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1 Introduction

Following a wave of acquisitions in an industry, a policymaker asks an economist
if, and by how much, market power has increased. To answer this question,
the economist has detailed production data for a sample of firms in the in-
dustry at her disposal, including output and input quantities and prices.
The economist uses the De Loecker & Warzynski (2012) (henceforth DLW)
method to estimate the firm-level markup and then regresses it on a dummy
that is one for the acquiring firms in the “after” period and zero otherwise.
If the acquisitions have in truth raised the markup of these firms, this regres-
sion is likely to tell exactly the opposite. In this paper, we explain what has
gone wrong in the exercise of the economist and how to address the problem.

To provide policy advice and answer a variety of empirical and theoretical
questions, economists would like to have an easy-to-compute way to estimate
the firm-level markup that does not require modelling demand and making
detailed assumptions about firm conduct. Bain’s (1951) ratio of revenue
to variable cost comes close to this ideal but relies on equating inherently
unobservable marginal cost with average variable cost.

The production approach to estimating the markup has searched for ways
out of this impasse. DLW note that very generally a firm minimizes its cost
irrespective of the specifics of demand and firm conduct. They therefore
obtain the markup from the FOC for cost minimization by substituting in
estimates of the output elasticity of a variable input and the disturbance that
separates the firm’s actual output as recorded in the data from the output
that the firm planned on when it made its input decisions. To obtain the
output elasticity and the disturbance separating actual from planned output,
DLW use the procedure developed in Olley & Pakes (1996) and Levinsohn
& Petrin (2003), implemented as suggested by Ackerberg, Caves & Frazer
(2015) (henceforth OP, LP, and ACF), to estimate the production function.

The DLW method has been widely applied (see, e.g., De Loecker, Gold-
berg, Khandelwal & Pavcnik 2016, Brandt, Van Biesebroeck, Wang & Zhang
2017, Brandt, Van Biesebroeck, Wang & Zhang 2019, De Loecker & Scott
2016, De Loecker, Eeckhout & Unger 2020, De Loecker & Eeckhout 2018, Au-
tor, Dorn, Katz, Patterson & Van Reenen 2020).1 In this paper, we first
characterize the circumstances under which the DLW method consistently

1See also Berry, Gaynor & Scott-Morton (2020) for a recent panorama of the industrial
organization literature on markups.
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estimates markups. We then show that outside these circumstances the DLW
method produces inconsistent estimates of the output elasticity and the dis-
turbance and therefore biased markups. In particular, the DLW method is
not robust to any differences in demand across firms or time unless they are
observed by the econometrician in their entirety.

The intuitive reason for the inconsistency of the DLW method is as fol-
lows. The OP/LP procedure solves the endogeneity problem in production
function estimation by inverting a decision of the firm that the econometri-
cian observes, such as the firm’s demand for a variable input, to recover the
firm’s productivity that the econometrician does not observe. This inversion
hinges on the scalar unobservable assumption (Ackerberg, Benkard, Berry &
Pakes 2007) that limits the dimensionality of the unobservables impacting the
firm’s behavior. This assumption is violated if there is heterogeneity in the
markup across firms in addition to heterogeneity in productivity. Two firms
that have the same productivity but charge different markups, e.g., because
they face different demands in the output market, generally have different
input demands. It is therefore no longer possible to express unobserved
productivity in terms of observables. Put differently, to use the OP/LP pro-
cedure to estimate the production function and obtain the markup, the DLW
method would have to observe and control for the markup. In this way, the
DLW method is circular.

The observation that the proxy variable methods developed by OP and
LP cannot accommodate unobserved demand heterogeneity has been made
before. Foster, Haltiwanger & Syverson (2008) put it as follows:

. . . idiosyncratic demand shocks make the proxies functions of
both technology and demand shocks, thereby inducing a possi-
ble omitted variable bias. Put simply, proxy methods require a
one-to-one mapping between plant-level productivity and the ob-
servables used to proxy for productivity. This mapping breaks
down if other unobservable plant-level factors besides productiv-
ity drive changes in the observable proxy. (p. 403)

At first glance, however, this observation appears irrelevant under the
cost minimization assumption of DLW. The purpose of relying on cost mini-
mization instead of profit maximization is precisely to insulate the estimated
markup from the specifics of demand and firm conduct. After all, a firm min-
imizes its cost in most circumstances. De Loecker et al. (2016) accordingly
state that (their extension of) the DLW method (to multi-product firms)
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“does not require assumptions on the market structure or demand curves
faced by firms” (p. 445, see also p. 497).

This is an overstatement. We show that in the cost minimization problem
the firm’s planned output summarizes the demand the firm faces. Because
planned output remains unobserved by the econometrician, the scalar unob-
servable assumption underpinning the OP/LP procedure is violated and the
firm’s cost-minimizing decisions cannot be inverted to express unobserved
productivity in terms of observables. The DLW method therefore either has
to rule out any differences in demand across firms or time or assume that
they can be fully controlled for by observables.

At a minimum, the conditions required by the DLW method to consis-
tently estimate markups must be justified from a detailed understanding of
the market structure and the demands firms face in the industry under study.
More generally, however, the large literatures on demand estimation and pro-
ductivity analysis make clear that controlling for differences in demand by
observables is a daunting task. Papers such as Berry, Levinsohn & Pakes
(1995) and Foster et al. (2008) notably highlight the considerable hetero-
geneity in demand that remains even after controlling for detailed product
attributes or honing in on (nearly) homogenous products.

We therefore first characterize the bias in the estimates produced by the
DLW method that results if there are differences in demand across firms
or time that cannot be fully controlled for by observables. We show that
the bias permeates the level of the estimated markup and its correlation
with variables of interest such as a firm’s export status or measures of trade
liberalization. Using data from the Spanish manufacturing sector, we then
test for the effects of unobserved demand heterogeneity and illustrate their
consequences for the estimated markup.

Our paper is related to Doraszelski & Jaumandreu (2019), where we first
note the inconsistency of the DLW method in a setting that emphasizes the
implications of biased technological change for markup estimation. More
recently, Bond, Hashemi, Kaplan & Zoch (2020) have reiterated our point
about the inconsistency of the DLW method, although their focus is on the
difficulties for estimating the markup that arise if the econometrician ob-
serves revenue rather than the quantity of output. Our paper contributes by
fully developing the consequences of unobserved demand heterogeneity in the
original DLW setup and characterizing the bias in the estimates produced by
their method.

The remainder of this paper is organized as follows. In Section 2, we recall
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the setup and the DLW method for estimating the markup. In Section 3, we
argue that it is generally not possible to express unobserved productivity in
terms of observables. In Section 4, we characterize the bias in the estimates if
the economist nevertheless proceeds along the lines of DLW. In Section 5, we
provide an empirical application to test for the effects of unobserved demand
heterogeneity. We conclude in Section 6 with a discussion of alternative
approaches to estimation.

2 DLW method

Firm j produces output Qjt in period t with a predetermined amount of
capital Kjt and freely variable amounts of labor Ljt and materials Mjt.

2 The
production function is

Qjt = Q∗jt exp(εjt), Q∗jt = F (Kjt, Ljt,Mjt) exp(ωjt), (1)

where ωjt is Hicks-neutral productivity that the firm observes before it de-
cides on variable inputs in period t but that remains unobserved by the econo-
metrician. As usual in the literature following OP and LP, ωjt is governed by
a first-order Markov process with the law of motion ωjt = E(ωjt|ωjt−1)+ξjt =
g(ωjt−1) + ξjt, where g(ωjt−1) is expected productivity and ξjt is the produc-
tivity innovation. The disturbance εjt accounts for the difference between
the firm’s actual output Qjt as recorded in the data and the output Q∗jt that
the firm planned on when it made its input decisions. In contrast to ωjt, εjt
is uncorrelated over time and with the inputs. Because neither the firm nor
the econometrician observes εjt, planned output Q∗jt also remains unobserved
by the econometrician.

DLW assume cost minimization in an attempt to avoid specifying demand
and firm conduct (pp. 2437–2438 and p. 2443). The firm minimizes variable
cost V Cjt = PLjtLjt + PMjtMjt, where PLjt and PMjt are the prices of labor
and materials, subject to achieving its planned output Q∗jt. The FOC for

2Applications of OP/LP and DLW differ in the identity of the variable input: DLW
alternatively assume labor or materials to be freely variable (p. 2457); De Loecker et al.
(2016) assume materials to be freely variable (p. 471); and LP assume both labor and
materials to be freely variable (p. 322 and p. 339). We adopt the latter assumption merely
for concreteness.
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variable input Xjt ∈ {Ljt,Mjt} is

1

MC(Kjt, PLjt, PMjt, Q∗jt, ωjt)
=

∂F (Kjt,Ljt,Mjt)

∂Xjt
exp(ωjt)

PXjt
, (2)

where the envelope theorem serves to replace the Lagrange multiplier by
short-run marginal cost MC(·). As Samuelson (1947) puts it and Hall (1988)
first exploits empirically, the FOC says that the marginal productivity of the
last dollar must be equal in every use.

The markup is defined as µjt =
Pjt

MC(·) , where Pjt is the price of output.

Rewriting the FOC in equation (2) using the production function in equation
(1) yields

µjt =
PjtQjt

PXjtXjt

∂F (Kjt,Ljt,Mjt)

∂Xjt
Xjt

F (Kjt, Ljt,Mjt) exp(εjt)
=
βX(Kjt, Ljt,Mjt)

SRXjt
exp(−εjt), (3)

where βX(·) = ∂F (·)
∂Xjt

Xjt

F (·) is the output elasticity of variable input Xjt and

SRXjt =
PXjtXjt

PjtQjt
is the expenditure share of the input. Note that SRXjt is

observed because it is based on actual output Qjt rather than planned out-
put Q∗jt. DLW therefore obtain the markup µDLWjt of firm j in period t by
substituting estimates of βX(·) and εjt into equation (3).

OP/LP estimation. DLW use the procedure developed by OP and LP,
implemented as suggested by ACF, to estimate the output elasticity βX(·)
and the disturbance εjt (pp. 2444–2449). Because actual output Qjt =
Q∗jt exp (εjt) is observed, estimating the disturbance εjt is equivalent to esti-
mating planned output Q∗jt.

The OP/LP procedure starts with a function ωjt = h(zjt) that expresses
unobserved Hicks-neutral productivity ωjt by a vector of observables zjt. OP
use the demand for investment to invert for ωjt and LP the demand for a
variable input. zjt correspondingly collects input quantities and prices and
all other arguments of the demand that is inverted for ωjt.

3

Substituting the function ωjt = h(zjt) into equation (1) and taking logs
yields

qjt = lnF (Kjt, Ljt,Mjt) + h(zjt) + εjt = φ(zjt) + εjt, (4)

3Following LP, DLW rely on the demand for materials and write ωit = ht(mit, kit, zit),
where i indexes firms and t periods (p. 2446). To economize on the notation, we subsume
their mit, kit, and zit into our zjt.
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where we use lowercase letters to denote logs and φ(·) is an unknown function
that must be estimated nonparametrically. Assuming that εjt is uncorrelated
with zjt

4 and carrying out the regression in equation (4) yields estimates of
φ(·) and the disturbance εjt that separates actual output qjt from planned
output q∗jt = φ(zjt). This is the first step of ACF.

In a second step, the estimate of φ(·) and the Markovian assumption on
Hicks-neutral productivity ωjt serve to estimate the production function and

the implied output elasticity βX(·) = ∂ lnF (·)
∂xjt

by carrying out the regression

qjt = lnF (Kjt, Ljt,Mjt) + g
(
φ̂(zjt−1)− lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ξjt + εjt,

(5)
where the conditional expectation function g(·) is estimated nonparametri-
cally. Note that any variable input that the firm decides on after it observes
ωjt is correlated with the productivity innovation ξjt and must be instru-
mented for.

In the arguments zjt of the function ωjt = h(zjt), DLW include any “ad-
ditional variables potentially affecting optimal input demand choice” and
advise that “[t]he exact variables to be included . . . depend on the appli-
cation but will definitely capture variables leading to differences in optimal
input demand across firms such as input prices” (p. 2446). As we show
in Section 3, another variable affecting optimal input demand is planned
output Q∗jt. Because planned output Q∗jt is unobserved by the econometri-
cian, the scalar unobservable assumption (Ackerberg et al. 2007) underlying
the OP/LP procedure is violated and it is generally not possible to replace
unobserved Hicks-neutral productivity ωjt by observables zjt. The OP/LP
procedure therefore cannot be used to estimate the output elasticity βX(·)
and the disturbance εjt (or, equivalently, planned output Q∗jt) to be plugged
into equation (3) to obtain the markup. Put differently, to use the OP/LP
procedure to estimate planned output Q∗jt, the DLW method would have to
observe and control for Q∗jt. In Section 4, we then explore the consequences
of ignoring the dependence of the function ωjt = h(zjt) on planned output
Q∗jt for the estimated markup.

4This slightly strengthens the earlier assumption that εjt is uncorrelated over time and
with the inputs.
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3 Inverting for unobserved productivity

Inverting a variable input. LP use the demand for a variable input to
invert for ωjt. The solution to the cost minimization problem in Section 2

is the variable cost function V C
(
Kjt, PLjt, PMjt,

Q∗
jt

exp(ωjt)

)
. From Shephard’s

lemma, the demand for variable input Xjt is thus

Xjt =
∂V C

(
Kjt, PLjt, PMjt,

Q∗
jt

exp(ωjt)

)
∂PXjt

. (6)

While this expression can be inverted for
Q∗

jt

exp(ωjt)
, with planned output Q∗jt

being unobserved it cannot be inverted for ωjt; hence, it is not possible to
replace unobserved Hicks-neutral productivity ωjt by observables zjt. Com-
bining the demands for two or more variable inputs does not resolve the
problem.

Another way to see the problem is to go back to the FOC in equation
(2). Because marginal cost is inherently unobservable, the FOC in equation
(2) cannot by itself be used to express unobserved Hicks-neutral productivity
ωjt in terms of observables zjt. Thus proceeding, marginal cost is related to
variable cost as

MC(Kjt, PLjt, PMjt, Q
∗
jt, ωjt) =

∂V C
(
Kjt, PLjt, PMjt,

Q∗
jt

exp(ωjt)

)
∂Q∗jt

exp(−ωjt).

(7)
Substituting into the FOC in equation (2), ωjt cancels and the resulting
expression

1

∂V C

(
Kjt,PLjt,PMjt,

Q∗
jt

exp(ωjt)

)
∂Q∗

jt

=

∂F (Kjt,Ljt,Mjt)

∂Xjt

PXjt

can again be inverted for
Q∗

jt

exp(ωjt)
but not for ωjt.

Inverting investment. OP use the demand for investment to invert for
ωjt. OP derive the demand for investment from a dynamic profit maximiza-
tion problem (pp. 1270–1273). This requires OP to take a stand on demand
in the output market and firm conduct, which is what DLW intend to avoid.
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One may alternatively start from a dynamic cost minimization problem (see,
e.g., Doraszelski & Jaumandreu 2019), where the firm chooses capital, labor,
and materials, possibly subject to adjustment costs, to achieve a sequence of
planned outputs Q∗jt. In this case, the demand for investment is a function

of
Q∗

jt

exp(ωjt)
and an analogous problem to the one just reviewed arises.

Controlling for planned output. As we have shown above, as long as
planned output Q∗jt is unobserved by the econometrician, it is not possible
to replace unobserved Hicks-neutral productivity ωjt by observables zjt. The
obvious way around this problem is to assume that planned output Q∗jt can
itself be controlled for by a subset of the observables zjt, i.e., that there
exists a function Q∗jt = D(zDjt) mapping observables zDjt ⊆ zjt into planned
output Q∗jt. This is the intuition behind DLW’s broad interpretation of zjt.
De Loecker et al. (2016) include variables such as location, product dummies,
export status, input and output tariffs, market share, and the price of output
in zjt (p. 466). Output tariffs, for example, clearly play no role in the cost
minimization problem; the only reason to include them in zjt is as an attempt
to control for Q∗jt.

The large literatures on demand estimation and productivity analysis cast
doubt on any attempt to control for planned output Q∗jt by observables zDjt .
Berry et al. (1995) stress the importance of the unobserved characteristic
that remains even after including detailed product attributes in the specifi-
cation of demand. Foster et al. (2008) similarly highlight the considerable
heterogeneity in demand that remains even after honing in on (nearly) ho-
mogenous products. Hence, the demand the firm faces is Q∗jt = D(zDjt , δjt),
where the demand shock δjt captures unobserved demand heterogeneity in
the sense of any differences in demand across firms or time that remain after
controlling for observables zDjt . Note that under imperfect competition δjt in-
cludes not only the unobserved characteristic of the firm under consideration
but also those of its rivals. Moreover, the demand the firm faces depends
on its rivals’ prices under Bertrand competition and on its rivals’ (planned)
quantities under Cournot competition.5 Changes in firm conduct due to a

5Instead of thinking of Q∗
jt = D(zDjt , δjt) as one of the equations in the demand system

for the industry under study, we can think of D(·) as the firm’s residual demand in the
sense of Baker & Bresnahan (1985). In this case, D(·) encapsulates how the industry
equilibrium changes as the focal firm changes its price or quantity. While this obviates
accounting for rivals’ prices or quantities, D(·) instead depends on assumptions about firm

9



wave of acquisitions (as in the opening paragraph of Section 1) cause changes
in rivals’ prices and quantities. To the extent that these variables are par-
tially or completely unobserved, as they are in production data that covers
a sample of firms, they become part of δjt.

6

In sum, in the cost minimization problem the firm’s planned output Q∗jt =
D(zDjt , δjt) summarizes the demand the firm faces. There is little reason to
believe that δjt = 0 as required by DLW. At the very least, assuming δjt = 0
requires a careful justification starting from the specification of demand and
assumptions on firm conduct, thus negating the purported advantage of the
production approach and relying on cost minimization to estimate markups
over the demand approach. In Section 4, we therefore characterize the bias
in the estimated markup resulting from δjt 6= 0 and, in Section 5, we provide
an empirical application to test for the effects of δjt 6= 0.

4 Bias in estimated markup

If there are differences in demand across firms or time that cannot be fully
controlled for by zjt, then δjt 6= 0 and equation (4) becomes

qjt = φ(zjt, δjt) + εjt. (8)

Regressing qjt on observables zjt in the first step of ACF, however, yields
an estimate of the conditional expectation E(qjt|zjt) = E(φ(zjt, δjt)|zjt) =

φ̃(zjt), where the first equality uses that εjt is uncorrelated with zjt. We thus
write the first-stage regression as

qjt = φ̃(zjt) + φ(zjt, δjt)− φ̃(zjt) + εjt = φ̃(zjt) + ζjt + εjt = φ̃(zjt) + ε̃jt,

where the prediction error ζjt = φ(zjt, δjt) − φ̃(zjt) is mean independent of
zjt by construction and ε̃jt = ζjt + εjt is uncorrelated with zjt.

We develop three alternative characterizations of the prediction error ζjt
that are helpful in assessing the bias in the estimated disturbance in the first
step of ACF and the estimated output elasticity in the second step. From the
production function in equation (1), we have φ(zjt, δjt) = lnF (Kjt, Ljt,Mjt)+

conduct and on rivals’ marginal costs and thus their unobserved productivities.
6The common practice of letting the function ωjt = h(zjt) vary by period may partly

absorb time-series variation but of course not cross-sectional variation due to unobserved
differences in demand across firms.
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ωjt. Assuming for simplicity that the demand the firm faces takes the form
Q∗jt = D(zDjt) exp(δjt), we also have φ(zjt, δjt) = lnD(zDjt) + δjt. It follows
that

ζjt = ωjt − E(ωjt|zjt) = δjt − E(δjt|zjt). (9)

Our first two characterizations in equation (9) show that ζjt covaries with any
part of Hicks-neutral productivity ωjt and any part of the demand shock δjt
that is not captured by observables zjt. Below we show that this invalidates
commonly used instruments in the second step of ACF.

To develop our third characterization of ζjt, we use the demand for ma-

terials Mjt in equation (6) to write the ratio
Q∗

jt

exp(ωjt)
as

Q∗jt
exp(ωjt)

= u(Kjt,Mjt, PLjt, PMjt),

where u(·) is an unknown function. Substituting into equation (7), we next
write marginal cost MCjt as

MCjt = v(Kjt,Mjt, PLjt, PMjt) exp(−ωjt),

where v(·) is an unknown function. The definition of the markup µjt therefore
relates it with Hicks-neutral productivity ωjt as

lnµjt = pjt − ln v(Kjt,Mjt, PLjt, PMjt) + ωjt.

From the production function in equation (1), we finally have φ(zjt, δjt) =
lnF (Kjt, Ljt,Mjt) + lnµjt − pjt + ln v(Kjt,Mjt, PLjt, PMjt). Assuming that
the price of output Pjt is included in zjt (as in De Loecker et al. 2016), it
follows that

ζjt = µjt − E(µjt|zjt) (10)

covaries with any true determinant of the markup that has not been con-
trolled for by observables zjt.

Bias in estimated disturbance. With δjt 6= 0, DLW obtain an estimate
of ε̃jt = ζjt + εjt and substitute it into equation (3) in lieu of εjt. However,̂̃εjt is a biased estimate of εjt. Even though the regression in the first step

of ACF forces the expectation of ̂̃εjt conditional on zjt to be zero, equation

(10) implies that ̂̃εjt covaries with any true determinant of the markup that
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has not been controlled for by observables zjt. The markup obtained by

substituting ̂̃εjt into equation (3) is therefore inversely related with any true
determinant of the markup that has not been controlled for by observables
zjt. The economist in the opening paragraph in Section 1 is a case in point:

the bias in ̂̃εjt predisposes her to finding that the markup of the acquiring
firms has decreased rather than increased following the wave of acquisitions.

Bias in estimated output elasticity. With δjt 6= 0, φ(zjt) in equation

(5) becomes φ(zjt, δjt). DLW obtain an estimate of φ̃(zjt) and substitute it
into equation (5) in lieu of φ(zjt, δjt). Rewriting equation (5) accordingly
yields

qjt = lnF (Kjt, Ljt,Mjt)

+g
(
φ̃(zjt−1) + ζjt−1 − lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ξjt + εjt.(11)

To take the most favorable case, let ωjt follow an AR(1) process with param-
eter ρ so that g(ωjt−1) = ρωjt−1 and ρζjt−1 becomes part of the composite
error term.7

Current capitalKjt is routinely used as an instrument in the second step of
ACF. The underlying assumption is that the firm decides on investment, and
thus capital, in period t− 1 before it observes ωjt; hence, Kjt is uncorrelated
with ξjt. Under an analogous assumption, current labor Ljt is also often
used as an instrument (De Loecker et al. 2016, p. 471). However, none of
these instruments is valid with δjt 6= 0: any variable that is chosen in period
t − 1 is chosen with knowledge of Hicks-neutral productivity ωjt−1 and the
demand shock δjt−1 and, from equation (9), is therefore correlated with what
remains of ωjt−1 and δjt−1 in ζjt−1 after controlling for zjt−1.

8 Using invalid
instruments biases the estimated output elasticity.

Sign and size of bias in estimated output elasticity. We quantify the
sign and size of the bias in the example of a single-input Cobb-Douglas pro-

7Alternatively, take a Taylor series expansion of the conditional expectation function
g(·) around ζjt−1 = 0 and absorb all terms involving powers of ζjt−1 into the composite
error term. It is unlikely that the resulting difficulties can be resolved by IV methods
(Hausman, Newey & Powell 1995).

8Lagged inputs Kjt−1, Ljt−1, and Mjt−1 remain valid instruments because they are by
construction uncorrelated with ζjt−1 if they are included in zjt−1.
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duction function lnF (Kjt, Ljt,Mjt) = βLljt and an AR(1) process with pa-
rameter ρ for Hicks-neutral productivity ωjt. Following ACF and De Loecker
et al. (2016), we assume that current labor Ljt is chosen in period t− 1 and
use it as an instrument in the second step of ACF. Finally, the demand the
firm faces is simply lnD(zDjt , δjt) = −ηpjt + δjt, where zDjt = pjt, and the
vector of observables is zjt = (ljt, pjt).

For simplicity, take ρ to be known and write equation (11) as qjt −
ρφ̃(zjt−1) = βL (ljt − ρljt−1) + ρζjt−1 + ξjt + εjt. In terms of population
moments, the IV estimator for the output elasticity βL is

β̂
IV

L =
E
(
ljt

(
qjt − ρφ̃(zjt−1)

))
E (ljt (ljt − ρljt−1))

= βL +
ρE
(
ljtζjt−1

)
E (ljt (ljt − ρljt−1))

. (12)

The bias in the estimated output elasticity hinges on the correlation between
the instrument ljt and ζjt−1 = ωjt−1−E(ωjt−1|zjt−1) = δjt−1−E(δjt−1|zjt−1)
(see equation (9)). As the demand for labor likely rises with Hicks-neutral
productivity as well as with the demand shock, we expect a positive bias.

In Appendix A, we show that if ljt follows an AR(1) process with param-
eter ρL, then the IV estimator can be written as

β̂
IV

L = βL

(
1 +

ρ

1− ρρL

√
1−R2

V ar(βLljt)/V ar(qjt)
Corr(ljt, ζjt−1)

)
(13)

= βL (1 + bias) ,

where R2 = 1− V ar(ζjt)

V ar(q∗jt)
is the coefficient of determination in the (infeasible)

regression of q∗jt on observables zjt.
9 Equation (13) indicates that even if the

R2 is close to 1 in the first step of ACF, the key to the quantitative importance
of the bias is the correlation between the instrument ljt and ζjt−1.

10

Table 1 takes ρ = 0.9, ρL = 0.6, and V ar(βLljt)/V ar(qjt) = 1 and
considers three degrees of correlation between the instrument ljt and ζjt−1
and three values for R2. The bias in the estimated output elasticity can go
from a modest but significant 6 percentage points to an overwhelming 37
percentage points.

9Equation (13) assumes a stationary environment and, without loss of generality, that
the instrument is in differences with respect to its mean.

10The R2 in the regression of qjt on zjt in the first step of ACF is a lower bound on the
R2 in the regression of q∗jt on zjt.
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R2

0.99 0.95 0.90
0.30 0.059 0.131 0.186

Corr(ljt, ζjt−1) 0.45 0.088 0.197 0.278
0.60 0.117 0.262 0.371

Table 1: Bias in estimated output elasticity in percentage points.

Outside our example, the bias in the estimated output elasticity can be
large as well. Following DLW, Brandt et al. (2017) estimate the output
elasticities of labor and materials to be 0.05 and 0.91. Jaumandreu & Yin
(2018) use the same data as Brandt et al. (2017) but attempt to minimize
the impact of unobserved demand heterogeneity. They estimate the output
elasticities of labor and materials to be 0.29 and 0.61.

Bias in estimated markup. Substituting biased estimates of the distur-
bance εjt and the output elasticity βX(·) into equation (3), DLW obtain

µDLWjt =
βX(Kjt, Ljt,Mjt)(1 + biasjt)

SRXjt
exp(−εjt − ε̃jt + εjt)

= µjt(1 + biasjt) exp(−ζjt),

where we index the bias by j and t to accommodate production functions
other than the Cobb-Douglas from our example. It follows that

lnµDLWjt ≈ lnµjt + biasjt − ζjt.

The bias in the estimated markup µDLWjt has two components. The first
component affects the unconditional expectation of µDLWjt and hence its level
since

E(lnµDLWjt ) = lnµjt + E(biasjt). (14)

The second component of the bias affects the conditional expectation of µDLWjt

and hence how it correlates with variables that the economist may be inter-
ested in such as a firm’s export status or measures of trade liberalization.
To see this, note that for a variable wjt that is orthogonal to εjt and not
perfectly collinear with zjt, we have

E(lnµDLWjt |wjt) = E(lnµjt|wjt) + E(biasjt|wjt)− E(ζjt|wjt). (15)
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5 Testing for the effects of unobserved de-

mand heteroegeneity

In this section, we test whether the first step of ACF is correctly specified as
qjt = φ(zjt) + εjt (see again equation (4)) or becomes qjt = φ(zjt, δjt) + εjt
(see equation (8)). The difficulty is that δjt is inherently unobservable, as
is its correlation with the observables zjt. We overcome this difficulty by
exploiting that our data contains a firm- and year-specific indicator of the
state of demand (slump, stability, and expansion). This market dynamism
variable mdyjt is as good a proxy for shifts in the demand a firm faces as one
can hope for in production data and hence an important component of δjt.
At the same time, there is no reason to believe that it captures differences in
demand across firms or time in their entirety.

Data. Our data come from the Encuesta Sobre Estrategias Empresariales
(ESEE) survey, a firm-level survey of the Spanish manufacturing sector, and
spans 1990-2012. Appendix B provides details on the sample and variables.
We estimate the production function separately for 10 industries.

Specification and estimation. We specify a Cobb-Douglas production
function lnF (Kjt, Ljt,Mjt) = β0 + βt + βKkjt + βLljt + βMmjt, where β0 is
a constant and βt is a set of 21 year dummies. As in ACF, we specify an
AR(1) process with parameter ρ for Hicks-neutral productivity ωjt.

We invert the demand for a variable input and write ωjt = h(zjt). We
include input quantities kjt, ljt, and mjt, the real price of labor pLjt − pjt,
and the real price of materials pMjt− pjt in the observables zjt in addition to
the constant and the year dummies.

In the first step of ACF, we flexibly approximate φ(zjt) in equation (4) by
a complete polynomial of order 3 in the continuous variables included in zjt,
the constant, and the year dummies and estimate by OLS. In the second step
of ACF, we estimate equation (5) by GMM. The instruments are kjt, kjt−1,

ljt−1, mjt−1, and φ̂(zjt−1) in addition to the constant and the year dummies.
We correct the standard errors for the two-step nature of the estimation (see
Appendix C).
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Markup. While our approach extends directly to alternative assumptions,
we assume that both labor Ljt and materials Mjt are variable inputs.11 Com-
bining equation (3) for labor and materials yields

µjt =
ν(Kjt, Ljt,Mjt)

SRLjt + SRMjt

exp(−εjt), (16)

where ν(·) = βL(·) + βM(·) = ∂ lnF (·)
∂ljt

+ ∂ lnF (·)
∂mjt

is the short-run elasticity of

scale. As in DLW, we obtain the markup µDLWjt of firm j in period t by
substituting estimates of the parameters ν = βL + βM of the Cobb-Douglas
production function and of the disturbance εjt into equation (16).

Results. Table 2 reports the results from the DLW method. Column (1)
shows the average (log) markup by industry, along with the sample standard
deviation. The average markup ranges from 0.090 in industry 1 to 0.445
in industry 3. Columns (2)–(4) show the underlying production function
estimates. The output elasticity of capital βK is plausible although not
significant at the 5% level in industries 5, 6, and 8. The short-run elasticity
of scale ν is on the high side and in 7 industries ranges from 0.956 to 1.173.

While the extant literature does not routinely conduct formal specifica-
tion tests, the Sargan test in column (5) rejects the specification in 3 indus-
tries at the 5% significance level. This is not surprising: as shown in Section
4, if there are differences in demand across firms or time that cannot be fully
controlled for by zjt, then δjt 6= 0 and kjt is no longer a valid instrument in
the second step of ACF.

Test. To more specifically test for the effects of unobserved demand het-
erogeneity, recall from equation (11) that if δjt 6= 0, then equation (5) in the
second step of ACF becomes

qjt = lnF (Kjt, Ljt,Mjt)

+ρ
(
φ̃(zjt−1)− lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ρζjt−1 + ξjt + εjt,(17)

where φ̃(zjt) = E (φ(zjt, δjt)|zjt) and ζjt = φ(zjt, δjt)− φ̃(zjt) is the prediction
error. Treating our market dynamism variable mdyjt as a component of δjt
and noting that δjt 6= 0 generally implies ζjt 6= 0, we test for δjt 6= 0 by

11See again footnote 2.
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examining the correlation of mdyjt with the composite error ρζjt−1+ξjt+εjt.
Adding mdyjt to the instruments used in the second step of ACF, the Sargan
test in column (6) detects a significant correlation and rejects the specification
in 9 industries at the 5% significance level.

While the Sargan test points to unobserved demand heterogeneity, it may
be difficult to detect this problem from a routine examination of the average
markup or the coefficient of determination in the first step of ACF. Indeed,
the R2 exceeds 0.99 in all industries.

Bias in estimated markup. As shown in Section 4, unobserved demand
heterogeneity causes a bias in the estimated disturbance εjt and a bias in the
estimated output elasticity βX(·). Plugging biased estimates into equation
(16), in turn, causes a bias in the estimated markup µDLWjt that has two
components. The first component affects the level of the estimated markup
and the second component how it correlates with variables of interest (see
again equations (14) and (15)). We illustrate both components in turn.

Starting with the level component, we include mdyjt in zjt, re-estimate
equations (4) and (5), and re-compute the markup µDLWjt .12 Column (7) of
Table 2 shows the average (log) markup by industry. Because mdyjt is only a
proxy for δjt, there is no reason to believe that the estimates are entirely free
of bias. Nevertheless, including mdyjt in zjt decreases the markup noticeably
in industries 3, 4, and 5 compared to the baseline in column (1).

Turning to the correlation component, we regress lnµDLWjt on our market
dynamism variable mdyjt and report the estimated coefficient in Table 2.13

In the baseline with mdyjt excluded from zjt, the estimated markup is not sig-
nificantly correlated with market dynamism in 8 industries and significantly
negatively correlated with market dynamism in 2 industries (column (8)). In
contrast, with mdyjt included in zjt, the estimated markup is significantly
positively correlated in 8 industries (column (9)). The latter conveys, as
expected, that firms enjoy a higher markup if their demands are expanding
rather than contracting.

As shown in Section 4, this reversal happens because with mdyjt excluded
from zjt, the entire effect of demand heterogeneity is left in the estimated
disturbance. This estimate of ε̃jt = ζjt + εjt, in turn, is substituted into

12We also include mdyjt as an instrument in the second step of ACF.
13We include a constant and a set of 21 year dummies in this and all subsequent regres-

sions of this type.
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equation (16) in lieu of εjt to obtain the markup. Including mdyjt in zjt ab-
sorbs a part of demand heterogeneity. The resulting change in the estimated
disturbance rectifies the correlation of the estimated markup with market
dynamism.

It turns out that if the data has been generated by a Cobb-Douglas pro-
duction function and mdyjt has been included in zjt, then regressing lnµDLWjt

on mdyjt consistently estimates the correlation of the markup with market
dynamism despite the fact that the estimated disturbance and the estimated
output elasticity are biased. This follows directly from equation (15) and
the fact that for a Cobb-Douglas production function the short-run elastic-
ity of scale ν is a constant. Because ν is a constant so is biasjt, and thus
E(biasjt|mdyjt) is a constant that is absorbed into the constant of the re-
gression. Moreover, E(ζjt|mdyjt) = 0 because mdyjt has been included in

zjt. Therefore, E
(
lnµDLWjt |mdyjt

)
= E

(
lnµjt|mdyjt

)
+ const.

Of course, if a Cobb-Douglas production function is not appropriate for
the data at hand, then E(biasjt|mdyjt) is generally not a constant and thus
cannot be absorbed into the constant of the regression. It follows that
the regression cannot consistently estimate the correlation of the markup
with market dynamism even if mdyjt has been included in zjt to ensure
E(ζjt|mdyjt) = 0.

6 Concluding remarks and paths forward

To answer a variety of empirical and theoretical questions and provide pol-
icy advice, economists would like to have a way to estimate the firm-level
markup that is easy to compute and does not require modelling demand and
making detailed assumptions about firm conduct. In an attempt to fulfill
these desiderata, DLW obtain the markup from the firm’s cost minimization
problem by substituting in estimates of the output elasticity of a variable
input and the disturbance that separates actual from planned output. These
estimates are obtained using the OP/LP procedure.

As we have shown, the DLW method does not free the econometrician
from having to think carefully about the specification of demand and as-
sumptions on firm conduct. In the cost minimization problem, the firm’s
planned output Q∗jt summarizes the demand the firm faces. Because planned
output Q∗jt is unobserved by the econometrician, the scalar unobservable as-
sumption underlying the OP/LP procedure is violated. The DLW method
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therefore either has to rule out any differences in demand across firms or time
or assume that they can be fully controlled for by observables zjt.

We have characterized the bias in the estimates produced by the DLW
method that results if these conditions are not satisfied. The bias permeates
the level of the estimated markup and its correlation with variables of inter-
est. We provide an empirical application to test for the effects of unobserved
demand heterogeneity. The resulting bias is most pronounced in the corre-
lation of the estimated markup with our market dynamism variable. Similar
correlations of the estimated markup with variables of interest are often the
focus of attention in applications of DLW.

A natural question is if there are alternative approaches to estimation
that are robust to differences in demand across firms or time that cannot
be fully controlled for by observables zjt. There is a narrow path forward
within the proxy variable paradigm. If a Cobb-Douglas production function
is appropriate for the data at hand and if the researcher is only interested in
the correlation of the estimated markup with a variable of interest, then she
can proceed simply by including this variable in the first step of ACF. This
amounts to purpose-building the markup for the ex-post analysis and does
not address the level component of the bias.

To proceed further and estimate the output elasticity in the second step of
ACF, the researcher can drop instruments such as contemporaneous capital
and labor that are no longer valid if δjt 6= 0. This relies on assuming an AR(1)
process for Hicks-neutral productivity ωjt (see again footnote 7) but not on
assuming a Cobb-Douglas production function. This way of proceeding, in
theory, avoids both the level and the correlation component of the bias in
the estimated markup. How well it works in practice no doubt depends on
the data at hand.

A potentially wider path forward is to take a dynamic panel approach to
estimation, as suggested by Bond et al. (2020). The dynamic panel approach
avoids the inversion in the first step of ACF and therefore introducing δjt
into the estimation. Hence, it is robust to δjt 6= 0. Ackerberg (2020) pro-
vides a detailed comparison of the OP/LP procedure and the dynamic panel
approach. We highlight two main limitations of the dynamic panel approach.
First, it again relies on the assumption that ωjt follows an AR(1) process.
Second, because the dynamic panel approach avoids the inversion in the first
step of ACF, it does not yield an estimate of the disturbance εjt. It is thus
not able to estimate µjt separately from εjt and instead delivers an estimate
of lnµjt + εjt (obtained by bringing exp (−εjt) to the left-hand side in equa-
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tion (3) or (16)). Any average across groups of firms and/or years involving
a sufficiently large number of observations is therefore a consistent estimate
of the average (log) markup for these firms and/or years.

A final consideration is that consistently estimating the output elastic-
ity may be difficult in a model that restricts unobserved heterogeneity to a
single dimension in the form of Hicks-neutral productivity. A number of re-
cent papers provide evidence of labor-augmenting productivity (Doraszelski
& Jaumandreu 2018, Raval 2019, Demirer 2020). In contrast to Hicks-neutral
productivity, labor-augmenting productivity directly enters the output elas-
ticity. The literature has only recently begun to develop more sophisticated
models and estimators to handle unobserved heterogeneity with multiple di-
mensions. Doraszelski & Jaumandreu (2019), Demirer (2020), and Raval
(2020) in particular highlight the implications of biased technological change
for markup estimation.
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Appendix A

We assume a stationary environment and, without loss of generality, that
E(ljt) = 0. Moreover, E(ζjt) = 0 because ζjt is mean independent of zjt.
Letting E(ljtζjt−1) = Cov(ljt, ζjt−1) and E(ljt(ljt − ρljt−1)) = Cov(ljt, ljt −
ρljt−1), we write the IV estimator in equation (12) equivalently as

β̂
IV

L = βL

(
1 +

ρ

βL

Cov(ljt, ζjt−1)

Cov(ljt, ljt − ρljt−1)

)
= βL

(
1 +

ρ

βL

√
V ar(ζjt)

V ar(ljt − ρljt−1)
Corr(ljt, ζjt−1)

Corr(ljt, ljt − ρljt−1)

)
,

where V ar(ζjt) = V ar(ζjt−1) because of stationarity.
Note that we can write

1

βL

√
V ar(ζjt)

V ar(ljt − ρljt−1)
=

√
V ar(ζjt)/V ar(q

∗
jt)

V ar(βLljt)/V ar(q
∗
jt)

√
V ar(ljt)

V ar(ljt − ρljt−1)
,

where V ar(ζjt)/V ar(q
∗
jt) is the proportion of variance of q∗jt explained by ζjt.

This proportion can also be written as 1−R2, where R2 is the coefficient of
determination in the (infeasible) regression of q∗jt on observables zjt. Finally,
if ljt follows an AR(1) process with parameter ρL, then Corr(ljt, ljt−ρljt−1) =

(1− ρρL)
√

V ar(ljt)

V ar(ljt−ρljt−1)
. Combining expressions yields equation (13).

Appendix B

The ESEE is a firm-level survey of the Spanish manufacturing sector spon-
sored by the Ministry of Industry. At the beginning of the survey, about 5%
of firms with up to 200 workers were sampled randomly by industry and size
strata. All firms with more than 200 workers were included in the survey
and 70% of these larger firms responded. Firms disappear over time from the
sample due to either exit (shutdown or abandonment of activity) or attrition.
To preserve representativeness, samples of newly created firms were added
to the initial sample almost every year and some additions counterbalanced
attrition.

We observe firms for a maximum of 23 years between 1990 and 2012. We
restrict the sample to firms with at least three years of observations, giving
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a total of 3026 firms and 26977 observations. The number of firms with 3,
4,. . . , 23 years of data is 398, 298, 279, 278, 290, 324, 122, 111, 137, 96, 110,
66, 66, 98, 66, 40, 37, 44, 37, 42 and 87 respectively.14

In what follows we list the variables that we use, beginning with the
variables that we take directly from the data source.

• Revenue (R). Value of produced goods and services computed as sales
plus the variation of inventories.

• Investment (I). Value of current investments in equipment goods (ex-
cluding buildings, land, and financial assets) deflated by a price index
of investment. The price of investment is the equipment goods com-
ponent of the index of industry prices computed and published by the
Spanish Ministry of Industry.

• Capital (K). Capital at current replacement values is computed recur-
sively from an initial estimate and the data on investments I at t − 1
using industry-specific depreciation rates. Capital in real terms is ob-
tained by deflating capital at current replacement values by the price
index of investment.

• Labor (L). Total hours worked computed as the number of workers
times the average hours per worker, where the latter is computed as
normal hours plus average overtime minus average working time lost
at the workplace.

• Intermediate consumption (MB). Value of intermediate consumption
or materials’ bill.

• Proportion of white collar workers (pwc). Fraction of non-production
workers.

• Advertising (adv). Firm expenditure in advertising.

• R&D Expenditures (R&D). Cost of intramural R&D activities, pay-
ments for outside R&D contracts with laboratories and research cen-
ters, and payments for imported technology in the form of patent li-

14Table D1 in Doraszelski & Jaumandreu (2019) shows the industry labels along with
their definitions in terms of the ESEE, ISIC and NACE classifications and the number of
firms and observations per industry.
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censing or technical assistance, with the various expenditures defined
according to the OECD Frascati and Oslo manuals.

• Price of output (P ). Firm-level price index for output. Firms are
asked about the price changes they made during the year in up to five
separate markets in which they operate. The price index is computed
as a Paasche-type index of the responses.

• Price of labor (PL). Hourly wage cost computed as wage bill divided
by total hours worked.

• Price of materials (PM). Firm-specific price index for intermediate
consumption. Firms are asked about the price changes that occurred
during the year for raw materials, components, energy, and services.
The price index is computed as a Paasche-type index of the responses.

• Market dynamism (mdy). Firms are asked to assess the current and
future situation of the main market in which they operate. The demand
shifter codes the responses as 0, 0.5, and 1 for slump, stability, and
expansion, respectively.

We construct a number of additional variables. We consistently subtract
advertising from intermediate consumption because it is not a production
input. We define variable cost as the wage bill plus the cost of intermedi-
ate consumption (minus advertising), minus the R&D expenditures and an
estimate of the part of the wage bill corresponding to white collar workers.
The estimation assumes that white-collar employees work the same number
of hours but have an average wage 1.25 times higher. This is important to
better approximate variable cost.

• Output (Q). Revenue deflated by the firm-specific price index of output.

• Materials (M). Value of intermediate consumption minus advertising
deflated by the firm-specific price index of materials.

• Variable cost (V C). Wage bill (including social security payments)
plus the cost of intermediate consumption minus advertising, R&D
expenditures, and white collar pay.
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Appendix C

Let γ be the parameters estimated in equation (4) in the first step of ACF
and θ the parameters estimated in equation (5) in the second step of ACF.
Given the estimate γ̂, ξjt + εjt = rjt(θ, φ(zjt−1; γ̂)) in equation (5) depends

on φ̂(zjt−1) = φ(zjt−1; γ̂). Stacking yields the Tj × 1 vector rj(θ, φ(zj,−1; γ̂)),
where Tj is the number of observations for firm j.

Following Wooldridge (2010), let

D0 = E[w′jrj(θ0, φ(zj,−1; γ̂))rj(θ0, φ(zj,−1; γ̂))′wj]

be the variance of the orthogonality conditions based on the Tj × Q matrix
of instruments wj in the second step of ACF, evaluated at the true value
of θ. Expanding rj(·) around the true value of γ yields rj(θ0, φ(zj,−1; γ̂)) ≈
rj(θ0, φ(zj,−1; γ0)) +

∂rj
∂φ
∇γφ(zj,−1; γ0)(γ̂ − γ0). Since γ is estimated by OLS,

we use (γ̂ − γ0) =
∑

j(f(zj)
′f(zj))

−1f(zj)
′εj, where f(zj) are the regressors

in the first step of ACF, and replace rj(·) by

r̃j(θ0, γ0, εj) = rj(θ0, φ(zj,−1; γ0))+
∂rj
∂φ
∇γφ(zj,−1; γ0)

∑
j(f(zj)

′f(zj))
−1f(zj)

′εj.

Replacing the true values of θ, γ, and εj by their estimates, we estimate

D0 as D̂ = 1
N

∑
j w
′
j r̃j(θ̂, γ̂, ε̂j)r̃j(θ̂, γ̂, ε̂j)

′wj. Next, we use D̂ in the usual
sandwich formula for the asymptotic variance of the estimated parameters θ
and in the optimal weighting matrix to compute the Sargan test.
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