Joint macro/econometrics seminar Indiana University January 29, 2024

Responses of Households' Expected Inflation to Oil Prices and the Exchange Rate: Evidence from Daily Data

Etsuro Shioji (Hitotsubashi University) and Toshiaki Shoji (Seikei University)

Acknowledgement

Research for this presentation has been funded by

- MEXT through <u>HIAS</u>-GLECS
- Grant-in-aid for Scientific Research
 - A-23H00048
 - A-20H00073
 - B-21H00704
 - C-18K01605
 - C-23K01342
- Nomura Foundation
- Hosei-Gakkai Foundation

1. Research Questions

Question (1) = Central theme Can <u>daily</u> data help predict changes in <u>monthly</u> data on household inflation expectations (π^e)?

Background Inflation (π) has finally come, EVEN TO JAPAN!

CPI in Japan (headline)

Excludes fresh food; starting from 2020, I excluded mobile phone fees and lodging.

Background (continued)

• Policy-makers worry: will π become pervasive?

• Macro theory: π^e holds the key.

- Recent experiences: π^e can change abruptly.
- Implication: we need <u>timely</u> monitoring.

Methodology

- MIDAS regressions
 - "Mixed Data Sampling"
 - Ghysels et.al. (2004)

Question (2)

Market π^e vs Households π^e : Are they different?

- Literature: Consumer perceptions are influenced by prices of goods that they purchase frequently.
- If so, daily data on those prices might help.

Utilize Barcode price data at supermarkets (called "CPINOW")

Question (3)

Construct new indices ="Daily CPI of frequently purchased products"

- CPINOW includes items that are rarely sold.
- Can we do even better by focusing only on frequently purchased products?

Literature :determinants of HH π^{e}

• Jonung (1981)

– HH π^e is heavily influenced by perceived π .

• D'Acunto et. al. (2021, 2022)

- Importance of frequently purchased items.

- Coibion et. al. (2015)
 - Importance of oil prices
- Kilian et. al. (2022)
 - Criticism

Structure of talk

- 1. Research question
- 2. Data on daily indicators
- 3. Do the daily indicators help predict **actual** inflation?
- 4. Data on inflation expectation
- 5. Do the daily indicators help predict **expected** inflation?
- 6. Summary

2. Daily data

[2-1] Existing series

We consider two types of daily series:

- Market indices
 - -Oil futures
 - Exchange rate
- Known to affect BEI.

• **Retail** prices

-Gasoline prices (weekly) and...

Nikkei CPINOW

(purchased from Nowcast, Inc.)

• POS data, from 1,200 supermarkets.

- Composition
 - Dominated by processed food (80%).
 - -Few fresh food items: eggs & mushrooms.
 - -Others: toilet papers, detergents, etc.

CPINOW: Ingredients

- Products: 217 "Categories"
- Example of a category:
 - "Instant Cup Chinese Noodles"
 - It consists of 13,766 "items" = barcodes (as of 2022).

e.g. "Nissin Cup Noodle: Brazilian Chicken Noodle Cup 74G".

CPINOW: How it's made

- Unit = (shop) X (item)
 - E.g., "Nissin Cup Noodle: Italian Curry: Cup 83G" sold at "Supermarket #843"
- For each of (shop)x(item), they record daily sales values and quantities.
- \rightarrow Compute YoY rate of change of (value/quantity).
- Take their weighted averages across (shop)x(item).

Y-o-Y rate of change

[2-2] CPINOW: possible drawbacks

• CPINOW includes items that are rarely sold.

• They go in and out of the sample.

- Problems?
 - Buyers do not observe their prices frequently.
 - They may make the series noisier.

[2-3] Our new indices = Daily CPI of Frequently Purchased Products

- Choose <u>categories</u> frequently purchased.
 - Like "Instant Cup Chinese Noodles".

 Within category, pick <u>(shop)x(item)</u> that appear frequently in the data.

Data for our new indices

- Obtained underlying data for CPINOW
 - from Prof. Tsutomu Watanabe = Founding Father of CPINOW.
 - Drawback: consists of only around 300 shops.

= Those that have agreed to academic usage.

• Frequently purchased categories are chosen based on Household Survey.

Our index (1) P_ALL

 Computed in the same way as CPINOW, from our narrower data set, for the sake of comparison.

Our index (2) P_FREQ

- Includes only categories of goods that are purchased <u>at least once a month</u>.
- Categories are weighted according to their purchase frequencies in Household Survey.
- Within each category, (shop)x(item) are weighted according to the number of their appearances in the data per month (computed for each year).

Our index (3) P_VERYFREQ

• Same as P_FREQ but only those categories that are purchased <u>at least twice a month</u>.

- Examples of VERYFREQ
 - Tofu, Onigiri, Yogurt, Cup Noodles, Bread, Soda, Ice Cream, Egg, Milk, Plastic Bags, ...
- Examples, FREQ but not VERYFREQ:
 - Chinese Noodle, Ham, Cheese, Chocolates, Sanitary Item...

Our index (4) P_FREQN, P_VERYFREQN

• N = number

 Within each category, include only (shop)x(item) that appeared at least N times per month (in a given year).

Same graph, different axes

3. Do they help explain **actual** inflation?

MIDAS estimation

For *f*, use "polynomial distributed lag (PDL)" (or Almon) weighting.

$f(i) = \theta_0 + \theta_1 \cdot i + \theta_2 \cdot i^2$

Estimation

• Sample period: Apr 2005 – Feb 2023

• Other controls:

-Two dummies for consumption tax hikes.

Monthly CPI = Headline Daily P = CPINOW

-	-			
		CPI, Headline		
		Coef	t-Stat	
LHS(-1)		0.838	11.85	
LHS(-2)		-0.122	-1.81	
	Intercept	3.E-02	2.99	
CPINOW	Slope	-2.E-03	-2.32	
	Quadratic	3.E-05	2.05	
Gasoline	Intercept	4.E-03	3.90	
	Slope	-4.E-04	-4.28	
	Quadratic	6.E-06	4.42	
Evobongo	Intercept	-2.E-04	-0.18	
Exchange Rate	Slope	2.E-05	0.24	
	Quadratic	-2.E-07	-0.13	
Oil	Intercept	6.E-04	2.68	
	Slope	-4.E-05	-1.86	
	Quadratic	6.E-07	1.55	
Adjusted R	-squared	0.955		

PDL coefs

monthly CPI = Headline, daily P = CPINOW

Monthly CPI = <u>Various</u> Daily P = <u>CPINOW</u>

	Total, less Fresh Food		Total	, less	Goods		Frequently	
			Food & Energy		GUOUS		Purchased Items	
	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat
Intercept	1.E-02	1.76	4.E-03	0.62	2.E-02	1.79	2.E-02	1.79
Slope	-5.E-04	-0.84	-2.E-04	-0.31	-9.E-04	-0.98	-9.E-04	-0.85
Quadratic	5.E-06	0.53	3.E-06	0.29	1.E-05	0.66	6.E-06	0.37
	Freeh Fred	Food,		Frequently				
	Fresh Food		less Fresh Food		Purchased Food			
	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat		
Intercept	3.E-01	2.09	5.E-02	7.26	7.E-02	7.58		
Slope	-2.E-02	-1.99	-3.E-03	-4.79	-4.E-03	-4.91		
Quadratic	4.E-04	1.89	4.E-05	3.82	5.E-05	3.70		
(Note) Frequently purchased items exclude fresh food.								25

Monthly $CPI = Food_{less fresh food}$ Daily P = Various

	CPINOW		P_ALL		P_FREQ		P_VERYFREQ	
	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat
Intercept	5.E-02	7.26	5.E-02	6.96	5.E-02	5.91	5.E-02	5.45
Slope	-3.E-03	-4.79	-3.E-03	-4.51	-4.E-03	-4.29	-3.E-03	-4.05
Quadratic	4.E-05	3.82	4.E-05	3.58	5.E-05	3.65	4.E-05	3.49
Adj. R sq.	sq. 0.983		0.983		0.979		0.977	
	P_FREQ30		P_VERY	FREQ30				
	Coef	t-Stat	Coef	t-Stat				
Intercept	4.E-02	4.91	4.E-02	4.71				
Slope	-3.E-03	-3.48	-2.E-03	-3.42				
Quadratic	4.E-05	2.91	3.E-05	2.89				
Adj. R sq.	0.9	77	0.9	76				

4. Data on expected inflation

Consumer Confidence Survey

by the Cabinet Office of Japan

- Monthly, 15th day of the month.
- Q: "What do you think about prices of goods that your household regularly purchases frequently one year from now?"
- Since April 2004
- Two important survey design changes.
 - Use dummy variables to control for their effects.

Shares of survey responses

Household inflation expectations

4U

5. Do the daily indicators help predict expected inflation?

Estimation

• Sample period: Apr 2005 – Feb 2023

- Other controls:
 - Two dummies for consumption tax hikes.
 - Two dummies for survey design changes.
 - CPI for Energy, lagged 2 months.
 - I tried including various lagged CPI's, and this one turned out to be significant.

Estimation result with CPINOW

		Expected Inflation				
		Coef	t-Stat	Coef	t-Stat	
LHS(-1)		1.117	15.93	1.123	16.08	
LHS(-2)		-0.221	-3.02	-0.204	-2.81	
CPI energy (-2)		0.012	1.87	0.015	2.50	
CPINOW	Intercept	2.E-02	2.74	2.E-02	2.51	
	Slope	-2.E-03	-2.59	-1.E-03	-2.34	
	Quadratic	2.E-05	2.45	2.E-05	2.16	
Gasoline	Intercept	5.E-04	0.65	1.E-03	1.92	
	Slope	-5.E-05	-0.78	-9.E-05	-1.72	
	Quadratic	8.E-07	0.79	1.E-06	1.54	
Exchange	Intercept	4.E-04	0.63			
Rate	Slope	-5.E-05	-0.76			
	Quadratic	9.E-07	0.87			
Oil	Intercept	2.E-04	1.10			
	Slope	-1.E-05	-0.66			
	Quadratic	1.E-07	0.47			
Adjusted R-squared		0.975		0.975		

43

PDL coefs

Monthly LHS var. = Expected Inflation Daily P = <u>Various</u>

	CPINOW		P_ALL		P_FREQ		P_VERYFREQ	
	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat	Coef	t-Stat
Intercept	2.E-02	2.51	2.E-02	2.76	2.E-02	2.37	1.E-02	1.85
Slope	-1.E-03	-2.34	-2.E-03	-2.73	-2.E-03	-2.39	-1.E-03	-1.90
Quadratic	2.E-05	2.16	2.E-05	2.61	3.E-05	2.33	2.E-05	1.87
Adj. R sq.	0.975		0.975		0.975		0.975	
	P_FREQ30		P_VERYFREQ30					
	Coef	t-Stat	Coef	t-Stat				
Intercept	2.E-02	2.50	1.E-02	2.16				
Slope	-1.E-03	-2.53	-1.E-03	-2.28				
Quadratic	2.E-05	2.47	2.E-05	2.28				
Adj. R sq.	0.975		0.9	75				45

7. Summary

Conclusions

- CPINOW helps explain HH inflation expectations.
- Gasoline prices also, to some extent.
- But not oil prices or the exchange rate.
 BIG CONTRAST with expectations of the market.

 \Rightarrow Consumers seem to base their expectations on what they directly observe.

Seeing is believing

Future work

- Our new indices did not make much difference (after so much time and efforts): we must find out why.
- Add more daily indicators
 - Text data such as newspaper articles (Shintani & Yamamoto 2023).
- Automatic selection of regressors.
 - MIDAS + LASSO.
- Forecast performance evaluation.

Thank you!

Appendix (A): Literature Review on the determinants of inflation expectation in Japan

• Ueda (2010)

– VAR with output gap, r, $\pi \& \pi^e$ (US & JPN)

- Nishiguchi, Nakajima & Imakubo (2014)
 - VAR with π of frequently purchased items, π of less frequently purchased items, HH's perceived π , & π^e .
- Kamada, Nakajima & Nishiguchi (2015)
 - how means and higher moments of π^e react to monetary policy announcements and actual π .
- Shintani & Yamamoto (2023)
 - How HH π^e responds to newspaper articles.

Appendix (B) More on daily data other than CPINOW

Data handling issues

• Exclude weekends (5 days per week).

 Missing data due to a holiday: the value for that day is set equal to that of the previous day.

 For variables other than CPINOW, I take log differences from 261 weekdays (≈ 1 year) ago.

Market indicator 1: Oil Price (Brent)

54

Market indicator 2: Exchange Rate (USD-JPY)

Retail indicator 2: Gasoline price weekly data converted into daily

Additional indicators that did not help

Daily Business Cycle Indicator

Appendix (C) Adjustment to daily barcode price data

It matters how you define "YoY".

- CPINOW is defined as "rate of change from 365 days ago" (even for leap years).
- We follow them.
- Note 365 is not a multiple of 7 (364 is).
- "Seasonality" pattern is likely to be different for leap years.

We detect 3 notable patterns in the un-adjusted data.

- (1) Day-of-week effect: amplified by taking the 365-day-difference as opposed to 364.
- (2) Zero effect: things tend to be cheaper on the 10th, the 20th, and the 30th days of the month.
- (3) New year effect: things tend to be cheaper on January 1. (why??)

We adjust for the three effects, year-by-year.

- Here, "year" is defined as "from the day after Feb 28 of this year" "until Feb 28 of the next year".
- Regress "P" on its own lags (up to the 7th) and dummies for the three effects. Take out the effects of those dummies.
 - For leap years, add dummies for the "9 effects" and "New year's eve effects".

Appendix (D) Within-month frequency distributions of (shop)x(item), typical examples

Ice cream etc., Feb 2022

Appendix (E) Daily indices, visual inspection

Appendix (F) More on data on inflation expectations

(1) April 2013 Change of survey method

 Before: direct-visit and self-completion questionnaires

• After: Mail Survey Method.

(2) April 2009: Range change

Before

Data shows that expectations can change abruptly.

Appendix (G) Heterogeneity of expectations across age groups

3 groups: below 30, 30-59, above 60

• Older people are most responsive to gasoline prices (puzzling).

• Younger people are most sensitive to CPINOW.

Inflation expectations by age group

		Below 30		30-59		Over 59	
		Coef	t-Stat	Coef	t-Stat	Coef	t-Stat
LHS(-1)		0.718	10.49	1.154	16.61	1.099	15.68
LHS(-2)		0.164	2.29	-0.184	-2.54	-0.124	-1.69
CPINOW	Intercept	0.019	2.10	0.015	2.25	0.014	2.06
	Slope	-0.001	-1.29	-0.001	-2.13	-0.001	-2.06
	Quadratic	0.000	0.80	0.000	1.99	0.000	1.98
Gasoline	Intercept	0.000	0.28	0.001	1.28	0.001	1.90
	Slope	0.000	-0.33	0.000	-1.19	0.000	-1.75
	Quadratic	0.000	0.38	0.000	1.19	0.000	1.71
Adjusted R-squared		0.920		0.973		0.974	

Appendix (H): Determinants of Market Expectations (BEI)

VAR with 4 variables

- Oil Price, Exchange Rate, CPINOW, BEI
- Oil Price and Exchange Rate are in first differences.
- Lag length = 20
- Sample period: November 2013 March 2022

