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Abstract. The celebrated Heckman selection model yields a selection correction func-

tion (control function) proportional to the inverse Mills ratio, which is monotone. This

paper studies a sample selection model which does not impose parametric distributional

assumptions on the latent error terms, while maintaining the monotonicity of the control

function. We show that a positive (negative) dependence condition on the latent error

terms is sufficient for the monotonicity of the control function. The condition is equivalent

to a restriction on the copula function of latent error terms. Utilizing the monotonicity,

we propose a tuning-parameter-free semiparametric estimation method and establish root

n-consistency and asymptotic normality for the estimates of finite-dimensional parame-

ters. A new test for selectivity is also developed exploring the shape-restricted estimation.

Simulations and an empirical application are conducted to illustrate the usefulness of the

proposed methods.
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1. Introduction

The sample selection problem arises frequently in economics when observations are not

taken from a random sample of the population. Understanding the self-selection process

and correcting selection bias is a central task in empirical studies of the determinants

of occupational wages (Roy, 1951; Heckman and Honore, 1990), the labor supply behav-

ior of females (Heckman, 1974; Gronau, 1974; Arellano and Bonhomme, 2017), schooling
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choices (Willis and Rosen, 1979; Cameron and Heckman, 1998), unionism status (Lee,

1978; Lemieux, 1998), and migration decisions (Borjas, 1987; Chiquiar and Hanson, 2005),

among others. A prototypical sample selection model consists of the following outcome and

selection equations:

Y ∗i = X ′iβ0 + εi,(1.1)

Di = I{W ′
iγ0 + νi > 0},

Yi = Y ∗i Di, for i = 1, · · · , n,

where (Yi, Di, X
′
i, Z

′
i) are observed variables and (εi, νi) are latent error terms. The condi-

tional mean function of the observed dependent variable Yi is equal to

(1.2) E[Yi|Xi,Wi, Di = 1] = X ′iβ0 + λ0(W ′
iγ0),

where λ0(W ′
iγ0) = E[εi|νi > −W ′

iγ0,W ] corrects for the sample selection bias and is known

as the control function1 (Heckman and Robb, 1985, 1986).

Since the seminal work of Heckman (1979), Heckman’s two-step method has been the

default choice for estimating the sample selection model (1.1). The approach assumes the

joint normality on the error terms (ε, ν). As a result, the control function has a known

parametric form: λ0(W ′
iγ0) is proportional to the inverse Mills ratio φ(W ′

iγ0)/Φ(W ′
iγ0),

where φ(·) and Φ(·) are the density and cumulative distribution functions of the standard

normal distribution, respectively. An interesting, yet somewhat neglected, property of the

inverse Mills Ratio is its monotonicity.

In this paper, we consider a semiparametric sample selection model where the control

function is monotone. We prove that a positive (or negative) dependence condition on

(ε, ν), formally known as the right tail increasing (decreasing) (Esary and Proschan, 1972)

is sufficient for the monotonicity of the control function. Intuitively, the right tail increasing

(RTI) means that whenever ν is large, it is more likely that ε is large. This condition only

depends on the copula function without imposing any distributional assumption on the

latent errors either in the outcome or selection equation. In particular, a positive (negative)

correlation coefficient of the Gaussian copula (as in the generalized selection model of Lee

(1983)) leads to a monotonically decreasing (increasing) control function, regardless of

marginal distribution specifications. We also show that the condition is easily verified for

1In some alternative formulation (Heckman and Vytlacil, 2007a,b), the control function λ̃0(·) is defined
as a function of the propensity score Pi = Pr{Di = 1|Wi}. Therefore, for the model (1.1) one has

λ0(v) = λ̃0(F̄ν(−v)) where F̄ν is the survivor function of ν. However, this does not affect our discussion

regarding the monotonicity of the control function, as it is straightforward to see that λ0 and λ̃0 are
equivalent up to a monotone transformation.
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many parametric families including the Archimedean copula models, Generalized Farlie-

Gumbel-Morgenstern copula models, and normal mixture models. In practice, the choice

between a positive and negative dependence is up to the researcher because it is often

possible to postulate whether one gets positive or negative sorting for empirical questions.

Maintaining the monotonicity assumption of the control function, we propose a new

semiparametric estimation method and a new test for selectivity that explore this shape

restriction. Our method is fully automatic and free of any tuning parameter. The resulting

estimators of the regression coefficients β0 and γ0 are root-n consistent and asymptotically

normal. Compared with existing semiparametric procedures that make use of kernel or sieve

estimation for certain nonparametric components, the main advantage of our approach is

its tuning-parameter-free nature. The implementation of our method circumvents the need

to pick bandwidths in kernel smoothing, penalization parameters in cubic splines or the

order of polynomials in series estimation which are required by the majority of existing

semiparametric approaches and are often chosen in ad-hoc ways. One exception is Cosslett

(1991), who studies a tuning-parameter-free method different from our approach.2 However,

Cosslett (1991) only presents a consistency proof based on sample-splitting, whereas the

rate of convergence and the asymptotic distribution remain unknown.

Our estimation method consists of two stages. In the first stage, we use the likelihood

function for the binary choice data (Di,Wi) in terms of the regression coefficient and latent

error distribution in the selection equation:

(1.3) L1n(γ, F ) = Πn
i=1

{
F (−W ′

iγ)1−Di [1− F (−W ′
iγ)]

Di
}
,

to get our estimates (γ̂n, F̂nν(·; γ̂n)), following Groeneboom and Hendrickx (2018). In the

second stage, we obtain the estimator β̂n and λ̂n by estimating a partial linear model with

a monotone nonparametric component (Huang, 2002) and generated regressor W ′γ̂n:

(1.4) (β̂n, λ̂n) = arg min
β,λ

n∑
i=1

Di [Yi −X ′iβ − λ(W ′
i γ̂n)]

2
,

where λ is restricted to be either a decreasing or increasing function. Note that our esti-

mation method utilizes two monotonicity restrictions, i.e., one on the marginal distribution

function of latent error ν and the other on the control function λ. Both nonparametric

estimates are piece-wise constant functions with implicit window widths automatically de-

termined by the data. Another useful feature resides in the computational simplicity as

efficient algorithms are available (Groeneboom and Hendrickx, 2018; Meyer, 2013)3, so no

delicate optimization problems arise in the calculation.

2See Remark 3.2 for a detailed comparison between our approach and Cosslett (1991).
3The computation algorithms are available in R packages “isotone” and “coneproj”.
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Within our framework, the presence of the sample selection bias can be formally tested by

testing the constancy of the control function λ against a non-constant monotone function.

For this purpose, we adapt the likelihood ratio type test4 of Robertson, Wright, and Dykstra

(1988) and Sen and Meyer (2017) to our setting. It is well-known that the null asymptotic

distribution of the test statistic is complicated and tabulating the null critical value based

on the asymptotic distribution is impractical. We prove that a residual bootstrap procedure

approximates the null distribution of the test statistic and our test is consistent against

general alternatives. The substantial advantage of our test over the kernel type test (Fan

and Li, 1996) developed by Christofides, Li, Liu, and Min (2003) is that our test sidesteps

any bandwidth selection, which could involve sophisticated higher-order expansions if the

optimal version is desired (Gao and Gijbels, 2008).

Our main contributions are three-fold. First of all, we find a simple sufficient condition

for the monotone control function, which is related to an intuitive dependence concept of

two latent error terms. This demonstrates the monotonicity of the inverse Mills ratio in the

original Heckman model (Heckman, 1974, 1979) is shared by a much larger family without

requiring any parametric assumption. Not surprisingly, our framework nests some exist-

ing parametric generalizations (Lee, 1983; Marchenko and Genton, 2012) as special cases.

Second, our methodology complements the existing semiparametric approaches (Ahn and

Powell, 1993; Das, Newey, and Vella, 2003; Newey, 2009; Li and Wooldridge, 2002) in the

sense that we develop fully data-driven estimation and inference methods that free applied

researchers from choosing any tuning parameter, as long as the monotonicity of the con-

trol function is assumed. The aforementioned existing semiparametric approaches do not

impose any shape restriction on the control function, but one has to specify bandwidths,

orders of polynomials, or trimming sequences in the estimation or testing. We argue that

the imposed shape restriction is reasonable in the setting where researchers do have certain

prior knowledge regarding the dependence between latent errors. The intuitive dependence

relationship is formulated precisely in terms of the right tail increasing or decreasing. Both

the Monte Carlo simulation and real data application demonstrate the robust performance

of our procedures, whereas the kernel-based approaches are sensitive to the bandwidths

selection. An important application of our methodology regards estimating various treat-

ment effects for evaluating policy changes based on the generalized Roy model (Heckman,

Tobias, and Vytlacil, 2003; Heckman and Vytlacil, 2005; Brinch, Mogstad, and Wiswall,

2017; Mogstad, Santos, and Torgovitsky, 2018; Kline and Walters, 2019). Our semipara-

metric estimates directly deliver tuning-parameter-free estimates of the average treatment

effect (ATE), the average treatment effect on the treated (TTE), and the local average

4See the test statistic Ē2
01 in Chapter 2 of Robertson, Wright, and Dykstra (1988).
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treatment effect (LATE) without any parametric assumption on the error terms. Last but

not least, from a theoretical perspective, our work also contributes to the literature of two-

stage estimation and testing that involves shape restricted nonparametric components. A

distinction from Huang (2002) and Cheng (2009) is that the regressor W ′γ̂n depends on

the estimated coefficient γ̂n from the selection equation so that we have to characterize its

asymptotic effect on the estimation of the outcome equation. Unlike the sieve or kernel

approach adopted by Newey (2009) or Li and Wooldridge (2002), our estimator for the

control function is only a piece-wise constant function with random jump locations deter-

mined by the data. As a consequence, the estimated control function not only converges

at a slower rate than the kernel or sieve estimator, but also cannot be simply differentiated

to determine the asymptotic influence of γ̂n from the first stage estimation. Aiming at

those challenges, our proofs that make novel use of the empirical process theory and the

characterization of isotonic regression are also of independent interest.

1.1. Related Literature

The joint normality assumption on (ε, ν) in Heckman (1974, 1979) is more for convenience

than necessity for the sample selection model. Indeed, the imposition of false distributional

assumptions leads to inconsistent estimates and invalid inferences (Arabmazar and Schmidt,

1982), motivating the development of non-normal parametric selection model (Lee, 1983;

Marchenko and Genton, 2012) and more flexible semi/non-parametric estimation methods.

Substantial theoretical advances have been made where either a kernel or sieve type of

estimator is used to estimate nonparametric components of the selection model (Gallant

and Nychka, 1987; Newey, 2009; Robinson, 1988; Andrews, 1991; Ahn and Powell, 1993;

Andrews and Schafgans, 1998; Chen and Lee, 1998; Das, Newey, and Vella, 2003). We

refer readers to Vella (1998) and Chapter 10 of Li and Racine (2007) for a comprehensive

review. The implication is that one must choose a tuning parameter such as the bandwidth

in kernel smoothing or the number of sieve base functions, but the optimal choice is not

clear and could be quite delicate (Cattanoe, Farrell, and Jansson, 2018) in this context.

Inevitably, these methods require a considerable amount of intervention and judgment on

the part of the practitioner. Indeed, as noted by Heckman and Vytlacil (2007a)[p.4783],

“progress in implementing these procedures in practical empirical problems has been slow

and empirical applications of semi-parametric methods have been plagued by issues of

sensitivity of estimates to choices of smoothing parameters, trimming parameters, and the

like.”

One attempt that gives rise to a tuning-parameter-free estimation of the sample selec-

tion model is made by Cosslett (1991). In this approach, the profile maximum likelihood
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estimation of Cosslett (1983) is used to estimate the selection equation in the first stage.

The estimated marginal distribution F̂ν is used in the second stage when the partial linear

model of the outcome equation is fitted to the nonparametric component approximated by

a piece-wise constant function, where the jump locations are taken as those of F̂ν . Cosslett

(1991) proves the consistency of his estimator; however, the corresponding asymptotic dis-

tribution and the rate of convergence remain unknown. Our work is inspired by Cosslett

(1991), but the key distinction between our approach and his is that we also impose a shape

restriction on the control function in the second stage. Building on the recent breakthrough

on semiparametric shape-restricted estimation and inference (Groeneboom and Jongbloed,

2014; Groeneboom and Hendrickx, 2018; Baladbaoui, Groeneboom, and Hendrickx, 2017;

Sen and Meyer, 2017), we establish the root-n consistency and asymptotic normality of our

estimators for finite dimensional parameters.

Starting with Ayer, Brunk, Ewing, Reid, and Silverman (1955) and Grenander (1956),

there is a voluminous literature dealing with shape-restricted estimation, and we shall

content ourselves to mention only a few references related to our semiparametric models,

such as Cosslett (1983), Groeneboom and Wellner (1992), and Groeneboom and Hendrickx

(2018), while referring to Groeneboom and Jongbloed (2014) for a comprehensive account.

There has also been continued interest in shape-restricted estimation and inference in the

econometrics literature, as demonstrated by Matzkin (1991, 1993), Banerjee, Mukherjee,

and Mishra (2009), Lee, Tu, and Ullah (2014), and Chernozhukov, Newey, and Santos

(2015). Also, see the excellent review provided by Chetverikov, Santos, and Shaikh (2018)

for an extensive list of references in econometrics. The synthesis of these works is a shape

constraint on the nonparametric component that is suggested by theoretical models or

background knowledge. Within the context of sample selection models, Chen and Zhou

(2010) and Chen, Zhou, and Ji (2018) make use of another type of shape restriction; namely,

a symmetry condition on the control functions, thus eliminating selection bias through the

proper matching of propensity scores. However, this matching approach resorts to kernel

smoothing, which again depends on a properly chosen kernel bandwidth.

1.2. Organization and Notation

The rest of our paper is organized as follows. Section 2 characterizes a sufficient condition

for the monotonicity of the control function. Section 3 proposes an automatic semipara-

metric estimation method and a new test for the presence of sample selection bias. Section

4 establishes the asymptotic results. Section 5 extends our methodology to the Type-3 To-

bit model, the Generalized Roy model, and the panel selection model. Section 6 conducts

Monte Carlo simulations. Section 7 applies our method to a real data-set. The last section
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concludes. Proofs of main theorems are presented in Appendix A; whereas, proofs of more

technical lemmas are delegated to Appendix B. We end this section by introducing some

basic notations.

Throughout the paper, we work with the i.i.d. data (Yi, Di, Xi,Wi) for i = 1, ..., n. It is

convenient to introduce the indicator D̄i, defined by D̄i = 1 − Di for i = 1, · · · , n. Let p

denote the dimensionality of covariates X and write β0 ≡ (β01, β02, ..., β0p)
′. The covariates

X do not contain the constant term as the intercept term is absorbed into the control

function for identification purposes; see Andrews and Schafgans (1998) and Das, Newey,

and Vella (2003). Similarly, we let q denote the dimensionality of covariates W and we write

γ0 ≡ (γ01, γ02, ..., γ0q)
′. A normalization by taking γ01 = 1 is adopted, following Ichimura

(1993) and Klein and Spady (1993).

We use the standard empirical process notations as follows. For a function f(·) of a ran-

dom vector Z = (Y,D,X ′,W ′)′ that follows distribution P , we let Pf =
∫
f(z)dP (z),Pnf =

n−1
∑n

i=1 f(Zi), and Gnf = n1/2 (Pn − P ) f . Function f can be replaced by a random

function z 7→ f̂n(z;Z1, · · · , Zn). Therefore, P f̂n =
∫
f(z;Z1, · · · , Zn)dP (z), Pnf̂n =

n−1
∑n

i=1 f(Zi;Z1, · · · , Zn) and Gnf̂n = n1/2 (Pn − P ) f̂n.

Regarding the joint distribution of two latent error terms, we denote the copula function

of (ε, ν) by C(·, ·) and let Fε and Fν represent their marginal distribution functions. We

write F̄ε and F̄ν as the corresponding survivor functions. Also, let the survivor copula

function be Ĉ(u, v) ≡ u + v − 1 + C(1 − u, 1 − v). Moreover, the conditional distribution

Fε|ν>t(s) stands for Pr{ε ≤ s|ν > t}.

2. Monotonicity of the Control Function

The sample selection bias arises when the latent error terms ε and ν in the selec-

tion and outcome equations are dependent, leading to a non-constancy control function

λ(W ′γ0) = E[ε|ν > −W ′γ0,W ]. In Heckman’s original set up, (ε, ν) has a bivariate normal

distribution which gives rise to a monotone control function λ proportional to the inverse

Mills ratio. It is interesting to explore whether this is a special shape induced by the joint

normality assumption, or it is an omnipresent feature shared by a much larger family with-

out parameterizing the joint distribution of the error terms (ε, ν). In this section, we show

that if the latent error terms ν and ε exhibit certain positive (negative) dependence, then

the control function is monotonically decreasing (increasing).

Beyond the standard correlation coefficient, there exists a wealth of notions characterizing

the positive (negative) dependence between two random variables, as exemplified in the

pioneering work of Lehmann (1966). Two popular measures in Lehmann (1966) are the
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positive quadrant dependence (PQD)5 and stochastic increasing (SI)6. Complementing the

work of Lehmann (1966), Esary and Proschan (1972) proposed the notation of right tail

increasing, which is weaker than SI, yet stronger than PQD, and is defined as the following.

Definition 2.1. A random variable ε is said to be right tail increasing (decreasing) in ν,

which we denote as RTI(ε|ν) (RTD(ε|ν)), if P{ε > s|ν > t} is an increasing (decreasing)

function of t for all s.

The choice between RTI and RTD can be determined in empirical studies since applied

researchers do have certain prior knowledge about the sign or direction of the selection

bias. To avoid repetition, we focus on RTI(ε|ν) since the conditions related to RTD(ε|ν)

can be stated analogously. RTI is an intuitive positive dependence condition in the sense

that ε is more likely to take large values when ν increases. Considering the wage equation

where Y ∗ is the wage offer of an individual and D is the labor supply decision, RTI simply

means that those with a higher willingness to work are more likely to earn a higher wage

conditional on observed characteristics.

Referring to the benchmark selection model, i.e., the Roy model (Heckman and Honore,

1990; Heckman and Vytlacil, 2007a), the outcomes Y1 and Y0 are wages attached to different

sectors (or different education levels) that have the following specifications:

Y1 = X ′β1 + u1,(2.1)

Y0 = X ′β0 + u0,

with an observable switching cost (or price) C = W̃ ′βC . The decision rule states that the

individual self selects into the sector with a higher wage modulo the switching cost:

(2.2) D = I{X ′(β1 − β0)− W̃ ′βC + (u1 − u0) > 0}.

Suppose one only observes the wage corresponding to sector 1; i.e., Y = D×Y1. In terms of

our notation, we use W = (X ′, W̃ ′)′, γ0 = ((β1 − β0)′, β′C)′, and ν = u1−u0 in the selection

equation. The latent error in the outcome equation for sector 1 is ε = u1. For this simple

Roy model, RTI(ε|ν) is an appealing concept since it means that when u1 − u0 is larger,

it is more likely that u1 is large as well.

An equivalent characterization of RTI is given by the copula function,7 which we record

as the following lemma (see Theorem 5.2.2. in Nelsen (2006)).

5Random variables ε and ν are positive quadrant dependent if P{ε > s, ν > t} ≥ P{ε > s}P{ν > t} for
any s and t.
6The random variable ε is stochastic increasing in ν if P{ε > s|ν = t} is an increasing function of t for all
s.
7For sample selection models and generalized Roy models, the copula has been successfully employed to
obtain bounds on distributional treatment effects (Abbring and Heckman, 2007; Fan and Wu, 2010; Fan,
Guerre, and Zhu, 2017) and aid in identification for non-separable models (Arellano and Bonhomme, 2017).
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Lemma 2.1. We get RTI(ε|ν) if and only if

(2.3)
1− u− v + C(u, v)

1− v
is increasing inv;

or equivalently, if and only if

(2.4)
u− C(u, v)

1− v
is decreasing inv.

The main theorem in this section shows that RTI implies that the control function is

monotonically decreasing.

Theorem 2.1. If ε is right tail increasing in ν, then the control function λ(·) is monoton-

ically decreasing.

Proof. The following formula is more convenient for our purpose:

E[ε|ν > t] =

∫ +∞

−∞
sdFε|ν>t(s)(2.5)

=

∫ +∞

0

F̄ε|ν>t(s)ds−
∫ 0

−∞
Fε|ν>t(s)ds

=

∫ +∞

0

Ĉ(F̄ε(s), F̄ν(t))

F̄ν(t)
ds−

∫ 0

−∞

Fε(s)− C(Fε(s), Fν(t))

1− Fν(t)
ds.

See Proposition 4.2 in Shorack (2000). We examine the two terms on the right-hand side

of (2.5) separately. On one hand, we get∫ +∞

0

Ĉ(F̄ε(s), F̄ν(t))

F̄ν(t)
ds

=

∫ +∞

0

1− Fε(s)− Fν(t) + C(Fε(s), Fν(t))

1− Fν(t)
ds.

Hence,
∫ +∞

0
F̄ε|ν>t(s)ds is an increasing function of t by (2.3).

On the other hand, it is straightforward to see that

−
∫ 0

−∞

Fε(s)− C(Fε(s), Fν(t))

1− Fν(t)
ds

is again monotonically increasing with respect to v given (2.1). Finally, the control function

λ(t) = E[ε|ν > −t,W ] is monotonically decreasing with respect to t. �

We now provide some parameterized joint distributions of (ε, ν) that yield monotone

control functions. For simplicity, we focus on examples with positively dependent pairs ε

and ν, generating decreasing control functions λ(·).

Example 2.1 (Joint Gaussian Distribution/Gaussian Copula). The original Heckman’s

model (Heckman, 1974, 1979) under the joint normality assumption on (ε, ν) serves as our
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starting point. In this case, the control function has the well-known form depending on the

inverse Mill’s ratio:

(2.6) λ(W ′γ) =
ρσε
σν

{
φ(W ′γ)

Φ(W ′γ)

}
,

where ρ is the correlation coefficient and σε, σν stand for the individual standard deviation.

If ρ > 0, then the control function is decreasing because the inverse Mill’s ratio φ(·)
Φ(·) is

a decreasing function following after the log-concavity of normal distribution (Heckman

and Honore, 1990). In fact, the monotonicity property here only depends on the Gaussian

copula C(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v)) and the sign of its correlation coefficient denoted by

ρ . Without restricting the marginal distribution to be Gaussian, Lee (1983) first proposes

a generalized selection model with arbitrary (but known) marginal distributions coupled

with the Gaussian copula. A straightforward calculation shows that the partial derivative

of any Gaussian copula is

(2.7)
∂

∂v
C(u, v; ρ) = Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

)
,

which is an increasing function of v if and only if the correlation coefficient ρ ≥ 0. Hence,

by Theorem 5.2.10 of Nelsen (2006), the non-negative correlation implies the stochastic

increasing property, which further implies RTI(ε|ν). A complete analog shows that a non-

positive correlation leads to RTD(ε|ν). In sum, RTI(ε|ν) is equivalent to ρ ≥ 0 in case of

the Gaussian copula model.

Example 2.2 (Archimedean Copula). When the copula function is Archimedean, i.e.,

C(u, v) = ψ[−1] (ψ(u) + ψ(v)) with ψ as the generator function. Consider the following

cross-ratio function proposed by Oakes (1989):

(2.8) CR(u) = −uψ
(2)(u)

ψ(1)(u)

for u ∈ [0, 1], where ψ(j) denotes the j-th order derivative of the generator ψ, for j = 1, 2.

As shown by Spreeuw (2014), RTI(ε|ν) is equivalent to Oakes’ cross-ratio function being

greater or equal to 1; i.e., CR(u) ≥ 1 for any u. One popular Archimedean copula is the

Clayton copula:

(2.9) C(u, v;α) = (u−α + v−α − 1)−1/α, 0 ≤ u, v ≤ 1,

where the parameter α ≥ 0. Its generator function ψ(u;α) = u−α − 1. One could easily

verify that the cross-ratio function CR(u) = α+1 for any u ∈ [0, 1], which is always greater

or equal to 1. Hence, within the whole Clayton copula family, we have RTI(ε|ν).
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Example 2.3 (Generalized FGM Copula). A copula function belongs to the generalized

Farlie-Gumbel-Morgenstern (FGM) family if C(u, v; θ) = uv + θϕ(u)ϕ(v) (Amblard and

Girard, 2002) with ϕ as the generator function and θ as the parameter. According to

Amblard and Girard (2002), RTI(ε|ν) is equivalent to the condition that ϕ(u)/(u − 1)

is monotone. The original FGM copula specifies ϕ(u) = u(1 − u) so that C(u, v; θ) =

uv + θuv(1− u)(1− v). Note that ϕ(u)/(u− 1) = u in the original FGM, which is indeed

monotone; therefore giving rise to RTI(ε|ν) in our context.

On some occasions, it is easier to directly verify the monotonicity of the control function

than its sufficient condition RTI(ε|ν), as shown in the following normal mixture model.

Example 2.4 (A Normal Mixture). Let g(·, ·;σ1, σ2, ρ) be the joint density function of the

bivariate normal distribution N

([
0

0

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
. Suppose that (ε, ν) is a mixture

of two bivariate normals with “small” and “ large” variances. The joint distribution is

(2.10) fε,ν(s, t) = πg(s, t;σ1, σ2, ρ) + (1− π)g(s, t; kσ1, kσ2, ρ),

where the second normal component has a covariance matrix amplified by k > 1. The

conditional density of ε|ν = t can then be written as

fε|ν(s|t) =
πg(s, t;σ1, σ2, ρ) + (1− π)g(s, t; kσ1, kσ2, ρ)

πφ(t/σ2)/σ2 + (1− π)φ(t/kσ2)/kσ2

= Π(t;σ)
g(s, t;σ1, σ2, ρ)

φ(t/σ2)/σ2

+ (1− Π(t;σ))
g(s, t; kσ1, kσ2, ρ)

φ(t/kσ2)/kσ2

= Π(t;σ)φ

(
s− ρtσ1/σ2√

1− ρ2σ1

)
1√

1− ρ2σ1

+ (1− Π(t;σ))φ

(
s− ρtσ1/σ2√

1− ρ2kσ1

)
1√

1− ρ2kσ1

,

where φ(·) is the density of the standard normal and Π(t;σ) is given by

Π(t;σ) ≡ πφ(t/σ2)/σ2

πφ(t/σ2)/σ2 + (1− π)φ(t/kσ2)/kσ2

.

In other words, ε|ν = t is a normal mixture with components N (ρtσ1/σ2, (1− ρ2)σ2
1),

N (ρtσ1/σ2, (1− ρ2)k2σ2
1), and the mixing coefficient Π(t;σ). As a result, the conditional

expectation E[ε|ν = t] = ρtσ1/σ2, which is increasing in t as long as ρ > 0. Consider

any t < t′, the following inequality holds for the weighted averages where the conditional

expectation is weighted by the density of ν:∫∞
t

E[ε|ν = u]fν(u)du

1− Fν(t)
<

∫∞
t′

E[ε|ν = u]fν(u)du

1− Fν(t′)
,

which is the same as E[ε|ν ≥ t] < E[ε|ν ≥ t′]. This is equivalent to the control function

λ(t) = E[ε|ν ≥ −t] being monotonically decreasing with respect to t.
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Figure 1 plots the control function λ(t) = E[ε|ν ≥ −t] based on the previous examples

using specific joint distributions of the error terms (ε, ν). Panels (a) and (b) have the same

Gaussian copula, but with different marginal distributions: N(0, 1) and t(5), respectively,

where t(5) denotes a t distribution with the degree of freedom equal to 5. In each panel,

three lines represent the control functions coming from Gaussian copulas with different

correlations: ρ = 0.3, 0.6, and 0.9. The control functions in Panel (a) have the form

λ(t) = ρφ(t)/Φ(t) and in Panel (b) are λ(t) = ρφ(Φ−1 ◦ Fν(t))/Fν(t), where Fν(t) is the

CDF of t(5).

Panels (c) and (d) depict λ(t) for joint distributions that have the same t(5) mar-

ginal distribution, but with different copulas: the Clayton copula (see Example 2.2, with

α = 1, 5, 15) and the FGM copula (see Example 2.3, with θ = 0.5, 0.75, 1). Because a

FGM copula can only model a relatively weak dependence, the resulting λ(t) has limited

variations. Panels (e) and (f) show λ(t) for the joint distribution described in Example

2.4: a mixture of bivariate normal components with correlation ρ, mixing coefficient π, and

standard deviations σ1 = σ2 = 5. Panel (e) fixes the mixing coefficient at π = 0.9 and

presents λ(t) for the correlation ρ = 0.3, 0.6, and 0.9. Panel (f) fixes the correlation ρ = 0.9

and varies the value of the mixing coefficients among π = 0.3, 0.6, and 0.9.

Several interesting observations follow from the exhibited control functions. First, all the

control functions depicted in Figure 1 are decreasing by design, yet their shapes substan-

tially differ depending on the marginal distribution or the copula function. For the joint

normal case [Panel (a)], the dependence measure (correlation coefficient ρ) only changes

the control function proportionally; whereas for other cases, the dependence measure can

also affect the shape and curvature of λ. Furthermore, the overall range of dispersion of

a control function is related to the range of the dependence measure or parameter in the

copula function [compare Panels (c) and (d)]. Namely, the FGM copula is only suitable for

modeling moderate dependence, whereas the Clayton copula allows for a much wider range

of dependence relationship. Last, but not least, the more curved portion of the control

function can be either on the left or right as shown in Panels (e) and (f).
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Figure 1. Plots of the control function λ(t) = E[ε|ν ≥ −t] for different
joint distributions of (ε, ν).

(a) Gaussian copula with correlation ρ. (b) Gaussian copula with correlation ρ.
Marginal distributions: N(0, 1). Marginal distributions: t(5).

(c) Clayton copula with parameter α. (d) FGM Copula with parameter α.
Marginal distributions: t(5). Marginal distributions: t(5).
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(e) Normal mixture with correlation ρ. (f) Normal mixture with mixing coefficient π.
σ1 = σ2 = 5; π = 0.9. σ1 = σ2 = 5; ρ = 0.9.

3. Shape-restricted Estimation and Testing

In this section, we propose a simple two-stage semiparametric estimation method of

(β, λ(·)) that does not require any user-specified tuning parameter. We also develop a

new sensitivity test for the presence of sample selection bias exploring the shape restricted

estimation.

3.1. A Semiparametric Estimator without Tuning Parameters

Our estimation method is inspired by Cosslett (1991) in the sense that we obtain a

two-stage semiparametric estimation making use of shape restricted estimation of non-

parametric components in the model. The differences are mainly two-fold. First, we adapt

the important breakthrough by Groeneboom and Hendrickx (2018) to estimate the linear

index in the selection equation, which delivers root-n consistent and asymptotic normal

estimators γ̂n, unlike the profile maximum likelihood estimator (Cosslett, 1983), which is

only known to be consistent. More importantly, we also impose the shape restriction on the

control function in the second stage and utilize the isotonic regression technique (Huang,

2002). The detailed procedure is described as follows.
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Stage 1(i). For any γ, we compute the NPMLE for Fν(·) in the selection equation:

(3.1) F̂nν(·; γ) = arg max
F

n∑
i=1

[
D̄i logF (−W ′

iγ) + (1− D̄i) log(1− F (−W ′
iγ))

]
,

where D̄i ≡ 1−Di. The above optimization problem is well-defined and it generates a piece-

wise constant function F̂nν(·; γ) that can be characterized as follows. Fixing the parameter

γ, we consider the values of V̄
(γ)

1 = −W ′
1γ, · · · , V̄

(γ)
n = −W ′

nγ. Let V̄
(γ)

(1) ≤ · · · ≤ V̄
(γ)

(n) be the

order statistics with corresponding indicators D̄
(γ)
i for i = 1, · · · , n. Thereafter, F̂nν(·; γ) is

equal to the left derivative of the convex minorant of a cumulative sum diagram consisting

of the points (0, 0) and (
i,

i∑
j=1

D̄
(γ)
(j)

)
for i = 1, · · · , n,

as in Groeneboom and Hendrickx (2018).

Stage 1(ii). Given F̂nν(·; γ) at hand, our estimator γ̂n for the regression coefficient is the

zero-crossing point of the estimation equation8

(3.2)
1

n

n∑
i=1

Wi

[
D̄i − F̂nν(−W ′

i γ̂n; γ̂n)
]

= 0.

Stage 2. Given γ̂n, we estimate β and λ(·) by the least squares estimator under the

monotonicity restriction for λ:

(3.3) (β̂n, λ̂n) = arg min
β∈B,λ∈D

n∑
i=1

Di [Yi −X ′iβ − λ(W ′
i γ̂n)]

2
.

This optimization problem involves minimizing a convex function over a convex set; there-

fore, (β̂n, λ̂n) exist and are well-defined (Huang, 2002; Meyer, 2013). The efficient single-

cone-projection algorithm9 in Meyer (2013) can be directly applied to obtain (β̂n, λ̂n), which

give rises to a monotone piece-wise constant function λ̂n with jump sizes and locations de-

termined by the data.

Now we provide a heuristic discussion of each step. The first stage NPMLE F̂nν(·; γ)

and its characterization date back to Ayer, Brunk, Ewing, Reid, and Silverman (1955) in

analyzing current status data (Groeneboom and Wellner, 1992). Within the context of

binary choices models, the NPMLE is utilized by Cosslett (1983) to define the profile max-

imum likelihood estimator. However, only consistency results are available for Cosslett’s

estimator given the challenge that the estimated error distribution is neither linear nor

smooth. The key to developing a root-n consistent and asymptotic normal estimator for

8As F̂nν(·; γ̂n) is a step function, the estimating equation here may not hold exactly. Therefore, one needs
to search for the zero-crossing point as outlined in Groeneboom and Hendrickx (2018).
9This algorithm is available in the R package “coneproj” (Liao and Meyer, 2014).
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β0 while also maintaining the tuning-parameter-free feature is in Stage 1 (ii); we adapt

the Z-estimator from Groeneboom and Hendrickx (2018). Modulo the estimated latent

distribution function, one makes use of the population level moment condition

(3.4) E[W (D̄ − Fν(−W ′γ0))] = 0,

and plug in the first-step estimator F̂nν(·; γ) in the sample analog10. Referring to the second

stage assuming a monotone control function, it becomes straightforward to run the isotonic

regression after the inclusion of W ′γ̂n to control for the endogeneity.

Remark 3.1. We highlight a connection of our method with the sieve/series type estimator

in Das, Newey, and Vella (2003) and Newey (2009). When the control function is within

a nice functional class that can be approximated by sieves, it is natural to consider the ap-

proximation λn(·) =
∑Kn

j=1 bjPj(·), where P1(·), · · · , PKn(·) are basis functions in the sieve

space. Given a user-specified Kn, the coefficients b1, · · · , bKn can be obtained from the least

squares estimation, so the resulting sieve estimator is λ̃n(W ′γ̂n) =
∑Kn

j=1 b̃jPj(W
′γ̂n) with

estimated b̃1, · · · , b̃Kn. It turns out that our monotonic estimator λ̂n can also be expanded

in terms of certain basis as noted by Meyer (2013). First of all, λ̂n is a piece-wise con-

stant function with possible jumps at observed W ′
i γ̂n for i = 1, · · · , n. Denote the vector

λn = (λ̂n(W ′
1γ̂n), · · · , λ̂n(W ′

nγ̂n))′. This vector belongs to a convex cone; i.e., λn ∈ Λ.

Proposition 2.2 in Meyer (2013) shows that λn =
∑K0

j=1 b̂jej where K0 + 1 is the number of

distinct values of λ̂n and ej are edges of the cone Λ. Hence, there are two main differences

between our approach and the sieve method. First, the number of terms K0 is determined

by the data itself and is not chosen by practitioners. Second, the basis terms are formed by

edges of a cone associated with the shape restriction rather than smooth functions.

Remark 3.2. Cosslett (1991) has proposed an ingenious two-step procedure in which no

tuning parameter is needed. He first estimates γ0 and Fν0(·) by the profile maximum likeli-

hood estimator defined in Cosslett (1983). Note that the resulting estimators γ̃n and F̃nν(·)
are different from the ones in Groeneboom and Hendrickx (2018) that we adopt in our

first stage. The estimated marginal distribution function F̃nν(·) is a step-wise function

that is constant on a finite number Kn of intervals Ij = [ci−1, cj), for j = 1, ..., Kn and

c0 = −∞, cKn = +∞. In the second stage, Cosslett (1991) estimates the outcome equation

while approximating the control function λ(·) by Kn indicator variables {I(W ′γ̃n ∈ Ij)}Knj=1.

Only consistency results are derived for all estimates in Cosslett (1991) based on a sample-

splitting argument. The most important distinction of our method is that we impose the

10The main improvement made by Groeneboom and Hendrickx (2018) over Cosslett (1983) to restore
standard distributional theory for γ is that one does not need the error’s density function in the moment
condition (3.4). In contrast, one has to handle the error density in the likelihood based estimation appearing

in the score function, whereas the NPMLE F̂nν(·; γ) itself is not differentiable.
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monotonicity restriction on the control function λ(·). Although our estimated λ̂n(·) is also

a piece-wise function, it is monotone and the jump locations are determined by the second

stage estimation. In contrast, the estimated control function in Cosslett (1991) is not nec-

essarily monotone and its jump locations are determined by the first stage estimation. The

major theoretical improvement of our approach over Cosslett (1991) is that we obtain root-n

consistent and asymptotically normal estimators for the finite dimensional parameters.

3.2. A Shape-restricted Test for Selectivity

Under the null hypothesis of no selectivity bias, Heckman (1979) proposes a t-test on

the regression coefficient associated with the inverse Mill’s ratio, assuming joint normality

of the latent error terms. Melino (1982) shows that the t-test in Heckman (1979) is the

Lagrange multiplier test statistic, which inherits all the optimal properties in this context;

also see Vella (1998).

Within our framework, one does not face selection bias if the control function λ0 is con-

stant, whereas it becomes a non-constant decreasing (increasing) function in the presence of

selection bias. Building on this idea, we develop a new test to detect the sample selection.

To focus on the main idea, we consider the case where one has a decreasing control function

λ0. The cases with increasing control functions can be dealt with analogously. Let D be

the space of decreasing functions and C be the space of constant functions for λ0. The null

hypothesis is H0: λ0 ∈ C and the alternative is H1: λ0 ∈ D \ C.
The following notations facilitate our presentation. Denote Y = (Y1, · · · , Yn)′ and X as

the n×p matrix of covariates in the outcome equation. Let X be the linear space spanned by

the column vectors of X. The testing for selectivity regards the conditional mean function

E[Y |D = 1, X,W ]. We write the null space as S0 = X + C and the alternative space as

S1 = X + D. For any vector Y = (Y1, · · · , Yn)′, define the following norm ‖ Y ‖n,D as√∑n
i=1Di(Yi)2. Given the norm ‖ · ‖n,D, we write Π(Y|Sj) as the projection of Y on the

null and alternative spaces for j = 0, 1, respectively.11

Our test statistic is inspired by the likelihood ratio type test in Robertson, Wright, and

Dykstra (1988) and it compares the sum of squared residuals under the null and alternative

hypotheses:

(3.5) Tn =
‖ Π(Y|S0)− Π(Y|S1,γ̂n) ‖2

n,D

‖ Y − Π(Y|S0) ‖2
n,D

,

11Considering the norm ‖ · ‖n,D, only those observations in the selection subsample matter; i.e., the values
of Yi where its corresponding Di = 1. Therefore, the projection Π(Y|Sj) only depends on the observed
dependent variables Yi for which Di = 1 and the coordinate values for which Di = 0 can be defined
arbitrarily. Similar remarks apply to Π(ε|Sj) for j = 0, 1 in Section 4.2.
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where the additional subscript γ̂n on the space S1 signifies the fact that the linear index

v = w′γ0 has to be estimated by w′γ̂n. Note that under the null hypothesis, the residual

term Y − Π(Y|S0) is simply the residual term from the ordinary leasts square (OLS)

estimation over the subsample with D = 1.

The asymptotic distribution of Tn under the null hypothesis is very complicated (see

Section 2.3 of Robertson, Wright, and Dykstra (1988)). The recent breakthrough by Sen

and Meyer (2017) shows that the null critical value for this type of test statistic can be

approximated by the bootstrap method. Considering the sample selection model, because

the control function boils down to a constant term under H0, a centered residual bootstrap

suffices. Let An ≡ {i = 1, 2, ...n : Di = 1} and n1 ≡
∑

i∈An Di. Let ε̂i, i ∈ An be the

OLS residual obtained from regressing Yi on the constant term and covariates Xi for the

subsample with Di = 1, and ε̄n =
∑

i∈An ε̂i/n1. In each bootstrap sample (b = 1, 2, ...B),

one obtains ε∗i,b for i ∈ A by re-sampling the centered residuals ε̂i− ε̄n. One then generates

Y ∗i,b = α̃n + X ′iβ̃n + ε∗i,b for i ∈ An, where α̃n and β̃n denote the OLS estimate for the

intercept and slope coefficient, respectively. Finally, by letting Y∗b = (Y ∗1,b, · · · , Y ∗n,b)′, the

bootstrap version of our test statistic is

(3.6) T ∗n,b =
‖ Π(Y∗b |S0)− Π(Y∗b |S1,γ̂n) ‖2

n,D

‖ Y∗b − Π(Y∗b |S0) ‖2
n,D

.

One can easily repeat the above process B times and obtain the desired critical value by

tabulating (T ∗n1, · · · , T ∗nB).

4. Main Results

In this section, we establish root-n consistency and the asymptotic normality of our

estimator of γ̂n and β̂n. The nonparametric estimates for λ0 and Fν0 converge at the cubic

root rate (modulo some log n term). We also justify the bootstrap procedure in Section 3

to approximate the null sampling distribution and show the consistency of our test.

4.1. Asymptotic Properties of the Semiparametric Estimation

We start with some preliminary notations borrowed from Newey (2009). Denote Vi =

W ′
iγ0 and

(4.1) Ui = Di(Xi − E[Xi|Di = 1, Vi]).
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We assume Hβ ≡ E[UiU
′
i ] is non-singular. Moreover, we define the centered error term as

(4.2) εi = Di(Yi −X ′iβ0 − λ0(Vi))

with Σ ≡ E[ε2iUiU
′
i ] and Hγ ≡ E[Ui

∂λ0(vi)
∂vi

Wi]. Regarding the first-stage estimation, the

NPMLE F̂nν in Cosslett (1983) provides an estimate of

(4.3) Fν(u; γ) ≡ P
{
D̄(γ)| − V (γ) = u

}
=

∫
Fν0(u−w′(γ0− γ))fW |W ′γ(w| −W ′γ = u)dw,

for any fixed γ; see Groeneboom and Hendrickx (2018). In the sequel, we also denote its

density by fν(u; γ)¿ Short-hand notations such as Fν0(u) and fν0(u) are used for Fν(u; γ0)

and fν(u; γ0) in case where one plugs in the true γ0.

The following regularity conditions will be assumed throughout the paper.

Condition 1. We assume both Y and X have sub-exponential tails, i.e., there exists some

finite constant terms M and σ0 such that

(4.4) 2M2
(
E[e|Y |/M ]− 1− E|Y |/M

)
≤ σ2

0

and

(4.5) 2M2
(
E[e|X|/M ]− 1− E|X|/M

)
≤ σ2

0.

Condition 2. The latent error terms (ε, ν) are independent of (X,W ).

Condition 3. There exists a local neighborhood N0 around γ0 such that for any γ ∈ N0,

W ′γ is a non-degenerate random variable conditional on X.

Condition 4. The true regression parameters β0 and γ0 belong to the interior of some

compact sets in Rp and Rq, respectively.

Condition 5. The true monotone control function λ0 is continuously differentiable with

its derivative denoted by λ̇(·). Moreover, its inverse denoted by λ−1
0 (·) is globally Lipschitz

continuous.

Condition 6. The function Fν(·; γ) has a strictly positive continuous derivative which

stays away from zero for all γ in the parameter space. Moreover, the function Fν(u; γ) is

twice continuously differentiable with respect to u on the interior of its support for all γ in

the parameter space.

Condition 7. The probability Pr{D = 1} is bounded away from zero.

Condition 8. The density fν(u; γ) and conditional expectations E[W |W ′γ = u] and

E[WW ′|W ′γ = u] are twice continuously differentiable w.r.t. u. The functions γ 7→
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fν(u; γ), γ 7→ E[W |W ′γ = u] and γ 7→ E[WW ′|W ′γ = u] are continuous functions for u in

the definition domain and all γ in the parameter space. The support of W is compact.

Condition 9. The conditional mean function χ(u) ≡ E[X|D = 1,W ′γ0 = u] is globally

Lipschitz continuous, i.e., for any u1, u2, one has

(4.6) |χ(u1)− χ(u2)| ≤ L|u1 − u2|,

for some positive finite constant L. The matrix E[XX ′|D = 1] is of full rank.

The assumptions are standard and adapted from Ichimura (1993), Klein and Spady

(1993), Huang (2002), Heckman and Vytlacil (2007b), Groeneboom and Hendrickx (2018),

and Newey (2009). The only condition that we want to emphasize concerns the exclusion

restriction of W in Condition (3). Namely, we strengthen the identification condition (A-2)

in Heckman and Vytlacil (2007b) to ensure that any linear combination W ′γ is a non-

degenerate random variable conditional on X for γ in a local neighborhood N0 around γ0,

not just for the true linear index W ′γ0. Recall the estimated λ̂n is not differentiable, so

this technical requirement is needed to obtain the consistency and convergence rates for

the parameters in the outcome equation given the first stage estimate γ̂n; see the details

in our proof of Lemma (10.9). For empirical applications, the distinction is rather minor,

because Xi variables are typically a strict subset of Wi and there are additional independent

variables in Wi altering the selection equation without affecting the outcome equation.

We define two matrices appearing in the asymptotic covariance matrix of the estimator

in Groeneboom and Hendrickx (2018) as follows:

(4.7) A = E
[
fν0(−W ′γ0) {W − E[W |W ′γ0]}⊗2

]
and

(4.8) B = E
[{

(Fν0(−W ′γ0)− D̄)(W − E[W |W ′γ0])
}⊗2
]
.

The following lemma regarding the asymptotic analysis of γ̂n and F̂nν(·; γ) is directly form

Groeneboom and Hendrickx (2018).

Lemma 4.1. Under Conditions 1 to 9, γ̂n is root-n consistent and asymptotically normal.

(4.9) n1/2 (γ̂n − γ0)⇒ N(0, Vγ),

where Vγ is equal to A−1BA−1. Regarding the latent error distribution, one gets the follow-

ing cubic rate uniform convergence (modulo the logarithm factor):

(4.10) sup
u

∣∣∣F̂nν(u; γ̂n)− Fν0(u)
∣∣∣ = Op(log n× n−1/3).
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Our first main theorem in this section shows the consistency of (β̂n, λ̂n) and gives a

crude yet fast enough rate to establish the asymptotic normality in Theorem (4.2). For the

nonparametric component, we use the following L2 norm to metrize its convergence:

(4.11) ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2≡
∫ (

λ̂n(w′γ̂n)− λ0(w′γ0)
)2

fW |D=1(w)dw,

where fW |D=1(·) is the conditional density of W given D = 1.

Theorem 4.1. Suppose Conditions 1 to 9 hold, then one has

(4.12) |β̂n − β0|+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖= Op(n
−1/3 log n).

The preceding result regarding the convergence of the control function is stated depending

on the estimated γ̂n. The next statement decouples λ̂n and γ̂n and it implies the uniform

convergence of λ̂n to λ0 over any compact set within the interior of the support.

Lemma 4.2. Assume the conditional density function of W given D = 1 is uniformly

bounded from below by a positive constant q in its support. Let [v, v̄] denote the support of

V = W ′γ0, then

(4.13)

(∫ v̄−ωn

v+ωn

(
λ̂n(v)− λ0(v)

)2

dv

)1/2

= Op(n
−1/3 log n)

for all sequence ωn such that n1/2ωn →∞ and v + ωn ≤ v̄ − ωn.

Remark 4.1. There are general results on establishing consistency and rate of convergence

for two-step semiparametric estimation methods [ Chen, Linton, and Van Keilegom (2003);

Chen, Lee, and Sung (2014)], however, these results are not directly applicable to our

scenario mainly because the estimated control function is not smooth. Specifically, Theorem

2 in Chen, Linton, and Van Keilegom (2003) focuses on the case where the second stage

estimates converge at the root-n rate. Furthermore, since our estimated control function

is not differentiable and cannot be directly separated from the first stage estimation, the

Condition (B.4) in Lemma B.1 of Chen, Lee, and Sung (2014) is hard to verify in our

context. To exemplify the challenge from a different perspective, the consistency proof

in Cosslett (1991) relies on the sample-splitting trick in which the selection equation and

outcome equation are estimated using separate subsamples. A rigorous proof based on the

full sample is absent in Cosslett (1991).

The large sample property of β̂n is more complicated and is our main focus. Unlike the

setup in Newey (2009) or Li and Wooldridge (2002), where the nonparametric control func-

tion is subject to certain smoothness restriction, the control function is estimated utilizing

the monotonicity restriction in the outcome equation for our model. As a consequence, the
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estimated control function λ̂n(·) is piece-wise constant with random jump locations and it

is not differentiable. The crux of our proof is to determine the asymptotic contribution of

the estimated γ̂n to β̂n based on the characterization of the isotonic regression for partial

linear models (Huang, 2002; Mammen and Yu, 2007; Cheng, 2009)] and the empirical pro-

cess theory (Groeneboom and Hendrickx, 2018; Baladbaoui, Durot, and Jankowski, 2016;

Baladbaoui, Groeneboom, and Hendrickx, 2017)].

Theorem 4.2 (Asymptotic Normality). Suppose Conditions 1 to 9 hold, then we get

(4.14)
√
n
(
β̂n − β0

)
⇒ N(0, Vβ),

where

Vβ ≡ H−1
β

(
Σ +HγVγH

′
γ

)
H−1
β

and Vγ is the asymptotic covariance matrix for γ̂n in Lemma 4.1.

Remark 4.2. The asymptotic variance matrix for β̂n takes the generic form of two-step

estimator in Newey (2009). The first part, H−1
β ΣH−1

β , is the asymptotic covariance of an

oracle estimator assuming that γ0 is known; whereas H−1
β HγVγH

′
γH
−1
β captures the effect

from estimating γ0 in the first stage. Given the additive structure of Vβ, a more efficient

estimator for γ0 in the selection equation would improve the performance of β̂n. In our

approach, the Groeneboom and Hendrickx (2018) estimator is not as efficient as the one

in Klein and Spady (1993). However, the advantage is that one avoids picking any tuning

parameter by an ad-hoc method.

Remark 4.3. A close examination of our proof reveals that only root-n consistency of γ̂n

is needed in deriving the asymptotic properties of β̂n and λ̂n. In the first stage estimation

of the selection equation, the maximum rank correlation estimator of Han (1987) can be

used for the coefficient γ0, which is also tuning-parameter-free. Our preference is mainly

driven by two concerns. First, the computational cost associated with the maximum rank

correlation estimator is quite non-trivial, because one has to maximize over the indicator

functions. Second, Han (1987) sidesteps the estimation of the marginal distribution Fν(·),

which is needed in estimating the treatment effect of treated when applied to the generalized

Roy model (Heckman, 1990); see the discussion in Section 5.2 of this paper.

4.2. Validity of the Semiparametric Test

We show the validity of the bootstrap inference procedure described in Section 3. Let

Hn be the distribution function of Tn and H∗n be the (conditional) distribution function
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of T ∗n,b given the observations (Yi, Di, X
′
i, Z

′
i)
n
i=1. Furthermore, we define the vector ε =

(ε1, · · · , εn)′.

Theorem 4.3. Assume Conditions 1 to 9 hold. Let dL denote the Levy distance between

two distribution functions. Also, suppose the sequence

(4.15) E[n1 ‖ ε− Π(ε|S0) ‖−2
n,D] < +∞,

then we have

(4.16) dL(Hn, H
∗
n)→ 0 a.s.

Remark 4.4. The bound in equation (4.15) is from Theorem 1 in Sen and Meyer (2017).

They state it as a high-level assumption. Note that the equation (4.15) is imposed to ensure

the existence of E[(ε′Qε)−1] for some idempotent matrix Q with rank equal to n1− (p+ 1).

When the error terms ε follow a normal distribution, one can resort to Lemma 2 in Chapter

2 of Ullah (2004), which requires n1− (p+ 1) > 4. For general cases where the distribution

of ε belongs to the exponential family, analogous conditions can be found in Section 2.3 or

2.4 of Ullah (2004).

A direct consequence of the above theorem is the validity of using bootstrap critical value

(Lemma 23.3 in Van Der Vaart (1998)). The lower p-th quantile of bootstrap distribution

is denoted by the quantity cnp.

Corollary 4.1. Under the null hypothesis, for any α ∈ (0, 1), we have

(4.17) Pλ0{Tn > cn,1−α} → α

as n→∞.

We analyze the power property of our test against the alternative hypothesisH1 : λ0 ∈ D\
C. To facilitate the presentation, we denote ξ ≡ (ξ1, · · · , ξn)′ ≡ (X ′1β+λ(W ′

1γ), · · · , X ′nβ+

λ(W ′
nγ))′. Let the projections to the null and alternative spaces be ξS0 and ξS1 , respectively.

To highlight the asymptotic framework, we explicitly denote the dependence on the sample

size n of the quantities involved so that we write λ0,n.

Theorem 4.4. For any sequence {λ0,n} ∈ D \ C, if the following conditions hold:

(4.18) lim
n→∞

‖ ξS0 − ξS1 ‖2
n,D

n
= c

and

(4.19) lim
n→∞

‖ Y − ξS0 ‖2
n,D

n
= σ2
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for some positive constant c and σ2, then

(4.20) Pλ0,n{Tn > cn,1−α} → 1

as n→∞.

Remark 4.5. When the control function is constant, the isotonic estimator is still con-

sistent. In fact, the rate of convergence is almost close to the parametric root-n rate as

shown by Zhang (2002) when the underlying function is (piece-wise) constant, leading to

Tn = op(1) under the null hypothesis. On the other hand, the Tn is bounded away from zero

under the alternative hypothesis for functions deviating from constant in a non-trivial way.

The latter condition is formalized by equation (4.18), which is also needed in studying the

power properties of related tests in Sen and Meyer (2017).

5. Extensions

In this section, we discuss three different extensions of our proposed methodology.

5.1. A Type-3 Tobit Model

Our framework can be easily extended to the Type-3 Tobit model (Amemiya, 1984) where

the selection equation involves a censored dependent variable rather than a binary choice.

The model consists of the following two equations for the latent dependent variables:

Y ∗i = X ′iβ0 + εi;(5.1)

T ∗i = W ′
iγ0 + νi.

One observes the censored dependent variable Ti = max{T ∗i , 0} and the indicator Di ≡
I{T ∗i > 0} from the selection equation. Furthermore, the dependent variable from the

outcome equation is only observed when the censored variable is positive; i.e., Yi = Y ∗i Di,

from the outcome equation for i = 1, · · · , n. In a typical labor economics application,

max{T ∗i , 0} represents the working hours for the i−th worker, whereas Yi denotes the (log-

)wage if he/she is indeed working. In contrast to the standard sample selection model

(1.1), one observes working hours when it is positive, whereas in the model (1.1) one only

knows whether working hours are positive or zero. Many ingenious semiparametric methods

have been proposed for estimating the Type-3 Tobit model, including Powell (1987), (Ahn

and Powell, 1993; Lee, 1994; Chen, 1997; Honoré, Kyriazidou, and Udry, 1997; Li and

Wooldridge, 2002), among others. It is worthwhile to note that under certain symmetry

conditions, the methods by Chen (1997) and Honoré, Kyriazidou, and Udry (1997) are
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tuning-parameter-free and do not require the exclusion restriction in the selection equation;

i.e., one can take X = W .

Our approach complements the aforementioned works in the case where a shape-restricted

control function is incorporated into the model (5.1). Since the conditional mean function

of the observed dependent variable Y has the following form:

(5.2) E[Y |X,W,D = 1] = X ′β0 + λ0(W ′γ0),

our estimation and testing procedure is directly applicable if one only utilizes the binary

choice data (Di,Wi) in the first stage. However, one could also modify our first step as

any other Tobit type estimator can be used to deliver a tuning-parameter-free and root-n

consistent estimator γ̂n, like the censored quantile regression estimator in Powell (1987).

Given γ̂n, we estimate β0 and λ0(·) by

(5.3) (β̂n, λ̂n) = arg min
β∈B,λ∈D

n∑
i=1

Di [Yi −X ′iβ − λ(W ′
i γ̂n)]

2
,

under the monotonicity restriction such that λ belongs to the space of decreasing functions

D.

5.2. A Generalized Roy Model

An important feature of a sample selection model is its use for evaluating potential out-

comes and various treatment effects with the corresponding policy implications (Heckman

and Vytlacil, 2007a). We consider the generalized Roy model (or the Type-5 Tobit model

in Amemiya (1984)) where the treatment outcome Y (1), control outcome Y (0), and the

treatment status D are specified by

Yi(1) = X ′β0,1 + ε1i,(5.4)

Yi(0) = X ′β0,0 + ε0i,

Di = I{W ′
iγ0 + νi > 0}.

However, one only observes (Yi, Di, Xi,Wi) with Yi = DiYi(1) + (1 − Di)Yi(0) for i =

1, · · · , n. Since the conditional mean functions of the observed dependent variables are

E[Y (1)|X,W,D = 1] = X ′β0,1 + λ0,1(W ′γ0),(5.5)

E[Y (0)|X,W,D = 0] = X ′β0,0 + λ0,0(W ′γ0),(5.6)

with control functions λ0,1 and λ0,0, it is straightforward to apply the two-step estimation

separately for the treatment and control groups (Amemiya, 1984).
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In the program evaluation, researchers are mainly interested in the average treatment

effect (given X = x):

(5.7) ATE(x) = E[Y (1)− Y (0)|X = x] = x′(β0,1 − β0,0),

and the average treatment effect on the treated (given X = x and W = w):

TTE(x,w) =E[Y (1)− Y (0)|D = 1, X = x,W = w](5.8)

= x′(β0,1 − β0,0) + E[ε1 − ε0|D = 1, X = x,W = w];

see Heckman and Vytlacil (2007a). According to Heckman (1990), one has

(5.9) − E[ε0|D = 1, X = x,W = w] =
Pr{D = 0|W = w}
Pr{D = 1|W = w}

E[ε0|D = 0, X = x,W = w].

Therefore, the treatment effect on the treated is also identifiable as

TTE(x,w) =x′(β0,1 − β0,0) + λ0,1(w′γ0) +
Pr{D = 0|W = w}
Pr{D = 1|W = w}

λ0,0(w′γ0)(5.10)

=x′(β0,1 − β0,0) + λ0,1(w′γ0) +
Fν0(−w′γ0)

F̄ν0(−w′γ0)
λ0,0(w′γ0),

where F̄ν0(·) ≡ 1−Fν0(·) denotes the marginal survival function of ν. Assuming monotone

control functions λ0,1 and λ0,0, one can apply our semiparametric method to two sets

of sample selection data, (Yi(1), Di, Xi,Wi) and (Yi(0), Di, Xi,Wi), separately to obtain

(β̂n,1, λ̂n,1), (β̂n,0, λ̂n,0), and (γ̂n, F̂nν), which deliver consistent estimates for ATE(x) and

TT (x,w) without any tuning parameter.

Considering the equivalence result in Vytlacil (2002), one can also make use of the

generalized Roy model to uncover the Local Average Treatment Effect (LATE), which is

the average effect for a subpopulation of compliers compelled to alter their treatment status

by an external instrument (Imbens and Angrist, 1994). In particular, one has

LATE(X = x,D(w) = 1, D(w̄) = 0) = x′(β0,1 − β0,0) + E[ε1 − ε0| − w′γ0 ≤ ν ≤ −w̄′γ0].

Under the marginal mean restriction that E[ε1] = E[ε0] = 0, one can derive the selection

correction term E[ε1 − ε0| − w′γ0 ≤ ν ≤ −w̄′γ0] explicitly, which leads to

(5.11) LATE(X = x,D(w) = 1, D(w̄) = 0) = x′(β0,1 − β0,0) + Γ1(w, w̄)− Γ0(w, w̄),

where

Γ1(w, w̄) = − F̄ν0(−w̄′γ0)λ0,1(w̄) + Fν0(−w′γ0)λ̄0,1(w)

Fν0(−w̄′γ0)− Fν0(−w′γ0)
,(5.12)

Γ0(w, w̄) = − F̄ν0(−w̄′γ0)λ̄0,0(w̄) + Fν0(−w′γ0)λ0,0(w)

Fν0(−w̄′γ0)− Fν0(−w′γ0)
,(5.13)
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with

(5.14) λ̄0,j(w) ≡ − F̄ν0(−w)λ0,j(w)

Fν0(−w)
for j = 0, 1.

Now it becomes clear that the semiparametric estimates produced by our procedure deliver

a semiparametric estimation of LATE, which generalizes Heckman, Tobias, and Vytlacil

(2003) where these structural control function estimators are based on multivariate normal

or t distributions of the error terms.

5.3. A Panel Selection Model

We consider a two-period panel data model in Kyriazidou (1997):

Y ∗it = X ′itβ0 + αi + εit;(5.15)

Dit = I{W ′
itγ0 + ηi + νit > 0}.

We only observe the dependent variable for the selected sample with Dit = 1,; i.e., Yit =

Y ∗itDit for i = 1, · · · , n and t = 1, 2. In order to utilize the control function approach,

we make the following assumptions regarding the latent errors (εit, νit) and unobserved

heterogeneity terms (αi, ηi).

Condition 10. The heterogeneity ηi in the selection equation is independent of Wi and

νit. εit is independent of νit′ given νit for t 6= t′.

Thereafter, we have the following identity:

(5.16) E[Yi1 − Yi2|Di1 = 1, Di2 = 1,Wi] = (Xi1 −Xi2)′β0 + λ01(W ′
i1γ0)− λ02(W ′

i2γ0),

where

(5.17) λ0t(W
′
itγ0) =

∫
E[εit|νit > −W ′

itγ0 − ηi]dFη(ηi) for t = 1, 2,

where Fη(·) stands for the distribution of ηi. Apparently, the condition we present in

Section 2 leads to the monotonicity of E[εit|νit > −W ′
itγ0 − ηi] with respect to W ′

itγ0 for

any ηi. Integrating out ηi does not alter the monotonicity, so the exact same monotone

restriction is inherited by the control functions λ0t(W
′
itγ0) for t = 1, 2.

Our assumptions regarding the heterogeneity terms are stronger than Kyriazidou (1997),

yet are weaker than Wooldridge (1995), in the sense that αi in the outcome equation is

a fixed effect that can depend on covariates and ηi in the selection equation is a random

effect that is independent of covariates and other error terms. Nevertheless, there is no

parametric assumption on any unobserved error term in our model. In comparison, the

model considered by Kyriazidou (1997) imposes no restriction on the dependence structure
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of latent error terms (nor on the relationship between error and covariates), whereas the

heterogeneity ηi is excluded from the selection equation in the model of Wooldridge (1995).

We describe below the simple semiparametric estimation for the panel data setting.

Stage 1 (i) For any γ, we compute the NPMLE for F (·) for two selection equations in

both time periods:

(5.18) F̂nνt(·; γ) = arg max
F

n∑
i=1

[
D̄it logF (−W ′

itγ) + (1− D̄it) log(1− F (−W ′
itγ))

]
,

where D̄it = 1−Dit for i = 1, · · · , n and t = 1, 2.

Stage 1 (ii) Given F̂nνt(·; γ) at hand, our estimator γ̂nt for the regression coefficient is the

zero-crossing point of the estimation equation:

(5.19)
1

n

n∑
i=1

Wit

[
D̄it − F̂nνt(−W ′

itγ̂nt; γ̂nt)
]

= 0.

Stage 2 Given γ̂nt, we estimate β0 and λ0t(·) by the least squares estimator under the

shape restriction for λt:

(5.20)

(β̂n, λ̂n1, λ̂n2) = arg min
β∈B,λ1,λ2∈D

∑
Di1=Di2=1

[∆Yi −∆X ′iβ − λ2(W ′
i2γ̂n2) + λ1(W ′

i1γ̂n1)]
2
,

where ∆Yi ≡ (Yi2− Yi1) and ∆Xi ≡ (Xi2−Xi1). This optimization problem boils down to

minimizes a convex function over a convex set; therefore, the estimator (β̂n, λ̂n1, λ̂n2) exists

and is well-defined (Meyer, 2013).

One can adapt our theorems and the proofs in Mammen and Yu (2007) and Cheng

(2009) to show the root-n consistency and asymptotic normality for β̂n. In contrast, the

estimator for β0 proposed by Kyriazidou (1997) relies on kernel smoothing to control for

the endogeneity associated with ηi for the more general model and the convergence rate is

slower than
√
n.

6. Monte Carlo Simulations

This section conducts Monte Carlo simulations to evaluate the finite sample performance

of our estimator based on a monotone control function. In the following, we refer to it as

“monotone CF” estimator. Two alternative procedures are considered for comparison. The

first one is Heckman’s two-step estimator requiring joint normality on the latent errors. The

second one is a kernel-based estimator, which treats the control function λ(·) as completely

unknown and does not impose any monotonicity restriction. Referring to the latter one,

empiircal researchers often combine Ichimura (1993) or Klein and Spady (1993)’s estimator
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for the single index model and Robinson (1988) for the partial linear model (Schafgans,

1998, 2000; Martins, 2001).

We consider a simulation design with the following outcome and selection equations:

Y ∗i = β1X1i + β2X2i + εi,(6.1)

Di = I{−1 + γ1X1i + γ2X2i + γ3W̃i + νi > 0},

with β1 = −1, β2 = 1, γ1 = 1,γ2 = 0.5, and γ3 = −2. The observed random vectors consist

of {(Yi, Di, X1i, X2i, W̃i)}ni=1, where Yi = Y ∗i Di. Let X1i follow the uniform distribution on

[−
√

3,
√

3], X2i follow the standard normal distribution, W̃i follow the exponential distri-

bution with a unit variance.12 The joint distribution of (ε, ν) is a bivariate normal mixture

as follows.13[
ε

ν

]
∼ πN

([
0

0

]
,

[
σ2 ρσ2

ρσ2 σ2

])
+ (1− π)N

([
0

0

]
,

[
σ2 ρσ2

ρσ2 σ2

]
× 152

)
,

with π = 0.9, σ = 0.25, and ρ = 0.9. The error terms ε and ν have standard deviations

around 1.21. The proportion of Di = 1 is about 0.37. Simulation results are based on

1, 000 replications.

Table 1 presents the median bias and the mean absolute value (MAE) of our shape

restricted estimator (shape rest.), Heckman’s two-step estimator (Heckit), and a kernel-

based semiparametric estimator (Klein-Spady-Robinson). The kernel-based estimator uses

the Klein-Spady estimator for γ2 and γ3 in the first stage and the Robinson estimator (for

the partial linear model) as the second stage. Note that two bandwidths are required in this

kernel-based estimator. Our simulations set bandwidth choices c1×hcv,1 for the Klein-Spady

estimator and c2 × hcv,1 for the Robinson estimator, where both bandwidths (hcv,1, hcv,2)

are selected by cross-validation. We further vary the constant terms c1 = {1/2, 1, 2} and

c2 = {1, 2, 3, 4} to investigate the sensitivity of kernel-based estimators related to the

bandwidth choice. Table 2 presents the median bias and the MAE for the first stage

estimation (binary choice model) regarding parameters γ2 and γ3, with γ1 normalized to 1.

Table 1 shows that Heckman’s two-step estimator is not consistent for the normal mixture

error terms as the median bias and the MAE are not only large in magnitude and but also

do not diminish when the sample size increases. This is not surprising, since the Heckman’s

two-step method does not account for any deviation from the joint normality assumption.

The monotone CF estimator yields a much smaller median bias and MAE for β1 and β2

than Heckman’s two-step approach. Moreover, both the median bias and MAE of the

monotone CF estimator decrease substantially when the sample size increases. When it

12The density function of W̃i is g(w) = I{w > −1} exp(−w − 1).
13It corresponds to σ1 = σ2 = σ and k = 15 in Example 2.4.
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comes to the kernel-based estimator, its performance critically depends on the choices

of bandwidths. Using the cross-validated bandwidth in both stages (c1 = c2 = 1), the

kernel-based estimator performs slightly better than the monotone CF estimator in terms

of MAE and yields a notably smaller bias. When the bandwidth coefficients (c1, c2) become

(1, 2) or (2, 2), the MAE of the kernel-based estimator is similar to that of the monotone CF

estimator. Moreover, the monotone CF estimator has a smaller MAE than the kernel-based

estimator if the latter uses the bandwidth of hcv,1/2 in the first stage. Similar patterns can

be found in Table 2. When considering the first stage estimation of the selection equation,

the Heckman’s two-step approach is again not consistent. Comparing two semi-parametric

estimators, one can see that the MAE of the kernel-based estimator is smaller when the

“good” bandwidth is used (c1 = 1) but it can be larger than the monotone CF estimator

when other bandwidths are used, say c1 = 1/2 and 2.

In sum, our simulation experiments show that the monotone CF estimator have a robust

finite sample performance when the error terms are non-normal. Free from any user-

specified tuning parameter, our estimator does not suffer from sensitivity with respect to

bandwidths in the kernel based estimation. In terms of MAE, our estimator is comparable

to the kernel-based estimator using “good” bandwidths and outperforms the latter when

“bad” bandwidths are chosen.
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Table 1. Finite sample performances of estimators for the outcome equa-

tion. The bandwidth for the Klein-Spady estimation is c1 × hcv,1 and the

bandwidth for the Robinson estimation is c2×hcv,2, where hcv,1 and hcv,2 are

the bandwidth from cross-validation, respectively. A Gaussian kernel is used.

n Method Bandwidths β1 β2

(c1, c2) Med.bias MAE Med.bias MAE

1,000 Monotone CF .0952 .1172 .0421 .0668

Heckit .1767 .1881 .0681 .0856

Klein-Spady-Robinson (1, 1) -.0224 .0945 -.0167 .0628

(1, 2) -.0693 .1156 -.0331 .0714

(1, 3) -.1208 .1506 -.0569 .0837

(1, 4) -.1720 .1881 -.0783 .0956

(1/2, 1) .0393 .1635 .0002 .0897

(1/2, 2) -.0074 .1607 .0154 .0886

(1/2, 3) -.0685 .1666 -.0431 .0925

(1/2, 4) -.1264 .1819 -.0678 .0992

(2, 1) -.0442 .0985 -.0175 .0618

(2, 2) -.0919 .1247 -.0362 .0712

(2, 3) -.1472 .1634 -.0597 .0843

(2, 4) -.1906 .1997 -.0791 .0958

2,000 Monotone CF .0690 .0842 .0329 .0493

Heckit .1862 .1870 .0747 .0796

Klein-Spady-Robinson (1, 1) -.0072 .0676 -.0043 .0431

(1, 2) -.0483 .0817 -.0229 .0492

(1, 3) -.0969 .1163 -.0422 .0608

(1, 4) -.1465 .1552 -.0596 .0730

(1/2, 1) .0418 .1180 .0117 .0628

(1/2, 2) .0109 .1144 -.0021 .0623

(1/2, 3) -.0413 .1216 -.0233 .0655

(1/2, 4) -.0982 .1411 -.0457 .0719

(2, 1) -.0224 .0705 -.0059 .0433

(2, 2) -.0605 .0878 -.0221 .0495

(2, 3) -.1073 .1237 -.0400 .0615

(2, 4) -.1562 .1617 -.0596 .0741
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Table 2. Finite sample performances of estimators for the selection equa-

tion. The bandwidth for the Klein-Spady estimation is c1×hcv,1, where hcv,1

is the cross-validated bandwidth. A Gaussian kernel is used.

n Method Bandwidths γ2 γ3

c1 Med.bias MAE Med.bias MAE

1,000 Monotone CF -.0119 .0334 .0514 .0856

Probit -.0185 .0442 .2151 .2194

Klein-Spady 1 -.0034 .0310 .0205 .0834

1/2 -.0203 .0764 -.1796 .2844

2 .0178 .0392 -.0692 .1203

2,000 Monotone CF -.0063 -.0227 .0415 .0511

Probit -.0194 .0331 .2105 .2116

Klein-Spady 1 .0007 .0218 .0079 .0579

1/2 -.0154 .0543 .1390 .2245

2 .0124 .0252 -.0380 .0785

7. An Empirical Application

In this section, we apply our estimation and testing methods to re-examine the wage

equations of the Malaysian Chinese, using the monotone control function to correct for

the sample selection bias. The data is drawn from the Second Malaysian Family Life

Survey and is provided by Schafgans (1998). The choice of dependent and independent

variables follows Schafgans (1998). The latent dependent variable Y ∗i represents the ith

individual’s latent hourly wage offer (in logarithms) and Di is a dummy variable indicating

whether this individual is a paid worker. One has Di = 1 if the offered wage exceeds the

reservation wage (Gronau, 1974; Heckman, 1974). Exogenous variables, Wi, entering the

selection equation are: age, age squared (divided by 100), years of primary schooling, years

of secondary schooling and above, dummy variable “Fail”(whether the individual failed the

certificate at the education level he/she completed), dummy variable “Urban”(the location

of the individual’s residence), and non-employment variables including unearned income

(average annual property income of the household), house ownership (a house ownership

indicator times the cost of the housing), and land ownership (the amount of land-holding).

We impose the standard exclusion restriction such that the non-employment variables does

not appear in the wage offer equation; that is, they alter the reservation wage without

affecting the offered wage. Exogenous variables Xi entering the wage offer equation consist

of potential experience, potential experience squared (divided by 100), years of primary
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schooling, years of secondary schooling and above, and two dummy variables “Fail” and

“Urban”.

Tables 3 and 4 present the estimates of the coefficients in the wage equation using three

approaches: Heckman’s two-step estimator, our monotone CF semiparametric estimator,

and Schafgans (1998)’s kernel-based semi-parametric approach.14 When implementing the

monotone CF estimator, the selection correction function (control function) λ is assumed to

be decreasing for working men (Table 3) and increasing for working women (Table 4). This

choice is made by combining several pieces of evidence together. First of all, Heckman’s

two-step estimates of the coefficient attached to the inverse Mill’s ratio are 0.3891 for men

and −0.2787 for women. Second, the monotonicity assumption of the control function λ(·)
is also supported by Figure 2, which compares the plots of monotone CF estimate of λ (solid

line) versus the unrestricted kernel estimate (dash line).15 Both estimates are decreasing

for male workers and both show an increasing trend for female workers, despite some small

fluctuations in the kernel estimate. Last but not least, the choice is also consistent with

the reported p-values in the selectivity tests. One plausible explanation for the increasing

control function for Chinese women may be due to an assortative matching in marriage, so

a married women with higher productivity may have less incentive to work.

Tables 3 and 4 show that for most slope parameters, the monotone CF estimates are

comparable to the other two estimates. For parameters where the Heckman’s two-step es-

timate and Schafgans (1998)’s kernel estimate noticeably differ, such as with the coefficients

on the variables “Secondary schooling” and “Fail” in Table 4, our estimates are closer to

the ones from the kernel-based approach. We further present the Oaxaca (1973) decom-

position using different estimates. The actual difference in the means of the log-wages for

men and women workers is 0.3662. In the OLS case where no selection correction is made,

17.09% of this gender differential is explained by the term (X̄m − X̄f )
′βf , which describes

the difference in wage-related characteristics.16 Heckmen’s two-step approach attributes

21.16% of the wage differential to the difference in characteristics and this percentage is

25.12% in Schafgans (1998)’s kernel-based approach. The monotone CF test suggests that

a percentage as large as 28.78% owes to the difference in wage-related characteristics.

We also conduct a formal test for the presence of labor market selection. Table 5 re-

ports the p-values of the t-test based on Heckman’s selection model, our selectivity test

14Schafgans (1998)’s semi-parametric approach estimates the selection equation using Ichimura (1993)’s
technique and then estimates the outcome equation, which is a partial linear model using Robinson (1988).
The numbers in the last column of Tables 3 and 4 are drawn from Table III of Schafgans (1998).
15The kernel estimate uses the slope estimates of Schafgans (1998) in the wage offer equation and band-
widths are chosen by cross-validation.
16Here X̄m and X̄f denote the mean of X for men and women, respectively, and βf denotes the coefficients
on X for women.
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based on a monotone control function under the general alternative in Section 3.2,17 and

a kernel-based test in the spirit of Christofides, Li, Liu, and Min (2003).18 For our tests,

both increasing and decreasing cases are considered. The cases consistent with the control

functions depicted in Figure 2 (so that the control function is decreasing for men and in-

creasing for women) are in bold font. For female workers, the test assuming an increasing

control function detects stronger evidence against the no selection null hypothesis (p-value

is .134) than the one with a decreasing control function (p-value .592). This is also consis-

tent with the kernel-based estimate of the control function plotted in Figure 2 (the right

panel). Compared with the t-test based on Heckman’s selection model, our test based

on an increasing control function produces a p-value (.134) closer to the kernel-based test

(p-value is .060). For male workers, the test based on a decreasing control function reveals

stronger evidence against the null hypothesis. Once again, this finding is in line with the

kernel-based estimate in Figure 2 (the left panel). However, in the left panel, the piece-wise

constant λ̂ (monotone CF estimate) is much steeper than the smoothed λ̂ (kernel estimate),

which is also reflected in the p-values: the p-value is .080 for the test based on a decreasing

control function, while the value is .866 for the kernel-based test.

17The critical values are calculated from 500 bootstrap samples.
18The kernel-based test rejects the null hypothesis of no sample selection if n1h

1/2In/σ̂ > z1−α where In =
1/(n21h)

∑n1

i=1

∑n1

j=1,j 6=i ε̂iε̂jK((W ′i γ̂ − W ′j γ̂)/h), σ̂2 = 2/(n21h)
∑n1

i=1

∑n1

j=1,j 6=i ε̂
2
i ε̂

2
jK

2((W ′i γ̂ − W ′j γ̂)/h),

n1 =
∑n
i=1Di, ε̂i is the OLS residual ε̂i = Yi −X ′iβ̂ols, γ̂ is the semiparameteric estimates of the selection

equation in Schafgans (1998), K(·) is the Gaussian kernel function, and the bandwidth h is computed by
cross-validation for estimating E(εi|W ′i γ̂).
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Table 3. Wage equation for Chinese males using different corrections for

sample selection. Number of total obs =1,190; number of working obs =559.

Heckit Monotone CF Schafgans (1998)

Experience .1109 .1237 .1051

[.0887, .1331] [-.0937, .1396] [.0837, .1265]

Experience squared -.1840 -.2130 -.1750

[-.2316, -.1364] [-.2452, -.1411] [-.2213, -.1287]

Primary schooling .0235 .0260 .0232

[-.0205, .0674] [-.0345, .0760] [-.0184 .0648]

Secondary schooling .1638 .1693 .1565

[.1404, .1872] [.1381, .1924] [.1341, .1789]

Fail -.1142 -.1148 -.1298

[-.2416, .0132] [-.2496, .0095] [-.2455 -.0141]

Urban .0751 .0543 .1047

[-.0376, .1878] [-.0311, .1837] [-.0025, .2119]

Note: The confidence interval for the monotone CF estimate is calculated from 500 bootstrap

samples.
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Table 4. Wage equation for Chinese females using different corrections for

sample selection. Number of total obs =1,298; number of working obs =371.

Heckit Monotone CF Schafgans (1998)

Experience .0551 .0394 .0564

[.0298, .0804] [.0171, .0870] [.0295 .0833]

Experience squared -.0511 -.0142 -.0635

[-.1138, .0116] [-.1274, .0411] [-.1289, .0019]

Primary schooling .1094 .1299 .0965

[.0460, .1728] [.0002, .1917] [.0383, .1547]

Secondary schooling .1451 .0859 .0821

[.0892, .2010] [.0426, .1885] [-.0016, .1658]

Fail -.2145 -.2999 .4214

[-.3754, -.0536] [-.4360, -.0914] [-.6872, -.1556]

Urban .0275 .0091 .0163

[-.0974, .1520] [-.1082, .1390] [-.1038, .1364]

Note: The confidence interval for the Monotone CF estimate is calculated from 500 bootstrap

samples.

Figure 2. The estimated control function λ̂(γ̂′W )
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Table 5. The p-values for testing the presence of sample selection bias in

the wage equation of Malaysian Chinese. H0 : the control function λ is a

constant.

Heckit t-test Test with monotone CF Kernel-based test

Decreasing Increasing

Men .174 .080 .528 .866

Women .357 .592 .134 .060

Note: For the selectivity test based on a monotone control function, both increasing and decreas-

ing cases are considered. The cases consistent with control functions depicted in Figure 2 (so that

the control function is decreasing for men and increasing for women) are in bold font.

8. Conclusion

This paper proposes a semiparametric sample selection model with a monotonicity con-

straint on the selection correction function. Nonrandom selection is both a source of bias

in empirical research and a fundamental aspect of many social processes. The popularity of

Heckman’s two-step procedure to correct selectivity bias is witnessed by its profound im-

pact on all of these fields; Heckman (1979) has received more than 28,000 Google Scholar

citations. Lying between the original Heckman selection model and the semi-parametric

selection model (Robinson, 1988; Newey, 2009; Das, Newey, and Vella, 2003; Ahn and

Powell, 1993) where the control function is completely unknown, our new sample selection

model imposes no parametric distributional assumptions and delivers automatic semipara-

metric estimation and testing. Therefore, the proposed method shares the generality of

semiparametric approaches while keeps the main convenience of parametric approaches as

its implementation is free from any tuning parameter.

This research will also add to the rich and evolving literature exploring various shape

restrictions in estimation and inference. Shape restrictions, such as convexity, homogene-

ity, and monotonicity, frequently arise either as important assumptions or consequences of

assumptions of economic models. Embedding shape restrictions into the estimation has a

key advantage in that the underlying criterion function can be meaningfully maximized (or

minimized) without additional penalization or smoothing. Meanwhile, the estimated com-

ponent automatically satisfies the imposed shape restriction, which makes it more attractive

to practitioners. We take the first step of introducing shape restrictions to the sample se-

lection model by converting an intuitive concept regarding the dependence between latent

errors into a precise condition known as RTI (RTD). The technical contributions we present
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are also of independent interest for the general two-stage semiparametric estimation and

testing involving shape-restricted components.

9. Appendix A: Proofs of Main Results

In the Appendix, we denote a large positive constant by M , whose value might change

line by line. We introduce additional subscripts when there are multiple constant terms in

the same display. For two sequences an, bn, we write an . bn, if an ≤ bn for some large M

independent of n.

Proof of Theorem 4.1. Given Groeneboom and Hendrickx (2018), we know that γ̂n defined

in the second step exists with probability tending to 1, γ̂n →p γ0, and F̂nν(u; γ̂n) converges

uniformly to Fν0(u). For the (finite and infinite dimensional) parameters and estimators in

the outcome equation, we use the short-hand notations θ0 = (β0, λ0(·)) and θ̂n = (β̂n, λ̂n(·)).
Moreover, we define the following metric:

(9.1) d(θ, θ0; γ) = |β̂n − β0|+ ‖ λ̂n(w′γ)− λ0(w′γ0) ‖ .

Because β̂n and λ̂n are solutions of the least squares problem, we get

(9.2) Pn[Y −X ′β̂n − λ̂n(W ′γ̂n)]2 ≤ Pn[Y −X ′β0 − λ0(W ′γ̂n)]2.

Hence, this leads to

P

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}]

(9.3)

≤(Pn − P )

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

iγ0))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}]

.

Thereafter, we prove in Lemma 10.9 that the left-hand side (l.h.s.) of inequality (9.3) can

be bounded below by

|β̂n − β0|2+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2 −Op(n
−1/2)(9.4)

.P

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}]

.

The right-hand side (r.h.s.) of inequality (9.3) can be bounded up by

(Pn − P )

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

iγ0))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}]

≤ sup
θ,|γ−γ0|≤M1n−1/2,sup |λ|≤M2 logn

(Pn − P )f 1
θ,γ + op(1)
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for the function f 1
θ,γ defined in Lemma (10.6) because |γ̂n−γ0| = Op(n

−1/2) and supw |λ̂n(w′γ̂n)| =
Op(log n). Therefore, by the Glivenko-Cantelli property of the functional class f 1

θ,γ, the

r.h.s. of inequality (9.3) is op(1), which concludes the proof of consistency.

In order to obtain the rate of convergence, we get

Pr
{
d(θ̂n, θ0; γ̂n) ≥ η

}
≤Pr

{
sup

d(θ,θ0;γ)≥η,|γ−γ0|≤M1n−1/2,sup |λ|≤M2 logn

(Pn − P )[f 1
θ,γ]− d2(θ, θ0; γ) ≥ 0

}

+ Pr{|γ̂n − γ0| ≥M1n
−1/2}+ Pr

{
sup
w
|λ̂n(w′γ̂n)| ≥M2 log n

}
≡ P1n + P2n + P3n

for any small positive η. It is clear that the last two terms converge to zero. Therefore, by

the peeling argument and Theorem 3.4.2 in Van Der Vaart and Wellner (1996), we have

P1n ≤
∞∑
s=0

P

{
sup

2sη≤d(θ,θ0;γ)≤2s+1η,|γ−γ0|≤M1n−1/2,‖λ‖≤M2 logn

Gnf
1
θ,γ ≥ n1/222sη2

}

≤
∞∑
s=0

P

{
sup

f∈FM2s+1η

Gnf
1
θ,γ ≥ n1/222sη2

}
.

Then, we apply the maximal inequality in equation (10.7) and the entropy bounds in

equation (10.5) to get

E

{
sup

f∈FM2s+1η

Gnf
1
θ,γ

}
.M1/2(log n)2n−1/62(s+1)/2,

where we take η = M log n× n−1/3.

We can now bound P1n by

P1n ≤
∞∑
s=0

M1/2(log n)2n−1/62(s+1)/2

n1/222sη2

=
∞∑
s=0

(log n)2n−1/62(s+1)/2

M3/2n1/222s(log n)2n−2/3

= M−3/2

∞∑
s=0

2−3s/2,

which can be made arbitrarily small for a large enough M . Therefore, the stated conver-

gence result holds. �
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Proof of Theorem 4.2. The solution (β̂n, λ̂n) of the shape-restricted optimization is charac-

terized by a set of equality and inequality restrictions; see Robertson, Wright, and Dykstra

(1988), Groeneboom and Wellner (1992), or Groeneboom and Jongbloed (2014). For our

purpose, we only need the equality restriction expressed via the following score functions:

Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))X

]
= 0,

Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))gn(W ′γ̂n)

]
= 0,

where gn(·) is any piece-wise constant function that has the same jump locations with λ̂n(·).
Therefore, we start with the following characterization condition for our estimator (β̂n, λ̂n):

(9.5) Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

= 0,

as in Equations (3.3) and (3.4) of Huang (2002). Hence, one obtains

√
nE
[
D(X ′(β̂n − β0) + λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

(9.6)

= Gn

[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]
,

given the fact that E[ε|W,D = 1] = 0. Regarding the r.h.s. of Equation (9.6), we utilize

the P-Donsker property in Lemma 10.6 to show that

Gn

[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

(9.7)

Gn

[
D(Y −X ′β0 − λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ0(W ′γ0)])
]

+ op(1)

= Gn [ε(X − E[X|D = 1,W ′γ0])] + op(1).

Furthermore, we decompose the l.h.s. of Equation (9.6) into two terms, J1n and J2n, defined

as follows:

J1n =
√
nE
[
D(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])X ′
]

(β̂n − β0),(9.8)

J2n =
√
n
[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]
.(9.9)

In our Lemmas 10.7 and 10.8, we prove that

(9.10) J1n = E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0) + op(1 +

√
n|β̂n − β0|),

and

(9.11) J2n = E
[
D(X − E[X|D = 1,W ′γ0])λ̇0(W ′γ0)W ′

]√
n(γ̂n − γ0) + op(1).
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In sum, the desired linear representation for β̂n follows after collecting the leading terms in

J1n, J2n:

E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0)

(9.12)

=Gn [ε(X − E[X|D = 1,W ′γ0])]− E
[
D(X − E[X|D = 1,W ′γ0])λ̇0(W ′γ0)W ′

]√
n(γ̂n − γ0)

+ op(1 +
√
n|β̂n − β0|).

Finally, referring to the linear representation of γ̂n and the fact that E[ε|D = 1,W ] = 0,

the two leading terms on the r.h.s. of Equation (9.12) are uncorrelated, which gives rise to

the particular form of the asymptotic covariance matrix in Theorem 4.2. �

Before investigating the asymptotic properties of our test, we need to introduce additional

definitions that characterize the weak convergence. These results are standard and we refer

readers to Shorack (2000). For two distribution functions, F1 and F2, the Levy distance dL

is defined as

(9.13) dL(F1, F2) ≡ inf{η > 0 : F1(x− η)− η ≤ F2(x) ≤ F1(x+ η) + η, ∀x ∈ R}.

The Levy distance metrizes weak convergence in the sense that Gn ⇒ G if and only if

dL(Gn, G) → 0 as n → ∞. For two distribution functions, F1 and F2, the p-Wasserstein

distance dp is defined via

(9.14) dp(F1, F2) ≡ inf
J

{
[E|S − T |p]1/p : S ∼ F1, T ∼ F2

}
,

where the infimum is taken over all joint distributions J with two marginals equal to F1

and F2. In the sequel, we make use of the fact that dL(F1, F2) ≤
√
d1(F1, F2).

Proof of Theorem 4.3. The proof essentially follows the route in Sen and Meyer (2017).

First of all, let Ĝn be a sequence of random distribution functions of the bootstrap residuals

ε∗. In the residual bootstrap, ε∗ is obtained by re-sampling the centered residual ε̂. By

Lemma 2.6 of Freedman (1981), Ĝn converges to G the distribution of ε, almost surely by

the 2-Wasserstein distance; i.e.,

(9.15) dL(Ĝn, G)→ 0 and

∫
x2dĜn(x)→

∫
x2dG(x) a.s.

By the projection nature of the operation, we have

(9.16) Π(Y|S0)− Π(Y|S1,γ̂n) = Π(ε|S0)− Π(ε|S1,γ̂n)
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under the null hypothesis. Thereafter, one proceeds as

‖ Π(ε|S0)− Π(ε|S1,γ̂n) ‖n,D
(9.17)

≤‖ Π(ε|S0)− Π(ε∗|S0) ‖n,D + ‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D + ‖ Π(ε∗|S1,γ̂n)− Π(ε|S1,γ̂n) ‖n,D
≤ 2 ‖ ε− ε∗ ‖n,D + ‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D,

which gives us

(9.18) ‖ Π(ε|S0)− Π(ε|S1,γ̂n) ‖n,D − ‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D≤ 2 ‖ ε− ε∗ ‖n,D .

To emphasize the dependence on the residual terms, we write our test statistics as Tn(ε)

and Tn(ε∗). Thus, the following bound holds:

|T 1/2
n (ε)− T 1/2

n (ε∗)|(9.19)

≤ ‖ Π(ε|S0)− Π(ε|S1,γ̂n) ‖n,D − ‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D
‖ ε− Π(ε|S0) ‖n,D

+
‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D
‖ ε∗ − Π(ε∗|S0) ‖n,D

‖ ε∗ − Π(ε∗|S0)− ε + Π(ε|S0) ‖n,D
‖ ε− Π(ε|S0) ‖n,D

≤ 2 ‖ ε− ε∗ ‖n,D
‖ ε− Π(ε|S0) ‖n,D

+
‖ ε∗ − Π(ε∗|S0)− ε + Π(ε|S0) ‖n,D

‖ ε− Π(ε|S0) ‖n,D

≤ 4
‖ ε− ε∗ ‖n,D

‖ ε− Π(ε|S0) ‖n,D
,

where we have used Inequality (9.18) for the first term on the r.h.s. of the first inequality.

For the second term,

(9.20)
‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D
‖ ε∗ − Π(ε∗|S0) ‖n,D

≤ 1.

Therefore, we have

d1(Hn, H
∗
n) ≤E|Tn(ε)− Tn(ε∗)| ≤ 2E|T 1/2

n (ε)− T 1/2
n (ε∗)|

(9.21)

≤8E
[

‖ ε− ε∗ ‖n
‖ ε− Π(ε|S0) ‖n,D

]
≤ 8
√

E[n1 ‖ ε− Π(ε|S0) ‖−2
n ]E[n−1

1 ‖ ε− ε ‖2
n,D](9.22)

→0, a.s.,

which leads to the conclusion that the bootstrap can approximate the null distribution of

the test statistic. �

Proof of Theorem 4.4. The intuition behind the proof is as follows. Under the null where

the control function is constant, the shape-restricted estimator is still consistent (with an
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even faster rate), so that Tn = op(1); whereas under the alternative specified in Theorem

(4.4), the test statistic converges to a positive constant in probability.

Under the null hypothesis that the control function is a constant term, one can combine

the proof of our Theorem (4.1) and Theorem 2.2 in Zhang (2002) to get Tn = Op(log n/n),

which leads to cn,α = o(1). We then show that under the alternative hypothesis Tn converges

to a positive constant in probability, giving the desired claim that Pλ0,n{Tn > cn,α} → 1

for H1 : λ0,n ∈ D.

Regarding the power property, we show that

‖ ξS1 − ξS1,γ̂n ‖
2
n,D

n
→p 0,

by the Glivenko-Cantelli property of the corresponding functional, which leads to

(9.23) Tn →p c/σ
2,

as n→ +∞, combining with the two conditions stated in Theorem 4.4. �

10. Appendix B: Proofs of Technical Lemmas

First, we record Lemma 25.86 in Van Der Vaart (1998) here, which is needed in the proof

of Theorem 4.1.

Lemma 10.1. For any random variable Z, if (E[g1(Z)g2(Z)])2 ≤ cE[g2
1(Z)]E[g2

2(Z)] for

some c ≤ 1, then

(10.1) E[(g1(Z) + g2(Z))2] ≥ (1−
√
c)(E[g2

1(Z)] + E[g2
2(Z)]).

The following Lemma adapts Lemma 10.1 in Baladbaoui, Groeneboom, and Hendrickx

(2017), incorporating an estimated γ̂n from the first stage estimation.

Lemma 10.2. Under our Conditions, we have

(10.2) sup
v
|λ̂n(v)| = Op(log n).

Proof. Based on the max-min characterization of the additive isotonic regression (see equa-

tion 11 in Mammen and Yu (2007)), we have

(10.3) min
1≤k≤n

∑k
i=1(Yi −X ′iβ̂n)

k
≤ λ̂n(W ′

i γ̂n) ≤ max
1≤k≤n

∑n
i=k(Yi −X ′iβ̂n)

n− k + 1
,

which leads to

(10.4) min
i

(Yi −X ′iβ̂n) ≤ λ̂n(W ′
i γ̂n) ≤ max

i
(Yi −X ′iβ̂n).
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Hence, one gets

(10.5) sup |λ̂n(v)| ≤ max
i
|Yi −X ′iβ̂n| . max

i
|Yi|+ max

i
‖ Xi ‖ .

Given the exponential tails of both Y and X, we obtain

(10.6) sup
v
|λ̂n(v)| = Op(log n),

by Lemma 2.2.2 in Van Der Vaart and Wellner (1996). �

Here we restate some necessary definitions and Theorem 2.4.1 in Van Der Vaart and

Wellner (1996) that will be used repeatedly in the sequel. ‖·‖∞ is the usual L∞-norm

for a function f with ‖f‖∞ < ∞ and ‖·‖2 stands for the L2-norm. The bracketing

number N[] (ε,F , ‖·‖2) for subclass F is defined to be the minimum of m such that ∃
fL1 , f

U
1 , ..., f

L
m, f

U
m for ∀f ∈ F , fLj ≤ f ≤ fUj for some j, and

∥∥fUj − fLj ∥∥2
≤ ε. De-

note H[] (ε,G, ‖·‖2) ≡ logN[] (ε,G, ‖·‖2). Furthermore, the corresponding bracketing en-

tropy integral is J[] (η,F , ‖·‖2) =
∫ η

0

√
1 + logN[] (ε,F , ‖·‖2)dε. The following lemma

which is a restatement of Lemma 3.4.2 in van der Vaart and Wellner (1996) based on

the L2-norm is useful to bound the normalized empirical process Gn =
√
n (Pn − P ) and

‖Gn‖F = supf∈F |Gn (f)|.

Lemma 10.3. Let F be a uniformly bounded class of measurable functions such that ‖
f ‖2≤ δ and ‖f‖∞ ≤M0, then

(10.7) E ‖Gn‖F . J[] (δ,F , ‖·‖2)

[
1 +
J[] (δ,F , ‖·‖2)M0

δ2
√
n

]
.

Let DM be the class of monotone decreasing functions with values in [−M,M ], then for

all ε > 0, one has

(10.8) H[] (ε,DM , ‖·‖2) .
M

ε
;

see Van Der Vaart and Wellner (1996). We emphasize here only the range of the function

is required to be bounded, not its domain.

The next lemma provides the entropy bound for an important functional class in our

remaining proofs. Our proof makes use of a similar construction as in Lemma 4.9 of

Baladbaoui, Durot, and Jankowski (2016).

Lemma 10.4. Consider the following function class:

(10.9) F2
Kδ,0 = {λ(w′γ) : d(θ, θ0) ≤ δ, sup |λ| ≤ K1, |γ − γ0| ≤ K2},
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where the function λ(·) belongs to the class of monotone functions, then the following en-

tropy bound holds:

(10.10) H[]

(
ε,F2

Kδ,0, ‖·‖2

)
≤ MK1

ε
,

for some finite constant M .

Proof. For any small εγ, the compact neighborhood of γ0 can be covered by Nγ neigh-

borhoods with diameters no larger than εγ, where Nγ ≤ Mε−qγ . Thus, for any γ, we can

find i ∈ {1, · · · , Nγ} such that |γ − γi| ≤ ε. For the monotone function λ, we can find

brackets [λLj , λ
U
j ] with size ε covering the class of monotone functions with range restricted

to [−K1, K1]. Moreover, the number of brackets Nλ is bounded by exp(K1ε
−1) up to some

finite constant.

Consider any function f(w) in F2
Kδ,0, one has

(10.11) f(w) ≡ λ(w′γ) = λ(w′γi + w′(γ − γi)),

which leads to

(10.12) λ(w′γi −Mεγ) ≤ f(w) ≤ λ(w′γi +Mεγ),

given that the covariates W have compact support. Therefore, we can cover the element

in F2
Kδ,0 by

(10.13) λLj (w′γi −Mεγ) ≤ f ≤ λUj (w′γi +Mεγ),

for a pair [λLj , λ
U
j ] that covers λ.

Now we verify the size of new bracket [λLj (w′γi−Mεγ), λ
U
j (w′γi+Mεγ)] is less than ε up to

some finite constant with a proper choice of εγ. We start with the following decomposition:

‖ λUj (w′γi +Mεγ)− λLj (w′γi −Mεγ) ‖2

≤ ‖ λUj (w′γi +Mεγ)− λ(w′γi +Mεγ) ‖2

+ ‖ λ(w′γi +Mεγ)− λ(w′γi −Mεγ) ‖2

+ ‖ λ(w′γi −Mεγ)− λLj (w′γi −Mεγ) ‖2 .

Apparently, the first and third terms are bounded up by ε by the construction of [λLj , λ
U
j ].

Considering the second term, one get

‖ λ(w′γi +Mεγ)− λ(w′γi −Mεγ) ‖2
2≤M

∫ 2M

−2M

(λ(t)− λ(t− 2Mεγ))
2 dt
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by the change of variable. Now given the monotonicity of λ and the fact that it is bounded

in absolute value by K, we have∫ 2M

−2M

(λ(t)− λ(t− 2Mεγ))
2 dt ≤M

∫ 2M

−2M

(λ(t− 2Mεγ)− λ(t)) dt

=M

[∫ −2M

−2M−2εγM

λ(t− 2Mε)dt−
∫ 2M

2M−2εγM

λ(t)dt

]
.εγ.

Then we take εγ = ε2, we get ‖ λ(w′γi + Mεγ) − λ(w′γi −Mεγ) ‖2. ε. Thus, the overall

bracketing entropy number is bounded by:

H[]

(
ε,F2

Kδ,0, ‖·‖2

)
≤ logNγ + logNλ

≤ 2q log(ε−1) +
MK1

ε
.
MK1

ε
.

�

Now we obtain the entropy bounds for two key functional classes in the proofs of Theorem

(4.1) and Theorem (4.2).

Lemma 10.5. Consider the following functional classes for j = 1, 2

(10.14) F jKδ = {f jθ,γ(z) : d(θ, θ0) ≤ δ, sup |λ| ≤ K, |γ − γ0| ≤Mn−1/2},

where

(10.15) f 1
θ,γ(z) = d

[
(y − x′β0 − λ0(w′γ0))2 − (y − x′β − λ(w′γ))2

]
and

(10.16)

f 2
θ,γ(z) = d

[
(y − x′β − λ(w′γ))(x− χ ◦ λ−1

0 (λ(w′γ)))− (y − x′β0 − λ0(w′γ0))(x− χ(w′γ0))
]
.

Recall here χ(u) = E[X|D = 1,W ′γ0 = u]. For both clases, we have the following bounds

hold

(10.17) H[]

(
ε,F jKδ, ‖·‖2

)
.
δ

ε

for j = 1 and 2.

Proof. We only prove the results related to the functional class F2
Kδ which is the more

difficult one to handle. First of all, it is sufficient to bound the entropy number for the

class consisting of the following functions:

(10.18) f 2
θ,γ(z) = d

[
(y − x′β − λ(w′γ))(x− χ ◦ λ−1

0 (λ(w′γ)))
]
,
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because the part after the minus sign in (10.16) does not involve any unknown parameter.

We begin with the definitions of some subclasses:

F2
Kδ,0 = {λ(w′γ) : d(θ, θ0) ≤ δ, sup |λ| ≤ K, |γ − γ0| ≤Mn−1/2},

F2
Kδ,1 = {(x− χ ◦ λ−1

0 (λ(w′γ))) : d(θ, θ0) ≤ δ, sup |λ| ≤ K, |γ − γ0| ≤Mn−1/2},

F2
Kδ,2 = {d(y − x′β − λ(w′γ)) : d(θ, θ0) ≤ δ, sup |λ| ≤ K, |γ − γ0| ≤Mn−1/2}.

Hence, by Lemma 10.4, we get the following bound on the bracketing entropy

(10.19) logN[]

(
ε,F2

Kδ,0, ‖·‖2

)
.
δ

ε
.

Essentially, the function in F2
Kδ,1 is a Lipschitz continuous transformation of the one in F2

Kδ,0

given our condition on χ ◦ λ0. Thereafter, we resort to Theorem 2.7.11 in Van Der Vaart

and Wellner (1996) which gives entropy bounds for classes of functions that are Lipschitz

in the index parameter. The entropy is bounded by the one of the original index parameter

space up to some constant. The same idea applies to the class F2
Kδ,2. Considering F2

Kδ

as the product of two subclasses F2
Kδ,1 and F2

Kδ,2, the desired conclusion follows from the

result in Section 2.10.3 of Van Der Vaart and Wellner (1996). �

Lemma 10.6. For the functional classes defined by (10.14) with Kn = M1 log n and δn =

M2 log n/n1/3 for some finite constant terms M1 and M2, we have the following stochastic

equicontinuity results

(10.20) ‖ Gnf
j
θ,γ ‖FjKnδn= op(1),

for j = 1, 2.

Proof. We only verify the statement for the class F1
Knδn

to avoid repetition. First of all,

we define a rescaled functional class F̃1
Knδn

= K−1
n F1

Knδn
which consists of functions that

are uniformly bounded. By the imposed Lipschitz continuity condition, for any function f

within the class F1
Knδn

, we have

P
(
d
[
(y − x′β0 − λ0(w′γ0))2 − (y − x′β − λ(w′γ))2

]2)
≤4P (d [ε(x′(β − β0) + λ(w′γ)− λ0(w′γ0))])

2

+ 2P (d [(x′(β − β0) + λ(w′γ)− λ0(w′γ0))])
4

.|β̂n − β0|2+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2
2



48

which leads to Pf 2 . δ2
n/K

2
n for f ∈ F̃1

Knδn
. One can also easily verify that ‖ f ‖∞≤M for

some finite constant M . Note that for any class F , if the entropy integral is bounded by

(10.21) J[] (δ,F , ‖·‖2) .
∫ δ

0

√
1 +M/εdε,

then we have

(10.22) J[] (δ,F , ‖·‖2) . δ + 2M1/2δ1/2,

which follows from the elementary inequality that
√
x+ y ≤

√
x+
√
y for x, y ≥ 0. Given

the entropy bound in Lemma 10.5, we have

(10.23) J[]

(
δn/Kn, F̃ jKnδn , ‖·‖2

)
.
√
δn/
√
Kn.

By resorting to the maximal inequalities (10.7), we obtain the following bounds for both

functional classes:

E
[
‖ Gnf

j
θ,γ ‖F̃jKnδn

]
. J[]

(
δn/Kn, F̃ jKnδn , ‖·‖2

)1 +
J[]

(
δn/Kn, F̃ jKnδn , ‖·‖2

)
K0

(δn/Kn)2
√
n


. K1/2

n δ1/2
n ,

for j = 1, 2. Hence, we get

(10.24) E
[
‖ Gnf

j
θ,γ ‖FjKnδn

]
. K3/2

n δ1/2
n .

By taking Kn = M1 log n and δn = M2 log n/n1/3 for some finite constant terms M1 and

M2, we have

(10.25) E
[
‖ Gnf

j
θ,γ ‖FjKδ

]
.

(log n)2

n1/6
.

�

Now we are ready to verify the asymptotic negligibility of several terms in the proofs of

our Theorem 4.1 and Theorem 4.2.

Lemma 10.7. Under our conditions, we have

(10.26) J1n = E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0) + op(1 +

√
n|β̂n − β0|).
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Proof. We start with

J1n − E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0)

= E
[
D(E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)]− E[X|D = 1,W ′γ0])X ′
]√

n(β̂n − β0)

.‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖
√
n(β̂n − β0),

where we have applied the Lipschitz continuity property of ξ(·). The desired result follows

from the consistency result in Theorem 4.1. �

Lemma 10.8. Under our conditions, we have

(10.27) J2n = E
[
D(X − E[X|D = 1,W ′γ0])λ̇0(W ′γ0)W ′

]√
n(γ̂n − γ0) + op(1).

Proof. First of all, we have ‖ λ̂n(w′γ̂n)− λ0(w′γ̂n) ‖= Op(n
−1/3 log n) by the root-n consis-

tency γ̂n and results in Theorem 4.1. Recall the definition of J2n

J2n =
√
n
[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

=
√
n
[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1,W ′γ̂n])

]
+
√
n
[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)]− E[X|D = 1,W ′γ̂n])
]
.

The second term on the r.h.s. of the equality can be bounded by the Cauchy-Schwarz

inequality as[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)]− E[X|D = 1,W ′γ̂n])
]

.‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖ × ‖ λ̂n(w′γ̂n)− λ0(w′γ̂n) ‖

= Op(n
−2/3 log2 n) = op(n

−1/2).

Also, note that the following identity holds

E
[
D(X − E[X|D = 1,W ′γ̂n])(λ̂n(W ′γ̂n)− λ0(W ′γ̂n))

]
= 0

by conditioning on (D = 1,W ′γ̂n) and applying the law of iterated expectation. Thus, we

have

J2n =
√
nE [D(X − E[X|D = 1,W ′γ̂n])(λ0(W ′γ̂n)− λ0(W ′γ0))] + op(1).

Moreover, it is straightforward to obtain

√
nE [D(E[X|D = 1,W ′γ0]− E[X|D = 1,W ′γ̂n])(λ0(W ′γ̂n)− λ0(W ′γ0))] = op(1),

based on the Lipschitz continuity of χ(·), the differentiability of λ0(·), and the root-n

consistency of γ̂n.
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In sum, one arrives at

J2n =
√
nE [D(X − E[X|D = 1,W ′γ0])(λ0(W ′γ̂n)− λ0(W ′γ0))] + op(1).

Finally, the claimed result follows from a standard Taylor expansion of λ0(·) and the root-n

consistency of γ̂n. �

Lemma 10.9. Suppose our Conditions hold, then we have

|β̂n − β0|2+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2 −Op(n
−1/2)(10.28)

.P

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}]

.

Proof. The following decomposition is straightforward.

P

[
Di

{
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
}](10.29)

= P
[
Di(X

′
i(β̂n − β0) + λ̂n(W ′

i γ̂n)− λ0(W ′
iγ0))2

]
− P

[
Di(λ0(W ′

i γ̂n)− λ0(W ′
iγ0))2

]
= P

[
Di(X

′
i(β̂n − β0) + λ̂n(W ′

i γ̂n)− λ0(W ′
iγ0))2

]
−Op(n

−1/2),

where in the last equality we have made use of the differentiability of λ0(·) and the root-n

consistency of γ̂n.

Now we apply Lemma (10.1) to get separated convergence for both β̂n and λ̂n as follows.

We take g1 = X ′(β̂n − β0) and g2 = λ̂n(W ′γ̂n)− λ0(W ′γ0). We then have:

(E[g1g2])2 = (E[g1E[g2|X]])2 ≤ E[g2
1]E[(E[g2|X])2],

by the law of iterated expectation and the Cauchy-Schwarz inequality. Also, given the

non-degeneracy of g2 conditional on X, we get

E[(E[g2|X])2] < E[(E[g2|X])2] + E[(g2 − E[g2|X])2] = E[g2
2].

Thus, there exists a constant c ≤ 1 such that

(E[g1g2])2 ≤ cE[g2
1]E[g2

2].

Applying Lemma (10.1) gives us

(1−
√
c)
(
P [Di(X

′
i(β̂n − β0))2] + P [Di(λ̂n(W ′

i γ̂n)− λ0(W ′
iγ0))2]

)
≤P

[
Di(X

′
i(β̂n − β0) + λ̂n(W ′

i γ̂n)− λ0(W ′
iγ0))2

]
.
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Now given the full rank condition of E[XX ′|D = 1] and the fact that Pr{D = 1} is bounded

away from zero, we have

|β̂n − β0|2+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2. P
[
Di(X

′
i(β̂n − β0) + λ̂n(W ′

i γ̂n)− λ0(W ′
iγ0))2

]
,

which leads to the desired conclusion given (10.29). �

Finally, we show the idea of Corollary 5.3 in Baladbaoui, Durot, and Jankowski (2016)

applied to our context delivers the uniform convergence (within any compact set in the

interior of the support) for the estimated control function.

Proof of Lemma (4.2). We denote the support of W byW . By the normalization condition,

both γ0,1 and γ̂n,1 are equal to 1. Then, with v from Lemma (4.2) and upon change of

variables, we get∫
W

(λ̂n(w′γ̂n)− λ0(w′γ̂n))2fW |D=1(w)dw ≥ v

∫
W

(λ̂n(w′γ̂n)− λ0(w′γ̂n))2dw

= v

∫
Cγ̂n×Wq−1

(λ̂n(t1)− λ0(t1))2dt1 · · · dtq,

whereWq−1 = {(w2, · · · , wq) : w ∈ W} and Cγ̂n = {w′γ̂n : w ∈ W}. Because
∫
Wq−1

dt2 · · · dtq >
0, there exists another positive constant M such that∫

W
(λ̂n(w′γ̂n)− λ0(w′γ̂n))2fW |D=1(w)dw ≥M

∫
Cγ̂n

(λ̂n(v)− λ0(v))2dv

≥M

∫ v̄−ωn

v+ωn

(λ̂n(v)− λ0(v))2dv,

with probability tending to 1, using the definition of ωn and γ̂n − γ0 = Op(n
−1/2). Hence,

it is straightforward to obtain(∫ v̄−ωn

v+ωn

(λ̂n(v)− λ0(v))2dv

)1/2

.‖ λ̂n(w′γ̂n)− λ0(w′γ̂n) ‖

≤‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖ − ‖ λ0(w′γ̂n)− λ0(w′γ0) ‖

= Op(n
−1/3 log n)−Op(n

−1/2),

which leads to the desired result. �
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