are less than one.

e MA: (Ay; — §) = Ay} = D(f)et, where D(£) = (1 — A(£))~ L, Dg = I.
If D(1) # 0,



Ayi = D(1)es + (1 — 0)DT(0) Ay (16)

where DT(¢) = D(El):ll?(l)_ Cumulating

t
yr = (7+ D(1) Y ej) + DI()er = yf + y§ (17)
j=1

e Trend and cycle perfectly correlated, p = 1.
e Trend is a random walk with drift.
e Can be cast into a state space framework (see Morley, et al., 2003).

e Quality of the decomposition depends on the estimate of i, the drift in
the random walk.
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Multivariate Beveridge-Nelson
o Let yr = [Ayis, yot] (m X 1); where y1; are I(1); and yo; are 1(0);

e Suppose yr = § + D(€)et, where e; ~ 11d(0,X¢) and Dg = I, the roots
of det(D(£)) are equal or greater than one; and that D{(1) # 0, where
D1(£) is mq x 1 (first mq rows of D(¥)). Then

Ay \ _ ( W1 D1(1) (1 —E)DT(E)
(Ay2t ) B (@z ) +< 0 >6t+ ( (1—€)Di(€) ) Ne;  (18)

pi(e) = PP pley = 529, 0 < rank[D1(1)] < mq and g =

[71 + D1(1) >, es, 7o) is the permanent component of ;.

e Kambler et al., 2018: smooth BN decomposition (add penalty in the
estimation)



5> How do econometricians think about cycles?

e Stationary data summarized with the autocovariance function (ACF):

ACF(7) = E(yt — Ewt)(yt—r — Etyi—r) (19)
e ACF is symmetric, has correlated elements (E(ACF(71), ACF(1")) #
0,7 #1).
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e Alternatively, stationary data can be summarized with spectral density:

S(w):% S ACF(r)e T, (20)

T=—00

w € [0,27], i = (—1)%2, e ™ = cos(wr) — isin(wr).

e Spectral density changes coordinates relative to ACF.

o If S(w) is evaluated at wr = -, 7 =0, ..., T —1 (Fourier frequencies):

i) S(wr) = S(w—+) (symmetry around w; = 0).

i) E(S(wr)S(w, 7)) =0 (uncorrelatedness at two different wr's)



S(w)

e Area under the spectral density ( Y, S(w)) is the variance of the process.
Given orthogonality (by i. of previous slide), can perform variance decom-
position by frequencies.

e S(w=0)=>_"2__ACF(7) measures of the persistence of y;.

T—=—00

e If y; has a unit root, Sy(w = 0) T oo and for x; = Ay; Sz(w =0) = 0.



e How do | associate a frequency w+ with the length of the fluctuations?

The length of the fluctuations at Fourier frequency w+ is p = i—” = %
T

T

Example 5.1 w, = ic — P =32 wr= % — p = 4 (quarters, years,etc.)

e Components of spectral density:

(1) Trends: wr € (0,w1) (low frequencies) (Not just S(0)).

(2) Cycles: wr € (w1, ws) (cyclical frequencies)

(3) Seasonals, irregulars: w; € (wo, ) (high frequencies)
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e Low frequencies (trends) associated with cycles featuring long periods of
oscillations (time series moves infrequently from peaks to throughs).

e High frequencies (irregulars) are associated with short cycles (time series
move frequently from peaks to throughs).



Multivariate analysis

e The spectral density matrix of a stationary N X 1 vector {y;}i2__ is
S(w) = 2 >+ ACF (1) exp(—iwT) where
- Sy (W) Syrge(w) - Syrym(w)
S(w) = Syoy1 (W) Syoyp(w) - Syaym(w)
SyNyl(w) SyNyz(w) - Synyn (@)

e Diagonal of the spectral density matrix real; off-diagonal complex.

|Sy27'y] (CU)|
(Syiayz’ ((’“))Syj,y‘7 (w))0-5 ]

e The coherence between y;; and y,; is Coy, y(w) =

e It measures the strength of the association between y;¢, y;; at frequency
w. [Co(w)dw = p,, ,,: decomposition of correlation by frequency. Co(w)
is real since |y| = real part of complex number y.



Examples of univariate spectral densities
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Conclusions

e Displaying variability and serial correlation (e.g. AR(1) or MA(1) ) does
not generate cycles for econometricians.

e Alternating sequence of irregularly sparse turning points does not neces-
sarily generate cycles for econometricians.

e Need, at least, an AR(2) with complex roots to have econometrician
cycles.

e Need large coherence at certain frequencies to have y;; and y,;; comoving.



e Beaudry et al. (2019): labor market variables have econometrician cycles.
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Filters
e Spectral densities defined only for stationary series.

e Interested in variability at certain frequencies (Why? Electrical engineers
arguments?)

e Filters may make y; stationary under certain assumptions.
e Filters eliminate variability at certain frequencies.

e [Two birds with one stonel



e A filter is a linear transformation of a primitive stochastic process ;.

J
vl =3 Biyi_j = B(O)y: (21)
—J

e The filter is symmetric if B; = 5_;. Symmetric filters have the property
that the timing of the cycles in y; and y{ is the same (zero phase shift).

o If Zijl’a’j = 0 and y; is non-stationary, yif is stationary (filtering de-

trends/stationarize time series with unit roots).



e Two MA filters

1) y;f =yt + D1yi—1.

2) y{ = Zj:_Jyt—j- The larger is J the smoother is yif

o If CG'Fy(z) is the covariance generating function of y;, and y; = B(£)y,
then CGFyf(Z) = B(2)B(z1)CGF,(z). When univariate CGFyf(Z) =
|B(2)|?CGFy(z), where |B(2)| is the real part (modulus) of B(z).

Example 5.2 Let e; be a white noise. Its spectrum is Se(w) = % (this is
the CGF for z = e™). Let y; = a(f)e; where a(£) = ag + a1l + axt? +

. The spectrum of y; is Sy(w) = |a(e™)|2Se(w), where |a(e™)|? =
a(e”™)a(e™).



Terminology

e The frequency response function of the filter is B(w) = Bp+23_; B cos(wj)
f

(i.e. set 7 = e™J); it measures the effect of a shock in y; on y/ at fre-

quency w (IRF in frequency domain).

e |B(w)| is the gain (transfer) function; it measures how much the am-
plitude of the fluctuations yif changes relative to the amplitude of y; at
frequency w.

f

e |[B(w)|? is the squared gain; it measures how much the variance of v
changes relative to the variance of y; at frequency w.



5.1 The Hodrick and Prescott (HP) Filter

e Trends are smooth (variations are small; could be almost deterministic

or stochastic). Assumption formalized in the constrained problem:

T T
. 2 2
min{>" (v — ) + A > (Wi —vf) — 0F — w1’} (22)
If A =0, the solution is ¥’ = y;. As A T, y{ becomes smoother. If A — oo,

y¥ becomes linear (no variations). Typically: A = 1600 for quarterly data.

e Ravn and Uhlig (2002): if A = 129000 for monthly data and A\ = 6.25
for annual data, HP filters picks cycles with similar periodicity for monthly,

quarterly and annual data.



Solution to the constrained optimization:

9° = Ay=(H'H+XQ'Q) 'Hy (23)
§° = y—9" = - Ay (24)
where y = [yr,...,y1] is a T x 1 vector, y* = [yF,...,yT, y3,y"{] is a

(T + 2) x 1 vector, H = [I, 0] where I is aT' X T identity matrix and 0
a T' X 2 matrix of zeros and

1 =21 0 O e ... 0
o 1 -2 1 O oo ... 0
O -0 1 -2 1 0
Q: e o o e o o e o o e o o e e e e e e o o o e o o e o o
o 0 O 0 ... 2 1 O
o O o0 0 ... 1 —2 1

e (23) is a "ridge” estimator (typically used for multicollinearity problems).

e Bayesian interpretation: A2yf_1 = ¢; is a prior with €, ~ N(0, \ * 02).



e Alternative (UC) setup:
ye = yi i
Ayf = & (25)

where both €; and y; are white noise, uncorrelated with yg,y*;. Two
solutions (see literature on curve fitting, e.g. Wabha, 1980).

i) If C’o_l = var(yg, y“jl)_l — 0, find a; such that §¥ = a;y; by min E(yf —
- 2 -
atyi)?. Solution: §% = E(y®y)E(yy) Ly = Ay. If X\ = % then A = A.

ii) (25)) is a state space system. Can use the Kalman smoother to solve
the signal extraction problem (still assuming large Cy).



e A\ = 1600 means o, the standard deviation of the cycle, is 40 times
larger than o, the standard deviation of the second difference of the trend.

e HP Solution is optimal when the cycle is a white noise.

e HP Solution: is time dependent (the cycle at ¢ depends on how large is
T'). Beginning and end-of-sample problems.

e Premultiplying (23) by (H'H + X\Q'Q) ! and letting T grow to infinity

one can show that yf = B(¢)y;, where
(1—0)3(1—¢71)2

L (1-0)2(1—¢71)2

BE(0) =~ (26)



e When X = 1600, 55 and the |B¢(w)|* looks like in the picture below.
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e Properties of HP filter:
(i) It eliminates linear and quadratic trends from ;.
(ii) Stationarize y; with up to 4 unit roots (King and Rebelo, 1993).

e What happens if y; has less than 4 unit roots? Overdifferencing.

e HP filter may create spurious autocorrelation in y[ (Slutzky effect).



e Intuition: y; = e; ~ i3d(0,?). Then

Ay; = e+ — e;_1 correlation of order 1

A2yt = €t —€t_1 — (et—l — 6t—2)

correlation of order 2, etc.

e Differencing a stationary y; induces spurious serial correlation.

Example 5.3 Let y; be I(2f) or I(4). Pass them through a HP filter. The
figure plots the ACF of yj. The serial correlation in filtered 1(2) higher
then in the filtered 1(4).
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e It can create spurious variability in the filtered data.

e If y; is stationary, the squared gain function is:

.16 sin4(%) 41— cos(w))?
Bi(w) = T +16sin*(%) 1+ 4(1 — cos(w))?

e It damps fluctuations with periodicity > 24-32 quarters per cycle, it
passes short cycles without changes.

o If y; is I(1) BS(¢) is a combination of two filters: (1 — ¢) makes y;
(£) B(¢)

stationary, 7~ filters Ay;. When A = 1600 the gain function of 7" is
~ 2(1 — cos(w))B(w), which peaks at w* = arccos[1 — (%)05] ~ 30

periods:



y(t)~1(0) y(t)~1(2) y(t)~1(2)
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o If y; is (1) HP damps long and short run growth cycles and amplifies
business cycle frequencies (e.g. the variance of the cycles with average

duration of 7.6 years is multiplied by 13).
e Problem even larger if y; is 1(2).

e Same problem if y; nearly integrated (p, = 0.95)7 (see dotted line)



e What is the intuition for the increased variability?

e Suppose Ay; = e; ~ iid(0,02). Then

var(A%y;) = wvar(e; — e;—1) = var(et) + var(e;—1) = 202
var(A3y)) = wvar(e; — 2e;_1 + e;_p) = 40°

etc.. So the filter % can augment the variability of Ay;.



e It can produce spurious comovements among series.

Example 5.4 yq; and yo; are two uncorrelated random walks. Pass them

through a HP filter.

The figure plots the cross correlation function of

Yis Y5, and a 95 percent asymptotic tunnel for the hypothesis of no cor-

relation.
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e \What is the intuition for this result?

The two filtered series have similar spectrum. Therefore, it is possible that
they go up and down together (Note: this does not happen all the times).

e Conclusions: The HP filter has the potential to generate spurious
variability, spurious serial and cross variable correlations



Properties of HP filter (continue)
iii) It leaves high frequency variability unchanged (high pass filter).
iv) HP cyclical component predicts the future. Alternative to (26):

B A1 —0)*
14+ A1 =021 -2

C

Yt

2yt+2 (27)

v) A = 1600 inconsistent with KF estimates of 02, 02 and UC setups.



Table 1. Maximum likelihood estimates of parameters of state-space formalization of the HP filter for
assorted gquarterly macroeconomic series.

o, o’y A
GDP 0.115 0.468 0.245
Consumption 0.163 0.174 0.940
Investment 4. 187 12196 0.343
Exports 5.818 3.341 1.741
Imports 4.423 4.76%9 0.927
Government spending 0221 1.160 0.191
Employment 0.006 0.250 0.023
Unemployment rate 0.014 0D.092 0.152
GDP Deflator 0.018 0.081 0.216
S&P 500 21.284 15.186 1.402
10-ywear Treasury yield 0.135 0.054 2. 486
Fed Funds Rate 0.633 0.116 5.458

Feal Rate 0.B75 0.091 9.556




vi) Two-sided filter (do not use yf in VARs!).

vii) Cross county comparisons difficult because cycles may have different
length. Marcet-Ravn (2000) solve

T
min 3y — o) (28)
t=1

S — 208 + vi0)?
S (ye — y¥)?
where V > 0 is a constant to be chosen by the researcher, YV measures
the relative variability of the acceleration in the trend and the cycle,

| 2 (29)

and may be country specific.



Example 5.5 200 data points from a stationary RBC model with utility

1—¢p
¢t

U(ct,cp—1, Nt) = i— + log(1 — N¢) assuming B = 0.99, ¢, = 2.0,0 =
0.025,7 = 0.64, steady state hours equal to 0.3, pc =0.9,p,=038,0, =
0.0066, 04 = 0.0146. Table reports average unconditional moments across

100 simulations, before and after HP filtering.

Simulated statistics

Raw HP filtered
K W LPI K W LP
cross (GD P, xt) (0.490.650.090.84 0.95-0.20
cross (GDP;1,x¢)0.430.57 0.050.600.67 -0.38
St. Dev 1.001.251.12/1.500.87 0.50




5.2 One sided HP filter

e The HP-filter is two-sided and thus not very useful for real analysis and
forecasting. In addition, by construction, yy artificially predicts the future.

e [ here is a version of the HP filter which is one-sided and does not feature
future predictability.

e The trend and the cycle can be estimated with standard Kalman filter/
EM algorithm iterations, MCMC, or by serial implementation.



e [ he model is:
Yt = yi + yi (30)
Y =2Y; 1 — Y o+ € (31)

where €;, yi are white noise sequences.

e State space representation (see Stock and Watson, 1999):



1. State Equation

+[yot] (33)

2
e Can restrict A = % with a prior, e.g. A ~ N(1600, 10).



e Serial implementation (Meyer-Gohde, 2010).
e Much faster than KF; gives almost identical results.
o {yf}thl is obtained calculating for each t the standard HP filtered trend

using data up to that t and equating y{ with trend value for period t ( i.e.
compute T two-sided HP filters trends).
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5.3 L1-HP filter

e Standard problem:

T T
min{3 (v —ui)” +A 2 (i — 9 - Wl - i) (39)
t  t=1 t=1

e L1 problem (Kim et al.,2009):

T T
rz;n{Z(yt — P2+ A (wE —vF) — (WF — i)} (35)
t t=1 t=1

e Same features as standard HP.

e Non-linear filter.



e Gives rise to piecewise linear segments:

yf:ak+bkt7 tkétgtk—kla k:177p_1 (36)
and

ag + Ogtpyr1 = agyr1 + 0t k=1,...,p—1 (37)

e p is the number of break points where the estimated trend changes slope.
e The number of break points in yi typically decreases as A increases.

e Used in (business) finance to signal "changes in market trends”.
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5.4 Other MA filters.

yl = Z t—i = By (38)

e Symmetric MA filters (B; = B_;) with limj_, Zi]Bj = 0 preferred
because they maintain lead/lag relationships and eliminate unit roots.

e HP is a symmetric, truncated MA filter. Other filters?

Example 5.6 A symmetric (truncated) MA filter: B; = 2J+1, 0< g <|J]
and B; = 0,5 > |J|. Ify; = (1 —B(£))ys = BC(E)yt the cyclical weights

_ 1 _ _ 1 .
areBS—l—manng_Bij_—m,]_l,Z...,J.



Band Pass (BP) Filters

e Combination of high pass and low pass MA filters.

e Low pass filter: B(w) =1 for |w| < wi and 0 otherwise.
e High pass filter: B(w) =0 for |w| < w7 and 1 otherwise.

e Band pass filter: B(w) =1 for wi < |w| < wy and 0 otherwise.



0 w1
Low Pass g 0 Hioh Pasvsv2 P

Time series representation of the weights of the filters:

Low pass: B(l)p = &, Bé-p — % 0 < 7 < oo, some wi.

High pass: ng —1— BP: B?p = —Bép; 0<j< oo.

Band pass: BY = B;p(wz) — B;-p(CU1); 0<j<o0o, wry>wi.

e j must go to infinity. Hence, these filters are not realizable for T" finite.

WL W2
Band Pass

P




e Baxter and King (1994): for finite T, cut at some J < co.

o If the filter is symmetric and ZEJBJ = 0 a truncated BP makes sta-

tionary series with quadratic trends and with up to two unit roots.

e BK approximation has the same problems of HP filter if y; is (nearly)
integrated.

e J needs to be large for the approximation to be good, otherwise leakage

and compression.
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e Christiano and Fitzgerald (2003): use a non-stationary, asymmetric
approximation which is optimal in the sense of making the approximation
error as small as possible.

e MA coefficients depend on t and change magnitude and even sign.

e Better spectral properties (see picture) but:

a) Need to know the properties of time series before taking the approxi-
mation (need to know if it is a 1(0) or I(1)).

b) Phase shifts may occur.
e Christiano and Fitzgerald approximation is the same as Baxter and King

if y; is a white noise. In general, they will differ at the beginning and end
of the sample.



5.5 Wavelets filter

Similar idea as BP filters but:
e Implementation is in time domain and one-sided MA.

e Size of the MA window adjusted depending on the cycles one wants to
extract.

e Can be used on stationary and non-stationary series.

e Implementation: Haar wavelet filter (see Lubik et al., 2019).



J
ye = Y D+ Sy, (39)
—

’ . 27-1_1 2J -1
Dy = 1/(2)*( Y. w—i— D Yt—i) (40)
1=0 i1=27—1
2J_1
Syp = 1/(27)* (> i) (41)
i=0

e Typically J = 6. Low j's capture high frequency; j=3,4 business cycles
and j=5 low frequencies.

e S j; captures the long run component.



e 8-16 quarters cycles D3 = (1/8) * (yt + yt—1 + y+—2 + Y43 — Yt—a —
Yt—5 — Yt—6 — Yt—7)-

e 16-32 quarters cycles Dy = (1/16) * (yt + yt—1+yt—2+ Y13+ yt—a+
Yt—5+TYt—6TYt—7—Yt—8—Yt—9—Yt—10 —Yt—11 —Y¢t—12 —Yt—13 —Yt—14 —
Yt—15)-

e 32-64 quarters cycles Dg; = (1/32) * (yt + y¢—1+ yt—2 + y+—3 + Yr—a +
Yt—5TYt—6TYt—7TYt—8 T Yt—9 T Yt—10 T Y¢t—11 T Y¢t—12 T Y¢t—13 — Y¢t—14 —
Yt—15 — Yt—16 — Y¢t—17 — Yt—18 — Yt—19 T Yt—20 — Y¢t—21 — Y¢t—22 — Yt—23 +
Yt—24 — Y425 — Y4—26 — Y¢—27 + Y¢—28 — Y¢—29 — Y¢+—30 — Y¢—31)-

e Window changes with the components.
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5.6 Butterworth filters

e Designed as low pass; can be adapted to high pass, band pass and even
stop pass.

e Butterworth (1937): 'An ideal electrical filter should not only completely
reject the unwanted frequencies but should also have uniform sensitivity
for the wanted frequencies’

Go
1+()*"
zero frequency, n is the (polynomial) order of the filter and w is a selected
frequency and w¢ a reference point ( typically we = 1).

e Squared gain function: G(w) = where Gy is the gain at the

e Flexible. Can be designed to capture medium and low frequency varia-
tions. Can be designed to eliminate unit roots without affecting medium
frequencies.



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Squared gains, Butterworth filter

S NTray,, -
~ 4 Gy
\s vy,
N\ '.-"
— ‘\ "1y .
L]
5
\
"\
\}
N
"\
\
1 em—utterl_095
| \‘ t’ = ®hutter2_095
\ * sEEEE phytter3_095
¢,
[\ % === pytterl_050
.
| \‘ “, sEEnn pytierl 075
\ ‘v, = mpytterl 095 04
s\ S butter4_001-03 06
A )
L]
0
- ('Y ".
-----——---—¥‘-———————%
L]
Y N -y, -
‘ar -—
- [y ~
(]
0.‘
[}
‘.“
- 5
‘\ 1329
()
~ ‘,“
Vo *se
- | p=80] p=32 p=8 \\ v.'
-
.
\._ o,
-_— ‘na
| e N e e e
0.5 15 2

Frequency




e Different decays are possible depending on n.

e Scale depends on Gj.

e Starting of decay depends on w

e Useful to extract components wiht power at all frequencies.



Matlab commands to build a Butterworth filter

e [a,b]=butter(n,cutoff,type), where n is the degree of the polynomial,
cutoff is where the squared gain falls and type could be low, high, stop-
pass. If cutoff is a vector with two values, butter computes band pass
weights.

e y1=filtfilt(a,b,y). Creates the filtered series using an ARMA(a,b) with y
as input.

e Normalized to have Gy = 1. Rescale the b coefficients to chnage Gy
(up if coefficients up you get lower squared gain).
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e Canova (2019b) BW good to extract gaps produced by economic models.
How does it perform on real data?



Analytical computation of statistics
e How to compute ACF of filtered data?

o If yf = B°(£)y: and B¢(£) known: ACFyc(T) = ACFy(0)>>2_  B{BS _+

1=00

% JACFE(T) SR BSBS Y% ACF(r') £ BB

1=—00 i—71'—7 i—71—7"

e We need to truncate the sums at some 7, except in some special cases.



6 Economic Decompositions

e Use economic models to split y; into unobservable components.

e Leading examples: Blanchard and Quah (1989), trend random walk,
p # 0. King, Plosser, Stock and Watson (KPSW) (1991), cointegrated
trend, p # 0.

e Recover permanent-transitory components (not trend/cycle: permanent
may have cyclical features; not potential/gap: gap may have permanent
features).

e Results sensitive to model specification and sample size.



e Example of a BQ decomposition: Fisher’'s model

gdpy = gdpi1+a(ef — 1) +ef +¢f —ef 4 (42)
ung = Np— NT® = —¢f — qes (43)

d = demand, s = supply. This model implies that uns has no trend; the
trend in gdp; is gdpf = gdpy | + a(ef — €;_1); and the cycle is gdpf =
egl — 6?—1 + €.

e Only supply shocks have long run effects on gdp;.

e Both supply and demand shocks have cyclical effects on gdpx.

e gdp} and gdpy correlated (e° drives both).



e Example of KPSW decomposition: RBC model. y+ = [gdp;, inv;, Ct].

Yyt =i + i (44)

yi a scalar, yf a 3 X 1 vector. Ay; has a MA representation
Ay = 7+ D(l)e (45)
e Trend component of y; identified using D(1)e; = [1,1,1]'ef, where e
is a permanent innovation (use Cholesky decomposition of D(1)XD(1)’).

e Cyclical component y; — yf.

e Implementation is like in multivariate BN but e} is a supply (technology)
disturbance (not a reduced form shock)



Alternative identification assumptions

e The BQ decomposition implicitly normalizes the variance of structural
shocks to one and assumes that structural shocks are uncorrelated.

e Evidence suggests that long run and short run disturbances may be
correlated, e.g. Morley et et. (2003), Grant and Chan (2017a).

e Normalization chosen my matter (Waggoner and Zha, 2003).

e Cover et al. (2003): use alternative normalization plus identification
assumptions that allow demand and supply shocks to be correlated.



e Structural model (a > 0, unitary slope AD)

gdpt = Ey_19dpi + o(pt — Ey_1pt) + €1y (46)
gdpt = pt+ Er_1(gdpt + pt) + e (47)
€1¢, €2+ potentially correlated; (46) is AS; (47) is AD.

e VAR : y = ag + a(L)ys—1 + et, yt = [gdpt, pr]’.

e Relationship VAR-structural model

e = €1+ + € 48
1t 1 1t 1 2

€ = — €1+ + € 49
2 1 1t 1 2

or e = Bet.



e Identification: i) Normalization: €;,7 = 1,2 has a unitary effect on y;
ii) slope of aggregate demand is unit ( demand shocks may be persistent);
iii) long run demand shock neutrality. i)-ii)-iii) imply:

a12(1)

1 —ax(l)
e Given (50) use (48) and (49), to recover structural shocks.

(50)

e Permanent/transitory components correlated. Permanent component:

yt = ag + a(L)y;—1 + Biey (51)

where Bj is the first column of B.



e BQ setup:

el = C11€1t + C12€¢ (52)
eyt = Cp1€1¢ + Co2€ny (53)
2

Identification: o¢, = 1;0¢,¢, = 0; long run demand shock neutrality

c12(1 — a22(1)) + c22a12(1) = 0 (54)
e Given (54), use (52), (53) to get the structural shocks ( 3 unknowns in

3 moments).

e Permanent and transitory components correlated because supply shocks
drive both even if supply and demand shocks are uncorrelated.



6.1 Are BQ estimates robust?

e Coibion et al (2018): BQ estimates of output gaps only depend on supply
shocks. Traditional estimates depend on both supply and demand shocks.

e Canova and Ferroni (2019): VAR estimates subject to deformation. Esti-
mates and inference about latent variables may depend on the VAR model
used.

e Deformation occurs if the DGP has more shocks than the variables of
the VAR.

e Cross sectional and time deformation could be present.



e Run a VAR with US output growth and unemployment. Compute the
permanent and the transitory components of output.

e Add to the VAR:
investment /output ratio

consumption /output ratio

capacity utilization
term spread (10 years bond rate -call rate)

inflation



Transitory
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Transitory BQ estimates



e Timing of peaks and throughs changes.

e Amplitude of cycles changes.

e End of the sample: transitory component is positive or negative ?



Permanent

= Level
= = =potential(y,U)
=====potential(Y,U,ily)
""""" potential (YU,ily, cly)
potential(Y,U,ify,cly,capU)
] potential(Y,U,ify,cly,capU, spread)
potential(Y,U,iy,cly,capV, spread, pi)

1995 2000

Permanent BQ estimates




7 How policymakers think about cycles?

e Policymakers interested in gaps. Very loosely defined.
e Gaps are meaningful only in terms of a model. Potential is the path of
the variables when nominal frictions are eliminated. Gap is the difference

of actual from potential level.

e How do DSGE-based estimates of gaps look like?
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e Model chosen matters.

e Tend to have larger/longer swings than traditional statistical estimates:
amplitude and duration of phases change.

e If you do not trust a model, what do you do? Canova and Matthes
(2019) robust CL approach.



e What are the features of gaps? Are they similar to cycles obtained

detrending/filtering the data? Are they similar to transitory fluctuations?
Canova (2019b). NO

e Gaps depend on what frictions are included in the model but

i) Generally persistent and feature important low frequency variations.
ii) Have little power (variability) at business cycle frequencies.

iii) Are correlated with potentials.

iv) Do not look like standard gap measures (CBO, Fed measures (y-
potential)).
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8 Collecting cyclical information

e Approach one uses would not matter if cyclical statistics would be more

or less the same. Are they?

e When filtering why do we concentrate on 8-32 quarter cycles? In de-
veloping countries the trend may be cycle: shocks may have permanent
features (Aguiar and Gopinath, 2007). Cycles in labor market data may
be longer than 8-32 quarters ( Beaudry, et al. 2019).

e How do you compare countries different cyclical features (length)?

e Filtering and detrending subject to specification errors and small sample

or truncation biases.



Canova (1998)-(1999) Business cycle facts depend:

e Assumptions about the trend and procedures used to remove it.
e Whether decompositions are univariate vs multivariate.

e Whether components are orthogonal vs. non-orthogonal.

e What portions of spectrum are emphasized.

e Sample size (in small samples cyclical coefficients poorly estimated)



Summary statistics

Variability  Relative Variability = Contemporaneous Correlations Periodicity

Method| GDP  Consumption Real wage|(GDP,C) (GDP,Inv) (GDP, W)|(quarters)
HP1600| 1.76 0.49 0.70 0.75 0.91 0.81 24
HP4 0.55 0.48 0.65 0.31 0.65 0.49 7
BN 0.43 0.75 2.18 0.42 0.45 0.52 5
BP 1.14 0.44 1.16 0.69 0.85 0.81 28
KPSW 4.15 0.71 1.68 0.83 0.30 0.89 6

e Differences present also in other statistics, e.g. dating of cyclical turning

points or measuring business cycle phases.



Conclusion
e Extraction of growth cycles and calculation of statistics problematic.

e Empirical facts should be collected without growth removal and should

be conditional (rather than unconditional).

e If you care about gaps, use models. If you do not trust models use

composite methods or BW filters.



9 Business and financial cycles. Are they differ-

ent?

e Are they different? BIS: Financial cycles are longer than business cycles.
see Borio (2012)

e Lots of literature on the topic, see e.g. Runstler and Vlekke (2018).

e Compare credit to GDP to nonfinancial corporations and output for
illustration.



Canova (2019a): Euro area data
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Variable % of variance |% of variance |Persistence
2-8 years cycles|8-15 years cyclesAR1

Credit/GDP total 1.5 18.3 0.99
Credit/GDP households 1.6 19.0 0.99
Credit/GDP private non financial|l.7 19.1 0.99
log(real GDP) 2.1 20.3 0.99
Labor Productivity 2.2 20.4 0.99

Unemployment rate 1.6 18.1 0.98
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Credit-to-GDP and real GDP cycle
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Real and Financial cycles in models
e Use SW-FF (Del Negro et al, 2015) and CMR (Cristiano, et al. 2011)

e Do cycles look like those of the data?



Output and spread gaps, SWFF
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Output and spread gaps, CMR
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10 Fitting structural models to filtered data

e Statistical filtering: Find B, such that yif has S(wr) # 0 only for certain

wr € (wla CUQ)-

e Economic filtering: y; = y1+ + yor = A(L)et + B(L)ut, where e; are
permanent shocks, u; are transitory shocks or e; are disturbances entering
the potential and u disturbances entering the gap. Note u; and e; may

overlap.

e In general, yy; # yif since y1¢, Yo have S(wr) # 0 for all wr € (0, 7).



Ideal Stugtion
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Ideal case

e (Cyclical) model has most of the variability located at business cycle
frequencies. Statistical filtering would ok.



Gydica has poner outside BCfrequendes
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Realistic case

e If (cyclical) model is driven by persistent AR(1) shocks, lots of variability
in the low frequencies. Filtering throws away information.



Norroydical hes pover at BCfrequendes
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General case

e If (cyclical) model is driven by persistent AR(1) shocks, and permanent
shocks are cyclical, filtering is distortive. Different filters will give different
results.



e Typical solution: Build in a trend in a (cyclical) model. Transform the
data with a model consistent approach. Problems:

e Models with trends (in technology) imply balanced growth path. Typi-
cally violated in the data.

e Where do we put the trend (e.g. technology or preferences) matters for
estimates of the structural parameters - nuisance parameter problem.

e Should we use a unit root or trend stationary specification?
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Real and nominal Great ratios in US, 1950-2008.



Filter LT HP FOD BP Ratio

Median (s.d.)Median (s.d.)Median (s.d.)Median (s.d.)Median(s.d.)
oo |2.19 (0.10)|2.25 (0.12) |2.54 (0.16)|2.21 (0.10)[1.69 (0.11)
on | 1.79 (0.08)|1.57 (0.10)|1.90 (0.19)|1.78 (0.08) |2.16 (0.10)
h |0.67 (0.01)|0.59 (0.03)|0.44 (0.03)| 0.66 (0.02) |0.64 (0.02)
a |0.17 (0.03)|0.12 (0.02)]0.12 (0.03)|0.16 (0.02)|0.13 (0.02)
e |3.90 (0.12)|4.27 (0.14)]2.92 (0.11)|3.72 (0.05)|4.09 (0.12)
p. |0.16 (0.04)|0.52 (0.04)|0.22 (0.06)|0.49 (0.04)0.22 (0.04)
p_ |1.36 (0.08)|1.67 (0.04)|1.74 (0.05)|1.77 (0.08)|1.71 (0.05)
p, |-0.15 (0.02)10.35 (0.06) | 0.13 (0.07)|0.44 (0.05) |-0.02 (0.01)
¢, [0.81 (0.01)|0.60 (0.03)|0.33 (0.03)|0.56 (0.03)0.81 (0.01)
py |0.76 (0.02)|0.59 (0.04)0.29 (0.04)|0.82 (0.03)0.82 (0.02)
0. 10.96 (0.01)]0.54 (0.05)|0.87 (0.05)|0.46 (0.05)|0.92 (0.01)
oy | 0.23 (0.04)|0.37 (0.05)|0.23 (0.04)| 0.20 (0.03) |0.95 (0.16)
o, [0.12 (0.02) |0.08 (0.01) [0.09 (0.01)|0.09 (0.01)0.08 (0.01)
omp|0.11 (0.01)|0.08 (0.01)|0.12 (0.02)|0.08 (0.01)|0.12 (0.01)
o, 130.54 (1.17)] 1.01 (0.) |0.16 (0.03)]0.63 (0.21) [34.70 (1.04)

Posterior estimates NK model. For LT, HP, FOD and BP real variables detrended, nominal

demeaned. For Ratio, real variables are in terms of hours,all variables demeaned.

Which column should be trusted?



Alternatives:
e Use a data rich environment (Canova and Ferroni, 2011).

Let yf; be the actual data filtered with method 7 = 1,2,..., ] and yﬁi _
[y}, y7,...]. Assume:

yd = Ao + Awe(0) + w (55)

where A;, 7 = 0,1 are matrices of parameters, measuring bias and correla-
tion between data and model based quantities, u; measurement errors and
0 the structural parameters.

e Factor model setup a-la Boivin and Giannoni (2005).

e Can jointly estimate 6 and \'s.

e Same interpretation as GMM with many instruments.



e Bridge cyclical model and the raw data with a flexible specification
(Canova, 2014).

vl =ctyi +y(0) + w (56)
where yf = ﬁf — E(ﬁf) the log demeaned vector of observables, ¢ =
Yy — E(gjg) y%r is the non-cyclical component, y7"(0) = S[yt, x¢]’, where S
is a selection matrix, is the model based- cyclical component (the solution
of a DSGE model), u is a iid (0, ¥,,) (measurement) noise, v , y7"*(6) and
ut are mutually orthogonal.

e Non cyclical component

vi = yi1+T-1+es et ~ did (0,%2) (57)
Gt = Gr_1+ve v~ did (0,X3) (58)



e ¥2>0and ¥2=0, y/ is a vector of I(2)processes.
Y2 =0,and ¥2 >0, y{ is a vector of I(1) processes.

e Y2 =Y2=0, y? is deterministic.

2
g,,.
Y2 >0 and X2 > 0 and 0—12}@ is large, yg; is "smooth” and nonlinear ( as

in HP).

1

e Jointly estimate structural 6 and non-structural parameters (joint esti-
mation and filtering)

e Equivalent to assume a rich measurement error structure.

How does the procedure do in a simple experimental design?



Small variance Large variance
True|Median (s.e) |True Median (s.e)
oc.|3.00| 3.68 (0.40) |3.00| 3.26 ( 0.29)
on|0.70| 0.54 (0.14) |0.70| 0.80 ( 0.13)
h [0.70| 0.55 (0.04) |0.70| 0.77 ( 0.04)
« [0.60| 0.19 (0.03) |0.60| 0.41 ( 0.04)
e |7.00| 6.19 (0.07) (7.00| 6.95 ( 0.09)
p, 0.20] 0.16 (0.04) |0.24| 0.31 ( 0.04)
p. 130 1.30 (0.04) |1.30| 1.25 ( 0.03)
p, |0.05| 0.07 (0.03) |0.05| 0.08 ( 0.10)
¢,0.80| 0.78 (0.04) |0.80| 0.72 ( 0.02)
P, |0.50| 0.53 (0.04) |0.50| 0.69 (0.05)
p, 080 0.71 (0.03) |0.80| 0.90 ( 0.03)
o, 10.011] 0.012 (0.0003)/0.011| 0.012 ( 0.0003)
o |0.005 0.006 (0.0001)/0.005| 0.007 ( 0.0001)
omp(0.001| 0.002 (0.0004)(0.001| 0.002 (0.0004)
o, 10.206| 0.158 (0.0006)/0.206/0.1273 (0.0004)
oy 0.02 0.23

Parameters estimates using flexible specification. o

to the non-cyclical component.

"¢ is the standard error of the shock

X




Appendix: Other elements of Spectral Analysis

e The periodogram of y; is Pe(w) = Y- ﬁ(T)e_in where ﬁ(ﬂ _
25wt — D)(wi—r — 7) and § = 3 Ty

e Periodogram is inconsistent estimator of the spectrum. Periodogram
consistently estimate only an average of the frequencies of the spectrum.
For consistency need to "smooth” periodogram with a filter (kernel).

e A filter is a kernel (denoted by Kp(w)) if, as T — oo, K(wr) =
1, for wr = w and K(w+) = 0 otherwise.

e Kernels eliminate bias in ACF(7). Since as T' — oo bias disappears,
wants kernels to converge to d—function as T' — oo.



Two useful Kernels.

o Bartlett kernel: tent shaped, width 2J(T); K(w;) = 1 —

chosen so that @ — 0 as T — oo.

e Quadratic spectral kernel: wave with infinite loops;

K(w;) = 12#2]29?6(2;)7//55) _ 603(677‘7)

||

J(T

k(w)

k(w)
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Bartlett Kernel Quadratic Spectral Kernel
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