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The sample selection model

The sample selection problem arises when observations are not
taken from a random sample of the population.

» Wage equations [Roy(1950); Heckman and Honore(1990);
Schafgans (1998, 2000)]

» Female labor supply [Heckman(1974), Gronau(1974),
Arellano and Bonhomme (2017)]

» Schooling choice [Cameron and Heckman(1998)]
Unionism status [Lee(1978), Lemieux(1998)]
» Immigration [Borjas(1987); Chiquiar and Hanson(2005)]

v
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The sample selection model

» A prototypical sample selection model consists of the
following outcome and selection equations:

Y = X[Bo+ i, (Outcome)
D; =T{W/yo +v; >0}, (Selection)
Y, =Y'D;, fori=1,---n,

where (Y;, D;, X[, W) are observed variables and (g;, 1;)
are latent error terms.

» The unknown parameters: regression coefficients S5y, 7o,
and the joint distribution F;, of the latent errors.

» The conditional mean of Yjis

)

E[Y;| X;, Wi, D; = 1] = X/ + Ao(W/70),

Mo (W) = Elei|v; > —W/~o] corrects for the sample
selection bias; known as the control function.

3/50



Parametric sample selection models

» Heckman’s selection model:
Bivariate normal (g;,v;) with correlation p
= o (W) = pocp(Wiy0) /(W)
The control function )\ is parametric and monotone.

> Lee’s generalized selection model:
Maintain the Gaussian copula for (g;,v;), yet allow for
arbitrary (but known) marginal distributions:

P(@ "o Fu(t))}

(0 = o { T

A selection with ¢-marginal distributions [Marchenko and
Genton (2012, JASA)]:
Ao is parametric and monotone.
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Non /semi-parametric selection models

» The conditional mean specification
E[Y;|Xi, Wi, Di = 1] = X0 + Ao(Wi0)

leads to a partial linear and single index model (Li and
Racine, 2007).

» Without any distributional assumption on (g;, v;)
= )¢ is nonparametric and subject to some smoothness
assumptions.
—> kernel or sieve type estimators are used to estimate the
nonparametric components.

» Powell (1987), Gallant and Nychka (1987), Robinson(1988),
Newey (2009), Ahn and Powell (1993), Andrews and
Schafgans (1998), Li and Wooldridge (2002), Das et al.
(2003)...
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“While there have been substantial theoretical advances in weak-
ening the parametric structure used to secure identification of the
models used in the early work, progress in implementing these
procedures in practical empirical problems has been slow and em-
pirical applications of semi-parametric methods have been plagued
by issues of sensitivity of estimates to choices of smooth-

ing parameters, trimming parameters, and the like.”
Heckman and Vytlacil (2007, Handbook 6B)
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Elie: So, in the 1980s and 1990s, we see ingenious papers that
provided insightful results on approaches to combining stochas-
tic restrictions, support conditions and some functional form as-
sumptions to get point identification in a wide variety (of mostly
nonlinear) models. Also, the estimation approaches were non-
trivial. But, on the other hand, it is also safe to say that this
literature has not had as much impact on empirical work
directly. Do you think it is a problem?
Chuck: I very much view it as a problem.

THE ET INTERVIEW: Charles Manski,
Interviewed by Elie Tamer)
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What we do...

> A semiparametric sample selection model:
» No parametric distributional assumption on error terms
(i vi)
» Maintains the monotonicity of the control function Ag(:).

> A simple sufficient condition for a monotone Ag: ¢; and v;
satisfy certain dependence restriction; i.e., right tail
increasing (decreasing) for positively (negatively)
dependent pairs.

» A new semiparametric estimation method:
» Isotonic estimates of nonparametric components;
» no tuning parameter to be chosen by users (bandwidth,
number of basis functions, trimming sequences...)

> A new selectivity test:

> Test whether Ag() is a constant vs. decreasing/increasing
function.
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Main Contributions

> We state a simple sufficient condition that leads to the
monotonicity of the control function.
» The condition only depends on the copula function.
» The monotone shape is shared by a much larger family
beyond the original Heckman model.

> We develop new semiparametric estimation and testing
procedures that do not require the selection of any tuning
parameter.

» Easy to implement with existing R-packages.

» Technical contributions to semiparametric two-step
estimation involving shape-restricted components.

» Results in Chen et al. (2003), Lee and Ichimura (2010), or
Chen et al. (2014) are not directly applicable.

> Cosslett (1991) has proposed a tuning-parameter-free
estimation procedure, but only established consistency
using a sample-splitting trick.
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Related literature
Non/semi-parametric selection models:

» Semiparametric estimation: Powell (1987),
Robinson(1988), Newey (2009), Ahn and Powell (1993), Li
and Wooldridge (2002), Das et al. (2003)...

» Copula models: Abbring and Heckman (2007), Fan and
Wu (2010), Fan et al. (2017), Arellano and Bohnomme
(2017), Maasoumi and Wang (2018+).

» Generalized Roy model and Program Evaluation: Heckman
et al. (2003), Heckman and Vytlacil (2005), Brinch et al.
(2017), Mogstad et al. (2018), Kline and Walters (2019).

Shape restricted estimation applied to single index models:
» Cosslett (1983, 1991): consistency result only.
» Groeneboom and Hendrickx (2018).
Shape restriction in econometric models:
» Matzkin (1991, 1993), Horowitz and Lee (2017),
Chetverikov et al. (2018).
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Monotone control function

A sufficient condition on (e, v) for the monotonicity of the control
function \g: right tail increasing (RT'I(e|v))

Def. [Esary and Proschan, 1972, Annals] A random variable ¢
is said to be right tail increasing in v, if P{e > s|lv > t} is an
increasing function of ¢ for all s.

» A (positive) dependence condition that is stronger than
positive quadrant dependence (PQD), yet weaker than
stochastic increasing (SI).

» It relies on the copula function, regardless of the marginal
distribution.

» Right tail decreasing (RT'D(e|v)) also yields a monotone
Ao-
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A Simple Roy Model

» V) and Y| are wages attached to different sectors (or
different education levels):

Y1 = X'B1 + uq, (1)
Yo = X' Bo + uo,

with an observable switching cost (or price) C' = W'f¢.
» The individual self selects into the sector with a higher
wage modulo the switching cost:

D =I{X'(B1 — Bo) = WBc + (u1 —up) >0} (2)
One only observes the wage corresponding to sector 1; i.e.,
Y=Dx Yl.
> W= (X", W), v = (81 — Bo), BL)s and v = uy — ug in
the selection equation.

» RTI(e|v) means that when v = uj; — vy is larger, it is more
likely that u; is large as well.
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Monotone control function

RTI(e|lv) is a dependence property that only depends on the
copula function.

» A copula is a bivariate distribution function C from [0, 1]2
to [0, 1] with uniform margins.

» A copula links marginal distributions to the joint.
F.,(s,t) = C(F.(s), F,(t)) for continuous r.v. ¢ and v.
(Sklar’s Theorem)

» Let C be the copula of the joint dist (e, v), then for all
u € [0,1],
1. RTI(elv) <= (1—-u—v+C(u,v))/(1 —v) is increasing in v,
2. RTI(elv) <= (u— C(u,v))/(1 — v) is decreasing in v.
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Monotone control function

Theorem (monotone CF) RTI(e|lv) = control function Ag(t) =
E(elv > —t) is deceasing.

“+o00 +0
Efely > 1 = /0 SdFLps4(3) + / sdF.ps(5)

— Aﬁx@—iawdﬁﬁk—/iwiﬂﬁw

_ /+°° L= Fefs) = B() + C(F3). B ()
0 1—F,(t)
_ / Fe(s) = C(F:(s), (1) ,
o 1—F,(t) '

The first integrand is increasing in F, (¢) and the second integrand
is decreasing in F),(t);
— E(e|v > t) increasing in .
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Gaussian copula models

» The control function in Heckman (1979) has the
well-known form depending on the inverse Mill’s ratio:

Nolt) = por {;‘;((?)} . 3)

> M\o(t) is monotone, whereas the direction depends on
whether p > 0 or < 0.

» In fact, the monotonicity property here only depends on
the Gaussian copula C(u,v; p) = ®,(®~*(u), P~ (v)) and
the sign of its correlation coefficient denoted by p .

> A straightforward calculation shows that the partial
derivative of any Gaussian copula is

g (2w = p2 ()
%C(u,v,p) = < S ) . (4)

15/ 50



Archimedean copula models

» When the copula function is Archimedean, i.e.,
C(u,v) = I ((u) + 1(v)) with ¢ as the generator
function.

» RTI(e|v) is equivalent to Oakes’ (1989) cross-ratio function
being greater or equal to 1; i.e., CR(u) > 1 for any u, where

(5)
» For Clayton copula
Clu,v;a) = (W40 =17V 0<uv<1, (6)

where the parameter o« > 0. The cross-ratio function
CR(u) = a+ 1 for any u € [0, 1], which is always greater or
equal to 1.
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Control Functions for Different Margins

Figure: Plots of A(t) = E[e|v > —t]; A Gaussian copula with
correlation p.

(a)Marginal: N(0,1). (b) Marginal : ¢(5).
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Control Functions for Different Copulas

M)

Figure: Plots of A(t) = E[e|v > —t]; A Marginal #(5).

(a)Clayton Copula. (b) FGM Copula.

PYe)
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Control Functions for Normal Mixtures

Figure: Plots of A(t) = E[e|v > —t]; A Normal Mixture.

(e) Different correlation p. (f) Different mixing coefficient 7.

M)
PYe)
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Monotone Control Functions with Different Shapes

Figure: Control function Ay for different joint distribution of error
terms

— Bivariate normal
N, ‘Gaussian copula, {5) marginals
5 o Clayton copula, 1{5) marginals
. ---  Bivariate nommal mixiure

MD
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Estimation

A two-stage semiparametric estimation approach:

| 2
>

two nonparametric components: F;, and A;

both are monotone = nonparametric MLE
(NPMLE) /isotonic for F, and X;

no tuning parameter determined by users;

resulting estimators F,, and A are piecewise constant
functions.
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Estimation: Stage 1

Estimate coefficients g in the selection equation in the presence
of an unknown distribution F,

» We adopt Groeneboom and Hendrikx (2018 Annals of
Statistics).

» for any fixed ~, compute the NPMLE of Ehy (-;7) by

mlgxz [Djlog F(—W{~) + (1 — D;)log(1 — F(=W{v))] ,
=1

where D; =1 — D; (Cosslett, 1983, EMCA).
» Estimate vy by solving estimating equations (moment
conditions):

1 ¢ _
=3 Wi [Di = B (W3 n)| = 0.
i=1
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Stage 1: NPMLE of F,, (+;7)

| 4

| 4

For a fixed 7, let Vim =—W/y

Sort V((f;) <... < V((J)), and let DE;’)) be the indicator

associated with the i-th order statistic V((Z')Y)

The NPMLE F},,,(-;7) is the left derivative of the (greatest)
convex minorant of the cumulative sum diagram:

PO:(0’0>7 P’L: 'L,ZDE‘;Y)) for/[::]_’-..7n'
7j=1

(greatest) convex minorant = the maximal convex function
lying entirely below the diagram of points

The left derivative at P; determines the value of F,, (+;7)
at V(E;) and hence on [V(S)Y), V((zl)l))

NPMLE was first proposed by Ayer et al. (1955).
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Greatest Convex Minorant and Its Derivative
The left panel: cumulative sum diagram (black dots) and the
(greatest) convex minorant (blue line).

The right panel: left derivative of the (greatest) convex minorant
(=NPMLE).
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Pool Adjacent Violators Algorithm (PAVA)

[Brunk (1955), Barlow et al. (1972), Robertson et al. (1988)]
A simple example: Suppose that D; sorted according to V(;) is
{0,1,0,0,1,0,1,1}. Then PAVA proceeds as

o1 0 0 1 0 1 1

0 L0 0 1 0 1 1

0 %(2) 0 1 0 1 1
——

0 3(3) L9 11

VI 16)) 2 11

The NPMLE is a step function with jumps: 0 — 3 Lat Vi2),
at Vis), and — 1 at V(7).

Wl
NI
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Estimation: Stage 2

» Given 4,, estimate the slope coefficient By in the outcome
equation:

P> a partial linear model with a monotone nonparametric
component A; see Huang (2002).
> let ¢ = 1,...,n1 denotes the subsample with D; = 1.

> estimate 5y and A by the least squares estimator under the
monotonicity restriction of A:

n1
An An == i }/z - X, - '/An 2 .
(BnsAn) = ang_mmin 3 | 18— A(W4n)]

i=1
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Estimation: Stage 2

Compute (B, An):
1. For any value 3, use NPMLE (isotonic regression) to
compute A, (+; 3);
similar to Stage 1: A\, (-; ) is the left derivative of the
(greatest) convex minorant of the cumulative sum diagram:

Py=(0,0), Pi= |4,y (Y5 —X(;B)| fori=1,..n,
j=1

where (Y
VO = Wi =1, .0

)

- X éj) B) corresponds to the j-th order statistic

2. Minimize the objective function w.r.t 5.

¢

R package “isotone” for isotonic regression.
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Estimation: Stage 2

An alternative algorithm to compute (Bn, ;\n)

> Estimate 8 and A simultaneously by a cone projection.

» D= {teR": At <0} where A is an (n — 1) X n matrix
with Ai,i = 1, Ai,i-i-l = —1 and others 0.

» The projection of an ni-vector onto D has the form:
bol,, + Z]Ainl bje;j,b; >0 for j =1,..., M,, where e;’s are
some columns of the matrix A’(AA")~ [Meyer (2013)].

» R package “coneproj” for cone projection.
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Cosslett’s two-stage approach

» Stage 1: Profile maximum likelihood estimation (Cosslett,
1983) for the selection equation:

max > [Dilog F(=Wiy) + (1 = Di)log(1 — F(=Wi))] .

» The estimated marginal d.f. F,,(-) is a step-wise function
that is constant on a finite number K, of intervals
I; =[ci—1,¢5), for j=1,..., K, and ¢g = —00, ck,, = +00.
» Stage 2: Cosslett (1991) estimates the outcome equation
while approximating the control function A(-) by K,
indicator variables {I(W'%,, € I ])}jKZ"I

» Only consistency results are available for both 5 and ~.
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Figure: A conference 30 years ago...

in Economic

of the

Fifth

p:
Theory and Econometrics, Duke University, May 1988.

1 T.S. Thompson
5 G. E. Tauchen
9 H. White

13 R. L. Matzkin
17 H. Ichimura
21 A. R. Pagan

25 W. K. Newey
29 A. R. Gallant
33 J. J. Heckman

2

14

2

26 S

30

K. Land
P. C. B. Phillips
H. Bierens

M. Lavine

3 G.Kozmetsky 4 W. A. Barnett

7 P. Huber 8 P. M. Robinson

11 H. Vinod

15 . H. Stock

19 D. Pollard

3 A. Lewbell 24 D. A. Hsich
Manski 28 J. Geweke

31 G. Chamberlain 32 D. Andrews
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Comparisons with existing methods
Compare with the sieve-type estimator[Newey(2009)].

> Sieve: Ap() = Y5 b;P;(-), where Py(-), -+ , Pk, (-) are
basis functions in the sieve space.
K, is specified by users; P;(-) is a smooth function.

» Our estimator: A, = bol,, + Zj]\i"l bjej, b; > 0 for
j=1,.., M,
M,, is determined by data; each e; is an n-vector.

Compare with Cosslett (1991).

> Stage 2 approximates the control function Ag by indicators
I(W'3, € I;),j =1, ..., Ky, where the end points of
intervals I;,j = 1,...K,, are jumps of NPMLE of F}, in
Stage 1.

» The estimated control function is not necessarily monotone
and its jump locations are determined by first stage
estimates.

» only consistency results are established.
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Regularity conditions

Condition

There exists a local neighborhood Ny around 7y such that for
any v € Ny, W'y is a non-degenerate random variable
conditional on X.

» We strengthen the identification condition (A-2) in
Heckman and Vytlacil (2007b).

Condition

The true monotone control function Ay is continuously
differentiable with its derivative denoted by A(-). Moreover, its
inverse denoted by Ay 1() is globally Lipschitz continuous.

» The true monotone control function and its inverse
function are also smooth.

32/50



Asymptotic Properties

» The consistency and asymptotic distribution of Stage 1
coefficient 4,, follows from Groeneboom and Hendrikx
(2018 Annals).

» Main task: determine the asymptotic contribution of the
estimated 4, to (.

» Nonstandard problem: the estimated control function is
piecewise-constant = cannot be differentiated to
determine the asymptotic contribution of 4.

» Combine the characterization of isotonic regression [Huang
(2002), Mammen and Yu (2007), Cheng (2009)] and

empirical process theory [Groeneboom and Hendrikx
(2018), Balabdaoui et.al (2016, 2017)]
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Asymptotic Properties

Theorem (Consistency and Rate of Convergence)

’Bn — Bol+ || /A\n(’w/’%) — )\o(wl’m) II= Op(nfl/?’ logn).

For the nonparametric component, we use the following Ly norm
to metrize its convergence:

I a5 =do(w's0) 17 [ (ha@'da) = Aa(w0)) fvipes ()

where fyp—1(-) is the conditional density of W given D = 1.
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More notations

We adopt the following notations from Newey (2009).
> Let U; = Dz(Xz — IE[X}U)Z = 1,W,L-/")/0]);
& = Di(Yi — X;Bo — Xo(Vi))

Hg = E[U;U]}; ¥ = E[e2U,U}); Hy = E[UN (Vi) W)

» V, is AsyVar of 4, in Stage 1.
>V, = A1BA~!, where
A=E [ foo(~W'o) (W — E[W[W'l}*?],

B =E [{(Fo(-W"y0) = D)W — EIW|W'])}*].

35 /50



Asymptotic properties

Theorem (Asymptotic Normality)

Vit (Bn = o) = N(O, Vp),

where
Ve=Hy' (S + H,V,H,) Hy'.

HngH 5 1. AsyVar of Bn when 7 is known.

Hﬁ_l (H’YV’Y‘H’,}/) Hﬁ_lz the effect of estimating o in Stage 1.
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Testing for selectivity

» Hj : no sample selection bias.

» Heckman model: Hj : the coefficient on the inverse Mills
equals to zero.

» Non/semi-parametric model: Hy : A is constant vs. Hy : A
is a non-constant smooth function [Christofides et al. 2003].

» In our setup with the monotone control function (assume
decreasing):
Hy : X is constant; Hj : X is a decreasing function

» A likelihood ratio type test:

Zi(Rgls,i - Rgle,i)

Tn = R2 )
Zi ols,i

Rys; = OLS residuals;
Rge; = residuals under shape-restricted estimation.
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Testing for selectivity

P> The critical value can be calculated through bootstrap.
> Resample the centered OLS residuals.

» Distribution of 7, from the bootstrapped sample = the
distribution of original T,, = validity of the test.

» Under Hy, T,, = 0p(1) [Zhang, 2002, Annals]; under Hj,
T, —p a positive constant when A deviates from a constant
in a nontrivial way = power goes to 1 as n increases.
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Monte Carlo simulations

» Selection and outcome equations

Yi = Di(B1Xu+ BaXoi+ei),
D = -1+ nXy+ 72X+ Wi +v; > 0},

» (g,v): a mixture of two bivariate normal distributions.

» Compare monotone CF estimator with Heckman’s two-step
estimator and a kernel-type estimator (Klein-Spady +
Robinson).

» The kernel estimator: two bandwidths ¢1 X hey 1, €2 X hey 1,
where (hey,1, hev,2) are the bandwidths selected by
cross-validation.

> examine the sensitivity w.r.t. different (c1, c2).
» Simulation: monotone CF estimator is
» robust to non-normal error terms;
» comparable to the kernel estimator using “good”
bandwidths and outperforms the latter using “bad”
bandwidths.
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Table: Median bias and mean absolute error for estimators of ;

Method Bwd n = 1000 n = 2000
(c1,¢2) Med.bias MAE Med.bias MAE
Monotone CF .0952 1172 .0690 .0842
Heckit 1767 .1881 .1862 1870
Kernel (1,1) 0224 .0945 -0072 0676
(1,2) -.0693 1156 -.0483 .0817
(1,3) -.1208 .1506 -.0969 1163
(1,4) -.1720 1881 -.1465 .1552
(1/2,1) 0393 .1635 0418 1180
(1/2,2) -.0074 .1607 .0109 1144
(1/2,3) ~.0685  .1666 0413 1216
(1/2,4) ~1264 1819 0982 1411
(2,1) -.0442 0985 0224 0705
(2,2) -.0919 1247 -.0605 .0878
(2,3) -.1472 1634 -.1073 1237
(2,4) -.1906 .1997 -.1562 1617
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Tuning Parameters: Less is More

» For kernel type estimators, the cross-validated bandwidths
(computationally more intensive) work better than the
'plug-in’ version.

» High-order expansions may not be easy, since the two-stage
estimation is involved.

» Our method is much easier to implement.

> Our estimated distribution of the error term and the
control function are automatically monotone.
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A real-data example

» Data from Schafgans (1998,JAE): Second Malaysian
Family Life Survey

> Re-examine the wage equations of the Malaysian Chinese.

> Y : log wage; D : labor market participation;
X = (exper, exper?, primary, secondary, fail, urban);

» W = (X, unearn, house,land). The exclusion restriction
builds on non-wage income/wealth.

» Consider male and female workers separately.

» Heckman’s two-step estimator; our monotone CF
estimator; Schafgans (1998)’s kernel estimator (Ichimura +
Robinson).
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A real-data example

Decreasing or increasing control function A\ 7

» Heckman’s model: coefficient on IMR is 0.3891 for men and
—0.2787 for women. (IMR is decreasing.)

» The kernel estimates of control function A (see next page).
> Our selectivity test.

= Decreasing CF for men and Increasing CF for women.

Table: The p-values for testing the presence of sample selection bias

Heckit ¢-test Monotone CF Kernel-based test

Dec Inc
Men 174 .080 .H28 .866
Women 357 .592 134 .060

Note: Dec CF for men and Inc CF for women are in bold font.
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Figure: The estimated control function A(5'W)

Chinese men

—— NPMLE estimate under monotonicity
---* Kemel estimate

Chinese women

—— NPMLE estimate under monotonicity
---- Kemel estimate
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A real-data example

Table: Wage equation for Chinese males; number of total obs =1,190;
number of working obs =559.

Heckit Monotone CF  Schafgans (1998)

Exper .1109 1237 .1051
[.0887, .1331] [-.0937, .1396] [.0837, .1265]

Exper.sq -.1840 -.2130 -.1750
[-.2316, -.1364] [-.2452, -.1411] [-.2213, -.1287]

Prim.sch .0235 .0260 .0232
[-.0205, .0674]  [-.0345, .0760] [-.0184 .0648]

Secon.sch .1638 .1693 .1565
[.1404, .1872] [.1381, .1924] [.1341, .1789]

Fail -.1142 -.1148 -.1298
[-.2416, .0132]  [-.2496, .0095] [-.2455 -.0141]

Urban .0751 .0543 1047
[-.0376, .1878]  [-.0311, .1837] [-.0025, .2119]

Note: The confidence intervals for the Monotone CF estimate are cal-

culated from 500 bootstrap samples.
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A real-data example

Table: Wage equation for Chinese females; number of total obs
=1,298; number of working obs =371.

Heckit Monotone CF  Schafgans (1998)

Exper .0551 .0394 .0564
[.0298, .0804] [.0171, .0870] [.0295 .0833]

Exper.sq -.0511 -.0142 -.0635
1138, .0116]  [-.1274, .0411]  [-.1289, .0019]

Prim.sch .1094 .1299 .0965
0460, .1728]  [0002, .1917]  [.0383, .1547]

Secon.sch .1451 .0859 .0821
[.0892, .2010] [.0426, .1885] [-.0016, .1658]

Fail -.2145 -.2999 -.4214
[-.3754, -.0536] [-.4360, -.0014]  [-.6872, -.1556]

Urban .0275 .0091 .0163
[-.0974, .1520]  [-.1082, .1390] [-.1038, .1364]
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Empirical findings

>

>

For male workers, the estimates are similar across three
approaches.

For female workers, the estimated coeflicients on Secon.sch
and Fail are quite different between Heckit and kernel
approaches.

» For these two coefficients, estimates under monotone CF are
closer to the kernel estimate.
The negative sorting for female workers might be due to
assortative matching of marriage or the discrimination in
the labor market.

Oaxaca decomposition: gender-wage differential explained
by observed characteristics

OLS: 17.09%; Heckman’s model: 21.16%; Kernel: 25.12%;
Monotone CF: 28.78%.
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Extension: A panel selection model

We consider a panel selection model by Kyriazidou (1997)

Yii = Du(X}B80+ i+ eir),
Dy = {Wjyo + ni +vie > 0}.

where we only observe the dependent variable for the selected
sample with Dy = 1,; ie., Yy = Y;;Dy for i = 1,--- ,n and
t=1,2.

Condition

(). m; in the selection equation is independent of W; and v;;.
(ii). &; is independent of vy given vy for ¢t # t'.

= «; is a fixed effect and 7; is a random effect.

— This is stronger than Kyriazidou (1997) but weaker than
Wooldridge (1995).
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Panel selection: estimation

We have the following identity:

E[Yi1 — Yie|Din =1, Djp = 1, W]
=(Xi1 — Xi2)' Bo + o1 (W170) — Mo2(Win0),

where

/\Ot(Wi/t'VO) = /E[€it|7/¢t > —Wi/t’}/o — m-lan(ni) for t= 1, 2.

Monotone

In our Stage 2, given 4,,;, we estimate the (differenced) outcome
equation under the shape restriction for A;:

. ~ N 2
5€Bg\lllg\2€DD ED: 1 [AY; — AX[B — Aa(Wi5im2) + M (W1dm1)] ™,
i1=Dj2=

where AY; = (Y2 — Y1) and AX; = (X2 — Xi1).
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Conclusion

» We propose a semiparametric sample selection model with
a monotonicity constraint on the selection correction
function.

» The model lies between the original Heckman selection
model and the non/semi-parametric selection model with
no restriction on the control function.

» The monotonicity is justified by converting an intuitive
dependence concept into conditions such as RTT or RTD.

» The model imposes no parametric distributional
assumptions and delivers automatic semiparametric
estimation and testing.

» Both the simulation and empirical application illustrate the
utility of our proposal.
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