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The sample selection model

The sample selection problem arises when observations are not
taken from a random sample of the population.

I Wage equations [Roy(1950); Heckman and Honore(1990);
Schafgans (1998, 2000)]

I Female labor supply [Heckman(1974), Gronau(1974),
Arellano and Bonhomme (2017)]

I Schooling choice [Cameron and Heckman(1998)]

I Unionism status [Lee(1978), Lemieux(1998)]

I Immigration [Borjas(1987); Chiquiar and Hanson(2005)]
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The sample selection model

I A prototypical sample selection model consists of the
following outcome and selection equations:

Y ∗i = X ′iβ0 + εi, (Outcome)

Di = I{W ′iγ0 + νi > 0}, (Selection)

Yi = Y ∗i Di, for i = 1, · · · , n,

where (Yi, Di, X
′
i,W

′
i ) are observed variables and (εi, νi)

are latent error terms.

I The unknown parameters: regression coefficients β0, γ0,
and the joint distribution Fεν of the latent errors.

I The conditional mean of Yiis

E[Yi|Xi,Wi, Di = 1] = X ′iβ0 + λ0(W
′
iγ0),

λ0(W
′
iγ0) = E[εi|νi > −W ′iγ0] corrects for the sample

selection bias; known as the control function.
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Parametric sample selection models

I Heckman’s selection model:
Bivariate normal (εi, νi) with correlation ρ
=⇒ λ0(W

′
iγ0) = ρσεφ(W ′iγ0)/Φ(W ′iγ0)

The control function λ0 is parametric and monotone.

I Lee’s generalized selection model:
Maintain the Gaussian copula for (εi, νi), yet allow for
arbitrary (but known) marginal distributions:

λ0(t) = ρσε

{
φ(Φ−1 ◦ Fν(t))

Fν(t)

}
.

A selection with t-marginal distributions [Marchenko and
Genton (2012, JASA)]:
λ0 is parametric and monotone.
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Non/semi-parametric selection models

I The conditional mean specification

E[Yi|Xi,Wi, Di = 1] = X ′iβ0 + λ0(W
′
iγ0)

leads to a partial linear and single index model (Li and
Racine, 2007).

I Without any distributional assumption on (εi, νi)
=⇒ λ0 is nonparametric and subject to some smoothness
assumptions.
=⇒ kernel or sieve type estimators are used to estimate the
nonparametric components.

I Powell (1987), Gallant and Nychka (1987), Robinson(1988),
Newey (2009), Ahn and Powell (1993), Andrews and
Schafgans (1998), Li and Wooldridge (2002), Das et al.
(2003)...
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“While there have been substantial theoretical advances in weak-
ening the parametric structure used to secure identification of the
models used in the early work, progress in implementing these
procedures in practical empirical problems has been slow and em-
pirical applications of semi-parametric methods have been plagued
by issues of sensitivity of estimates to choices of smooth-
ing parameters, trimming parameters, and the like.”

Heckman and Vytlacil (2007, Handbook 6B)
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Elie: So, in the 1980s and 1990s, we see ingenious papers that
provided insightful results on approaches to combining stochas-
tic restrictions, support conditions and some functional form as-
sumptions to get point identification in a wide variety (of mostly
nonlinear) models. Also, the estimation approaches were non-
trivial. But, on the other hand, it is also safe to say that this
literature has not had as much impact on empirical work
directly. Do you think it is a problem?
Chuck: I very much view it as a problem.

THE ET INTERVIEW: Charles Manski,
Interviewed by Elie Tamer)
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What we do...
I A semiparametric sample selection model:

I No parametric distributional assumption on error terms
(εi, νi)

I Maintains the monotonicity of the control function λ0(·).

I A simple sufficient condition for a monotone λ0: εi and νi
satisfy certain dependence restriction; i.e., right tail
increasing (decreasing) for positively (negatively)
dependent pairs.

I A new semiparametric estimation method:
I Isotonic estimates of nonparametric components;
I no tuning parameter to be chosen by users (bandwidth,

number of basis functions, trimming sequences...)

I A new selectivity test:
I Test whether λ0(·) is a constant vs. decreasing/increasing

function.
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Main Contributions

I We state a simple sufficient condition that leads to the
monotonicity of the control function.
I The condition only depends on the copula function.
I The monotone shape is shared by a much larger family

beyond the original Heckman model.

I We develop new semiparametric estimation and testing
procedures that do not require the selection of any tuning
parameter.
I Easy to implement with existing R-packages.

I Technical contributions to semiparametric two-step
estimation involving shape-restricted components.
I Results in Chen et al. (2003), Lee and Ichimura (2010), or

Chen et al. (2014) are not directly applicable.
I Cosslett (1991) has proposed a tuning-parameter-free

estimation procedure, but only established consistency
using a sample-splitting trick.
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Related literature
Non/semi-parametric selection models:

I Semiparametric estimation: Powell (1987),
Robinson(1988), Newey (2009), Ahn and Powell (1993), Li
and Wooldridge (2002), Das et al. (2003)...

I Copula models: Abbring and Heckman (2007), Fan and
Wu (2010), Fan et al. (2017), Arellano and Bohnomme
(2017), Maasoumi and Wang (2018+).

I Generalized Roy model and Program Evaluation: Heckman
et al. (2003), Heckman and Vytlacil (2005), Brinch et al.
(2017), Mogstad et al. (2018), Kline and Walters (2019).

Shape restricted estimation applied to single index models:
I Cosslett (1983, 1991): consistency result only.
I Groeneboom and Hendrickx (2018).

Shape restriction in econometric models:

I Matzkin (1991, 1993), Horowitz and Lee (2017),
Chetverikov et al. (2018).
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Monotone control function

A sufficient condition on (ε, ν) for the monotonicity of the control
function λ0: right tail increasing (RTI(ε|ν))

Def. [Esary and Proschan, 1972, Annals] A random variable ε
is said to be right tail increasing in ν, if P{ε > s|ν > t} is an
increasing function of t for all s.

I A (positive) dependence condition that is stronger than
positive quadrant dependence (PQD), yet weaker than
stochastic increasing (SI).

I It relies on the copula function, regardless of the marginal
distribution.

I Right tail decreasing (RTD(ε|ν)) also yields a monotone
λ0.
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A Simple Roy Model

I Y1 and Y0 are wages attached to different sectors (or
different education levels):

Y1 = X ′β1 + u1, (1)

Y0 = X ′β0 + u0,

with an observable switching cost (or price) C = W̃ ′βC .
I The individual self selects into the sector with a higher

wage modulo the switching cost:

D = I{X ′(β1 − β0)− W̃ ′βC + (u1 − u0) > 0}. (2)

One only observes the wage corresponding to sector 1; i.e.,
Y = D × Y1.

I W = (X ′, W̃ ′)′, γ0 = ((β1 − β0)′, β′C)′, and ν = u1 − u0 in
the selection equation.

I RTI(ε|ν) means that when ν = u1 − u0 is larger, it is more
likely that u1 is large as well.
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Monotone control function

RTI(ε|ν) is a dependence property that only depends on the
copula function.

I A copula is a bivariate distribution function C from [0, 1]2

to [0, 1] with uniform margins.

I A copula links marginal distributions to the joint.
Fε,ν(s, t) = C(Fε(s), Fν(t)) for continuous r.v. ε and ν.
(Sklar’s Theorem)

I Let C be the copula of the joint dist (ε, ν), then for all
u ∈ [0, 1],

1. RTI(ε|ν)⇐⇒ (1−u− v+C(u, v))/(1− v) is increasing in v,
2. RTI(ε|ν)⇐⇒ (u− C(u, v))/(1− v) is decreasing in v.
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Monotone control function

Theorem (monotone CF) RTI(ε|ν) =⇒ control function λ0(t) =
E(ε|ν > −t) is deceasing.

E[ε|ν > t] =

∫ +∞

0
sdFε|ν>t(s) +

∫ +0

−∞
sdFε|ν>t(s)

=

∫ +∞

0

(
1− Fε|ν>t(s)

)
ds−

∫ 0

−∞
Fε|ν>t(s)ds

=

∫ +∞

0

1− Fε(s)− Fν(t) + C(Fε(s), Fν(t))

1− Fν(t)
ds

−
∫ 0

−∞

Fε(s)− C(Fε(s), Fν(t))

1− Fν(t)
ds.

The first integrand is increasing in Fν(t) and the second integrand
is decreasing in Fν(t);
=⇒ E(ε|ν > t) increasing in t.
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Gaussian copula models

I The control function in Heckman (1979) has the
well-known form depending on the inverse Mill’s ratio:

λ0(t) = ρσε

{
φ(t)

Φ(t)

}
. (3)

I λ0(t) is monotone, whereas the direction depends on
whether ρ > 0 or < 0.

I In fact, the monotonicity property here only depends on
the Gaussian copula C(u, v; ρ) = Φρ(Φ

−1(u),Φ−1(v)) and
the sign of its correlation coefficient denoted by ρ .

I A straightforward calculation shows that the partial
derivative of any Gaussian copula is

∂

∂v
C(u, v; ρ) = Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

)
. (4)
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Archimedean copula models

I When the copula function is Archimedean, i.e.,
C(u, v) = ψ[−1] (ψ(u) + ψ(v)) with ψ as the generator
function.

I RTI(ε|ν) is equivalent to Oakes’ (1989) cross-ratio function
being greater or equal to 1; i.e., CR(u) ≥ 1 for any u, where

CR(u) = −uψ
(2)(u)

ψ(1)(u)
. (5)

I For Clayton copula

C(u, v;α) = (u−α + v−α − 1)−1/α, 0 ≤ u, v ≤ 1, (6)

where the parameter α ≥ 0. The cross-ratio function
CR(u) = α+ 1 for any u ∈ [0, 1], which is always greater or
equal to 1.
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Control Functions for Different Margins

Figure: Plots of λ(t) = E[ε|ν ≥ −t]; A Gaussian copula with
correlation ρ.

(a)Marginal: N(0, 1). (b) Marginal : t(5).
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Control Functions for Different Copulas

Figure: Plots of λ(t) = E[ε|ν ≥ −t]; A Marginal t(5).

(a)Clayton Copula. (b) FGM Copula.
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Control Functions for Normal Mixtures

Figure: Plots of λ(t) = E[ε|ν ≥ −t]; A Normal Mixture.

(e) Different correlation ρ. (f) Different mixing coefficient π.
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Monotone Control Functions with Different Shapes

Figure: Control function λ0 for different joint distribution of error
terms
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Estimation

A two-stage semiparametric estimation approach:

I two nonparametric components: Fν and λ;

I both are monotone =⇒ nonparametric MLE
(NPMLE)/isotonic for Fν and λ;

I no tuning parameter determined by users;

I resulting estimators Fν and λ are piecewise constant
functions.
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Estimation: Stage 1

Estimate coefficients γ0 in the selection equation in the presence
of an unknown distribution Fν

I We adopt Groeneboom and Hendrikx (2018 Annals of
Statistics).

I for any fixed γ, compute the NPMLE of F̂nv (·; γ) by

max
F

n∑
i=1

[
D̄i logF (−W ′iγ) + (1− D̄i) log(1− F (−W ′iγ))

]
,

where D̄i ≡ 1−Di (Cosslett, 1983, EMCA).

I Estimate γ0 by solving estimating equations (moment
conditions):

1

n

n∑
i=1

Wi

[
D̄i − F̂nν(−W ′i γ̂n; γ̂n)

]
= 0.
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Stage 1: NPMLE of Fnν (·; γ)

I For a fixed γ, let V
(γ)
i = −W ′iγ

I Sort V
(γ)
(1) ≤ · · · ≤ V

(γ)
(n) , and let D̄

(γ)
(i) be the indicator

associated with the i-th order statistic V
(γ)
(i) .

I The NPMLE F̂nν(·; γ) is the left derivative of the (greatest)
convex minorant of the cumulative sum diagram:

P0 = (0, 0), Pi =

i, i∑
j=1

D̄
(γ)
(j)

 for i = 1, · · · , n.

I (greatest) convex minorant = the maximal convex function
lying entirely below the diagram of points

I The left derivative at Pi determines the value of Fnν (·; γ)

at V
(γ)
(i) and hence on [V

(γ)
(i) , V

(γ)
(i+1)).

I NPMLE was first proposed by Ayer et al. (1955).
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Greatest Convex Minorant and Its Derivative
The left panel: cumulative sum diagram (black dots) and the
(greatest) convex minorant (blue line).
The right panel: left derivative of the (greatest) convex minorant
(=NPMLE).
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Pool Adjacent Violators Algorithm (PAVA)

[Brunk (1955), Barlow et al. (1972), Robertson et al. (1988)]
A simple example: Suppose that D̄i sorted according to V(i) is
{0, 1, 0, 0, 1, 0, 1, 1}. Then PAVA proceeds as

0 1 0 0 1 0 1 1

0 1 0︸︷︷︸ 0 1 0 1 1

0
1

2
(2) 0︸ ︷︷ ︸ 1 0 1 1

0 1
3
(3) 1 0︸ ︷︷ ︸ 1 1

0 1
3
(3) 1

2
(2) 1 1

The NPMLE is a step function with jumps: 0→ 1
3 at V(2),

1
3 →

1
2

at V(5), and 1
2 → 1 at V(7).
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Estimation: Stage 2

I Given γ̂n, estimate the slope coefficient β0 in the outcome
equation:

E[Yi|Xi,Wi, Di = 1] = X ′iβ0 + λ(W ′iγ0),

I a partial linear model with a monotone nonparametric
component λ; see Huang (2002).

I let i = 1, ..., n1 denotes the subsample with Di = 1.

I estimate β0 and λ by the least squares estimator under the
monotonicity restriction of λ:

(β̂n, λ̂n) = arg min
β∈B,λn∈D

n1∑
i=1

[
Yi −X ′iβ − λ(W ′i γ̂n)

]2
.
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Estimation: Stage 2

Compute (β̂n, λ̂n):

1. For any value β, use NPMLE (isotonic regression) to
compute λ̂n(·;β);
similar to Stage 1: λ̂n(·;β) is the left derivative of the
(greatest) convex minorant of the cumulative sum diagram:

P0 = (0, 0), Pi =

i, i∑
j=1

(Y(j) −X ′(j)β)

 for i = 1, ..., n1,

where (Y(j) −X ′(j)β) corresponds to the j-th order statistic

V
(γ̂n)
i = −W ′i γ̂n, i = 1, ..., n1.

2. Minimize the objective function w.r.t β.

R package “isotone” for isotonic regression.

27 / 50



Estimation: Stage 2

An alternative algorithm to compute (β̂n, λ̂n):

I Estimate β and λ simultaneously by a cone projection.

I D = {t ∈ Rn1 : At ≤ 0} where A is an (n− 1)× n matrix
with Ai,i = 1, Ai,i+1 = −1 and others 0.

I The projection of an n1-vector onto D has the form:
b01n1 +

∑Mn
j=1 bjej , bj > 0 for j = 1, ...,Mn, where ej ’s are

some columns of the matrix A′(AA′)−1[Meyer (2013)].

I R package “coneproj” for cone projection.
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Cosslett’s two-stage approach

I Stage 1: Profile maximum likelihood estimation (Cosslett,
1983) for the selection equation:

max
γ,F

n∑
i=1

[
D̄i logF (−W ′iγ) + (1− D̄i) log(1− F (−W ′iγ))

]
,

I The estimated marginal d.f. F̃nν(·) is a step-wise function
that is constant on a finite number Kn of intervals
Ij = [ci−1, cj), for j = 1, ...,Kn and c0 = −∞, cKn = +∞.

I Stage 2: Cosslett (1991) estimates the outcome equation
while approximating the control function λ(·) by Kn

indicator variables {I(W ′γ̃n ∈ Ij)}Kn
j=1.

I Only consistency results are available for both β and γ.
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Figure: A conference 30 years ago...
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Comparisons with existing methods
Compare with the sieve-type estimator[Newey(2009)].

I Sieve: λn(·) =
∑Kn

j=1 bjPj(·), where P1(·), · · · , PKn(·) are
basis functions in the sieve space.
Kn is specified by users; Pj(·) is a smooth function.

I Our estimator: λn = b01n1 +
∑Mn

j=1 bjej , bj > 0 for
j = 1, ...,Mn.
Mn is determined by data; each ej is an n-vector.

Compare with Cosslett (1991).

I Stage 2 approximates the control function λ0 by indicators
I(W ′γ̃n ∈ Ij), j = 1, ...,Kn, where the end points of
intervals Ij , j = 1, ...Kn are jumps of NPMLE of Fν in
Stage 1.

I The estimated control function is not necessarily monotone
and its jump locations are determined by first stage
estimates.

I only consistency results are established.
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Regularity conditions

Condition
There exists a local neighborhood N0 around γ0 such that for
any γ ∈ N0, W

′γ is a non-degenerate random variable
conditional on X.

I We strengthen the identification condition (A-2) in
Heckman and Vytlacil (2007b).

Condition
The true monotone control function λ0 is continuously
differentiable with its derivative denoted by λ̇(·). Moreover, its
inverse denoted by λ−10 (·) is globally Lipschitz continuous.

I The true monotone control function and its inverse
function are also smooth.
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Asymptotic Properties

I The consistency and asymptotic distribution of Stage 1
coefficient γ̂n follows from Groeneboom and Hendrikx
(2018 Annals).

I Main task: determine the asymptotic contribution of the
estimated γ̂n to β̂n.

I Nonstandard problem: the estimated control function is
piecewise-constant =⇒ cannot be differentiated to
determine the asymptotic contribution of γ̂n.

I Combine the characterization of isotonic regression [Huang
(2002), Mammen and Yu (2007), Cheng (2009)] and
empirical process theory [Groeneboom and Hendrikx
(2018), Balabdaoui et.al (2016, 2017)]
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Asymptotic Properties

Theorem (Consistency and Rate of Convergence)

|β̂n − β0|+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖= Op(n
−1/3 log n).

For the nonparametric component, we use the following L2 norm
to metrize its convergence:

‖ λ̂n(w′γ̂n)−λ0(w′γ0) ‖2≡
∫ (

λ̂n(w′γ̂n)− λ0(w′γ0)
)2
fW |D=1(w)dw,

where fW |D=1(·) is the conditional density of W given D = 1.
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More notations

We adopt the following notations from Newey (2009).

I Let Ui ≡ Di(Xi − E[Xi|Di = 1,W ′iγ0]);
εi ≡ Di(Yi −X ′iβ0 − λ0(Vi))
Hβ ≡ E[UiU

′
i ]; Σ ≡ E[ε2iUiU

′
i ]; Hγ ≡ E[Uiλ

′
0(Vi)Wi].

I Vγ is AsyVar of γ̂n in Stage 1.

I Vγ = A−1BA−1, where

A ≡ E
[
fν0(−W ′γ0) {W − E[W |W ′γ0]}⊗2

]
,

B ≡ E
[{

(Fν0(−W ′γ0)− D̄)(W − E[W |W ′γ0])
}⊗2]

.
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Asymptotic properties

Theorem (Asymptotic Normality)

√
n
(
β̂n − β0

)
⇒ N(0, Vβ),

where
Vβ ≡ H−1β

(
Σ +HγVγH

′
γ

)
H−1β .

H−1β ΣH−1β : AsyVar of β̂n when γ0 is known.

H−1β
(
HγVγH

′
γ

)
H−1β : the effect of estimating γ0 in Stage 1.
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Testing for selectivity

I H0 : no sample selection bias.

I Heckman model: H0 : the coefficient on the inverse Mills
equals to zero.

I Non/semi-parametric model: H0 : λ is constant vs. H0 : λ
is a non-constant smooth function [Christofides et al. 2003].

I In our setup with the monotone control function (assume
decreasing):
H0 : λ is constant; H1 : λ is a decreasing function

I A likelihood ratio type test:

Tn =

∑
i(R

2
ols,i −R2

de,i)∑
iR

2
ols,i

,

Rols,i = OLS residuals;
Rde,i = residuals under shape-restricted estimation.
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Testing for selectivity

I The critical value can be calculated through bootstrap.

I Resample the centered OLS residuals.

I Distribution of Tn from the bootstrapped sample ≈ the
distribution of original Tn =⇒ validity of the test.

I Under H0, Tn = op(1) [Zhang, 2002, Annals]; under H1,
Tn →p a positive constant when λ deviates from a constant
in a nontrivial way =⇒ power goes to 1 as n increases.
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Monte Carlo simulations

I Selection and outcome equations

Yi = Di (β1X1i + β2X2i + εi) ,

Di = I{−1 + γ1X1i + γ2X2i + γ3W̃i + νi > 0},

I (ε, ν): a mixture of two bivariate normal distributions.

I Compare monotone CF estimator with Heckman’s two-step
estimator and a kernel-type estimator (Klein-Spady +
Robinson).

I The kernel estimator: two bandwidths c1 × hcv,1, c2 × hcv,1,
where (hcv,1, hcv,2) are the bandwidths selected by
cross-validation.
I examine the sensitivity w.r.t. different (c1, c2).

I Simulation: monotone CF estimator is
I robust to non-normal error terms;
I comparable to the kernel estimator using “good”

bandwidths and outperforms the latter using “bad”
bandwidths.

39 / 50



Table: Median bias and mean absolute error for estimators of β1

Method Bwd n = 1000 n = 2000
(c1, c2) Med.bias MAE Med.bias MAE

Monotone CF .0952 .1172 .0690 .0842
Heckit .1767 .1881 .1862 .1870
Kernel (1, 1) -.0224 .0945 -.0072 .0676

(1, 2) -.0693 .1156 -.0483 .0817
(1, 3) -.1208 .1506 -.0969 .1163
(1, 4) -.1720 .1881 -.1465 .1552

(1/2, 1) .0393 .1635 .0418 .1180
(1/2, 2) -.0074 .1607 .0109 .1144
(1/2, 3) -.0685 .1666 -.0413 .1216
(1/2, 4) -.1264 .1819 -.0982 .1411
(2, 1) -.0442 .0985 -.0224 .0705
(2, 2) -.0919 .1247 -.0605 .0878
(2, 3) -.1472 .1634 -.1073 .1237
(2, 4) -.1906 .1997 -.1562 .1617
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Tuning Parameters: Less is More

I For kernel type estimators, the cross-validated bandwidths
(computationally more intensive) work better than the
’plug-in’ version.

I High-order expansions may not be easy, since the two-stage
estimation is involved.

I Our method is much easier to implement.

I Our estimated distribution of the error term and the
control function are automatically monotone.
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A real-data example

I Data from Schafgans (1998,JAE): Second Malaysian
Family Life Survey

I Re-examine the wage equations of the Malaysian Chinese.

I Y : log wage; D : labor market participation;
X = (exper, exper2, primary, secondary, fail, urban);

I W = (X,unearn, house, land). The exclusion restriction
builds on non-wage income/wealth.

I Consider male and female workers separately.

I Heckman’s two-step estimator; our monotone CF
estimator; Schafgans (1998)’s kernel estimator (Ichimura +
Robinson).
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A real-data example

Decreasing or increasing control function λ ?

I Heckman’s model: coefficient on IMR is 0.3891 for men and
−0.2787 for women. (IMR is decreasing.)

I The kernel estimates of control function λ (see next page).

I Our selectivity test.

=⇒ Decreasing CF for men and Increasing CF for women.

Table: The p-values for testing the presence of sample selection bias

Heckit t-test Monotone CF Kernel-based test
Dec Inc

Men .174 .080 .528 .866
Women .357 .592 .134 .060

Note: Dec CF for men and Inc CF for women are in bold font.
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Figure: The estimated control function λ̂(γ̂′W )
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A real-data example

Table: Wage equation for Chinese males; number of total obs =1,190;
number of working obs =559.

Heckit Monotone CF Schafgans (1998)
Exper .1109 .1237 .1051

[.0887, .1331] [-.0937, .1396] [.0837, .1265]
Exper.sq -.1840 -.2130 -.1750

[-.2316, -.1364] [-.2452, -.1411] [-.2213, -.1287]
Prim.sch .0235 .0260 .0232

[-.0205, .0674] [-.0345, .0760] [-.0184 .0648]
Secon.sch .1638 .1693 .1565

[.1404, .1872] [.1381, .1924] [.1341, .1789]
Fail -.1142 -.1148 -.1298

[-.2416, .0132] [-.2496, .0095] [-.2455 -.0141]
Urban .0751 .0543 .1047

[-.0376, .1878] [-.0311, .1837] [-.0025, .2119]

Note: The confidence intervals for the Monotone CF estimate are cal-

culated from 500 bootstrap samples.
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A real-data example

Table: Wage equation for Chinese females; number of total obs
=1,298; number of working obs =371.

Heckit Monotone CF Schafgans (1998)
Exper .0551 .0394 .0564

[.0298, .0804] [.0171, .0870] [.0295 .0833]
Exper.sq -.0511 -.0142 -.0635

[-.1138, .0116] [-.1274, .0411] [-.1289, .0019]
Prim.sch .1094 .1299 .0965

[.0460, .1728] [.0002, .1917] [.0383, .1547]
Secon.sch .1451 .0859 .0821

[.0892, .2010] [.0426, .1885] [-.0016, .1658]
Fail -.2145 -.2999 -.4214

[-.3754, -.0536] [-.4360, -.0914] [-.6872, -.1556]
Urban .0275 .0091 .0163

[-.0974, .1520] [-.1082, .1390] [-.1038, .1364]
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Empirical findings

I For male workers, the estimates are similar across three
approaches.

I For female workers, the estimated coefficients on Secon.sch
and Fail are quite different between Heckit and kernel
approaches.
I For these two coefficients, estimates under monotone CF are

closer to the kernel estimate.

I The negative sorting for female workers might be due to
assortative matching of marriage or the discrimination in
the labor market.

I Oaxaca decomposition: gender-wage differential explained
by observed characteristics
OLS: 17.09%; Heckman’s model: 21.16%; Kernel: 25.12%;
Monotone CF: 28.78%.
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Extension: A panel selection model

We consider a panel selection model by Kyriazidou (1997)

Yit = Dit(X
′
itβ0 + αi + εit),

Dit = I{W ′itγ0 + ηi + νit > 0}.

where we only observe the dependent variable for the selected
sample with Dit = 1,; i.e., Yit = Y ∗itDit for i = 1, · · · , n and
t = 1, 2.

Condition
(i). ηi in the selection equation is independent of Wi and νit.
(ii). εit is independent of νit′ given νit for t 6= t′.

=⇒ αi is a fixed effect and ηi is a random effect.
=⇒ This is stronger than Kyriazidou (1997) but weaker than
Wooldridge (1995).
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Panel selection: estimation

We have the following identity:

E[Yi1 − Yi2|Di1 = 1, Di2 = 1,Wi]

=(Xi1 −Xi2)
′β0 + λ01(W

′
i1γ0)− λ02(W ′i2γ0),

where

λ0t(W
′
itγ0) =

∫
E[εit|νit > −W ′itγ0 − ηi]︸ ︷︷ ︸

Monotone

dFη(ηi) for t = 1, 2.

In our Stage 2, given γ̂nt, we estimate the (differenced) outcome
equation under the shape restriction for λt:

min
β∈B,λ1,λ2∈D

∑
Di1=Di2=1

[
∆Yi −∆X ′iβ − λ2(W ′i2γ̂n2) + λ1(W

′
i1γ̂n1)

]2
,

where ∆Yi ≡ (Yi2 − Yi1) and ∆Xi ≡ (Xi2 −Xi1).
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Conclusion

I We propose a semiparametric sample selection model with
a monotonicity constraint on the selection correction
function.

I The model lies between the original Heckman selection
model and the non/semi-parametric selection model with
no restriction on the control function.

I The monotonicity is justified by converting an intuitive
dependence concept into conditions such as RTI or RTD.

I The model imposes no parametric distributional
assumptions and delivers automatic semiparametric
estimation and testing.

I Both the simulation and empirical application illustrate the
utility of our proposal.
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