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Abstract

When fitting structural vector autoregressions (VARs), macroeconomists should prefer the

original, unadjusted data over the seasonally adjusted versions, even when using VARs to study

non-seasonal phenomena. This paper makes three contributions. First, I characterize how

seasonal adjustment interferes with identification schemes in structural VARs, and how seasonal

variation provides useful identifying information. Second, I provide a framework for Bayesian

inference in seasonal VARs. Third, as an application, I incorporate seasonality into Baumeister

and Hamilton’s (2015) model of labor-market demand and supply; the models with and without

seasonality produce substantially different results.
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1 Introduction

Structural vector autoregressions (VARs) are one of the most commonly used tools for empirical

macroeconomists, and it is standard practice to estimate VARs using seasonally adjusted time se-

ries, whenever seasonally adjusted versions are available. In part, the widespread use of seasonally

adjusted variables stems from the fact that most VAR practitioners are interested in business cy-

cles, not seasonal cycles. However, if switching from seasonally adjusted to unadjusted time series

changes a model’s results, then it demonstrates that conclusions about business cycles depend on

assumptions about seasonality. In general, seasonal adjustment distorts identification in structural

VARs, and seasonal variation can provide useful identifying information. The treatment of season-

ality can therefore affect inferences about non-seasonal phenomena, such as structural parameters,

impulse responses, and variance decompositions. Given the choice, macroeconomists who are esti-

mating structural VARs should opt for the original, unadjusted variables over the seasonally adjusted

versions. When doing so, it is necessary to incorporate seasonality explicitly into the model and

confront the novel statistical challenges of seasonal data.

Seasonality and seasonal adjustment matter for identification in structural VARs. Adjusting

for seasonality involves more than just removing season-specific means. In the U.S., government

statistical agencies also run the data through a two-sided filter, so the date-t value of a seasonally

adjusted time series is a rolling moving average of past, present, and future observations. One

problem with this procedure is conceptual: The identified shocks extracted from seasonally adjusted

time series will not be orthogonal to the lagged values values of the unadjusted data, so these

“shocks” can be predicted in advance. A separate problem is quantitative. All identification schemes

for structural VARs entail factorizing the variance matrix of reduced-form VAR residuals. Using

frequency-domain tools, I show that the seasonal-adjustment filter creates large distortions in the

variance of the reduced-form residuals, which carry over into the structural parameters. Given

infinite samples, an econometrician using seasonally adjusted time series will never agree about the

structural parameters with an econometrician who applies the same identification scheme to the

original, unadjusted data. If the model is only partially identified, then the two econometricians’

identified sets will be disjoint. Rather than trying to strip seasonality from the data, econometricians

should exploit the seasonality to identify economic shocks. The literature on identification through

heteroskedasticity provides useful results for uncovering structural parameters by comparing different

volatility regimes. Analogously, allowing the VAR to exhibit seasonal heteroskedasticity can help

econometricians identify structural parameters.

Many macroeconomists have found that being a Bayesian ameliorates two challenges of VAR

estimation: fitting densely parameterized models and dealing with unit roots (Del Negro and
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Schorfheide, 2011). Seasonality exacerbates both challenges. Suppose that yt is a monthly time

series. The simplest form of seasonality is when yt is a stationary process, plus a month-specific

mean. Adding month-specific means to a VAR makes the parameter vector longer and, in a sense,

makes the sample even shorter: A macroeconomist with 50 years of monthly data has 600 total

observations, but it’s necessary to estimate the January-specific mean with only 50 January obser-

vations, which may be highly correlated. Taking the year-over-year difference yt − yt−12 eliminates

the seasonal means, but introduces a new complication: If yt − yt−12 is stationary, then yt can

have up to 12 unit roots at different locations on the unit circle. Overcoming these obstacles as a

frequentist can be challenging. In small samples, classical tests can struggle to distinguish between

season-specific means and seasonal unit roots, and if there are any unit roots, then the asymptotic

theory changes, relative to the stationary case.

Bayesian methods provide an appealing way of negotiating these statistical complications. A

Bayesian can apply the same inferential procedure to stationary data and non-stationary data,

which obviates the need for seasonal unit-root testing. In many ways, this approach is simpler than

the frequentist alternative. However, the cost of being a Bayesian is eliciting a sensible prior and

implementing a feasible computational strategy. My prior has two main features. First, season-

specific means are expected to exhibit smoothness, or positive autocorrelation, across months. That

way, information about January and March is useful for updating beliefs about February. Second,

the prior for the autoregressive coefficients favors seasonal unit roots, but the unit roots are not

imposed dogmatically. A natural way to think about seasonality is in the frequency domain, and

my strategy is equivalent to expecting peaks in the spectrum at seasonal frequencies. To conduct

inference, I show that the posterior has a semi-conjugate form, which is amenable to a tractable

posterior sampling algorithm. Although my approach to seasonality is novel, one of my goals is to

design tools that are highly compatible with existing methods for Bayesian VARs. My prior, which

favors spectral peaks at seasonal frequencies, is a strict generalization of a conventional Minnesota

prior, which favors a spectral peak at the zero frequency. Likewise, my posterior sampler generalizes

the estimation routines in Baumeister and Hamilton (2015) and Villani (2009).

To demonstrate the empirical relevance of seasonality for structural VARs, I incorporate season-

ality into Baumeister and Hamilton’s (2015) model of labor-market demand and supply. Holding

fixed all assumptions about non-seasonal behavior, the seasonal model and the seasonally adjusted

model produce large differences in the estimates of the structural parameters, impulse responses,

and variance decompositions. One reason for the discrepancies is the identifying information em-

bodied in seasonal heteroskedasticity. Even when the model is constrained to be homoskedastic, the

seasonally adjusted and unadjusted time series lead to divergent results, suggesting that the seasonal
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adjustment routine is also responsible for some of the difference.

To the best of my knowledge, this paper provides the first systematic characterization of how

seasonality affects identification in structural VARs, which relates to several lines of literature. Early

antecedents include Wallis (1974) and Sims (1974), who discuss the role of seasonal-adjustment fil-

ters in atheoretical time-series regressions. More broadly, economists have long studied how filtering

affects identification and inference in econometric models; recent examples include Hamilton (2018),

who focuses on the Hodrick-Prescott filter, and Ashley and Verbrugge (2022), who focus on the

bandpass filter.1 There is some overlap between their criticisms of filters that suppress low frequen-

cies and my criticisms of filters that suppress seasonal frequencies. In particular, all two-sided filters

raise conceptual questions about how to interpret the identified shock for date t when it incorporates

information about the future and can be predicted using the lags of the unfiltered data. The more

novel part of my analysis is showing that seasonal adjustment creates quantitatively large distor-

tions in the structural parameters, which is an issue independent of whether the filter is one-sided or

two-sided. The framework that I develop to make this argument may also be useful for researchers

who are studying the effects of other linear filters on identification schemes in structural VARs.

This paper is also the first to combine seasonal volatility with identification through heteroskedas-

ticity in a structural VAR. Other studies using identification through heteroskedasticity often des-

ignate different volatility regimes based on the timing of market disruptions (as in Rigobon, 2003),

policy announcements (as in Wright, 2012), or other turning points in economic history (as in Brun-

nermeier et al., 2021). In many settings, it seems plausible that some economic shocks may tend to

be larger at certain times of the year, given the clear seasonality in many production technologies,

household preferences, and government policies.2 In the labor-market data that I study, incorporat-

ing volatility shifts at medium and low frequencies, along the lines of Brunnermeier et al. (2021),

provides little identifying information. In contrast, incorporating seasonal volatility makes it easier

to identify labor supply and labor demand, because the relative magnitudes of supply shocks and

demand shocks depend on the calendar month. This kind of identification strategy provides an

affirmative reason to use seasonally unadjusted variables, beyond any negative reasons for avoiding

the seasonally adjusted versions.

A large toolkit already exists for Bayesian estimation of VARs, but few of these tools are intended

for seasonal data, despite the prevalence of seasonality in macroeconomic variables. The literature
1These authors are upfront about their proscriptions: Hamilton’s work is entitled “Why You Should Never Use The

Hodrick-Prescott Filter,” and Ashley and Verbrugge’s is entitled “Death to Regression Modeling on Bandpass-Filtered
Data.” My advice is more targeted. I will focus my attention on the situation where a researcher (a) wants to fit a
structural VAR and (b) has the choice between using seasonally adjusted or unadjusted time series. In this paper, I
will remain mostly agnostic about scenarios where either of those conditions do not apply, but I will touch on them
briefly in Section 6.

2See Beaulieu et al. (1992) for stylized facts on seasonality in the volatility of output.
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has made recent advances in judiciously incorporating prior information into both structural VARs

(e.g., Baumeister and Hamilton, 2015, 2018, 2019) and reduced-form VARs (e.g., Giannone, Lenza,

and Primiceri, 2015, 2019, 2021). However, it is standard practice to use the seasonally adjusted

versions of time series whenever they are available, so priors for VARs rarely incorporate beliefs

about seasonality. The main exceptions are Canova (1992, 1993) and Raynauld and Simonato

(1993), who use reduced-form VARs as forecasting tools.3 Although those authors provide welcome

discussions of seasonality in Bayesian VARs, the specific priors that they propose come with im-

portant limitations. These priors implicitly assume that deterministic seasonality exhibits negative

serial correlation, whereas my framework provides a way of specifying the degree of smoothness in

season-specific means. For stochastic seasonality, Raynauld and Simonato’s setup makes it diffi-

cult to separate beliefs about the spectrum at seasonal and non-seasonal frequencies; my approach

provides a convenient way to combine prior information about different frequency bands. Like me,

Canova advocates using a prior that favors spectral peaks at seasonal frequencies, but because of a

technical issue, the specific class of priors that he proposes does not typically have that property. In

the appendix, I discuss in detail how my strategy addresses some of the limitations in these earlier

approaches.

Finally, my results on seasonality in structural VARs provide a counterpoint to the literature

on seasonality in dynamic stochastic general equilibrium (DSGE) models. Rational-expectations

models presume that households and firms are looking at the same data as econometricians. That

assumption is plainly violated if households and firms inhabit an economy with seasonality, while

econometricians use deseasonalized data. Sims (1993b) and Hansen and Sargent (1993) offer a

rationale for fitting DSGE models with seasonally adjusted variables: If the source of seasonality

is misspecified in the equilibrium model, then seasonally adjusted time series can, under certain

circumstances, lead to more robust inferences about the model’s non-seasonal properties. Although

Sims and Hansen and Sargent tend to favor seasonal adjustment when estimating DSGE models,

they don’t support the practice universally: “Use of unadjusted data and a correctly specified model

of seasonal variation is always the best option” (Sims, 1993b, p. 19). Misspecification is much less

of a concern in VARs, relative to DSGE models. VARs are designed to be statistically flexible, and

some researchers prefer structural VARs for the express purpose of sidestepping the much stronger

assumptions required for DSGE modeling. Overall, the literature on seasonality in DSGE models has

produced uneven results: The bias from seasonal adjustment can be either large or small, depending
3There are, of course, many time-series models besides VARs that have been developed for seasonal data. Here,

I am focusing exclusively on VARs, because they are so widely used to identify interpretable economic shocks. See
Franses et al. (1997) for Bayesian counterparts to frequentist tests for seasonal unit roots in univariate time series.
See Gersovitz and MacKinnon (1978) for an early Bayesian treatment of deterministic seasonality in a single-equation
regression. See Ghysels et al. (2006) for a broader review of time-series methods for seasonal data, with an emphasis
on forecasting.
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on the particulars of the equilibrium model being estimated.4 In contrast, all identification schemes

in structural VARs share certain properties, so I can derive general results about the effects of

seasonality, rather than taking a case-by-case approach.

I will proceed as follows. Section 2 explains how seasonality affects identification. Section 3

develops the seasonal prior, and Section 4 explains posterior inference. Section 5 contains the appli-

cation. In Section 6, I summarize the main arguments and take stock of their practical implications.

Appendix A contains proofs. Appendix B provides extra details on the X-11 family of seasonal ad-

justment algorithms. Appendix C contains computational details. Appendix D contains a detailed

discussion of existing priors in the literature.

Notation. If v is an n-dimensional vector, then diag (v) denotes the n× n matrix with v on the

main diagonal. The floor operator is denoted b·c; i.e., bxc is the largest integer that is weakly less

than x. If a, b, and c are integers, then a mod c
= b means that a − b is an integer multiple of c. If

z ∈ C, then |z| is understood to be the modulus of z; if M is a square matrix, then |M| is understood

to be the determinant of M. The circularly symmetric complex normal distribution with mean µ

and variance Σ is denoted CN (µ,Σ). The lag operator is denoted L. The indicator function is

denoted I [·]. All other notation is standard.

2 Seasonality and Identification in Structural Models

Let yt be an n×1 vector of observed time series, and let ns be the number of seasons, or the number

of calendar periods in a year. For instance, ns = 4 for quarterly data, and ns = 12 for monthly data.

I will consider processes of the following form:

yt = µ+ st + ỹt, (1)

where µ is an n × 1 vector of parameters, st is a sequence that repeats deterministically every ns

time periods, and ỹt is a purely non-deterministic stochastic process. To distinguish µ from st, I will

adopt the normalization 1
ns

∑ns
t=1 st = 0n×1. There are two types of seasonality, deterministic and

stochastic. Deterministic seasonality, captured by st, allows for patterns like ice cream sales being

higher in summer than in winter. Stochastic seasonality, incorporated in ỹt, allows for patterns like

lower-than-expected ice cream sales this summer being systematically correlated with lower-than-
4Sargent (1978) and Ghysels (1988) make early arguments that equilibrium models ought to be estimated with

unadjusted data. More recently, Saijo (2013) examines the roll of seasonality in a modern New Keynesian DSGE
model, and he finds that using seasonally adjusted time series can lead to sizable distortions in estimates of the
structural parameters. However, Sims (1993b), Hansen and Sargent (1993), and Christiano and Todd (2002) provide
examples of equilibrium models where the bias from using seasonally adjusted time series is small.
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expected ice cream sales next summer. More generally, a process exhibits stochastic seasonality if

its spectrum has peaks at seasonal frequencies.

The structural VAR literature studies how unforecasted innovations in yt are indicative of in-

terpretable economic shocks, and it is standard practice to identify those shocks using seasonally

adjusted time series. Adjusting for deterministic seasonality entails estimating st and subtracting it

from yt; adjusting for stochastic seasonality entails filtering out seasonal oscillations in ỹt. Removing

st can be a statistical problem, but it does not affect the identification of shocks, because deter-

ministic seasonality is inherently forecastable and shocks are inherently unforecastable. In contrast,

stochastic seasonality is intrinsically a matter of how shocks are propagated, because unanticipated

fluctuations today can persist into the same season in the years ahead. Section 2.1 defines the identi-

fication problem formally and elaborates on the pitfalls of trying to identify shocks using seasonally

adjusted variables. Section 2.2 explains how seasonality in the conditional variance provides useful

identifying information.

2.1 Seasonal Adjustment and the Identification Problem

For simplicity, suppose that yt is stationary and µ = st = 0n×1, so in the notation of equation

(1), yt = ỹt. These assumptions will make it easier to see the effects of adjusting for stochastic

seasonality, but I will relax them later when going to the data. We can always represent such a time

series as yt = ŷt+et, where ŷt denotes the projection of yt on its history {yt−`}∞`=1, and et ≡ yt−ŷt

is white noise. By construction, et is orthogonal to all lags of yt. Let Q ≡ E [ete
′
t]
−1 denote the

precision of the projection residuals. Whereas the central question for reduced-form modeling is

how to estimate ŷt and Q, the central question for structural identification is how to factorize the

matrix Q. Assume that the reduced-form residual et is an invertible linear function of a vector of

structural economic shocks εt. That is, et = Ψ−1εt for some invertible matrix Ψ. The shocks are

assumed to be white noise with precision matrix Λ ≡ E [εtε
′
t]
−1, and the shocks are assumed to be

uncorrelated with one another, meaning Λ is diagonal. These conditions imply V [et] = V
[
Ψ−1εt

]
,

or Ψ′ΛΨ = Q. Formally, the identification problem can be stated as follows.

Definition. Let Q be the set of n×n positive-definite matrices, let P be the set of n×n invertible

matrices, and let L be the set of n× n positive-definite diagonal matrices. An identification scheme

is a mapping I : Q → P × L with the property that if (Ψ,Λ) = I (Q), then Ψ′ΛΨ = Q. If the

mapping I (·) is a single-valued function, then the model is fully identified ; if the mapping I (·) is a

set-valued correspondence, then the model is partially identified.

The above definition could be amended to allow I (·) to depend on the reduced-form projection
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Figure 1: The X-11 Filter

Notes: The left panel shows the lag weights for the X-11 filter, and the right panel shows the gain
function. The filter is constructed using the settings described in Appendix B.

coefficients; I have excluded those arguments to avoid cluttering the notation. The structural VAR

literature has produced a variety of identification schemes for factorizing Q into Ψ and Λ. Regardless

of the specific way this factorization is performed, standard approaches to seasonal adjustment will

produce biased estimates of Q, which will create distortions in an econometrician’s beliefs about

I (Q).

Government statistical agencies in the U.S. perform seasonal adjustment using variants of the

Census Bureau’s X-11 algorithm, which has two main components: removing deterministic terms

and applying a two-sided filter. In practice, the Census Bureau’s procedure is quite complicated,

because it contains several user-defined settings and allows for numerous ad hoc adjustments. I

will focus on the linear filter at the heart of the additive X-11 algorithm, under default settings

for monthly data. Appendix B contains some more elaboration on X-11, but I refer readers to the

Census Bureau’s documentation for an exhaustive explanation.5 Assuming that deterministic terms

have already been removed, the seasonally adjusted series, denoted ysat , is constructed by applying
5See Ladiray and Quenneville (2001) for a book-length treatment. Although the Census Bureau has now developed

X-12 and X-13 algorithms, they consist of extensions and refinements of X-11, so it’s common to refer to this entire
family of algorithms as X-11 seasonal-adjustment procedures. In this section, the numerical results on the X-11 filter
use the same tuning parameters as Chapter 3.4 in Ladiray and Quenneville; the appendix states these parameters
explicitly and briefly discusses the alternatives.
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a two-sided linear filter to the raw data yt:

ysat = ξ (L) yt, ξ (L) ≡
mξ∑

`=−mξ

ξ`L
`, (2)

where mξ is a positive integer, and each ξ` is a scalar. The numerical values for the weights

{ξ`}
mξ
`=−mξ are plotted in the left panel of Figure 1 (and defined explicitly in Appendix B). The

filter has interpretations in both the time domain and the frequency domain. In the time domain,

[1− ξ (L)] yt computes the approximate average difference between the current calendar month and

all other calendar months within a window of a few years surrounding date t. Hence, ξ (L) yt removes

a local season-specific mean from yt. This property is meant to account for the fact that differences

between the seasons may not be fixed. For example, an unusually high crop yield this summer may

be positively correlated with an unusually high crop yield next summer, so the difference between

summer and winter may be relatively high for a few years, and then relatively low for a few years. In

the frequency domain, the filter suppresses spectral peaks at seasonal frequencies. Let f (ω) denote

the spectral density of yt at frequency ω. The spectral density of ysat , denoted fsa (ω), is given by:

fsa (ω) = Ξ (ω) f (ω) , Ξ (ω) ≡ |ξ (exp {−iω})|2 . (3)

The function Ξ (ω) is the gain of the X-11 seasonal-adjustment filter, and it is plotted in the right

panel of Figure 1. To remove stochastic seasonal oscillations, the gain Ξ (ω) is equal to zero at

the annual frequency
(

2π
12

)
and all harmonics

(
2π
12 j, j = 1, 2, . . .

)
; by extension, the spectrum of the

seasonally adjusted process fsa (ω) is equal to zero at seasonal frequencies.

Consider the problem facing an econometrician who wants to fit a structural VAR using an

arbitrarily long sample of the seasonally adjusted series ysat . Let ŷsat be the projection of ysat on its

history
{
ysat−`

}∞
`=1

; let esat ≡ ysat − ŷsat denote the projection residual; and let Qsa ≡ E [esat esa′t ]
−1

denote the precision of the projection residuals. There are at least two issues with trying to apply

a structural identification scheme to seasonally adjusted variables.

First, the X-11 filter creates a conceptual problem for the realized shocks that an econometrician

extracts from seasonally adjusted time series. According to Ramey (2016), one of the definitive

characteristics of shocks is that “they should be exogenous with respect to the other current and

lagged endogenous variables in the model” (pp. 74-75). Suppose for a moment that the model is

fully identified, and let (Ψsa,Λsa) = I (Qsa). Define εsat ≡ Ψsaesat , which is the value for the date-t

shock that the econometrician would infer by looking at the seasonally adjusted series. Because the

moving-average filter in equation (2) is two-sided, ysat combines past, present, and future values of yt.
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Likewise, because εsat is in the span of
{
ysat−`

}∞
`=0

, εsat is an amalgamation of past, present, and future

values of εt. By construction, εsat is orthogonal to lagged values of ysat , but εsat is not orthogonal to

lagged values of yt. Consequently, the “shocks” extracted from ysat can be predicted using the history

of the actual, unadjusted data. This fact makes it difficult to reconcile any rational expectations

model with the results from a structural VAR when the data have been seasonally adjusted. Notice

that the above criticisms would still be valid if Ψ were known a priori: The econometrician would

infer that the realized shocks were equal to Ψesat , which is also an amalgamation of past, present,

and future values of εt that can be predicted using lags of yt.

Second, the X-11 filter creates a quantitatively large discrepancy between Q and Qsa, which

will create a discrepancy between I (Q) and I (Qsa). For any stationary process, Kolmogorov’s

prediction-error formula6 relates the determinant of Q to the determinant of the spectral density:

|Q| = exp

{
− 1

2π

∫ π

−π
log (|2πf (ω)|) dω

}
. (4)

The same expression applies to the seasonally adjusted process, with Qsa and fsa (·) replacing

Q and f (·). Combining this fact with equation (3) implies the following relationship between the

determinants of the matrices Q and Qsa, in terms of the X-11 gain function Ξ (ω) and the dimension

of the time series n:

|Qsa| = Dn |Q| , D ≡ exp

{
− 1

2π

∫ π

−π
log (Ξ (ω)) dω

}
. (5)

If only nsa of the n variables are seasonally adjusted, then D should be raised to the power nsa,

rather than n, in the above expression. The term D represents the distortion that the filter creates

in the precision of the projection residuals. Numerically, the distortion is large: D ≈ 2.83 for the

X-11 filter summarized in Figure 1.7 To put that magnitude in perspective, in a univariate setting

(n = 1), the variance of the residuals is 2.83 times larger when the projection is performed with the

unadjusted data, compared to the seasonally adjusted version. It may be tempting to think that

seasonal adjustment has little effect when the underlying data do not exhibit much seasonality, but

that isn’t the case: D only depends on the filter, not the data, so seasonal adjustment will create large

distortions, regardless of whether the seasonality in the original time series is strong or mild. Note

that the quantitative issue that arises in equation (5) is distinct from the conceptual issue mentioned

earlier, that the two-sided filter ξ (L) combines past, present, and future values of yt to synthesize
6See, e.g., Theorem 3′′′ in Chapter 3 of Hannan (1970, p. 162).
7Note that equation (5) applies to any linear filter, with the specification of ξ (L) determining the value of D. For

the Hodrick-Prescott filter, D ≈ 2.45 when the smoothing parameter is 1, 600. For a high-pass, low-pass, or band-pass
filter, D =∞, because Ξ (ω) = 0 for a positive-measure interval of frequencies. In contrast, for the X-11 filter, Ξ (ω)
is only equal to zero for a measure-zero set of points in the interval [−π, π], so one can show that D is finite.
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ysat . In equation (5), D depends on the log of the gain function; because the X-11 filter sets the

gain function to zero at seasonal frequencies, the log gain goes to negative infinity. Consequently, an

alternative seasonal-adjustment filter that is one-sided, but still zeros out the same frequencies as

the X-11 filter, will typically lead to a large value of D as well.8 Ultimately, by biasing Q, seasonal

adjustment affects the way the identification scheme factorizes Q into structural parameters.

Proposition 1. When the model is fully identified, I (Q) 6= I (Qsa), and when the model is partially

identified, I (Q) ∩ I (Qsa) = ∅.

In other words, an econometrician who uses seasonally adjusted variables will never agree about

the structural parameters with an econometrician who uses the original, unadjusted data. When

the model is partially identified, an econometrician looking at yt can believe that infinitely many

configurations of structural parameters are compatible with Q, and an econometrician looking at

ysat can believe that infinitely many configurations of structural parameters are compatible with Qsa

— yet there will be no overlap between the two identified sets.

In some applications, the main objects of interest are the impulse responses, rather than the struc-

tural parameters themselves. Suppose the model is fully identified, and let (Ψ,Λ) = I (Q). The

matrix of normalized contemporaneous impulse responses is given by ∂yt
∂(Λ−1/2εt)

′ = Ψ−1Λ−1/2; that

is, the (j, k) element of Ψ−1Λ−1/2 is the response of yj,t to a one-standard-deviation perturbation in

εk,t. An econometrician using seasonally adjusted variables would infer that the structural parame-

ters are (Ψsa,Λsa) = I (Qsa), the identified shocks are εsat = Ψsaesat , and the normalized impulse

responses are ∂ysat
∂((Λsa)−1/2εsat )

′ = (Ψsa)
−1

(Λsa)
−1/2. Because Ψ′ΛΨ = Q and Ψsa′ΛsaΨsa = Qsa,

equation (5) implies: ∣∣∣∣∣∣∣
∂ysat

∂
(

(Λsa)
−1/2

εsat

)′
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣D−
1
2 · ∂yt

∂
(
Λ−1/2εt

)′
∣∣∣∣∣∣∣ . (6)

Evidently, seasonal adjustment creates as much bias in the determinant of the impulse response

matrix as multiplying the true impulse responses by D−1/2 ≈ .59. Of course, as a statement about

the determinant, equation (6) does not necessarily mean that the (j, k) element of ∂ysat
∂((Λsa)−1/2εsat )

′

is equal to the (j, k) element of D−1/2 · ∂yt
∂(Λ−1/2εt)

′ . Nevertheless, for equation (6) to hold, it must

be the case that at least some elements of the impulse response are subject to large biases.

Equation (5) is convenient because it summarizes the magnitude of the filter’s distortions with a

8For example, consider the alternative ξalt (L) = 1−
(

1
q

∑q−1
`=0 L

ns`
)(

1− 1
ns

∑ns−1
k=0 Lk

)
. This filter is one-sided,

but retains two salient properties of the X-11 filter. First, [1− ξalt (L)] yt computes the average difference between
the current calendar month and the annual average over the preceding q years, so ξalt (L) yt subtracts a local season-
specific average from yt. Second, the gain function Ξalt (ω) ≡ |ξalt (exp {iω})|2 has zeros at the annual frequency and
its harmonics

(
2π
ns
j, j = 1, . . . ,

⌊ns
2

⌋)
, so the filter suppresses spectral peaks at seasonal frequencies. For Ξalt (ω),

the value of D in equation (5) is approximately 2.04 when q = 3 and approximately 1.68 when q = 4.
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single scalar D. A limitation is that, as far as I can tell, there is not a simple characterization of the

element-by-element difference between Q and Qsa. To get a better sense of how distortions in Q can

manifest in impulse responses and identified sets, consider the following pen-and-paper examples.

Example 1. Many papers assume Ψ to be lower-triangular and normalize each shock to have

unit variance. That is, I (Q) =
(

chol
(
Q−1

)−1
, In

)
, where chol (·) denotes the lower Cholesky

factor. Because Ψ and Ψsa are lower-triangular, their determinants are the products of their main

diagonal elements. Equation (6), after taking logs and rearranging terms, is therefore indicative of

the average error that seasonal adjustment creates when computing the response of variable k to

shock k on impact:

1

n

n∑
k=1

[
log

(
∂yk,t
∂εk,t

)
− log

(
∂ysak,t
∂εsak,t

)]
=

1

2
log (D) ≈ .52. (7)

Hence, seasonal adjustment creates large distortions in the contemporaneous impulse response func-

tion: ∂yk,t
∂εk,t

is, on average, .52 log points larger than ∂ysak,t
∂εsak,t

, corresponding to a discrepancy of 68%.

Example 2. This example is based on Baumeister and Hamilton (2015) and will form the basis

of the empirical application in Section 5. I will estimate a supply-and-demand model of the labor

market using aggregate data on real wages and personhours. The model specifies:

yt =

 ∆ log (real waget)

∆ log (personhourst)

 , εt =

 εdt

εst

 , Ψ =

 −ηd 1

−ηs 1

 , (8)

where εdt is a demand shock, εst is a supply shock, ηd is the (short-run) elasticity of labor demand,

and ηs is the (short-run) elasticity of labor supply. Equation (8), combined with the reduced-form

projection yt = ŷt + et, implies a demand curve and a supply curve:

∆ log (personhourst) = ηd ×∆ log (real waget) + φd (L)
′
yt + εdt (9)

∆ log (personhourst) = ηs ×∆ log (real waget) + φs (L)
′
yt + εst , (10)

where φd (L) and φs (L) are backward-looking vector-valued lag polynomials. Economic theory

implies the sign restrictions ηd < 0 and ηs > 0, so the demand curve slopes down and the supply

curve slopes up. The identified set is:

I (Q) =

(Ψ,Λ)

∣∣∣∣Ψ =

 −ηd 1

−ηs 1

 , Λ =

 λd 0

0 λs

 , Ψ′ΛΨ = Q, (ηd, ηs, λd, λs) ∈ R− × R3
+

 .

(11)
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The model is partially identified, and there are many configurations of structural parameters consis-

tent with the precision matrix of the reduced-form residuals. Given Q, suppose that (ηd, ηs, λd, λs)

satisfies the restrictions on the structural parameters in equation (11), and given Qsa, suppose that

(ηsad , η
sa
s , λ

sa
d , λ

sa
s ) satisfies the analogous set of restrictions for I (Qsa). Note that:

|Q| = λdλs (|ηd|+ |ηs|)2
, |Qsa| = λsad λ

sa
s (|ηsad |+ |ηsas |)

2
. (12)

It’s possible that (λd, λs) = (λsad , λ
sa
s ), but in that case, equation (5) would imply:

|ηsad |+ |ηsas |
|ηd|+ |ηs|

= D ≈ 2.83, (13)

so the magnitudes of the elasticities consistent with the seasonally adjusted time series would be, on

average, about 2.83 times larger than the elasticities consistent with the original, unadjusted data.

Alternatively, it’s possible that (ηd, ηs) = (ηsad , η
sa
s ), but in that case, equation (5) would imply:

1

2

([
log

(
1

λsad

)
− log

(
1

λd

)]
+

[
log

(
1

λsas

)
− log

(
1

λs

)])
= − log (D) ≈ −1.04, (14)

so the shock variances consistent with the seasonally adjusted time series would be, on average,

about 1.04 log points lower than the shock variances consistent with the original, unadjusted data.

It’s clear that seasonal adjustment will create large distortions in an econometrician’s beliefs about

some structural parameters of interest, although it’s not obvious ex ante whether the distortions

will manifest more in the elasticities, the shock variances, or some combination. In Section 5, I will

investigate empirically the differences between estimating this model with seasonally adjusted and

unadjusted time series.

2.2 Identifying Information in Seasonal Heteroskedasticity

When identifying structural VARs, econometricians should exploit seasonality, rather than filter it

out. Time series can exhibit seasonal patterns in their conditional variances, as well as their condi-

tional means, and seasonal heteroskedasticity can provide a useful source of identifying information.

Assume that the structural shocks are allowed to have a separate precision matrix for each calendar

season; i.e., E [εtε
′
t]
−1

= Λt, where Λt = Λt′ if t
mod ns= t′. By extension, there will be ns season-

specific precision matrices for the reduced-form innovations, given by Qt ≡ E [ete
′
t]
−1

= Ψ′ΛtΨ.

It’s well known that identification through heteroskedasticity allows the structural parameters to be

identified (up to a scaling factor for each row of Ψ) if the relative variances of the structural shocks

change between two points in time: QtQ
−1
t′ = Ψ′ΛtΛ

−1
t′ Ψ′−1, so if the diagonal elements of ΛtΛ

−1
t′
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are distinct, then the kth row of Ψ is proportional to the kth eigenvector of QtQ
−1
t′ . The novelty

here is designating different seasons as different volatility regimes.

For a concrete illustration of how seasonal heteroskedasticity can inform identification, consider

the model of labor supply and labor demand from Example 2. Baumeister and Hamilton (2015)

assume that the shocks are homoskedastic, so their version of the model is only partially identified.

The model becomes fully identified if there is seasonal heteroskedasticity and the ratio of variances

between supply shocks and demand shocks changes across seasons.9 If the relative variance of

demand shocks is higher in summer than in winter, then movements in wages and hours that occur

in summertime are relatively more likely to stem from demand shocks. In that case, summertime

variation in the data would help trace out the shape of the supply curve, and wintertime variation in

the data would help trace out the shape of the demand curve. For this reason, Rigobon (2003) likens

identification through heteroskedasticity to using a “probabilistic instrument” (p. 777). Note that

this approach is different from a more conventional instrumental-variables strategy, along the lines

discussed in Miron and Beaulieu (1996): Seasonal dummy variables can be valid instruments if there

are deterministic seasonal shifts in either supply or demand, but not both simultaneously.10 However,

in the context of labor markets, there is reason to believe that there are seasonal components to both

demand (e.g., the need for more retail workers before Christmas) and supply (e.g., the preference of

workers to take vacations during the summer). In Section 5, I will augment equations (9) and (10)

to allow both supply and demand to have deterministic seasonal components, while still being able

to identify the structural parameters through seasonal heteroskedasticity.

The seasonal approach complements existing strategies for identification through heteroskedastic-

ity. Rigobon (2003) shows that identification through heteroskedasticity is robust to some misspec-

ification in the volatility regimes, as long as the average variance in one regime is different from the

average variance in another. With a finite sample, though, applied researchers can face a practical

tradeoff. Declaring too few regimes can obscure the identifying variation, by pooling together eras

with different levels of volatility. Declaring too many regimes can produce less precise estimates of

the variance matrices, because there will be relatively few observations per regime. Treating calen-

dar months as volatility regimes presents a promising way of balancing these concerns: The number

of observations for each calendar month grows linearly with the sample size, with approximately
9As noted above, in the general case, each row of Ψ is identified up to a scaling factor; for this model, the scaling

indeterminacy is resolved by the right column of Ψ in equation (8) containing all ones.
10To motivate the use of seasonal dummy variables as instruments, Miron and Beaulieu (1996) present an equilibrium

model with two exogenous disturbances, one for a representative household’s preferences and one for a representative
firm’s technology. The authors argue that it’s reasonable to assume that preferences have a deterministic seasonal
component, but technology does not. Miron and Beaulieu add the caveat: “In certain circumstances, a researcher may
not like the assumption that the orthogonality condition holds in all months. A simple remedy is to pare the list of
instruments to those months where the orthogonality condition is likely to hold.” (p. 56)

14



the same number of observations per regime. Seasonal and non-seasonal heteroskedasticity are not

mutually exclusive, and it’s an empirical question what volatility specification is most appropriate

for a specific application. In Section 5, I will allow for both seasonal and non-seasonal heteroskedas-

ticity in U.S. labor-market data, but the seasonal volatility regimes will provide more information

for identifying supply and demand shocks.

3 Seasonal Priors

I will take a Bayesian approach to estimating equation (1). Section 3.1 provides a prior for the

parameters that govern st, Section 3.2 provides a prior for the parameters that govern ỹt, and

Section 3.3 contains some discussion. Throughout, my goals will be twofold: (a) providing a flexible

framework for articulating a range of prior beliefs about seasonality, and (b) explaining the specific

prior beliefs that I will adopt for seasonal data.

3.1 Deterministic Seasonality

I will model st as a linear combination of ns − 1 waveforms:

st = Bwt (15)

wt ≡ (w1,t, . . . ,wns−1,t)
′ (16)

wj,t ≡
√

2 cos

(
2π

ns
jt− π

4

)
, j = 1, . . . , ns − 1. (17)

One can show that 1
ns

∑ns
t=1 wt is zero, implying that 1

ns

∑ns
t=1 st is zero as well. Hence, st should

be interpreted as the season-specific deviation from a long-run average. Further, one can show that

it’s always possible to write (1,w′t)
′ as a linear combination of ns seasonal dummy variables, and

vice versa. In that regard, working with wt comes without loss of generality when describing the

population behavior of st. The advantages of this formulation come in eliciting a sensible prior and

performing finite-sample inference.

Many researchers have more sharply defined beliefs about st than about B. Eliciting a prior

therefore requires a reverse-engineering exercise: What explicit prior over B will imply a reasonable

prior predictive distribution over st? For a class of priors to be useful, an econometrician needs to be

able to specify beliefs about three aspects of deterministic seasonality, governed by a small number

of easy-to-interpret hyperparameters. First, one should be able to declare the expected value of

the time series for each season. Second, one should be able to control the prior correlation across

seasons, or the expected smoothness of seasonal fluctuations. Third, one should be able to control
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how much deterministic seasonality is expected to contribute to the variance of the observed time

series.

I will consider priors of the following form. Let Eprior [·] denote expectations taken under the

prior distribution. The first moments of the prior satisfy:

Eprior [B] = S̄C, (18)

where S̄ is an n× ns matrix with columns summing to zero, and C is defined as the ns × (ns − 1)

matrix whose (j, k) element is Cj,k ≡
√

2
ns

cos
(

2π
ns
jk − π

4

)
. The second moments of the prior satisfy:

Eprior
[
vec (B− Eprior [B]) vec (B− Eprior [B])

′]
= K⊗VS , (19)

where K and VS are symmetric, positive-definite matrices of dimension (ns − 1) × (ns − 1) and

n×n, respectively. The matrices S̄, K, and VS have distinct, interpretable roles governing the level,

smoothness, and magnitude of st under the prior predictive distribution.

Proposition 2. Let s̄t denote the tth column of S̄. Equation (18) implies:

Eprior [st] = s̄t. (20)

Let Γsu denote the prior predictive covariance between st and st−u:

Γsu ≡ Eprior

[
1

ns

ns∑
t=1

(st − s̄t) (st−u − s̄t−u)
′

]
. (21)

Equation (19) implies:

Γsu = κuVS , (22)

where κu is a scalar defined as κu ≡
∑ns−1
`=1 K`,` cos

(
2π
ns
`u
)
.

Equation (20) demonstrates that the columns of S̄ determine the expected levels of deterministic

seasonality. Adopting non-zero values of {s̄t}nst=1 allows an econometrician to incorporate beliefs

about the timing of seasonal peaks and troughs. For example, if the goal is to model retail sales,

then it may be desirable to incorporate a prior belief that st spikes in December and crashes in

January, based on the timing of Christmas. In other contexts, a researcher may want to be agnostic

about the timing of seasonal cycles, which entails setting S̄ to a matrix of zeros: In that case,

Eprior [st] does not depend on t, so such a prior takes no stand on whether st is more likely to peak

in summer or in winter.
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Regardless of whether the prior is agnostic about the timing of seasonal peaks and troughs,

the prior will be informative about the persistence and magnitude of deterministic seasonality, as

governed by K and VS . The matrix K, by determining the κu coefficients in equation (22), controls

the prior correlation across seasons, or the expected smoothness of deterministic seasonal cycles.

Suppose for the moment that S̄ is a matrix of zeros, and assume that K is normalized such that

tr {K} = κ0 = 1. Then, {κu}u∈Z is the prior predictive autocorrelation function for the elements of

st; the rate at which κu changes with u provides an indication of how smoothly st is expected to

vary with t. My own prior is that, in many settings, adjacent seasons are more likely to relatively

similar, while distant seasons are more likely to be relatively dissimilar. Two considerations inform

this belief. First, meteorological factors are important for economic activity, and in many parts of

the world, monthly averages of temperatures and precipitation vary smoothly over the course of the

year. Second, adjustment costs and search frictions may induce households and firms to smooth

out predictable seasonal changes, at least to some degree. In small samples, a smoothness prior

effectively pools information across seasons: If a time series tends to be above its average in January

and March, then it is likely to be above its average in February as well. In larger samples, this

smoothing will play less of a role, as the data speaks about the differences between season-specific

means. If S̄ is non-zero, reflecting an informed belief about the timing of seasonal cycles, then κu

reflects the autocorrelation in st − s̄t, the deviation from the prior mean. Even if the path of s̄t is

not smooth — recall the example of retail sales being expected to drop sharply after Christmas —

the prior can allow st− s̄t to be positively autocorrelated. In that sense, it’s possible for this class of

priors to pool information across seasons while simultaneously acknowledging that the seasons are

expected to be different.

In practice, I will set K to be a diagonal matrix, with the `th element of the main diagonal given

by:

K`,` ∝ α` + αns−`, (23)

normalized such that tr {K} = κ0 = 1. The hyperparameter α ∈ (0, 1) governs the expected

smoothness of deterministic seasonal fluctuations, by determining how aggressively to squeeze high-

frequency oscillations in wt toward zero. Figure 2 illustrates the role of α when ns = 12. The

left panel plots K`,` as a function of ns
` . Note that K`,` controls the prior variance of the `th and

(ns − `)th columns of B, and ns
` is the period of oscillation for the `th and (ns − `)th elements of

wt. Adopting a lower value of α applies more shrinkage to the components of wt with short periods,

while loosening the prior associated with long periods. Proposition 2 demonstrates how this prior

across frequencies translates into smoothness across seasons. The right panel of Figure 2 plots the κu

coefficients implied by equation (23). Adjacent months are expected to be positively correlated, and
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Figure 2: Shrinkage for Deterministic Seasonality

Notes: For ns = 12 and various values of α, the left panel plots the diagonal elements of the matrix
K, and the right panel plots the κu coefficients. K`,` is plotted as a function of ns

` , because K`,`

controls the variance of the coefficients on w`,t and wns−`,t, which are both sinusoids with period
ns
` . Because K`,` = Kns−`,ns−`, only the first six elements of the diagonal of K are depicted.

months that are half a year apart are expected to negatively correlated. When α is lower, st − s̄t is

expected to be smoother, in the sense of being more positively correlated across consecutive seasons.

The choice of VS determines the expected contribution of st to the variance of yt. Assume that

the prior treats B as independent of the parameters governing ỹt. If the prior predictive mean of

ỹt is zero, then the expected sample variance of yt can be decomposed into contributions from the

deterministic component st and contributions from the stochastic component ỹt:

Eprior

[
1

T

T∑
t=1

(yt − µ) (yt − µ)
′

]
= Eprior

[
1

T

T∑
t=1

sts
′
t

]
+ Eprior

[
1

T

T∑
t=1

ỹtỹ
′
t

]
. (24)

With the normalization κ0 = 1, the first term on the right-hand side satisfies:

Eprior

[
1

T

T∑
t=1

sts
′
t

]
= VS +

1

ns
S̄′S̄, (25)

whenever T is divisible by ns. (If T is not divisible by ns, then the above expression is approximately

true, and the approximation error is O
(
T−1

)
.) It may be tempting to adopt a diffuse prior over

B for the sake of being “agnostic” about deterministic seasonality, but the above decomposition
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shows how a diffuse prior over B is not agnostic about the magnitude of seasonal cycles. If VS

were arbitrarily set to a matrix of very large numbers, then it would imply a prior expectation that

st has an enormous variance. By extension, an extremely diffuse prior for B would imply a prior

belief that yt has an enormous variance, stemming largely from deterministic seasonal fluctuations.

Instead, the choice of VS should reflect expectations about the amount of variance attributable to

deterministic seasonality. Let Σ̄y be a prior estimate for the variance of yt. I will specify VS = ςΣ̄y;

when S̄ is zero, ς ∈ (0, 1) can be interpreted as the expected fraction of the variance of yt that can

be accounted for by st.11

The most obvious alternative to using seasonal waveforms is using season-specific dummy vari-

ables, but simple priors for seasonal dummies can come with unintended, and possibly unappealing,

features. In applied work, Bayesian practitioners often assume that the coefficients on seasonal

dummies are mean-zero and uncorrelated under the prior. However, as explained in Appendix D,

that approach implies that st is expected to exhibit negative serial correlation. Suppose that a time

series (say, inflation) tends to be low in January and March. Conditional on January and March

being relatively low-inflation months, an econometrician using uncorrelated dummy variables would

expect February to be a relatively high-inflation month. My prior is different: If January and March

are low-inflation months, then inflation is probably low in the winter and high in the summer, so

February is expected to be similar to January and March.

3.2 Stochastic Seasonality

I will model the stochastic component of yt as a VAR(p):

A (L) ỹt = εt, A (L) ≡ Ψ−
p∑
`=1

Φ`L
`, εt

i.i.d.∼ N
(
0n×1,Λ

−1
t

)
, (26)

where each Λt is diagonal, and Λt = Λt′ whenever t
mod ns= t′. The reduced-form representation is:

ỹt =

p∑
`=1

Ψ−1Φ`ỹt−` + et, et
i.i.d.∼ N

(
0n×1,Q

−1
t

)
, (27)

where et ≡ Ψ−1εt and Qt ≡ Ψ′ΛtΨ. Beliefs about Ψ depend on the specific application; here, I will

simply assume that the econometrician has a marginal prior over Ψ and focus on the conditional

prior over {Φ`}p`=1 and {Λt}nst=1. My prior will reflect a belief that random oscillations at seasonal

11If one expects deterministic seasonality to be more important for some series than others, then one can specify
VS = diag (ς1, . . . , ςn)

1
2 Σ̄y diag (ς1, . . . , ςn)

1
2 , so ςk is the expected fraction of the variance attributable to determin-

istic seasonality for series k. This approach may be warranted in applications that combine strongly seasonal time
series with series that are mostly aseasonal.
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frequencies play an important part in accounting for the variation in ỹt. Again, this requires a

reverse-engineering exercise: What explicit distribution over the VAR coefficients will imply a prior

predictive distribution for the spectrum that favors peaks at seasonal frequencies? First, I will

explain the prior under the assumption of homoskedasticity (Λt = Λ, ∀t). Doing so will make it

easier to articulate prior beliefs about the frequency-domain properties of ỹt. Then, I will discuss

the prior with seasonal heteroskedasticity.

The Homoskedastic Case. Let λk denote the kth element of the main diagonal of Λ, and let Φ ≡[
Φ1 · · · Φp

]
concatenate the structural lag coefficients. One can write T observations from the

process (26) as ỸΨ′ = X̃Φ′+E, where the tth rows of Ỹ, X̃, and E contain ỹ′t,
(
ỹ′t−1, . . . , ỹ

′
t−p
)
, and

ε′t. My prior will take a normal-gamma form. It’s well known that such a prior can be implemented

by augmenting the observed data with T̄ dummy observations of the form ȲΨ′ = X̄Φ′ + Ē, with(
Ē
)
j,k

i.i.d.∼ N (0, λk).12 More explicitly, the prior implied by the dummy observations is:

λk | Ψ ∼ G (αλ, βλ,k) (28)

vec (Φ) | {λk}nk=1 ,Ψ ∼ N
(

vec
(
Φ̄
)
,
(
X̄′X̄⊗Λ

)−1
)

(29)

αλ ≡ T̄ −mn
2

+ 1 (30)

βλ,k ≡ 1

2

[(
ȲΨ′ − X̄Φ̄

′
)′ (

ȲΨ′ − X̄Φ̄
′
)]

k,k

(31)

Φ̄ ≡ ΨȲ′X̄
(
X̄′X̄

)−1
, (32)

with {λk}nk=1 independent across k. The specification of Ȳ and X̄ determines the substance of the

prior.

My prior will favor processes that are close to having seasonal unit roots. With A (L) ỹt = εt,

the process ỹt has a unit root if |A (z)| = 0 for some z ∈ C such that |z| = 1. Any point on the

complex unit circle z can be written in polar form as z = exp {iω∗}, where ω∗ ∈ [−π, π]. The process

ỹt is said to have a zero-frequency unit root if |A (1)| = 0, and ỹt is said to have a seasonal unit root

at frequency ω∗ if |A (exp {iω∗})| = 0, where ω∗ 6= 0. The connection between seasonality and the

location of the root on the unit circle is most apparent in the frequency domain. When the shocks

are homoskedastic, the spectrum of ỹt is:

f (ω) =
1

2π

[
A (exp {iω})′ΛA (exp {−iω})

]−1
. (33)

12See, e.g., Del Negro and Schorfheide (2011). The dummy observations used to implement a normal-gamma prior
should not be confused with the dummy variables (or indicator variables) that other authors use to model deterministic
seasonality.
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The function f (ω) is a proper spectral density if ỹt is stationary; otherwise, f (ω) is understood to

be a pseudo-spectral density. A seasonal unit root at frequency ω∗ implies that limω→ω∗ |f (ω)| =∞.

For a univariate process, this means that the spectrum as a spike at ω∗, indicating that oscillations

at frequency ω∗ account for a substantial amount of the variation in the time series. If the process

is stationary but with |A (exp {iω∗})| ≈ 0, then the spectral density will have a peak in the vicinity

of ω∗.

For the autoregressive coefficients, I will use stochastic linear restrictions to implement a prior

belief in an approximate unit root at a specific frequency. To see what stochastic restrictions favor

an approximate unit root, it is instructive to look at the restrictions that induce an exact unit root.

A sufficient condition for yt to have a seasonal unit root at frequency ω∗ is A (exp {iω∗}) = 0n×n.

Following Litterman (1986), many macroeconometricians adopt priors centered on the reduced-

form autoregressive coefficients
{
Ψ−1Φ`

}p
`=1

being diagonal. When the reduced-form autoregressive

coefficients are diagonal, the condition A (exp {iω∗}) = 0n×n is both necessary and sufficient for each

individual series yj,t to have a seasonal unit root at frequency ω∗. Observe that:

A (exp {iω∗}) = Ψ−
p∑
`=1

Φ` cos (ω∗`)− i
p∑
`=1

Φ` sin (ω∗`) . (34)

For the left-hand side of the above expression to be zero, both the real part and the imaginary part

of the right-hand side must be zero, which implies two sets of linear restrictions:

Ψ =

p∑
`=1

Φ` cos (ω∗`) (35)

0n×n =

p∑
`=1

Φ` sin (ω∗`) . (36)

Imposing the above restrictions dogmatically would force ỹt to have a unit root at frequency ω∗.

Instead, I will use dummy observations to implement stochastic constraints, along the lines of Theil

and Goldberger (1961). Doing so will simply favor areas of the parameter space where ỹt is close

to having a unit root at frequency ω∗. Without loss of generality, we can restrict our attention to

unit roots at frequencies weakly between 0 and π, because the roots must come in conjugate pairs.

First, consider the case where ω∗ ∈ (0, π). A belief in a seasonal unit root at frequency ω∗ can be
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expressed via dummy observations of the form:

Ȳω∗Ψ
′ = X̄ω∗Φ

′ + Ēω∗ ,
(
Ēω∗

)
j,k

i.i.d.∼ N (0, λk) (37)

Ȳω∗ ≡ τω∗

 In

0n×n

 (38)

X̄ω∗ ≡ τω∗

 cos (ω∗1) cos (ω∗2) · · · cos (ω∗p)

sin (ω∗1) sin (ω∗2) · · · sin (ω∗p)

⊗ In, (39)

where τω∗ > 0 is a scalar hyperparameter chosen by the econometrician. Equations (37)-(39) im-

ply that each element of A (exp {iω∗}) has mean zero and follows a complex normal distribution,

conditional on Λ and Ψ:

vec (A (exp {iω∗})) | Λ,Ψ ∼ CN

(
0n2×1, In ⊗

(
τ2
ω∗

2
Λ

)−1
)
. (40)

The hyperparameter τω∗ controls the amount of prior confidence the econometrician has about the

unit root at frequency ω∗.13 In the limiting case, where τω∗ →∞, the prior imposes the restrictions

(35) and (36) exactly. Otherwise, if equations (35) and (36) hold only approximately, then the

spectrum will have a peak that’s close to ω∗, though not necessarily a seasonal unit root. Now,

consider the case where ω∗ ∈ {0, π}. Because sin (0) = sin (π) = 0, equation (36) will be satisfied

exactly for any coefficient values, so one would omit the latter n lines of Ȳω∗ and X̄ω∗ . If ω∗ = 0, the

first n lines of equations (37)-(39) would be equivalent to the dummy observations used to implement

the sum-of-coefficients prior, originally due to Doan et al. (1984), for zero-frequency unit roots.

The preceding discussion considers a unit root at a single frequency, but the same line of reasoning

can incorporate prior beliefs about multiple frequencies. If the seasonal difference (1− Lns) ỹt is

stationary, then ỹt can have up to ns unit roots: one at the zero frequency and ns − 1 at seasonal

frequencies. Specifically, the seasonal (i.e., non-zero) roots of the operator (1− Lns) take the form

exp
{
± 2π
ns
ij
}

for all positive integers j up to ns
2 . Let ω∗j ≡ 2π

ns
j, for j ∈

{
1, 2, . . . ,

⌊
ns
2

⌋}
. These

frequencies correspond to an annual periodicity, plus all harmonics (periods of half a year, a third
13In some contexts, a researcher may have more confidence in a seasonal unit root for some variables than others.

In that case, one could use the following dummy observations:

Ȳω∗ =

[
T

0n×n

]
, X̄ω∗ ≡

[
cos (ω∗1) cos (ω∗2) · · · cos (ω∗p)
sin (ω∗1) sin (ω∗2) · · · sin (ω∗p)

]
⊗T,

with T = diag
(
τ
(1)
ω∗ , . . . , τ

(n)
ω∗

)
. This would imply:

vec (A (exp {iω∗})) | Λ,Ψ ∼ CN

(
0n2×1, In ⊗

(
1

2
TΛT

)−1
)
.
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of a year, etc.). Each frequency can receive its own set of dummy observations, as in equations (37)-

(39), with its own prior precision τω∗j . In practice, I will set τω∗j = τS/j. The hyperparameter τS > 0

governs the econometrician’s prior confidence that the process has a unit root at some seasonal

frequency. The fact that τω∗j is decreasing in j reflects a belief that stochastic seasonality is most

likely to manifest at annual periodicities, somewhat likely to manifest at semi-annual periodicities,

and least likely to manifest at very high frequencies.

The dummy observations provide a convenient way to combine prior beliefs about seasonality with

prior beliefs about non-seasonal aspects of the time series. In the literature on Bayesian VARs, most

priors are intended for seasonally adjusted variables and often reflect beliefs about low-frequency

behavior. Let Ȳ0 and X̄0 denote the dummy observations that implement this kind of baseline prior.

One can concatenate the dummy observations for the baseline prior to the dummy observations for

seasonal unit roots:

Ȳ ≡
[

Ȳ′0 Ȳ′ω∗1 · · · Ȳ′ω∗bns/2c

]′
, X̄ ≡

[
X̄′0 X̄′ω∗1 · · · X̄′ω∗bns/2c

]′
, (41)

where Ȳω∗j
and X̄ω∗j

take the form of equations (38) and (39), with ω∗j = 2π
ns
j and τω∗j = τS/j taking

the place of ω∗ and τω∗ . Because the conditional mean of Φ is ΨȲ′X̄
(
X̄′X̄

)−1, the seasonal dummy

observations shift the prior mean away from the baseline prior in the direction of the parameter space

that exhibits seasonal unit roots. Because the conditional variance of vec (Φ) is
(
X̄′X̄⊗Λ

)−1, the

dummy observations also induce non-trivial correlations between the coefficients: Conditional on

some elements of Φ deviating from the prior mean, one would expect the other elements to deviate

in a way that maintains the spectral peaks near the seasonal frequencies.

Figure 3 demonstrates the prior’s implications for the frequency-domain properties of ỹt. In the

left panel, for different values of τS , I have plotted the prior median of the spectrum for univariate

monthly data under the prior described above. The dashed vertical lines correspond to the seasonal

frequencies
{

2π
12 j
}6

j=1
. Higher values of τS make the expected spectral peaks at seasonal frequencies

more pronounced. In some contexts, one may want to truncate the prior to ensure that ỹt is

stationary, so in the right panel, Figure 3 shows the prior median of the spectrum under the truncated

prior. Assuming stationarity precludes exact seasonal unit roots, but the prior still favors parameter

values that imply spectral peaks near seasonal frequencies.

Finally, I will note that the above strategy for favoring seasonal unit roots can be extended to

favor seasonal cointegration, although it is not something I will apply in practice. Seasonal cointe-

gration, initially developed by Hylleberg, Engle, Granger, and Yoo (1990), extends the traditional

approach to cointegration, pioneered by Engle and Granger (1987). The process ỹt is seasonally coin-
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Figure 3: Prior Beliefs About the Spectrum

Notes: The figure shows the prior predictive median of the spectrum for various values of τS ,
assuming univariate monthly data with 13 lags. The prior conditions on Ψ = 1. The right panel
truncates the prior to the stationary region of the parameter space; the left panel is the untruncated
prior. Vertical dashed lines indicate seasonal frequencies 2π

12 j, j = 1, . . . , 6. Each solid line is
generated by taking 10, 000 draws from the conditional prior distribution for Φ and λ, computing
the spectrum associated with each parameter draw, and computing the median value of the spectrum
across draws.

tegrated at frequency ω∗ if ỹt has a seasonal unit root at frequency ω∗ but Υ′ỹt does not, where Υ is

a full-column-rank n× r matrix with r < n. One implication is that A (exp {iω∗}) Υ⊥ = 0n×(n−r),

where Υ⊥ is an orthogonal complement of Υ. Given a prior belief in a particular set of seasonal

cointegrating relationships Υ, an econometrician can implement stochastic linear restrictions by re-

placing In with Υ′⊥ in equations (38) and (39); like before, when ω∗ ∈ {0, π}, one would exclude the

lower halves of equations (38) and (39). Such a prior, rather than imposing seasonal cointegration

exactly, simply shrinks the coefficients toward the region of the parameter space where the seasonal

cointegrating relationships are close to being satisfied. When ω∗ = 0 and r = 1, this approach nests

as a special case Sims’s (1993a) co-persistence dummy observations, which compensate for the tra-

ditional Minnesota prior’s bias against zero-frequency cointegration. For the application in Section

5, my prior will favor seasonal unit roots, but not seasonal cointegration. However, the strategy

described above provides a way to incorporate beliefs about seasonal cointegration for researchers

whose priors or applications differ from my own.
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The Seasonally Heteroskedastic Case. The following parameterization of the precision matrix

allows for seasonal heteroskedasticity:

log
(

(Λt)k,k

)
= log (λk) + ρ′kwt, (42)

with wt defined in equations (16) and (17). Because the long-run average of wt is zero, log (λk)

can be interpreted as the average log precision of the kth shock, and ρ′kwt captures seasonal het-

eroskedasticity in the kth shock. For ρk, I will assume the prior:

ρk ∼ N
(
0(ns−1)×1, νρK

)
, (43)

independent across k, with K defined in equation (23). Assuming that the variance of ρk is pro-

portional to K ensures that the seasonal component of log
(

(Λt)k,k

)
exhibits the same kind of

smoothness as described in Section 3.1: The shock variances are expected to be similar in adjacent

seasons, but not in seasons that are half a year apart. To interpret the hyperparameter νρ > 0, one

can show that:

Eprior

[
1

ns

ns∑
t=1

[
log
(

(Λt)k,k

)
− log (λk)

]2]
= νρ. (44)

Hence, νρ can be interpreted as the expected variance of log
(

(Λt)k,k

)
over the course of a calendar

year.

The priors for {λk}nk=1 and Φ described earlier continue to apply to the seasonally heteroskedastic

case, but as a technical matter, the definition of the spectrum needs to be revised, because the

shock variances depend on the calendar date. To analyze unconditional moments in the presence

of seasonality, Hansen and Sargent (1993) propose treating the time series as a realization of the

data-generating process, but with the calendar month of date t = 0 chosen at random.14 Under this

randomization scheme, the autocovariance function of ỹt does not depend on the calendar date, and

the spectrum is given by:

f (ω) =
1

2π
A (exp {−iω})−1

ΣεA (exp {iω})−1′
, Σε ≡

1

ns

ns∑
t=1

Λ−1
t . (45)

Like before, the peaks in the spectrum are determined by the roots of the polynomial |A (L)|, so the

same dummy observations can be used to express prior beliefs about stochastic seasonality. Hence,

14More formally, let
{

ỹ
(0)
t

}
t∈Z

be a realization of the data-generating process given by equation (26), and for

k ∈ {1, . . . , ns − 1}, let
{

ỹ
(k)
t

}
t∈Z

be defined such that ỹ
(k)
t ≡ ỹ

(0)
t+k. Now, assume that {ỹt}t∈Z is equal to

{
ỹ
(k)
t

}
t∈Z

with probability 1
ns

, for each k ∈ {0, 1, . . . , ns − 1}.
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the priors for {λk}nk=1 and Φ are still given by equations (28)-(32), with the understanding that the

Λ in equation (29) refers to diag (λ1, . . . , λn).

3.3 Discussion

Implicit in the X-11 algorithm is a belief that seasonality is partly deterministic and partly stochastic,

a belief that my prior incorporates explicitly. Given that deterministic and stochastic seasonality

behave differently, it’s worth recognizing how the approaches in Sections 3.1 and 3.2 complement one

another. A potential limitation of treating seasonality as purely deterministic is that it would be too

rigid, because the amplitude of seasonal cycles can shift. The prevalence of stochastic seasonality will

determine the stability of seasonal patterns. If ỹt is stationary but has spectral peaks at seasonal

frequencies, then the difference in yt between summer and winter will fluctuate over time; these

seasonal shifts can be persistent, but not permanent, with st determining the long-run average for

each season. If ỹt has a seasonal unit root, then yt no longer has a well defined long-run mean for

each month, because the process is non-stationary. This fact raises a possible criticism of a prior that

favors seasonal unit roots: An exact unit root would imply that summer and winter will eventually

switch places as the process drifts.15 For some variables, seasonality appears to be genuinely non-

stationary: Wright (2013) gives the example of electricity usage, which used to peak in winter (from

people using electric light) but now peaks in summer (from people using air conditioning). For other

variables, it may seem more plausible that seasonal peaks and troughs tend to occur at fixed times

of the year, but with the magnitudes of the peaks and troughs evolving in a stationary way. This

is one reason why my prior does not enforce the seasonal unit roots dogmatically: A near-unit-root

process can be a useful starting point for approximating seasonal fluctuations that shift over time,

but if the data show that seasonal patterns have relatively stable long-run means, then this fact will

be reflected in the likelihood function. The classic Minnesota prior, which favors zero-frequency unit

roots, uses analogous reasoning: A random walk can be a serviceable local approximation to highly

persistent processes, even for variables (such as the unemployment rate) that are not literally thought

to be non-stationary.16 If a researcher has a strong prior against seasonal unit roots, then one way to

sidestep them is to truncate the prior to enforce stationarity, while still favoring stationary processes

with near-unit roots at seasonal frequencies, as depicted in the right panel of Figure 3. It’s also
15This property is easiest to see in the example ỹt = ỹt−12 + εt for monthly data. The difference between, say,

January and July will follow a random walk. More formally, Canova and Hansen (1995) demonstrate how testing for
seasonal unit roots is equivalent to testing for whether season-specific intercepts in a regression model follow random
walks.

16Doan, Litterman, and Sims (1984) write: “While we recognize that a more accurate representation of our prior
beliefs would give less weight to systems with explosive roots than is implied by our symmetric distributions around
this [random-walk] mean, we doubt that the gain that could be achieved by abandoning the Gaussian form for our
prior would be worth the price.”
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possible to truncate the prior to preclude unit or explosive roots at seasonal frequencies, while still

allowing for unit or explosive roots at the zero frequency. Whether truncated or not, this class of

priors captures the belief that stochastic seasonal oscillations contribute to the observed variation

in the data.

4 Estimation

The most general version of the model that I will estimate is:

Ψ (yt −Gwm
t ) =

p∑
`=1

Φ`

(
yt−` −Gwm

t−`
)

+ εt (46)

εt
i.i.d.∼ N

(
0n×1,diag (λ1 exp {ρ′1wv

t } , . . . , λn exp {ρ′nwv
t })
−1
)
. (47)

The above specification allows the deterministic variables entering the mean wm
t to differ from

the deterministic variables entering the variance wv
t . Equation (1) corresponds to the case where

wm
t ≡ (1,w′t)

′ and G ≡
[
µ B

]
. Equation (42) corresponds to the case where wv

t only contains

the seasonal sinusoids, but the application in Section 5 will consider other variables in wv
t as well,

to allow for non-seasonal heteroskedasticity.

The prior over g ≡ vec (G) is normal:

g ∼ N (ḡ,Vg) , ḡ ≡

 µ̄

0(ns−1)n×1

 , Vg ≡

 Vµ 0n×(ns−1)n

0(ns−1)n×n K⊗VS

 . (48)

I will assume that the matrix Ψ is parameterized by a vector η, which has prior density P [η]. The

dummy observations Ȳ0 and X̄0 that enter into Ȳ and X̄ in equation (41) are allowed to depend

on η as well. All other components of the prior are described in Sections 3.1 and 3.2.

Let θ collect all of the model’s parameters. Given the prior and data yT ≡ {yt}Tt=1, the goal is to

sample random draws from the posterior P
[
θ | yT

]
that can be used to form Monte Carlo inferences.

To construct a sampling algorithm, it is necessary to characterize some analytical features of the

posterior.

Proposition 3. Let ỹt ≡ yt −Gwm
t and x̃t ≡

(
ỹ′t−1, . . . , ỹ

′
t−p
)′. For k ∈ {1, . . . , n}, define:

Y(k) ≡
[

exp
{

1
2ρ
′
kw

v
1

}
ỹ1 · · · exp

{
1
2ρ
′
kw

v
T

}
ỹT Ȳ′

]′
(49)

X(k) ≡
[

exp
{

1
2ρ
′
kw

v
1

}
x̃1 · · · exp

{
1
2ρ
′
kw

v
T

}
x̃T X̄′

]′
. (50)
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Let ρ ≡ {ρk}
n
k=1, and let λ ≡ {λk}nk=1. Let φk denote the kth column of Φ′, and let ψk denote the

kth column of Ψ′. Let T̄ denote the number of rows in Ȳ and X̄. The conditional posterior for Φ

and λ is:

λk | ρ,g,η ∼ G
(
α̂λ, β̂λ,k

)
(51)

φk | λ,ρ,g,η ∼ N

(
φ̂k,

(
λkX

′
(k)X(k)

)−1
)

(52)

φ̂k ≡
(
X′(k)X(k)

)−1

X′(k)Y(k)ψk (53)

α̂λ ≡ T + T̄ −mn
2

+ 1 (54)

β̂λ,k ≡ 1

2

(
Y(k)ψk −X(k)φ̂k

)′ (
Y(k)ψk −X(k)φ̂k

)
, (55)

independent across k ∈ {1, . . . , n}. The posterior kernel for (ρ,g,η) is:

P
[
ρ,g,η | yT

]
∝

∣∣X̄′X̄∣∣n2 P [ρ]P [g]P [η]

× |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}
n∏
k=1

βαλλ,k

β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣1/2 , (56)

where Ψ, X̄, Ȳ, and
{
βλ,k, β̂λ,k,X(k),Y(k)

}n
k=1

are understood to be functions of (ρ,g,η). Define:

zt ≡
(
y′t,y

′
t−1, . . . ,y

′
t−m

)′
, Φ̃ ≡

[
Ψ −Φ

]
, Wt ≡

[
wm
t wm

t−1 · · · wm
t−m

]′
⊗ In. (57)

The conditional posterior for g is:

g | Φ,λ,ρ,η ∼ N
(
ĝ, V̂g

)
(58)

V̂g ≡

(
V−1
g +

T∑
t=1

W′
tΦ̃
′
ΛtΦ̃Wt

)−1

(59)

ĝ ≡ V̂g

(
V−1
g ḡ +

T∑
t=1

W′
tΦ̃
′
ΛtΦ̃zt

)
. (60)

The results from Proposition 3 suggest using a Markov chain Monte Carlo (MCMC) algorithm.

I will sample the parameters in the following blocks:

1. Draw η, conditional on (ρ,g) and yT .

2. Draw ρ, conditional on (g,η) and yT .

3. Draw λ, conditional on (η,g,ρ) and yT .
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4. Draw Φ, conditional on (λ,η,g,ρ) and yT .

5. Draw g, conditional on (Φ,λ,η,ρ) and yT .

Iterating on the above steps produces a Markov chain with invariant distribution P
[
θ | yT

]
. The

algorithm’s structure has several convenient attributes. This is a partially collapsed sampler: Blocks

1 and 2 marginalize over λ and Φ, which typically account for most of the model’s parameters.

Van Dyk and Park (2008) show that a collapsed sampler will have better convergence properties

than an ordinary sampler, and they recommend integrating out as many parameters as possible. The

distributions in Blocks 1 and 2 are not standard parametric families, so it’s necessary to sample η

and ρ using Metropolis steps. Fortunately, the computational cost of evaluating the posterior kernel

is minimal. Furthermore, because {ρk}
n
k=1 are assumed to be independent across k under the prior,

{ρk}
n
k=1 are independent across k under the posterior, conditional on (g,η). As Robert and Casella

(2004) point out, blocked samplers typically perform best when the blocks are “as independent as

possible,” while parameters within each block are correlated. I will therefore propose each ρk in a

separate Metropolis step; doing so will allow me to break up Block 2 into n relatively low-dimensional

proposals, rather than a single high-dimensional proposal, without adversely affecting the sampler’s

convergence. Conveniently, Blocks 3, 4, and 5 only require draws from standard parametric distri-

butions. This algorithm generalizes the samplers proposed by Baumeister and Hamilton (2015) and

Villani (2009).17 Consequently, applied researchers who have already implemented those estimation

routines can incorporate seasonality with only modest modifications to their code. Appendix C

contains additional computational details for implementing the posterior sampler.

5 Application: Demand and Supply in Labor Markets

Building on Example 2 from Section 2, I will incorporate seasonality into Baumeister and Hamilton’s

(2015) model of labor-market demand and supply. Equations (8) and (46) imply a demand curve

and a supply curve:

∆ log (personhourst) = cd + ηd ×∆ log (real waget) + δ′dwt + φd (L)
′
yt + εdt (61)

∆ log (personhourst) = cs + ηs ×∆ log (real waget) + δ′swt + φs (L)
′
yt + εst , (62)

17Baumeister and Hamilton’s (2015) sampling routine applies to the special case where g and ρ are constrained to
be zero. Villani’s (2009) sampling routine applies to the special case where ρ is constrained to be zero and the prior
over Ψ′ΛΨ is a Wishart distribution.
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where I have defined: φd (L)
′

φs (L)
′

 ≡ p∑
`=1

Φ`L
`,

 cd

cs

 ≡ (Ψ−
p∑
`=1

Φ`

)
µ,

 δ′d

δ′s

 ≡ ΨB−
p∑
`=1

Φ`BR`, (63)

and R is a known rotation matrix that satisfies wt−1 = Rwt, defined explicitly in the appendix.

I will analyze two sets of estimates. First, I will use seasonally unadjusted data on wage growth

and hours growth to fit equations (61) and (62); I will refer to this as the seasonal model. Second,

I will use the seasonally adjusted versions of wage growth and hours growth to fit equations (61)

and (62), subject to the restriction that δd and δs are zero; I will refer to this as the seasonally

adjusted model. That label is a bit of a misnomer: In the seasonally adjusted model, it’s the data

that have been seasonally adjusted, whereas the model itself is aseasonal. However, one of the

points that I want to highlight is that the results change, depending on whether one uses seasonally

adjusted or unadjusted time series. For all non-seasonal aspects, my goal is to treat the two models

as symmetrically as possible, so any discrepancies in the results will reflect the role of seasonality.

Using seasonally adjusted data, Baumeister and Hamilton (2015) assume that the shocks are

homoskedastic, which renders their version of the model only partially identified. On the one hand,

it’s appealing that seasonal heteroskedasticity has the potential to provide full identification, as dis-

cussed in Section 2.2. On the other hand, it may not seem entirely fair to compare a heteroskedastic

version of the model, which can be fully identified, with a homoskedastic version of the model, which

cannot be fully identified. I will therefore allow the seasonally adjusted model to exhibit time-varying

volatility, along the lines of Brunnermeier, Palia, Sastry, and Sims (2021). Those authors, based

on their reading of U.S. economic history, declare seven volatility regimes during their sample from

January 1973 to June 2015: oil crisis and stagflation (January 1973 to September 1979), Volcker

disinflation (October 1979 to December 1982), savings and loan crisis (January 1983 to Decem-

ber 1989), great moderation (January 1990 to December 2007), financial crisis and great recession

(January 2008 to December 2010), and zero lower bound and recovery (January 2011 to June 2015).

Because my dataset runs from 1964 through 2019, I will extend the zero lower bound regime through

December 2016, and I will add two additional regimes: pre-stagflation (January 1964 to December

1972) and interest-rate takeoff (January 2017 to December 2019).18 For the seasonally adjusted

model, the matrix of shock precisions Λt is constant within these regimes, but is allowed to differ

across regimes. For the seasonal model, Λt is allowed to vary across low-frequency regimes and

across calendar months; i.e., wv
t in equation (47) contains both the seasonal sinusoids and indicator

18As a robustness check, I also estimated the model with only three low-frequency volatility regimes, along the lines
of Carriero et al. (2021). Those authors declare the regime breaks to occur at the end of 1989 and the end of 2007. I
find that the three-regime specification produces similar results to the eight-regime specification.
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variables for the low-frequency regimes. As a point of reference, I will also produce estimates for

homoskedastic versions of both models.

5.1 Prior

Beliefs About Demand and Supply Elasticities. I will adopt the same priors as Baumeister

and Hamilton (2015) for ηd and ηs. The prior for ηd is a Student’s t distribution, truncated such

that ηd < 0, with location parameter −.6, scale parameter .6, and 3 degrees of freedom. The prior

for ηs is a Student’s t distribution, truncated such that ηs > 0, with location parameter .6, scale

parameter .6, and 3 degrees of freedom. Baumeister and Hamilton’s rationale, based on their review

of the literature, is to adopt a compromise between micro and macro estimates of these parameters:

Microeconomists tend to find that both demand and supply are fairly inelastic in labor markets,

whereas macroeconomists often favor larger elasticities. The modal values of ηd and ηs are in the

middle of the range of earlier estimates, and the priors are sufficiently diffuse to put non-trivial

weight on the values favored by both micro studies and macro studies.

Beliefs About Seasonality. I will set S̄ to zero, so the prior is agnostic about the timing of

seasonal peaks and troughs. I will set α = 1
2 . With monthly data, this implies that κu is positive for

u = ±1 and approximately zero for u = ±2. In other words, st in any calendar month is expected

to be positively correlated with the preceding calendar month and the following calendar month. I

will set VS = ςΣ̄y with ς = .3 and Σ̄y equal to the sample variance of yt. This specification means

that the variance of st is expected to be about 30% of the total variance of yt. Other authors, such

as Beaulieu et al. (1992), report that deterministic seasonality accounts for an even higher fraction

of the variance of some macroeconomic time series; however, their results may overstate the role of

deterministic seasonality if there are seasonal unit roots, as Franses et al. (1995) explain. I will set

νρ = .3, so the variance of the diagonal of Λt coming from seasonality is expected to be .3 log points

over the course of the year. I will set τS = 1, so there is effectively one dummy observation for each

constraint used to implement the seasonal unit roots at the annual periodicity.

Beliefs About Non-Seasonal Behavior. I will set the lag order of the VAR to p = 13 for

monthly data. The series for hours and real wages, after being logged and differenced, are multiplied

by 100 so that the elements of yt can be interpreted as approximate growth rates. I will set the prior

mean of µ to
(

1
12 ,

2
12

)′, so the annual growth rates of real wages and aggregate hours are expected

to be about 1% and 2%, respectively. The prior treats the elements of µ as independent, with

Vprior [µ1] =
(
.5
12

)2 and Vprior [µ2] =
(

1
12

)2, so the prior means are two prior standard deviations
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from zero. The dummy observations X̄0 and Ȳ0 that appear in equation (41) reflect standard priors

that are commonly applied in the literature to seasonally adjusted data. Specifically:

Ȳ0 =

 0np×n

1τσ×1 ⊗ diag (σ̂1, . . . , σ̂n)
−1

 , X̄0 =

 1
τ0

diag (1, . . . , p)⊗ diag (σ̂1, . . . , σ̂n)
−1

0n×nm

 , (64)
where σ̂k is the standard deviation of the residuals from a univariate autoregression, augmented

with seasonal dummy variables, fit to yk,t. (For the seasonally adjusted model, σ̂k is the residual

standard deviation from a univariate autoregression, without seasonal dummy variables, fit to the kth

seasonally adjusted variable.) If not for the additional dummy observations used to implement beliefs

about seasonal unit roots, the first np rows of Ȳ0 and X̄0 would implement a prior belief that the

reduced-form autoregressive coefficients have mean zero, with the variance of the `th lag proportional

to 1/`2; the latter τσn rows of Ȳ0 and X̄0 would implement a prior belief that the reduced-form

innovation variances are well approximated by the innovation variances of n univariate models. The

parameter τ0 > 0 controls the overall tightness of the baseline prior on the autoregressive coefficients;

following Litterman (1986), I set τ0 = .2. The hyperparameter τσ ∈ Z+ controls the confidence in the

baseline prior’s beliefs about the innovation variances; following Baumeister and Hamilton (2015),

I set τσ = 2. For the seasonally adjusted model, I exclude the dummy observations that favor

seasonal unit roots, in which case Ȳ = Ȳ0 and X̄ = X̄0. For the non-seasonal heteroskedasticity,

the coefficients on the low-frequency volatility regimes are uncorrelated with mean zero and variance

.3.

5.2 Data

The data are downloaded from FRED (fred.stlouisfed.org), and the Bureau of Labor Statistics (BLS)

is the original source. The series for personhours is the index of aggregate hours of production and

non-supervisory employees in the United States, and the series for the real wage is the average

hourly earnings of those workers, deflated by the Consumer Price Index (CPI).19 After taking log

differences, both series are multiplied by 100. The sample period is January 1964 to December 2019.

I have excluded the pandemic-era data to show how seasonal adjustment can affect the results of a

structural VAR under “normal” circumstances, so the results will not be driven by the 2020 outliers,

nor by the BLS’s attempts to account for those outliers in the seasonal adjustment routine.20

19The FRED codes for the non-seasonally adjusted data on hours, nominal wages, and prices are CEU0500000034,
CEU0500000008, and CPIAUCNS. The codes for the seasonally adjusted counterparts are AWHI, AHETPI, and
CPIAUCSL. Baumeister and Hamilton (2015) measure real wages using the index of real hourly compensation in the
nonfarm business sector (COMPRNFB), but the BLS only releases a seasonally adjusted version of that series, not a
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Figure 4: Evidence of Identifying Information via Heteroskedasticity

Notes: Posterior estimates of V [εst ] /V
[
εdt
]
, the relative variance of supply shocks. The top panel

shows the relative variance, as a function of the calendar month, in the seasonal model, holding
fixed the low-frequency regime. The bottom panel shows the relative variance across low-frequency
regimes in the seasonally adjusted model. The solid lines are the posterior medians; dashed lines
are the 10th and 90th posterior quantiles.
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Table 1: Estimated Structural Parameters
ηd ηs

1
T

∑
tV
[
εdt
]

1
T

∑
tV [εst ]

Seasonal Model −2.58
[−3.27,−2.06]

1.36
[1.19, 1.55]

2.00
[1.49, 2.80]

0.62
[0.55, 0.71]

Seasonally Adjusted Model −1.21
[−2.44,−0.67]

1.59
[0.79, 2.92]

0.40
[0.28, 0.94]

0.53
[0.30, 1.24]

Notes: Point estimates are posterior medians. Numbers in brackets are the 10th and 90th posterior
quantiles.

5.3 Results

The seasonal model and the seasonally adjusted model both allow for identification through het-

eroskedasticity, but in this application, seasonal volatility provides more identifying information than

non-seasonal volatility. Recall that identification requires variation in the relative shock variances.

Figure 4 plots V [εst ] /V
[
εdt
]
, the relative variance of supply shocks, as estimated by the two models.

The top panel shows the how relative volatility changes across calendar months, holding fixed the

low-frequency volatility regime, in the seasonal model. Supply shocks are relatively more volatile

in the winter, so wintertime variation in the data helps trace out the slope of the demand curve.

Conversely, summertime variation in the data is more helpful for tracing out the slope of the supply

curve. Attempting to remove seasonality (or simply ignoring it) therefore discards useful identifying

information. The bottom panel of Figure 4 shows the relative volatility of supply shocks across

low-frequency volatility regimes in the seasonally adjusted model. Although the point estimates

exhibit some movement, the credible sets are very wide. In other words, the data are not very

informative about how the relative volatility of the shocks changes across low-frequency regimes, so

the seasonally adjusted model is only weakly identified. This fact likely contributes to the empirical

finding that, in many of the results below, the seasonal model produces more precise estimates than

the seasonally adjusted model.

Table 1 displays the estimated elasticities and average shock variances, and there are large

discrepancies in the structural parameters between the seasonal model and the seasonally adjusted

model. The seasonal model’s point estimate for ηd is about double the point estimate produced by

the seasonally adjusted model. This difference is large, both economically and statistically. Earlier

studies have generated debate about plausible elasticities for labor demand. Cooley and Prescott

seasonally unadjusted version.
20The BLS took a number of steps to try to account for the extreme outliers in the 2020 data when performing

seasonal adjustment; in particular, BLS statisticians did not want their seasonal adjustment routines to attribute the
abrupt recession in March and April of 2020 to seasonal factors (Bureau of Labor Statistics, 2020). However, as Lucca
and Wright (2021) point out, “there are no easy answers to seasonal adjustment in this [pandemic] environment,” and
it may take more time for the BLS to discern how to account for the extreme observations in seasonal-adjustment
methods.
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Table 2: Estimated Structural Parameters Under Homoskedasticity
ηd ηs V

[
εdt
]

V [εst ]

Seasonal Model −2.19
[−3.29,−1.52]

1.46
[1.15, 1.83]

1.64
[1.10, 2.85]

0.66
[0.55, 0.83]

Seasonally Adjusted Model −1.37
[−2.28,−0.84]

1.37
[0.84, 2.20]

0.49
[0.34, 0.93]

0.48
[0.33, 0.86]

Notes: Point estimates are posterior medians. Numbers in brackets are the 10th and 90th posterior
quantiles.

(1995) provide a canonical example of how to calibrate a DSGE model to aggregate data, and their

approach implies that a representative firm has a labor-demand elasticity of −2.5.21 In contrast,

Hamermesh (1996), in a survey of the applied micro literature, finds estimates for the demand

elasticity between −.15 and −.75. The seasonal model produces an estimate for ηd that is similar

to Cooley and Prescott’s number, despite taking a completely different measurement strategy.22

The seasonally adjusted model produces an estimate of |ηd| that is somewhat higher than the range

suggested by applied micro studies, but far below the values common in DSGE models. Furthermore,

the seasonal model assigns almost zero probability to |ηd| being as low as 1.21, the posterior median

of the seasonally adjusted model. Besides suggesting that demand is much more sensitive to wages,

the seasonal model also suggests that demand is much more volatile: The seasonal model’s point

estimate for the average variance of εdt is five times larger than the seasonally adjusted point estimate.

On the supply side, the discrepancy between the seasonal and seasonally adjusted models is not as

drastic. The point estimates from the two models differ by about 15% for both ηs and 1
T

∑
t V [εst ],

with the point estimates from the seasonally adjusted model falling just outside the credible sets

from the seasonal model.

The seasonal and seasonally adjusted models have two differences in their setups that can drive

the differences in their results: (a) they are estimated using different time series, and (b) only the

seasonal model incorporates seasonal heteroskedasticity to help identify the shocks. To shed some

light on why the two models produce such divergent results, Table 2 presents estimates of the struc-

tural parameters when the models are restricted to be homoskedastic. Three observations are worth

noting. First, the main qualitative patterns are unchanged: The seasonal model and the seasonally
21Cooley and Prescott consider a representative firm with the production function outputt = TFPt ×

(hourst)1−ϑ (capitalt)
ϑ, which implies a labor-demand elasticity of −1/ϑ. Based on income shares from the na-

tional accounts, the authors calibrate ϑ = .40. Countless papers follow Cooley and Prescott’s calibration strategy and
choose ϑ between .30 and .40, and many estimated DSGE models adopt the prior that ϑ is in this range.

22Any comparison of elasticities across studies deserves the caveat that different datasets have different frequencies.
Consequently, some papers are estimating how much workers and firms adjust their hours within a quarter, rather than
within a month. Although the national income accounts are quarterly, Cooley and Prescott’s approach is based on
steady-state ratios, which are invariant to the frequency with which the data are observed. In the present application,
the seasonal and seasonally adjusted models are both based on monthly time series, but produce divergent results.
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adjusted model produce clear discrepancies, which are severe for the demand parameters, though

more moderate for the supply parameters. Consequently, the differences between the two models

in Table 1 cannot be attributed entirely to the fact that the heteroskedastic versions of the the

models incorporate heteroskedasticity in different ways. Instead, the disagreements between the

homoskedastic versions of the models suggest that a significant part of the discrepancy is coming

from the seasonal adjustment itself. Second, in the seasonal model, allowing for heteroskedasticity

modestly changes the point estimates while shrinking the credible sets for the structural parameters.

This finding corroborates the earlier claim that seasonal heteroskedasticity is providing useful iden-

tifying information and facilitating more precise inferences. Third, in the seasonally adjusted model,

allowing for heteroskedasticity has only a small effect on the point estimates, while inflating the

credible sets. This finding likely reflects the fact that low-frequency heteroskedasticity is providing

little identifying information, while adding free parameters that are imprecisely estimated.23

Figure 5 shows how the seasonal model and the seasonally adjusted model differ in their impulse

responses. The magnitudes of the shocks are normalized to induce a one-percent change in wages

on impact, and the plots show the approximate percent changes in the levels of wages and hours. In

both models, by assumption, the instantaneous effect of a positive labor-demand shock is to raise

hours and wages, while the instantaneous effect of a positive labor-supply shock is to raise hours

and depress wages. However, the quantitative differences between the models’ impulse responses are

large. Aside from the contemporaneous response of wages, which is normalized to be the same across

models, the seasonally adjusted point estimates fall outside the credible sets from the seasonal model,

for all responses at all horizons. In both the short run and the long run, the seasonal model implies

that hours are nearly twice as responsive to supply shocks, compared to the seasonally adjusted

model. For the other impulse responses, the discrepancy between the models is smaller on impact

but grows over time. After two years, the seasonal model’s point estimate is about 14% smaller than

the seasonally adjusted model’s point estimate for the response of wages to a demand shock, 28%

larger for the response of wages to a supply shock, 28% smaller for the response of hours to a demand

shock, and 89% larger for the response of hours to a supply shock. In the medium run, the models

show different dynamics: The seasonal model’s impulse responses exhibit oscillations, whereas the

seasonally adjusted model’s impulse responses are smooth. Note that the impulse responses do not

depend on the deterministic seasonal terms, so the oscillations in the impulse responses are indicative
23These results present an interesting contrast to Carriero et al. (2021). Using seasonally adjusted data, those

authors add low-frequency volatility regimes to Baumeister and Hamilton’s (2015) labor-market model. Carriero
et al. find that, with their dataset, adding low-frequency heteroskedasticity can shift the point estimates while
narrowing the credible sets. However, like Baumeister and Hamilton, they measure wages using the index of real
hourly compensation in the nonfarm business sector, which the BLS releases exclusively in seasonally adjusted form.
Because there is no seasonally unadjusted version of their data, it is not possible to assess the role of seasonality in
Carriero et al.’s results.
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Figure 5: Impulse Responses

Notes: The figures depict responses in the log levels of real wages and aggregate hours, multiplied
by 100, so the results can be interpreted approximate percent changes. The shocks are normalized
so that the contemporaneous change in wages is 1%. Solid lines are posterior median estimates;
dashed lines are the 10th and 90th posterior quantiles.

of how the shocks are propagated, not predictable differences across the seasons.

The seasonal and seasonally adjusted models have different implications for the relative impor-

tance of supply shocks and demand shocks when accounting for the variance of the data, especially

for wage growth. The posterior probability of A (L) having explosive roots is essentially zero, so it’s

possible to compute the unconditional variance of ỹt.24 Table 3 displays the fraction of the variance

that can be attributed to supply shocks for each variable, after removing deterministic seasonal-

ity. The seasonal model implies that demand shocks are three times more important than supply

shocks in accounting for the unconditional variance of the stochastic component of wage growth; in

contrast, the seasonally adjusted model suggests that supply shocks are somewhat more important.

Qualitatively, this pattern appears across all frequency bands for wage growth. Hence, by looking at

seasonally adjusted variables, a researcher who is interested in business cycles would fail to detect
24For both the seasonal model and the seasonally adjusted model, each one of the posterior draws generated by

the MCMC routine had the property that all roots of the polynomial |A (L)| were outside the complex unit circle.
Consequently, had I truncated the conditional prior of Φ to the stationary region of the parameter space, the results
would look identical. I will therefore proceed under the assumption that A (L) is non-explosive with probability one,
so I can treat the variance of ỹt as finite.
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Table 3: Percentage of Variance Due to Supply Shocks
Wage Growth Hours Growth

Seasonal Seasonally Seasonal Seasonally
Adjusted Adjusted

Unconditional Variance 25
[19, 32]

57
[24, 81]

52
[43, 60]

43
[19, 75]

Low Frequencies 41
[30, 53]

57
[24, 83]

55
[45, 64]

42
[18, 74]

Business-Cycle Frequencies 40
[29, 50]

57
[24, 82]

55
[46, 64]

42
[18, 75]

Irregular Frequencies 23
[17, 30]

57
[24, 81]

51
[43, 59]

43
[19, 75]

Notes: Point estimates are posterior median estimates, rounded to the nearest integer, for the
percentage of the variance of ỹt attributable to supply shocks within each frequency band. Numbers
in brackets are the 10th and 90th posterior quantiles. Business-cycle frequencies refer to periodicities
between 1.5 and 8 years. Low frequencies (irregular frequencies) are all periodicities longer (shorter)
than business cycles.

that the majority of the variation in wage growth at business-cycle frequencies stems from demand

shocks. The two models also exhibit differences in the variance decomposition of hours growth,

though smaller than for wage growth. For all of the variance shares, the seasonal model’s estimates

are much more precise.

6 Taking Stock

The use of seasonally adjusted time series is so commonplace that most researchers do not articulate

affirmative reasons for doing it. One rationale for feeding filtered data through a model is that the

filter may be designed to eliminate certain behaviors that a particular model is simply incapable of

replicating. Although that point may be relevant for some DSGE models, an advantage of VARs

is their statistical flexibility for capturing rich seasonal patterns, both deterministic and stochastic.

Another motivation for using seasonally adjusted time series is a desire to focus on non-seasonal

phenomena, such as business cycles. That argument has a limitation: If the seasonally adjusted and

unadjusted variables generate substantively similar results, then there’s little reason not to use the

unadjusted data — but if the seasonally adjusted and unadjusted variables generate substantively

different results, then it’s difficult to claim that seasonality does not matter for inferences about

business cycles.

If given a choice, macroeconomists should prefer seasonally unadjusted variables over the sea-

sonally adjusted versions when estimating structural VARs. That assertion, though broad, does

38



not encompass two scenarios, both of which deserve further study: when researchers are not fitting

VARs or when researchers do not have the option of using unadjusted data. Some form of seasonal

adjustment may be convenient for visually inspecting a time series or exploring summary statistics.

For econometric modeling, the relationship between seasonal adjustment and structural identifica-

tion is less straightforward outside the context of VARs, especially for models that place strong (and

possibly incorrect) restrictions on how the seasonality is specified. Sometimes, the most compelling

and practical argument for using seasonally adjusted time series, with VARs or otherwise, is the

absence of an alternative: Certain official statistics are released exclusively in seasonally adjusted

form, or the unadjusted versions are only available over short time spans.25 For example, macroe-

conomists studying productivity dynamics in the U.S. have little choice but to rely on seasonally

adjusted variables and hope that any biases from seasonal adjustment are relatively mild for the

estimates of interest; although that may not be ideal, it makes sense that researchers learn what

they can from the data they have. In other cases, the availability of unadjusted data should be

at least one factor in determining which time series enter a model. For example, there are well

known pros and cons when deciding whether to measure inflation with the CPI or the PCE index;

an advantage of the CPI is that it has long been published in seasonally unadjusted form, unlike

the PCE index. One possible avenue of future research could be to assemble unadjusted versions

of widely used economic indicators. Another could be to reassess empirical results in the structural

VAR literature using unadjusted data. In either case, seasonality demands more attention from

empirical macroeconomists.
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A Proofs of Propositions (For Online Publication)

A.1 Proof of Proposition 1

Suppose that (Ψ,Λ) = I (Q) = I (Qsa), or in the case where the model is partially identified,

(Ψ,Λ) ∈ I (Q) ∩ I (Qsa). That would imply Q = Ψ′ΛΨ = Qsa, implying |Q| = |Qsa|, which

contradicts |Qsa| = Dn |Q|, because D 6= 1.
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A.2 Proof of Proposition 2

Observe that the prior mean of st is Eprior [Bwt] = S̄Cwt. Note that the jth row of C is equal to
1
ns

w′j . One can show that w′jwt = nsI
[
j

mod ns= t
]
− 1. This implies that jth element of the n× 1

vector Cwt is equal to I
[
j

mod ns= t
]
− 1
ns
. Hence, S̄Cwt is equal to s̄t− 1

ns

∑ns
k=1 s̄k, which is equal

to s̄t, because the columns of S̄ are assumed to sum to zero.

It remains to characterize Γsu. The vector of waveforms wt has two convenient properties:

1

ns

ns∑
t=1

wtw
′
t = Ins−1, wt−1 = Rwt, (65)

where R is a known orthogonal matrix defined in Lemma 1. Define B̃ ≡ B − Eprior [B]. We can

write:

1

ns

ns∑
t=1

(st − s̄t) (st−u − s̄t−u)
′

=
1

ns

ns∑
t=1

(
Bwt − S̄Cwt

) (
BRuwt − S̄CRuwt

)′
=

(
B− S̄C

)( 1

ns

ns∑
t=1

wtw
′
t

)
Ru′ (B− S̄C

)′
= B̃Ru′B̃′. (66)

Observe that the (j, k) element of this matrix is given by:

(
B̃Ru′B̃′

)
j,k

=

ns−1∑
`=1

ns−1∑
h=1

B̃j,h (Ru′)h,`

(
B̃′
)
`,k
. (67)

Lemma 1 establishes that the (h, `) element of Ru′ is:

(Ru′)h,` = (Ru)`,h = cos

(
2π

ns
`u

)
I [` = h]− cos

(
2π

ns
`u− π

2

)
I [h = ns − `] . (68)

The expression for B̃Ru′B̃′ therefore reduces to:

(
B̃Ru′B̃′

)
j,k

=

ns−1∑
`=1

ns−1∑
h=1

B̃j,hB̃k,`

(
cos

(
2π

ns
`u

)
I [` = h]− cos

(
2π

ns
`u− π

2

)
I [h = ns − `]

)

=

ns−1∑
`=1

B̃j,`B̃k,` cos

(
2π

ns
`u

)
−
ns−1∑
`=1

B̃j,ns−`B̃k,` cos

(
2π

ns
`u− π

2

)
. (69)

In turn, I will show that prior expectation of the first sum in the above expression is equal to the

(j, k) element of κuVS , and then I will show that the prior expectation of the second sum is zero.

The Kronecker structure of the variance in equation (19) implies that Eprior
[
B̃j,`B̃k,`

]
=
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K`,` (VS)j,k. Hence:

Eprior

[
ns−1∑
`=1

B̃j,`B̃k,` cos

(
2π

ns
`u

)]
=

ns−1∑
`=1

Eprior
[
B̃j,`B̃k,`

]
cos

(
2π

ns
`u

)

=

[
ns−1∑
`=1

K`,` cos

(
2π

ns
`u

)]
(VS)j,k , (70)

and the term in square brackets in the final expression coincides with the definition of κu in the

statement of the proposition.

Equation (19) implies that Eprior
[
B̃j,ns−`B̃k,`

]
= Kns−`,` (VS)j,k, so:

Eprior

[
ns−1∑
`=1

B̃j,ns−`B̃k,` cos

(
2π

ns
`u− π

2

)]
=

ns−1∑
`=1

Eprior
[
B̃j,ns−`B̃k,`

]
cos

(
2π

ns
`u− π

2

)

=

[
ns−1∑
`=1

Kns−`,` cos

(
2π

ns
`u− π

2

)]
(VS)j,k . (71)

I will show that the term in square brackets on the last line of the above expression is zero, because

the matrix K must be symmetric. For now, assume that ns is odd; I will return momentarily to the

case where ns is even. With ns being odd, we can break the sum up into terms corresponding to

` < ns
2 and ` > ns

2 :

ns−1∑
`=1

Kns−`,` cos

(
2π

ns
`u− π

2

)
=

ns−1
2∑
`=1

Kns−`,` cos

(
2π

ns
`u− π

2

)
+

ns−1∑
`=ns+1

2

Kns−`,` cos

(
2π

ns
`u− π

2

)

=

ns−1
2∑
`=1

Kns−`,` cos

(
2π

ns
`u− π

2

)

+

ns−1
2∑

`′=1

K`′,ns−`′ cos

(
2π

ns
(ns − `′)u−

π

2

)

=

ns−1
2∑
`=1

Kns−`,` cos

(
2π

ns
`u− π

2

)
+

ns−1
2∑

`′=1

Kns−`′,`′ cos

(
2π

ns
`′u+

π

2

)

=

ns−1
2∑
`=1

Kns−`,`

[
cos

(
2π

ns
`u− π

2

)
+ cos

(
2π

ns
`u+

π

2

)]
= 0, (72)

where the second equality replaces ` with `′ ≡ ns − `; the third equality uses the symmetry of K

and the fact that cos
(

2π
ns

(ns − `′)u− π
2

)
= cos

(
2π
ns
`′u+ π

2

)
for any integers `′ and u; the fourth
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equality consolidates terms across the sums; and the final equality uses the fact that cos
(
ω − π

2

)
+

cos
(
ω + π

2

)
= 0 for any ω. Now, assume that ns is even. The only part of the preceding argument

that needs modification is that the sum
∑ns−1
`=1 Kns−`,` cos

(
2π
ns
`u− π

2

)
contains a term with ` = ns

2 ,

in addition to the terms with ` < ns
2 and ` > ns

2 that appeared earlier. However, when ` = ns
2 :

Kns−`,` cos

(
2π

ns
`u− π

2

)
= Kns

2 ,
ns
2

cos
(
πu− π

2

)
= 0, (73)

where the latter equality comes from the fact that cos
(
πu− π

2

)
= 0 for any u ∈ Z. Hence, with ns

being even, all other steps in equation (72) remain valid, except with ns
2 − 1 replacing ns−1

2 in the

limits of summation.

A.3 Proof of Proposition 3

First, I will derive the joint posterior kernel of (Φ,λ,ρ,g,η) in order to characterize the conditional

posterior of (λ,Φ) and the marginal posterior kernel of (ρ,g,η). Lemma 2 establishes that the

likelihood can be written as:

P
[
yT | θ

]
= (2π)

−Tn2 |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}(
n∏
k=1

λ
T
2

k

)

× exp

{
−

n∑
k=1

λk
2
ψ′kẎ

′
(k)Ẏ(k)ψk

}

× exp

{
−

n∑
k=1

λk
2

(
−2φ′kẊ

′
(k)Ẏ(k)ψk + φ′kẊ

′
(k)Ẋ(k)φk

)}
, (74)

where the tth rows of Ẏ(k) and Ẋ(k) are exp
{

1
2ρ
′
kw

v
t

}
ỹ′t and exp

{
1
2ρ
′
kw

v
t

}
x̃′t. Lemma 3 establishes

that the conditional prior for Φ and λ can be written as:

P [Φ,λ | η] = Γ (αλ)
−n

(2π)
−n2m

2
∣∣X̄′X̄∣∣n2 ( n∏

k=1

βαλλ,k

)

×

(
n∏
k=1

λ
T̄
2

k

)
exp

{
−

n∑
k=1

λk
2
ψ′kȲ

′Ȳψk

}

× exp

{
−

n∑
k=1

λk
2

(
φ′kX̄

′X̄φk − 2φ′kX̄
′Ȳψk

)}
. (75)
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The product of P
[
yT | θ

]
and P [Φ,λ | η] can therefore be written as:

P
[
yT | θ

]
×

P [Φ,λ | η] = Γ (αλ)
−n ∣∣X̄′X̄∣∣n2 ( n∏

k=1

βαλλ,k

)

× (2π)
−Tn2 |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}

×

(
n∏
k=1

λ
T+T̄

2

k

)
exp

{
−

n∑
k=1

λk
2
ψ′kY

′
(k)Y(k)ψk

}

× (2π)
−n2m

2 exp

{
−

n∑
k=1

λk
2

(
−2φ′kX

′
(k)Y(k)ψk + φ′kX

′
(k)X(k)φk

)}
, (76)

where Y(k) is the vertical concatenation of Ẏ(k) and Ȳ, and X(k) is the vertical concatenation of

Ẋ(k) and X̄. Completing the square for each quadratic function of φk that appears in the last line,

the above is algebraically equivalent to:

P
[
yT | θ

]
P [Φ,λ | η] = Γ (αλ)

−n ∣∣X̄′X̄∣∣n2 ( n∏
k=1

βαλλ,k

)

× (2π)
−Tn2 |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}

×

(
n∏
k=1

λ
T+T̄

2

k

)
exp

{
−

n∑
k=1

λkβ̂λ,k

}

× (2π)
−n2m

2 exp

{
−

n∑
k=1

λk
2

(
φk − φ̂k

)′
X′(k)X(k)

(
φk − φ̂k

)}
, (77)

47



where I have invoked the definitions of φ̂k and β̂λ,k. Multiplying and dividing P
[
yT | θ

]
P [Φ,λ | η]

by
∏n
k=1

∣∣∣λkX′(k)X(k)

∣∣∣1/2 β̂
α̂λ
λ,k

Γ(α̂λ) , we get:

P
[
yT | θ

]
×

P [Φ,λ | η] = (2π)
−Tn2

(
Γ (α̂λ)

Γ (αλ)

)n ∣∣X̄′X̄∣∣n2
× |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}
n∏
k=1

βαλλ,k

β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣ 1
2

×

[
n∏
k=1

β̂α̂λλ,k
Γ (α̂λ)

λα̂λ−1
k exp

{
−λkβ̂λ,k

}]

×

 n∏
k=1

∣∣∣λkX′(k)X(k)

∣∣∣ 1
2

(2π)
nm
2

exp

{
−λk

2

(
φk − φ̂k

)′
X′(k)X(k)

(
φk − φ̂k

)} . (78)
Notice that we can write the last two lines of the above expression as:

n∏
k=1

G
(
λk | α̂λ, β̂λ,k

)
N
(
φk | φ̂k,

(
λkX

′
(k)X(k)

)−1
)
, (79)

where G
(
λk | α̂λ, β̂λ,k

)
denotes the density of a gamma distribution with parameters

(
α̂λ, β̂λ,k

)
evaluated at λk, and N

(
φk | φ̂k,

(
λkX

′
(k)X(k)

)−1
)

denotes the density of a normal distribution

with parameters
(
φ̂k,

(
λkX

′
(k)X(k)

)−1
)

evaluated at φk. We can now write the full posterior

kernel as:

P
[
θ | yT

]
∝ P

[
yT | θ

]
P [Φ,λ | η]P [ρ]P [g]P [η]

= (2π)
−Tn2

(
Γ (α̂λ)

Γ (αλ)

)n ∣∣X̄′X̄∣∣n2 P [ρ]P [g]P [η]

× |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}
n∏
k=1

βαλλ,k

β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣1/2
×

[
n∏
k=1

G
(
λk | α̂λ, β̂λ,k

)
N
(
φk | φ̂k,

(
λkX

′
(k)X(k)

)−1
)]

. (80)

Notice that {λk,φk}
n
k=1 only appear in the final line of the above expression. This fact has two

implications. First, the conditional distribution of each (λk,φk), given (ρ,g,η), is a normal-gamma

distribution, independent across k. Second, we can integrate out {λk,φk}
n
k=1 to obtain the posterior
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for (ρ,g,η):

P
[
ρ,g,η | yT

]
=

C

P [yT ]

∣∣X̄′X̄∣∣n2 P [ρ]P [g]P [η]

× |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}
n∏
k=1

βαλλ,k

β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣1/2 , (81)

where P
[
yT
]

=
∫
P
[
ρ,g,η | yT

]
d (ρ,g,η) and C ≡ (2π)

−Tn2
(

Γ(α̂λ)
Γ(αλ)

)n
are constants that do not

depend on the model’s parameters.

Now, I will characterize the conditional posterior for g, given (ρ,η,λ,Φ). Note that we can

write the data-generating process as:

Ψyt −
p∑
`=1

Φ`yt−` = ΨGwm
t −

p∑
`=1

Φ`Gwm
t−` + εt. (82)

Notice also Gwm
t = vec (InGwm

t ) = (wm′
t ⊗ In) g. We can therefore represent the data-generating

process as:

Ψyt −
p∑
`=1

Φ`yt−` =

(
Ψ (wm′

t ⊗ In)−
p∑
`=1

Φ`

(
wm′
t−` ⊗ In

))
g + εt. (83)

More succinctly, Φ̃zt = Φ̃Wtg + εt, where I have defined:

zt ≡
(
y′t, . . . ,y

′
t−m

)′
, Φ̃ ≡

[
Ψ −Φ

]
, Wt ≡

[
wm
t wm

t−1 · · · wm
t−m

]′
⊗ In. (84)

We can write the likelihood as:

P
[
yT | θ

]
=

T∏
t=1

(2π)
−n2 det

(
Ψ′ΛtΨ

) 1
2 exp

{
−1

2

(
Φ̃zt − Φ̃Wtg

)′
Λt

(
Φ̃zt − Φ̃Wtg

)}

∝ exp

{
−1

2

T∑
t=1

(
Φ̃zt − Φ̃Wtg

)′
Λt

(
Φ̃zt − Φ̃Wtg

)}
, (85)

where the factor of proportionality abstracts from terms that do not depend on g. We can write the

quadratic term in the above expression as:

T∑
t=1

(
Φ̃zt − Φ̃Wtg

)′
Λt

(
Φ̃zt − Φ̃Wtg

)
=

(
T∑
t=1

z′tΦ̃
′
ΛtΦ̃zt

)
− 2

(
T∑
t=1

z′tΦ̃
′
ΛtΦ̃Wt

)
g

+g

(
T∑
t=1

W′
tΦ̃
′
ΛtΦ̃Wt

)
g. (86)
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The first sum on the right-hand side does not depend on g, so the likelihood is proportional to:

P
[
yT | θ

]
∝ exp

{
−1

2

[
g

(
T∑
t=1

W′
tΦ̃
′
ΛtΦ̃Wt

)
g − 2

(
T∑
t=1

z′tΦ̃
′
ΛtΦ̃Wt

)
g

]}
. (87)

The prior density for g is:

P [g] = (2π)
− (ns−1)n

2 |Vg|−
1
2 exp

{
−1

2
(g − ḡ)

′
V−1
g (g − ḡ)

}
∝ exp

{
−1

2

(
g′V−1

g g − 2ḡ′V−1
g g

)}
, (88)

where the second line expands the quadratic, and the factor of proportionality abstracts from all

terms that do not depend on g. The conditional posterior kernel for g is therefore:

P
[
g | yT

]
∝ P

[
yT | θ

]
P [g]

∝ exp

{
−1

2

[
g

(
V−1
g +

T∑
t=1

W′
tΦ̃
′
ΛtΦ̃Wt

)
g − 2

(
ḡ′V−1

g +

T∑
t=1

z′tΦ̃
′
ΛtΦ̃Wt

)
g

]}

= exp

{
−1

2

(
gV̂−1

g g − 2ĝ′V̂−1
g g

)}
∝ exp

{
−1

2
(g − ĝ)

′
V̂−1
g (g − ĝ)

}
, (89)

where the third line invokes the definitions of ĝ and V̂g, and the final line completes the square of

the quadratic. The above is proportional to the density of a normal distribution with mean ĝ and

variance V̂g.

A.4 Lemmata

The proofs of the propositions use the following lemmata. For brevity, I have omitted the proofs,

which appeared in an earlier version of the paper and are available upon request.

Lemma 1. The lag of the vector of seasonal waveforms is given by wt−1 = Rwt, where R is the

(ns − 1)× (ns − 1) matrix whose (j, k) element is defined as:

Rj,k ≡ cos

(
2π

ns
j

)
I [j = k]− cos

(
2π

ns
j − π

2

)
I [k = ns − j] . (90)

The matrix R is orthogonal; i.e., R′R = Ins−1. For any u ∈ Z, the uth power of R is given by:

(Ru)j,k = cos

(
2π

ns
ju

)
I [j = k]− cos

(
2π

ns
ju− π

2

)
I [k = ns − j] . (91)
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Lemma 2. For k ∈ {1, . . . , n}, define ẏ
(k)
t ≡ exp

{
1
2ρ
′
kw

v
t

}
ỹt, ẋ

(k)
t ≡ exp

{
1
2ρ
′
kw

v
t

}
x̃t, Ẏ(k) ≡[

ẏ
(k)
1 · · · ẏ

(k)
T

]′
, and Ẋ(k) ≡

[
ẋ

(k)
1 · · · ẋ

(k)
T

]′
. The likelihood can be written as:

P
[
yT | θ

]
= (2π)

−Tn2 |Ψ|T exp

{
1

2

(
n∑
k=1

ρk

)′( T∑
t=1

wv
t

)}(
n∏
k=1

λ
T
2

k

)

× exp

{
−

n∑
k=1

λk
2
ψ′kẎ

′
(k)Ẏ(k)ψk

}

× exp

{
−

n∑
k=1

λk
2

(
−2φ′kẊ

′
(k)Ẏ(k)ψk + φ′kẊ

′
(k)Ẋ(k)φk

)}
. (92)

Lemma 3. The joint conditional prior density of λ and Φ can be written:

P [Φ,λ | η] = Γ (αλ)
−n

(2π)
−n2m

2
∣∣X̄′X̄∣∣n2 ( n∏

k=1

βαλλ,k

)

×

(
n∏
k=1

λ
T̄
2

k

)
exp

{
−

n∑
k=1

λk
2
ψ′kȲ

′Ȳψk

}

× exp

{
−

n∑
k=1

λk
2

(
φ′kX̄

′X̄φk − 2φ′kX̄
′Ȳψk

)}
. (93)

B X-11 Seasonal Adjustment (For Online Publication)

This appendix provides a brief sketch of the X-11 approach to seasonal adjustment for a scalar time

series yt that is observed monthly. Ladiray and Quenneville (2001) provide further details. As in

the body of the paper, I am using “X-11” as shorthand for the family of algorithms that includes

the original X-11 algorithm, as well as the X-12 and X-13 refinements. The main components of the

procedure are fitting a parametric model to remove deterministic seasonality and applying a filter

to remove stochastic seasonality.

The first step is using maximum likelihood to fit a seasonal ARIMA model with deterministic

terms:

A (L) Ã
(
L12
) (

1− Ld
) (

1− L12d̃
) (
yt − β′w+

t

)
= M (L) M̃

(
L12
)
et, (94)

where et is white noise; A (·), Ã (·), M (·), and M̃ (·) are polynomials of order p, p̃, q, and q̃; and w+
t

is a vector of deterministic variables. One purpose for fitting the parametric model is to estimate the

deterministic component β′w+
t . The other purpose is to forecast and backcast yt at the beginning

and end of the sample, which will make it feasible to apply a two-sided filter at each date in the

sample. (The analysis in the body of the paper focused on the population properties of the filter,

applied to infinite series, so the endpoints were not a concern.)
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The additive version of the filter assumes that ỹt ≡ yt−β′w+
t is the sum of a seasonal component

yst , an irregular component yirrt , and a combination trend/cycle component yct :

ỹt = yst + yirrt + yct . (95)

The seasonal component is assumed to be given by yst = (1− ξ (L)) ỹt, where ξ (L) is a two-sided lag

polynomial, and the seasonally adjusted series is ysat ≡ ỹt−yst = ξ (L) ỹt. The following construction

of the polynomial ξ (L) is based on the treatment presented in Chapter 3.4 of Ladiray and Quenneville

(2001). Let ξMA
2×12 (L) denote the lag polynomial associated with a 2 × 12 moving average, and let

ξMA
3×q (L) denote the lag polynomial associated with a 3 × q moving average, where q is a positive,

odd integer:

ξMA
2×12 (L) ≡ 1

24

(
L−6 + L−5

)( 11∑
`=0

L`

)
(96)

ξMA
3×q (L) ≡ 1

3q

(
L−12 + 1 + L12

) q−1
2∑

`=− q−1
2

L12`

 . (97)

(The 2×12 moving average is called as such because it is the average of two overlapping averages of 12

consecutive months; similarly, the 3×q moving average takes the average of the same calendar month

across q consecutive years, and then takes the average of those averages across three consecutive

years.) Let ξHq (L) denote the lag polynomial associated with a q-term Henderson trend:

ξHq (L) =
315

8

q−1
2∑

`=− q−1
2

[
(mH − 1)

2 − `2
] [
m2
H − `2

] [
(mH + 1)

2 − `2
] [

3m2
H − 16− 11`2

]
mH (m2

H − 1) (4m2
H − 1) (4m2

H − 9) (4m2
H − 25)

L`, (98)

where mH ≡ q+3
2 . (The Henderson filter is designed to minimize the variance of the third difference

of a series; increasing q leads to a smoother trend.) The lag polynomial that performs X-11 seasonal

adjustment is assumed to take the form:

ξ (L) ≡ 1−
[
1− ξMA

2×12 (L)
]
ξMA
3×q2 (L)

[
1− ξHq3 (L)

[
1−

[
1− ξMA

2×12 (L)
]2
ξMA
3×q1 (L)

]]
, (99)

where q1 and q2 are parameters that control the number of years that enter into the seasonal moving

averages, and q3 controls the number of terms used to estimate the low-frequency Henderson trend.

The results presented in the body of the paper use (q1, q2, q3) = (3, 5, 13), which are the default

settings described in Chapter 3.4 of Ladiray and Quenneville (2001).

The above summarizes the basic version of the X-11 algorithm; the version used by govern-
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ment statistical agencies can be more complicated along several dimensions. First, the parameters

(q1, q2, q3) need not be fixed at the above values; they can be either user-specified or selected based

on the ratio of variances between the components yst , yirrt , and yct . Second, the above summarizes

the additive version of the X-11 algorithm; there are also log-additive, multiplicative, and pseudo-

additive versions. For example, the multiplicative version specifies ỹt = yst × yirrt × yct , and the

seasonal component is estimated by taking the ratio of the data to a two-sided moving average.

Third, the vector of deterministic variables w+
t can contain more than just monthly indicator vari-

ables; it can also include variables reflecting the timing of holidays, the number of trading days, and

adjustments for outlier observations.

The Bureau of Labor Statistics (BLS) acknowledges the role of discretion when choosing the

filter’s settings: “But seasonal adjustment also involves some art in addition to science. The art

comes in when we use our judgment about outliers in the data or when we decide whether an additive

or multiplicative model more closely reflects seasonal variation in economic measures” (Bureau of

Labor Statistics, 2020). Different settings may be applied to different series, and for any individual

series, the settings may change over time. For example, the BLS has switched from a multiplicative

version of the algorithm to an additive version for several of its headline employment numbers

(Bureau of Labor Statistics, 2020). For many official statistics, government agencies do not publish

the precise settings of the seasonal adjustment algorithm being applied.26

Taken together, these ad hoc adjustments make the mapping between the original series and

the seasonally adjusted series less transparent, but several of the points I raised in the body of

the paper still apply. For all versions of the X-11 algorithm, the seasonally adjusted series is a

function of both leads and lags of the original data. Consequently, it will be possible to predict the

shocks extracted from seasonally adjusted time series using the history of the original, unadjusted

data. Quantitatively, the arguments about the filter’s distortionary effects can be extended to the

case where different series are subjected to different specifications of the additive X-11 algorithm.

Suppose that yt = (y1,t, . . . , yn,t)
′, and the kth element of the seasonally adjusted vector ysat is

ysak,t = ξk (L) yk,t, where ξk (L) is the lag polynomial for the additive X-11 algorithm using parameters(
q

(k)
1 , q

(k)
2 , q

(k)
3

)
. All of the expressions containing D in Section 2.1 continue to hold, except with

26There is no single entity that decides how to adjust official economic statistics. The BLS, which is part of the U.S.
Department of Labor, is responsible for data on employment and wages, along with the Consumer Price Index and the
Producer Price Index; the Bureau of Economic Analysis (BEA), which is part of the U.S. Department of Commerce,
is responsible for the national accounts, which include GDP and its components. The X-11 family of algorithms is
designed by the U.S. Census Bureau, whose documentation catalogues the algorithms’ adjustable parameters and
user-defined settings. However, separate teams of statisticians at the BLS and the BEA are responsible for choosing
which settings to apply. The BLS tends to provide more details than the BEA about the discretionary settings that
it uses for seasonal adjustment. Partly, this reflects the fact that the BEA relies on disaggregated data from other
agencies, and the some of data that the BEA receives is first seasonally adjusted by the source agencies. (Bureau of
Economic Analysis, 2015)
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the definition of D revised to be:

D ≡

(
n∏
k=1

Dk

) 1
n

, Dk ≡ exp

{
− 1

2π

∫ π

−π
log (Ξk (ω)) dω

}
, Ξk (ω) ≡ |ξk (exp {−iω})|2 . (100)

TheDk terms can range from 1.42 to 7.37, depending on the values of the parameters
(
q

(k)
1 , q

(k)
2 , q

(k)
3

)
.

(The algorithm allows q1 and q2 to be selected from the set {1, 3, 5, 9, 15} and q3 to be selected from

the set {7, 9, 13, 17, 23, 33}.) If the seasonal adjustment is performed with the log-additive X-11

algorithm, then the analysis is entirely unchanged, provided that the variables of interest enter yt

in logs. The results in Section 2.1 are built on linear filtering theory, but if the data are adjusted

using the multiplicative version of the X-11 algorithm, then the filter is non-linear. However, Young

(1968) argues that the additive and multiplicative routines often produce similar results. For this

reason, Census Bureau statisticians have viewed the frequency-domain properties of the additive

X-11 algorithm as relevant for approximating the behavior of the multiplicative X-11 algorithm; see

Bell and Monsell (1992).

C Computational Details (For Online Publication)

The posterior sampling algorithm outlined in the body of the paper entails several specifications.

In particular, it’s necessary to declare the initial point for the Markov chain, and it’s necessary

to construct proposal distributions for the Metropolis steps. I will initialize the sampler with the

maximum a posteriori estimate of the parameters, and I will use a Gaussian approximation to the

posterior to propose the Metropolis draws.

Let
(
η†,ρ†,g†

)
denote the values of the parameters that maximize the posterior (having marginal-

ized out λ and Φ), and let H denote the negative Hessian of log posterior, evaluated at the maximum:

(
η†,ρ†,g†

)
≡ argmax

(η,ρ,g)

log
(
P
[
η,ρ,g | yT

])
, H ≡ −

∂2 log
(
P
[
η,ρ,g | yT

])
∂ (η′,ρ′,g′)

′
∂ (η′,ρ′,g′)

∣∣∣∣
(η†,ρ†,g†)

. (101)

Let Hη denote the square submatrix of H whose rows and columns correspond to the coordinates

of η within (η′,ρ′,g′)
′. (For example, if η constitutes the first nη elements of (η′,ρ′,g′)

′, then

Hη would be the first nη rows and first nη columns of H.) Let {Hρk}
n
k=1 be defined analogously.

Define Vη ≡ H−1
η and Vρk ≡ H−1

ρk
for k ∈ {1, . . . , n}. Whereas H−1 approximates the posterior

variance of (η′,ρ′,g′)
′, the matrix Vη approximates the conditional posterior variance of η, given

(ρ,g); likewise, the matrix Vρk approximates the conditional posterior variance of ρk, given (η,g).

The Metropolis steps for η and each ρk will use Gaussian random-walk proposals with variances
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Algorithm 1 Posterior Sampler

1. Initialize
(
η(0),ρ(0),g(0)

)
to
(
η†,ρ†,g†

)
.

2. For i = 1, . . . , N0 +N :

(a) Propose ηprop ∼ N
(
η(i−1), cηVη

)
. With probability min

{
pη(η(i)|ρ(i−1),g(i−1))
pη(η(i−1)|ρ(i−1),g(i−1))

, 1

}
, set

η(i) = ηprop. With residual probability, set η(i) = η(i−1).

(b) For k = 1, . . . , n:

i. Propose ρpropk ∼ N
(
ρ

(i−1)
k , cρVρk

)
. With probability min

{
pρk

(
ρ

(i)
k |g

(i−1),η(i)
)

pρk

(
ρ

(i−1)
k |g(i−1),η(i)

) , 1
}
,

set ρ(i)
k = ρpropk . With residual probability, set ρ(i)

k = ρ
(i−1)
k .

ii. Compute Y(k), X(k), β̂λ,k, and φ̂k as functions of
(
ρ

(i)
k ,η(i),g(i−1)

)
.

iii. Draw λ
(i)
k ∼ G

(
α̂λ, β̂λ,k

)
.

iv. Draw φ(i)
k ∼ N

(
φ̂k,

(
λkX

′
(k)X(k)

)−1
)

(c) Compute ĝ and V̂g as functions of
(
ρ(i),η(i),λ(i),Φ(i)

)
, and draw g(i) ∼ N

(
ĝ, V̂g

)
.

3. Discard the burn-in
{
ρ(i),η(i),λ(i),Φ(i),g(i)

}N0

i=1
.

given by cηVη and cρVρk , where cη and cρ are scalar tuning parameters chosen to target a good

acceptance rate. For brevity, define:

pη (η | ρ,g) ≡
∣∣X̄′X̄∣∣n2 P [η] |Ψ|T

n∏
k=1

βαλλ,k

β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣1/2 (102)

pρk (ρk | g,η) ≡
P [ρk] exp

{
1
2ρ
′
k

(∑T
t=1 wt

)}
β̂α̂λλ,k

∣∣∣X′(k)X(k)

∣∣∣1/2 , (103)

where X̄, X(k), βλ,k, and β̂λ,k are understood to be functions of η, g, and ρ. (These terms are also

functions of the data, but I have suppressed that argument.) Note that pη (η | ρ,g) ∝ P
[
η | ρ,g,yT

]
and pρk (ρk | g,η) ∝ P

[
ρk | η,g,yT

]
, so these functions are proportional to the target distributions

in the Metropolis steps.

Algorithm 1 summarizes the Monte Carlo routine. Step 2b exploits the fact that {ρk, λk,φk}
n
k=1

are independent across k, conditional on (η,g), and this step can be executed in parallel across k.

Although parallelizing step 2b across multiple cores is unlikely to reduce the algorithm’s running

time for a bivariate model, it may speed computation when applying the algorithm to a larger model.

I set N0 = 500, 000 and N = 500, 000, meaning that I run the sampler for one million iterations and
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discard the first half as a burn in. To reduce serial correlation across the subsequent half million

draws, I retain only every 50th draw, leaving me with 10, 000 posterior draws. I set cη = 1.50 and

cρ = 0.50 to target average acceptance rates between 25% and 50% for the Metropolis steps.

D Existing Priors (For Online Publication)

Few other papers attempt to develop seasonal priors for Bayesian VARs. The main exceptions are

Canova (1992, 1993) and Raynauld and Simonato (1993), who work with reduced-form VARs, rather

than structural VARs. Although these papers provide interesting starting points, they also come

with some important limitations. In this appendix, I will discuss how my approach improves upon

these existing priors for seasonality in autoregressive models. I will also touch on an earlier paper

by Gersovitz and MacKinnon (1978), who propose a prior for deterministic seasonality in a (non-

autoregressive) single-equation regression. Appendix D.1 discusses existing priors for deterministic

seasonality, and Appendix D.2 discusses existing priors for stochastic seasonality.

D.1 Existing Approaches to Deterministic Seasonality

D.1.1 Seasonal Dummy Variables with Uncorrelated Coefficients

The most obvious way to capture deterministic seasonality is to augment the VAR with seasonal

dummy variables. Canova (1992, 1993) and Raynauld and Simonato (1993) use seasonal dummy

variables with coefficients that are uncorrelated under the prior.27 However, uncorrelated coefficients

on seasonal dummy variables imply a prior belief that st exhibits negative serial correlation, which

may be undesirable, for the reasons mentioned in the body of the paper. To see the issue explicitly,

let dt be an ns × 1 vector of season-specific dummy variables; i.e., the jth element of dt is dj,t ≡

I
[
t

mod ns= j
]
. Specifying yt = B̃dt + ỹt, where B̃ is an n × ns coefficient matrix, is equivalent to

specifying yt = µ+ st + ỹt with:

µ =
1

ns
B̃1ns×1, st = B̃

(
dt −

1

ns
1ns×1

)
. (104)

27I have chosen to model deterministic seasonality with season-specific means. Canova (1992, 1993) and Raynauld
and Simonato (1993) use season-specific intercepts, but my critiques are broadly applicable to both setups. Fur-
thermore, priors for season-specific means are easier to elicit and interpret than priors for season-specific intercepts,
mirroring Villani’s (2009) argument that steady-state VARs are preferable for modeling unconditional means.
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Suppose that the prior for B̃ satisfies:

Eprior
[
B̃j,k

]
= µ̄j , Eprior

[(
B̃j,k − µ̄j

)(
B̃h,` − µ̄h

)]
=

σ
2
B̃

if (j, k) = (h, `)

0 otherwise
. (105)

Under this specification, the prior mean of µ is µ̄, and the B̃ coefficients that govern deterministic

seasonality are uncorrelated under the prior. (The assumption that each coefficient has the same

prior variance can be relaxed; what matters is that the columns of B̃ are uncorrelated.) As in

the body of the paper, let Γus denote the covariance between st and st−u with respect to the prior

predictive distribution. One can so that the above prior implies:

Γsu =

σ
2
B̃
ns−1
ns

In if u mod ns= 0

−σ
2
B̃

ns
In otherwise

. (106)

The prior with uncorrelated coefficients for dummy variables implies that each season is negatively

correlated with all other seasons, regardless of whether the seasons are adjacent (e.g., January and

February) or half a year apart (e.g., January and July). At a minimum, if an econometrician believes

in this kind of negative serial correlation, then that belief should be stated explicitly and defended.

As was the case with seasonal waveforms, adopting a diffuse prior over the seasonal coefficients (i.e.,

making σ2
B̃
arbitrarily large) implicitly means that the magnitude of the deterministic seasonal cycle,

as summarized by Γs0, is expected to be enormous.

D.1.2 Seasonal Dummy Variables with Correlated Coefficients

When using seasonal dummy variables, generating smoothness in season-specific means requires the

coefficients to be correlated. Gersovitz and MacKinnon (1978) consider regressions with season-

specific coefficients:

yt = c′tβt + et, βt = B̃dt, (107)

where yt is a scalar time series, et is white noise, ct is a vector of observed covariates, and dt is

an ns × 1 vector of seasonal dummy variables. Building on Shiller (1973), those authors propose a

prior over B̃ with the goal of generating smoothness in the regression coefficients {βt}
ns
t=1. Gersovitz

and MacKinnon leave the distribution of ct unmodeled, and they do not consider the case where ct

contains lagged values of yt. Consequently, their analysis excludes autoregressive processes and is

silent on stochastic seasonality. However, when ct = 1, their framework implies a prior over season-

specific means. Hereafter, assume ct = 1, so B̃ is a row vector of season-specific means. Gersovitz
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and MacKinnon adopt the following stochastic restrictions over the parameters:

(
B̃t+1 − B̃t

)
−
(
B̃t − B̃t−1

)
∼ N

(
0, ζ2

)
, (108)

where B̃t is the tth element of B̃, and t± 1 is understood to be mod ns. (To avoid collinearlity in

the restrictions, one can only impose the above condition for t = 1, . . . , ns−1. The prior is improper,

because it entails only ns − 1 stochastic restrictions for ns coefficients.) The deterministic seasonal

deviation of yt from its long-run average is st = B̃
(
dt − 1

ns
1ns×1

)
, so equation (108) is equivalent

to specifying (st+1 − st) − (st − st−1) ∼ N
(
0, ζ2

)
. The hyperparameter ζ controls beliefs about

smoothness in the season-specific means: If ζ is small, then the second difference of st is expected to

be small, meaning that seasonal fluctuations are unlikely to exhibit abrupt increases or decreases.

In many settings, Gersovitz and MacKinnon’s prior seems more reasonable than treating the

elements of B̃ as uncorrelated, but their approach also has some limitations. In particular, there’s

no way to separate the smoothness of deterministic seasonality from the magnitude of deterministic

seasonality, because both are controlled by the single hyperparameter ζ. Consider the limiting case,

where ζ approaches zero. This implies that the restriction B̃t+1 − B̃t = B̃t − B̃t−1 holds exactly for

t = 1, . . . , ns − 1. However, those restrictions imply that st does not change with t, meaning that

there is no seasonality at all. Hence, an implementation of Gersovitz and MacKinnon’s prior that

favors smoother seasonal patterns will also favor smaller seasonal patterns. In contrast, my prior can

accommodate distinct beliefs about the expected persistence of deterministic seasonality (captured

by K) and the expected magnitude of deterministic seasonality (captured by VS). More generally,

because Gersovitz and MacKinnon’s prior over B̃ is improper, the prior predictive distribution over

st is not defined.

D.2 Existing Approaches to Stochastic Seasonality

In this subsection, to make the comparison between the other authors’ priors and my prior as

transparent as possible, I will specialize to a homoskedastic, univariate AR(p) process:

yt =

p∑
`=1

Φ`yt−` + et, et ∼ N
(

0,
1

λ

)
. (109)

I have abstracted from deterministic terms in order to focus on prior beliefs about stochastic sea-

sonality. By setting Ψ = 1, I have abstracted from the structural identification problem to focus on

reduced-form behavior. I have also abstracted from the possibility of time-varying parameters. The
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linear restrictions that imply a seasonal unit root in yt at frequency ω∗ are:

1 =

p∑
`=1

Φ` cos (ω∗`) (110)

0 =

p∑
`=1

Φ` sin (ω∗`) , (111)

which are the reduced-form, univariate analogues to equations (35) and (36). My prior treats these

as stochastic constraints:

p∑
`=1

Φ` cos (ω∗`) | λ ∼ N
(

1,
1

τ2
ω∗λ

)
(112)

p∑
`=1

Φ` sin (ω∗`) | λ ∼ N
(

0,
1

τ2
ω∗λ

)
, (113)

with τω∗ > 0 controlling the prior confidence in a spectral peak at frequency ω∗. As in the body

of the paper, equation (113) is only necessary when ω∗ /∈ {0, π}. Appendix D.2.1 will discuss the

approach to stochastic seasonality in Canova (1992, 1993), and Appendix D.2.2 will discuss the

approach to stochastic seasonality in Raynauld and Simonato (1993).

D.2.1 Canova (1992, 1993)

Canova (1992, 1993) argues that a reasonable prior should favor spectral peaks at seasonal frequen-

cies. On a conceptual level, I agree: Seasonal unit roots (or near unit roots) imply spectral peaks

at seasonal frequencies. On a technical level, though, the prior restriction that Canova proposes

does not imply a spectral peak at the desired frequency. Given a prior belief that yt has a spectral

peak at frequency ω∗, Canova (1992) recommends squeezing the parameters toward the region of

the parameter space where 1 ≈
∑p
`=1 Φ` cos (ω∗`), and he does so with a stochastic linear restriction

along the lines of equation (112). However, there are many processes that satisfy the condition

1 =
∑p
`=1 Φ` cos (ω∗`) exactly, but do not have a spectral peak at, or even near, frequency ω∗.28

Importantly, Canova’s prior does not favor parameters that satisfy 0 ≈
∑p
`=1 Φ` sin (ω∗`), which is

necessary for a spectral peak to occur near frequency ω∗. Absent a stochastic linear restriction along

the lines of equation (113), Canova’s prior will not typically favor seasonal processes.
28Consider the example where p = 2 and ω∗ = π

2
, which corresponds to the annual periodicity for quarterly data.

For illustrative purposes, suppose that the restriction 1 =
∑p
`=1 Φ` cos (ω∗`) holds exactly. If |Φ1| > 2, then yt is

explosive, but if |Φ1| ≤ 2, then one can show that yt will have a unit root at some frequency — but not necessarily at

ω∗. In particular, if Φ1 = −
sin

(
2ω†

)
sin(ω†)

for an arbitrary value ω†, then yt will have a seasonal unit root at frequency ω†.

In this example, adopting extreme prior confidence in Canova’s restriction 1 ≈
∑p
`=1 Φ` cos (ω∗`) does not necessarily

increase the prior probability of a spectral peak at (or near) the desired frequency; instead, prior beliefs about the
location of the spectral peak depend on beliefs about Φ1.
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To see the issue explicitly, note that the autoregressive process can be written A (L) yt = et,

where A (L) ≡ 1−
∑p
`=1 Φ`L

`. Define a (ω) ≡ A (exp {−iω}) as the autoregressive transfer function.

The spectral density of yt is:

f (ω) =
1

|a (ω)|2
1

2πλ
=

1

< (a (ω))
2

+ = (a (ω))
2

1

2πλ
, (114)

where < (·) and = (·) denote the real and imaginary parts. Canova’s stated goal is to favor parameters

such that 1/ |a (ω∗)|2 is large for some desired frequency ω∗. Notice that:

a (ω) = 1−
p∑
`=1

Φ` cos (ω`)︸ ︷︷ ︸
<(a(ω))

+i

p∑
`=1

Φ` sin (ω`)︸ ︷︷ ︸
=(a(ω))

. (115)

Canova’s restriction 1 ≈
∑p
`=1 Φ` cos (ω∗`) is equivalent to adopting a prior belief that < (a (ω∗)) ≈ 0,

but his prior, unlike mine, does not incorporate a prior belief that = (a (ω∗)) ≈ 0.29 In other words,

Canova’s restriction is necessary for a spectral peak at frequency ω∗, but outside of a few special cases,

it’s not sufficient: As equation (114) demonstrates, f (ω∗) will not be large unless both < (a (ω∗))

and = (a (ω∗)) are small in absolute value. Because Canova’s approach does not incorporate any

explicit beliefs about = (a (ω∗)), the seasonal properties of Canova’s prior are sensitive to ostensibly

non-seasonal assumptions, and there will not necessarily be a spectral peak at the desired frequency.

One way to illustrate this fact is to simulate from the prior predictive distribution of the spectrum,

and see where the peaks in the spectrum are most likely to occur. That is, I will draw parameters

draws from the prior, and then compute the spectra implied by the parameter draws using equation

(114). Both Canova’s prior and mine take the form:

(Φ1, . . . ,Φp)
′ | λ ∼ N

((
X̄′X̄

)−1
X̄′Ȳ,

(
λX̄′X̄

)−1
)
, X̄ =

 X̄0

X̄ω∗

 , Ȳ =

 Ȳ0

Ȳω∗

 , (116)

where X̄0 and Ȳ0 are dummy observations that implement a baseline prior about low-frequency

behavior, and X̄ω∗ and Ȳω∗ are dummy observations that are meant to capture beliefs about the

spectrum at the annual periodicity, denoted ω∗ ≡ 2π
ns

. I will consider two common choices of

baseline prior. The first, which I will call the white noise prior, specifies Φ` | λ ∼ N
(
0, 1

λ`2

)
, which

can be implemented using the dummy observations Ȳ0 = 0p×1 and X̄0 = diag (1, 2, . . . , p). The

second, which I will call the random-walk prior, specifies Φ` | λ ∼ N
(
I [` = 1] , 1

λ`2

)
, which can be

29His prior and mine will agree in the special case where ω∗ = π, because the condition
∑m
`=1 Φ` sin (π`) = 0 will be

satisfied for any coefficient values. For other values of ω∗, however, the prior restriction = (a (ω∗)) ≈ 0 is important
for generating the spectral peak at the desired frequency.
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Figure 6: Spectra Implied by Canova’s Prior

Notes: The figure shows the prior median of the spectrum when Canova’s stochastic linear restriction
(112) is used to augment various baseline priors. The vertical dashed lines indicate the annual
periodicity (ω∗ = 2π

12 for monthly data, and ω∗ = 2π
4 for quarterly data). Each solid line is generated

by taking 10, 000 draws from the conditional prior distribution for Φ, computing the spectrum
associated with each parameter draw, and computing the median value of the spectrum across
draws. Each prior conditions on λ = 1.

implemented using the dummy observations Ȳ0 =
(
1,01×(p−1)

)′ and X̄0 = diag (1, 2, . . . , p). For

X̄ω∗ and Ȳω∗ , Canova’s prior uses the following dummy observations to implement beliefs about

the spectrum at frequency ω∗:

Ȳω∗ = τω∗ , X̄ω∗ = τω∗
[

cos (ω∗1) cos (ω∗2) · · · cos (ω∗p)
]
. (117)

My prior uses the following dummy observations instead:

Ȳω∗ = τω∗

 1

0

 , X̄ω∗ = τω∗

 cos (ω∗1) cos (ω∗2) · · · cos (ω∗p)

sin (ω∗1) sin (ω∗2) · · · sin (ω∗p)

 . (118)
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In both cases, a higher value of τω∗ reflects greater confidence in the relevant restrictions being

satisfied. Figure 6 shows what happens when the two baseline priors are augmented with Canova’s

dummy observations (117) and my own (118). I have plotted the median of the prior predictive

distribution over the spectrum for various values of τω∗ ; in each case, I have assumed that p = ns+1

and ω∗ = 2π
ns

, which is the annual periodicity. With monthly data, Canova’s prior restriction does

not generate a spectral peak at frequency ω∗; instead, the spectral peak appears at frequency zero.

To be fair, in the special case where Canova’s restriction is used to augment a white-noise prior

for quarterly data, the prior appears to have the intended behavior of favoring a spectral peak at

frequency ω∗. However, changing the baseline prior from white noise to a random walk — which is

only supposed to be relevant for low frequencies — changes the spectrum at seasonal frequencies. For

a random walk baseline prior with quarterly data, Canova’s restriction appears to favor a spectral

peak corresponding to a periodicity of about 5.5 quarters. In contrast, my prior always implies that

the spectrum is expected to become more sharply peaked at frequency ω∗ as τω∗ increases.

Canova (1993) extends the prior in Canova (1992) from univariate to multivariate models; because

Canova (1993) nests Canova (1992) as a special case, the same critiques apply.

D.2.2 Raynauld and Simonato (1993)

My strategy for eliciting a prior over the VAR parameters is to articulate beliefs about the behavior

of yt, and then construct stochastic linear restrictions on the coefficients to implement that behavior.

An alternative approach would be declaring a prior directly in terms of the coefficients, as advocated

by Raynauld and Simonato (1993). However, seemingly reasonable prior assumptions about the

coefficients can obscure the prior’s implications for the seasonal properties of yt.

Raynauld and Simonato’s prior over {Φ`}p`=1 is Gaussian and independent across ` with:

E [Φ`] = I [` = 1] + I [` = ns]− I [` = ns + 1] , V [Φ`] =

 Tight× SDb`/nsc(
`− (ns − 1)×

⌊
`
ns

⌋)Tooth


2

, (119)

where Tight, SD, and Tooth are hyperparameters, and the number of lags p is assumed to be at least

ns+1. The prior mean is centered on a so-called “airline process” (1− L) (1− Lns) yt = et, which has

seasonal unit roots at the annual frequency and the harmonic frequencies
(

2π
ns
j, j = 1, . . . , ns

)
, in

addition to frequency zero. The hyperparameter Tight > 0 controls the overall tightness of the prior.

The hyperparameter SD ∈ [0, 1) controls “seasonal decay,” in the sense that the first year’s worth

of lags have higher variances than the second year’s worth of lags, and so on. The hyperparameter

Tooth ≥ 1 controls how much to increase the relative prior variance on the seasonal lags (Φns , Φ2ns ,
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etc.). When plotting V [Φ`] as a function of `, the graph appears to have “teeth” spiking up at the

seasonal lags: The function
(
`− (ns − 1)×

⌊
`
ns

⌋)−Tooth
is ns-periodic and strictly decreasing in `

for ` ∈ {1, . . . , ns − 1}. With monthly data, this means that the coefficients on the first 11 lags are

increasingly likely to be close to zero, but the coefficient on yt−12 is expected to be relatively large

in absolute value.

Although some of these features may initially appear reasonable, this prior comes with three

important limitations. First, the prior doesn’t necessarily favor seasonal processes over non-seasonal

processes. Assume that ns ≥ 4, which is the case in almost all applications. For yt to have a spectral

peak at a seasonal frequency, it is neither necessary nor sufficient for Φns , the coefficient on the sea-

sonal lag yt−ns , to be large in absolute value. For example, the process
(

1− 2 cos
(

2π
ns

)
L+ L2

)
yt =

et has a seasonal unit root at the annual frequency, even though Φns = 0. Conversely, increasing the

prior variance of Φns increases the probability of this coefficient being negative, which could create

a spectral trough at the annual frequency, rather than a spectral peak. Furthermore, one can show

that, under Raynauld and Simonato’s prior:

P
[
(Φ1,Φ2, . . . ,Φm) =

(
2 cos

(
2π

ns

)
,−1,01×(p−2)

)]
< P [(Φ1,Φ2, . . . ,Φp) = 01×p] . (120)

Hence, the prior treats the seasonal unit-root process
(

1− 2 cos
(

2π
ns

)
L+ L2

)
yt = et as less plau-

sible than pure white noise, which doesn’t exhibit any seasonality at all.

Second, it is difficult to separate prior beliefs about seasonal behavior from beliefs about non-

seasonal behavior. In Raynauld and Simonato’s setup, the natural way to express more confidence in

stochastic seasonality is to make the overall prior tighter. (The alternative would be to increase the

relative prior variance of Φns , but for the reasons discussed above, that is not entirely satisfying.)

Applying more shrinkage, by adjusting the hyperparameter Tight, makes the estimated spectral

density resemble an airline process at all frequencies, not just the seasonal frequencies. In contrast,

taking τω∗ → ∞ makes my prior collapse on the submanifold of the parameter space that features

a seasonal unit root at frequency ω∗, but my prior restriction still allows the model to fit the data

at non-seasonal frequencies.

Third, treating the coefficients as independent doesn’t acknowledge the fact that the seasonal

properties of the process depend on all of the coefficients jointly. Conditional on some coefficients

deviating from the prior mean, it’s reasonable to expect the other coefficients to deviate in a way

that maintains the spectral peaks near the seasonal frequencies.

Components of Raynauld and Simonato’s approach may be appropriate if an econometrician gen-

uinely does prefer an airline process over other seasonal processes, or if an econometrician genuinely
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is uncertain about the coefficient on yt−ns . (Within my framework, one could incorporate such

beliefs into the dummy observations X̄0 and Ȳ0.) Conceptually, Raynauld and Simonato choose to

declare their beliefs about the coefficients themselves. In contrast, I declare a set of beliefs about

seasonal fluctuations in yt and reverse engineer a prior over the coefficients to generate reasonable

attributes for the spectral density at seasonal frequencies.
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