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Introduction
The methodological/econometric contribution

1. Using a suitable (multivariate) Wold representation, we introduce the
notion of spectral factor model.

2. The spectral factors are (orthogonal) components of an assumed
systematic factor (e.g., the market) with cycles of different length.

3. In the model, risk is captured by spectral factor loadings, i.e., spectral βs.

4. We show that the traditional β is a linear combination of spectral βs
without cross-β terms. (Hence, all frequency-specific information is
contained in the spectral βs.)

5. Spectral βs can be identified using either nonparametric methods or
parametric methods yielding extraction of the Wold components.

6. Spectral factor models and spectral βs are defined in the time domain,
rather than in the frequency domain, something which should make both
applicability and interpretability easier.



Introduction
The economic contribution

1. We provide a modeling framework which captures frequency
as a key dimension of risk.

2. The framework is suitable to achieve dimensionality reduction
in risk assessments and parsimony in the factor structures:
classical risk factors may perform better once their signal is
extracted properly.
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Spectral factor models
The intuition

I Assume

x1
t = α + βx2

t + εt .

I Clearly, β =
C[x1

t ,x2
t ]

V[x2
t ]

.

I Now, write x1
t = x1, <2j−1

t + x1, >2j−1

t and x2
t = x2, <2j−1

t + x2, >2j−1

t with

C[x i , <2j−1

t , xk, >2j−1

t ] = 0

∀i , k. The components are orthogonal for each process and across
processes.

I Consider now

x1
t = α + β<2j−1

1 x2, <2j−1

t + β>2j−1

2 x2, >2j−1

t + εt .

I Given the properties of the decomposition, we have

β<2j−1

1 =
C[x1, <2j−1

t , x2, <2j−1

t ]

V[x2, <2j−1

t ]
, β>2j−1

2 =
C[x1, >2j−1

t , x2, >2j−1

t ]

V[x2, >2j−1

t ]
.

I Also,

β = v<2j−1

β<2j−1

1 + v>2j−1

β>2j−1

2 .



A suggestive example: Buffett’s spectral βs
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(a) Value-Weighted Market Beta.
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(b) Equal-Weighted Market Beta.

Figure: Buffett’s market beta by frequency. Decomposition of Buffett’s market beta
into its various frequency components. The x−axis displays the frequency cycles, e.g.
the first bar captures the beta corresponding to cycles with length between 20 and 21

months, the second corresponds to cycles with length between 21 and 22 months, and
so on. The dashed line represent the standard market beta (not decomposed across
frequencies). We will show below that the standard beta is a weighted average (with
weights given by the relative variance, or information, of a specific scale) of the
spectral betas. The sample period is 1976/11 to 2017/12.



Scale-wise representations: extended Wold
Bandi, Perron, Tamoni, Tebaldi (JoE, 2019), Ortu, Severino, Tamoni, Tebaldi (2017)

I Let x = {xt}t∈Z be a covariance-stationary process defined onto the space L2(Ω,F , P). For simplicity, we
assume the process is mean zero.

I There exists a unit variance, zero mean white noise process ε = {εt}t∈Z such that, for any t in Z,

xt =
+∞∑
k=0

αkεt−k ,

where the equality is in the L2-norm and {αk}k∈N0
is a square-summable sequence of real coefficients

with αk = E(xtεt−k ).

I Let us now define the innovation process at scale j with j ∈ N. If j = 1, the innovation process at scale 1,

denoted by ε(1) =
{
ε

(1)
t

}
t∈Z

, is the process whose terms are

ε
(1)
t =

εt − εt−1√
2

.

We observe that ε
(1)
t has a zero mean and its variance is equal to 1 for all t.

I More generally, we define the innovation process at scale j as the process ε(j) =
{
ε

(j)
t

}
t∈Z

such that

ε
(j)
t =

1
√

2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑

i=0

ε
t−2j−1−i

 .

I Each sub-series

{
ε

(j)

t−k2j

}
k∈Z

is a unit variance, zero mean white noise process on the support

S
(j)
t = {t − k2j : k ∈ Z}.



Scale-wise representations: extended Wold II

I The definition of the scale-wise shocks induces the following representation of x:

xt =
+∞∑
j=1

x
(j)
t with x

(j)
t =

+∞∑
k=0

ψ
(j)
k
ε

(j)

t−k2j
,

where the equality is - again - in the L2-norm, for some square-summable sequence of real coefficients{
ψ

(j)
k

}
k∈Z

.

I Each coefficient ψ
(j)
k

is obtained by projecting x on the linear subspace generated by the (scale-specific)

innovations ε
(j)

t−k2j
:

ψ
(j)
k

= E

[
xtε

(j)

t−k2j

]
.

I This gives rise to the extended Wold representation of xt , that is

xt =
+∞∑
j=1

+∞∑
k=0

ψ
(j)
k
ε

(j)

t−k2j
.

I The connection between the coefficients ψ
(j)
k

of the extended Wold representation and the coefficients αk
of the classical Wold representation of x:

ψ
(j)
k

=
1
√

2j

2j−1−1∑
i=0

α
k2j +i

−
2j−1−1∑

i=0

α
k2j +2j−1+i

 .



An example: AR(1)
We formalize the coefficients ψ

(j)
k

for a weakly stationary AR(1) process x = {xt}t∈Z, namely

xt = ρxt−1 + εt ,

where |ρ| < 1 and ε = {εt}t∈Z is a unit variance, zero mean white noise.

I By using the lag operator L and the identity map I , we can - of course - rewrite the previous equation as

xt = (I − ρL)−1
εt = εt +

+∞∑
l=1

ρ
l
εt−l =

+∞∑
h=0

αhεt−h ,

where αh = ρh .

I Let us, now, fix a scale level j ∈ N. The expression of the coefficients ψ
(j)
k

can be easily obtained:

ψ
(j)
k

=

ρk2j
(

1− ρ2j−1
)2

√
2j (1− ρ)

,

for any k ∈ N0.

I The processes x
(j)
t are

x
(j)
t =

(
1− ρ2j−1

)2

√
2j (1− ρ)

+∞∑
k=0

ρ
k2j
ε

(j)

t−k2j
.

We observe that each x
(j)
t is proportional to an AR(1) with time steps 2j and autoregressive coefficient

given by ρ2j . These AR(1) processes are defined on the support S
(j)
t = {t − k2j : k ∈ Z}.

I In essence, then, we can rewrite the original AR(1) as an infinite sum of AR(1)s with time steps 2j and

autoregressive coefficients given by ρ2j .



Scale-wise representations: multivariate extended Wold
I Define the white noise process ε = {(ε1

t , ε2
t )ᵀ}t∈Z such that E[ε] = 0 and E[εεᵀ] = Σε, where Σε is a

covariance matrix of dimension 2× 2. For any t in Z, x satisfies the following Wold representation:

(
x1
t
x2
t

)
=
∞∑
k=0

(
α1
k α2

k
α3
k α4

k

)(
ε1
t−k

ε2
t−k

)
=
∞∑
k=0

αkεt−k , (1)

with
∑∞

k=0 tr1/2(α
ᵀ
k
αk ) <∞ and α0 = I2, where the equality is in the L2-norm.

I As before, straightforward aggregation of the system’s shocks now leads to the equivalent extended
multivariate Wold representation:(

x1
t
x2
t

)
=
∞∑
j=1

∞∑
k=0

Ψ
(j)
k
ε

(j)

t−k2j
=
∞∑
j=1

x
(j)
t

in which, for any j ∈ N, the 2× 2 matrices Ψ
(j)
k

are the unique discrete Haar transforms (DHT) of the
original Wold coefficients, i.e.,

Ψ
(j)
k

=
1
√

2j

2j−1−1∑
i=0

α
k2j +i

−
2j−1−1∑

i=0

α
k2j +2j−1+i

 ,

and the 2× 1 vectors ε
(j)
t are the DHTs of the original Wold shocks, i.e.,

ε
(j)
t =

1
√

2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑

i=0

ε
t−2j−1−i

 .



Frequency-specific risk

Theorem 1 (A β representation.)
Assume x =

{
(x1

t , x2
t )ᵀ
}
t∈Z satisfies Eq. (1). Define the spectral beta

associated with frequency j as β(j) =
E
[
x

1,(j)
t x

2,(j)
t

]
V
[
x

2,(j)
t

] . The overall beta would,

therefore, conform with

β =
C
[
x1
t , x2

t

]
V [x2

t ]
=
∞∑
j=1

v (j)β(j),

where v (j) =
V
[
x

2,(j)
t

]
V[x2

t ]
.

I Note: In light of orthogonality of the extended Wold representation, the
classical beta can be expressed as a weighted average of spectral betas
(without cross-beta terms) with weights directly related to the relative
informational content of the corresponding frequency. The latter is, of

course, defined as v (j) =
V
[
x

2,(j)
t

]
V[x2

t ]
.

Examples



Identification

I Parametric. In order to operationalize the extended Wold representation,
we first need to compute the classical Wold coefficients, αk .

To this end, we may assume that the bivariate time series of interest,
xt =

(
x1
t , x2

t

)ᵀ
, follows a linear vector autoregressive (VAR) process of

order p (VAR(p)) of the form:

xt = A1xt−1 + . . .+ Apxt−p + εt ,

where the Ai s, with i = 1, . . . , p, are 2× 2 parameter matrices and the
error process, εt = (ε1

t , ε2
t )ᵀ, is a 2-dimensional zero-mean white noise

process with covariance matrix E(εtε
ᵀ
t ) = Σε.

I Nonparametric. We filter the components directly using a Haar
transform Haar which yields:

xt =
J∑

j=1

x̂
(j)
t + π

(J)
t ,

for any J ≥ 1.



Identification: continued

Theorem 2 (Disaggregating β into spectral βs
nonparametrically.)
Should a Haar transform be applied to the vector x =

{
(x1

t , x2
t )ᵀ
}
t∈Z to

decompose it into J decimated components, the resulting beta would conform
with

β̂ =
Ĉ
[
x1
t , x2

t

]
V̂ [x2

t ]
=

J∑
j=1

v̂ (j)β̂(j),

where β̂(j) =
Ê
[
x̂

1,(j)

k2j
x̂

2,(j)

k2j

]
V̂
[
x̂

2,(j)

k2j

] and v̂ (j) =
V̂
[
x̂

2,(j)

k2j

]
V̂[xt ]

.

We emphasize that this representation has two key features:

I First, the Haar transform delivers a beta expressed as a linear
combination of betas defined with respect to inner products rather than
with respect to covariances, thereby capturing (for all samples) the
zero-mean nature of the Wold components in the extended Wold.

I Second, and more importantly, the cross-beta terms do not appear,
thereby representing (for all samples) the uncorrelatedness, across
frequencies, of the Wold components, once more. empirical evaluation



An economic metric
Portfolio selection

I A classical factor model. Let Ri ,t denote the return on asset i in a universe of N stocks. Assuming M
factors, the vector βi = (βi ,1, . . . , βi ,M ) represents the asset i ’s sensitivities to the M factors, namely
ft = (f1,t , . . . , fM,t ). A factor decomposition of asset i ’s returns has the form

Ri ,t = αi + βi f
ᵀ
t + εi ,t .

It is commonly assumed that the asset-specific shocks εt = (ε1,t , . . . , εN,t ) are cross-sectionally

uncorrelated so that E[εtε
ᵀ
t ] = D, where D is a diagonal matrix. Letting B be an N ×M-matrix of factor

betas and V be the M × M covariance matrix of the factors, the covariance matrix of returns ΣR can
expressed as

ΣR = BVBᵀ + D.

I A spectral factor model. We may write a J-component spectral analogue to the previous model, i.e.,

Ri ,t = αi +
J∑

j=1

β
(j)
i (f

(j)
t )ᵀ +

J∑
j=1

ε
(j)
i ,t .

Since the Wold components are orthogonal to one another, we have

Σ̃R =
J∑

j=1

Σ̃
(j)
R with Σ̃

(j)
R = B(j)V(j)B(j)ᵀ + D(j).

I Note: Σ̃R = ΣR if β
(j)
i = βi for all j, i. Hence, the classical model can be viewed as a restriction on the

spectral model.



An economic metric
The optimal portfolio problem

The optimization problem is standard:
w̃ = arg min

w
wᵀΣw,

subject to the constraints
wᵀ
µ = µ̃ and wᵀ1 = 1,

where wi is the portfolio weight on the i-th security. A related optimization problem minimizes variance in the
absence of restrictions on the portfolio expected return (the global minimum variance problem). The weights may
be constrained to be positive (long-only portfolios) or may be positive and negative (should short sales be allowed).

The data:

1. The dataset and test criteria are similar to those in Ledoit and Wolf (2003). Stock return data are
extracted from the University of Chicago’s Center for Research in Securities Prices (CRSP) monthly
database. Only U.S. common stocks traded on the New York Stock Exchange (NYSE) and the American
Stock Exchange (AMEX) are included, which eliminates REIT’s, ADR’s, and other types of securities.

2. For t = 1952 to t = 2018, we use an in-sample period from August of year t − 10 to July of year t to
form an estimate of the covariance matrix of stock returns.

3. The estimate is used in the optimizations problem(s) above.

4. The out-of-sample period spans the time period from August of year t to the end of July of year t + 1.

5. The measure of performance is the portfolio’s out-of-sample standard deviation in the period from August
1962 to July 2018.



Panel A: August 1962 to July 1989

SD Global Min SD Min | E[R] = 10% SD Min | E[R] = 20%
CAPM 1.058 (0.016) 1.060 (0.008) 1.120 (0.000)
Fama-French model 1.083 (0.309) 1.053 (0.049) 1.076 (0.023)
Fama-French plus Momentum 1.082 (0.099) 1.059 (0.044) 1.095 (0.007)
Five Principal Components 1.044 (0.092) 1.045 (0.021) 1.074 (0.001)

Panel B: August 1990 to July 2018

SD Global Min SD Min | E[R] = 10% SD Min | E[R] = 20%
CAPM 1.143 (0.001) 1.138 (0.003) 1.137 (0.002)
Fama-French model 1.049 (0.082) 1.048 (0.085) 1.063 (0.123)
Fama-French plus Momentum 1.071 (0.023) 1.071 (0.019) 1.103 (0.018)
Five Principal Components 1.064 (0.015) 1.063 (0.026) 1.086 (0.039)

Panel C: August 1962 to July 2018

SD Global Min SD Min | E[R] = 10% SD Min | E[R] = 20%
CAPM 1.097 (0.000) 1.095 (0.000) 1.128 (0.000)
Fama-French model 1.067 (0.065) 1.050 (0.008) 1.070 (0.003)
Fama-French plus Momentum 1.076 (0.009) 1.063 (0.004) 1.098 (0.001)
Five Principal Components 1.052 (0.004) 1.053 (0.001) 1.079 (0.000)
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A re-evaluation of the Consumption CAPM
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Figure: Average realized returns of the 25 Fama-French portfolios sorted on
size and book-to-market.
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Figure: Frequency-specific consumption components. Each panel refers to a
scale j = 1, . . . , J (scale j captures fluctuations between 2(j−1) and 2j quarters).
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Figure: Frequency-specific betas. β
(j)
i s for size and book-to-market portfolios

i = 1, . . . , 25. Each panel refers to a scale j = 1, . . . , J (scale j captures
fluctuations between 2(j−1) and 2j quarters).
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Figure: Cross-sectional fit. Panel (a): The figure plots fitted versus average
excess returns (% per year) for the 25 size and book-to-market portfolios.
Panel (b): The figure plots fitted versus average excess returns (% per year)
when the priced factor is the consumption component at scale j = 4 (a
component associated with fluctuations between 2 and 4 years).



The prices of risk

Panel (a): E[Rei
t,t+1] =

∑6
j=1 λjβ

(j)
i

Constant λ1 λ2 λ3 λ4 λ5 λ6

√
α2 ‖α‖ DoF p-value R2

0 -0.585 0.093 -0.038 1.413 -0.614 0.665 1.79 1.49 21 0.000
(-) ( 0.390) (0.233) (0.449) (0.483) (0.563) (0.674)
0.512 -0.590 0.068 -0.045 1.382 -0.647 0.718 1.79 1.48 20 0.000 0.45
(0.823) ( 0.380) ( 0.246) ( 0.462) ( 0.584) (0.551) (0.408)

Panel (b): E[Rei
t,t+1] = λ4β

(4)
i

Constant λ4

√
α2 ‖α‖ DoF p-value R2

0 1.428 1.94 1.64 25 0.000
(-) (0.617)
1.709 1.170 1.91 1.63 24 0.000 0.38
(1.410) (0.589)



Conclusions

I Frequency is a dimension of risk.

I We provide a methodological framework designed to model
and identify frequency-specific systematic risk.

I We do so in the time domain, thereby facilitating use and
economic interpretability.

I We argue that emphasis on frequency may lead to
economically-meaningful dimension reduction in
cross-sectional pricing.



Constant spectral betas

Figure: We report spectral covariances, variances and betas across
frequencies. The values are derived from a bivariate VAR(1) with
α1 = 0.5, α2 = 0, α3 = 0 and α4 = 0.5. The variance matrix of the
bivariate shocks has σ1 = 1, σ2 = 1 and ρ1,2 = 0.5.



Decreasing spectral betas

Figure: We report spectral covariances, variances and betas across
frequencies. The values are derived from a bivariate VAR(1) with
α1 = 0.5, α2 = 0, α3 = 0 and α4 = 0.9. The variance matrix of the
bivariate shocks has σ1 = 1, σ2 = 1 and ρ1,2 = 0.5.



Increasing spectral betas

Figure: We report spectral covariances, variances and betas across
frequencies. The values are derived from a bivariate VAR(1) with
α1 = 0.5, α2 = 0, α3 = 0 and α4 = 0.1. The variance matrix of the
bivariate shocks has σ1 = 1, σ2 = 1 and ρ1,2 = 0.5. back



A primer on Haar filtering
The case J = 2

I Consider the case J = 1. We have, by adding and subtracting
xt−1

2
:

xt =
xt − xt−1

2︸ ︷︷ ︸
x

(1)
t

+
[xt + xt−1

2

]
︸ ︷︷ ︸

π
(1)
t

which breaks the series into a “transitory” and a “persistent” component.

I For J = 2, by adding and subtracting
xt−2+xt−3

4
:

xt =
xt − xt−1

2︸ ︷︷ ︸
x

(1)
t

+
xt + xt−1 − xt−2 − xt−3

4︸ ︷︷ ︸
x

(2)
t

+
[xt + xt−1 + xt−2 + xt−3

4

]
︸ ︷︷ ︸

π
(2)
t

which separates the “persistent” component π
(1)
t into additional

“transitory” and “persistent” components.

I This procedure can be generalized for J > 2. We now formalize the J = 2
case.



The case J = 2

I Let us focus on blocks of length N = 2J = 22 and define the
vector

Xt = [xt−3, xt−2, xt−1, xt ]
>.

I Consider, now, the orthogonal transform matrix T (2) defined
as

T (2) =


1/4 1/4 1/4 1/4
−1/4 −1/4 1/4 1/4
−1/2 1/2 0 0
0 0 −1/2 1/2

 .

I T (2)(T (2))> is diagonal.



The case J = 2

I We have:

T (2)Xt =


xt+xt−1+xt−2+xt−3

4
xt+xt−1−xt−2−xt−3

4
xt−2−xt−3

2
xt−xt−1

2

 =


π

(2)
t

x
(2)
t

x
(1)
t−2

x
(1)
t

 .

I Clearly,

xt = x
(1)
t + x

(2)
t + π

(2)
t .



Interpretation

I The generic j-th detail can be represented as follows:

x
(j)
t =

∑2(j−1)−1
i=0 xt−i

2(j−1)︸ ︷︷ ︸
π

(j−1)
t

−
∑2j−1

i=0 xt−i
2j︸ ︷︷ ︸
π

(j)
t

,

where the elements π
(j)
t satisfy the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)

t−2j−1

2
.

I Thus, we have

xt =
J∑

j=1

x
(j)
t + π

(J)
t =

J∑
j=1

{
π

(j−1)
t − π(j)

t

}
+ π

(J)
t = π

(0)
t .

I x
(j)
t represents changes at scale j − 1 and π

(J)
t is a long-run

trend.



Decimation

I As shown, the details can be obtained in calendar time.

I They can also be obtained in their corresponding scale time:{
x

(j)
t , t = k2j with k ∈ Z

}
,{

π
(J)
t , t = k2J with k ∈ Z

}
.

I Let us return to the case J = 2 and the matrix T (2) so that

T (2)


xt−3

xt−2

xt−1

xt

 =


π

(2)
t

x
(2)
t

x
(1)
t−2

x
(1)
t

 .

I By letting t vary in the set
{
t = k22 with k ∈ Z

}
we can construct the

decimated counterparts
{
x

(j)
t , t = k2j with k ∈ Z

}
for j = 1, 2 and{

π
(2)
t , t = k22 with k ∈ Z

}
. Back



An empirical evaluation of the β representation
Identifying the components

We run market model-style regressions on two portfolios: a high
book-to-market (value) portfolio and a low book-to-market (growth)
portfolio:

Rvalue,t = const+1.149× Rmkt,t + εt , R2 = 0.90,

(t-stat = 31.69)

Rgrowth,t = const+0.973× Rmkt,t + εt , R2 = 0.90.

(t-stat = 38.19)

Since the volatility of the excess market return series in our sample is
19.06% per annum, the beta estimates imply ...

I a covariance equal to 1.149×
(
19.06/

√
12
)2

= 34.784 for value.

I a covariance equal to 0.973×
(
19.06/

√
12
)2

= 29.456 for growth.



Panel A: Parametric (AR(p) based)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑J+1

j=1 C(R
(j)
mkt

, R
(j)
p )

Covariance
decomposition
Value 10.273 12.533 6.535 2.994 1.516 0.558 0.219 34.626

Growth 10.020 9.796 5.204 2.515 1.222 0.346 0.139 29.242

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑J+1

j=1 w
(j)
p β

(j)
p

Beta decomposition
and reweighting
Value 1.027 1.196 1.234 1.207 1.229 1.311 1.389 1.143
weight (rel. variance) 0.330 0.346 0.175 0.082 0.041 0.014 0.005

Growth 1.003 0.950 0.961 1.000 0.987 0.813 0.883 0.965
weight (rel. variance) 0.330 0.340 0.179 0.083 0.041 0.014 0.005

Panel B: Nonparametric (Haar based)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑J+1

j=1 C(R
(j)
mkt

, R
(j)
p )

Covariance
decomposition
Value 13.887 10.081 5.762 2.830 1.462 0.542 0.237 34.802

Growth 12.417 8.278 4.612 2.389 1.185 0.337 0.180 29.398

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑J+1

j=1 w
(j)
p β

(j)
p

Beta decomposition
and reweighting
Value 1.101 1.164 1.208 1.191 1.221 1.305 1.387 1.148
weight (rel. variance) 0.416 0.286 0.158 0.078 0.040 0.014 0.005

Growth 0.984 0.956 0.967 1.005 0.989 0.812 0.882 0.969
weight (rel. variance) 0.416 0.286 0.158 0.078 0.040 0.014 0.005



An empirical evaluation of the β representation
Orthogonality of the components

I We bundle together frequencies below 16 months and above 16 months.

I In other words, for each return series, we sum all of the components up to
scale 4 (included) and dub this new component “the high-frequency
component” (HF).

I Analogously, for each return series, we sum all of the components higher
than scale 4 and dub this new component “the low-frequency
component” (LF).

We then run the following simple regressions:

RLF
p,t = const + βLF

p × RLF
mkt,t + εt ,

RHF
p,t = const + βHF

p × RHF
mkt,t + εt .

By the orthogonality of the components, the corresponding multiple regression,
i.e.,

Rp,t = const + βHF
p × RHF

mkt,t + βLF
p × RLF

mkt,t + εt ,

should deliver analogous beta estimates.



Panel A: Parametric (AR(p) based)

Simple Regression Multiple Regression
βLF βHF βLF βHF

(t-stat) (t-stat) (t-stat) (t-stat)

Value 1.287 1.137 1.237 1.141
(22.14) (27.96) (15.43) (26.54)

Growth 0.937 0.986 0.874 0.986
(18.03) (34.38) (11.24) (33.48)

Panel B: Nonparametric (Haar based)

Simple Regression Multiple Regression
βLF βHF βLF βHF

(t-stat) (t-stat) (t-stat) (t-stat)

Value 1.228 1.144 1.231 1.142
(18.53) (28.35) (15.12) (26.48)

Growth 0.947 0.985 0.891 0.983
(20.50) (34.39) (11.78) (32.84)

Table: Simple and multiple regression on high- and low-frequency betas.

back


