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Abstract

Time series methods for identifying structural economic disturbances often

require disturbances to satisfy technical conditions that can be inconsistent with

economic theory. We propose replacing these conditions with a less restrictive

condition called recoverability, which only requires that the disturbances can be

inferred from the observable variables. We show how to check recoverability in

any linear model, and use this condition to construct new identifying restrictions

for technological and expectational disturbances. Using these restrictions in a

vector-autoregressive analysis of postwar U.S. data, we find that independent

disturbances to expectations about future technology are a major driver of

business cycles.
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1 Introduction

Economists often seek to explain economic fluctuations in terms of exogenous ran-

dom disturbances to the underlying structure of the economy. A popular empirical

strategy, based on the proposal of Sims (1980), is to associate these structural distur-

bances with linear combinations of contemporaneous forecast errors obtained from an

unstructured multivariate time series model, typically a vector autoregression (VAR).

Some a priori theoretical restrictions are needed to determine which linear combina-

tions of the forecast errors to choose, but this strategy has the advantage of requiring

far fewer restrictions than estimation of a fully specified structural model.

Despite the popularity of this strategy, a number of papers, beginning with Hansen

and Sargent (1991), have argued that it is only feasible if the structural disturbances

can be expressed as linear combinations of contemporaneous forecast errors — or more

precisely, if the disturbances satisfy the technical condition of being fundamental.

This condition says that the disturbances must be both causal, which means that

they cannot affect observable variables in advance, and invertible, which means that

they can be inferred from just current and past (but not future) observables. The

reason that fundamentalness poses a problem is that it has often been found to be

inconsistent with economic theory.1 As a result, practitioners often first check whether

disturbances are fundamental in a candidate theoretical model, using tests such as

that of Fernández-Villaverde et al. (2007); if not, they then resort to fully structural

methods.2

In this paper, we argue that fundamentalness should not be understood as a fea-

sibility condition for identifying structural disturbances using time series methods in

the spirit of Sims (1980). We propose replacing this condition with a less restrictive

condition, which only requires that the disturbances can be inferred from the observ-

able variables available to the econometrician. We call this condition recoverability

and provide a necessary and sufficient condition that is easy to check in any linear

candidate model.3 This proposal expands the set of disturbances that can be identi-

1Early examples include Hansen and Sargent (1980), Futia (1981), and Quah (1990).
2This is the original remedy proposed by Hansen and Sargent (1991), and has been adopted by

a large part of the literature on anticipated disturbances. See the arguments in Schmitt-Grohé and

Uribe (2012), Barsky and Sims (2012), and Blanchard et al. (2013).
3We use the term “recoverable” interchangeably with “identified,” though the latter is sometimes

reserved for parameters. But like parameter identification (and fundamentalness), recoverability is
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fied using these methods, because fundamental disturbances are always recoverable,

but not vice versa. The recoverability condition also helps to detect the presence

of “omitted variables” problems, because it indicates exactly when the observable

variables contain enough information to identify the disturbances of interest.

We are not the first to suggest that fundamentalness is unnecessary for using

structural time series methods. Lippi and Reichlin (1993), Mertens and Ravn (2010),

and Forni et al. (2017a,b) all contain examples in which non-invertible (and therefore

non-fundamental) disturbances are identified using VARs. However, this paper is the

first to propose a specific alternative condition to replace fundamentalness. Our the-

oretical analysis, therefore, provides a broader framework within which papers like

these can be situated, alongside the many papers that do maintain the fundamental-

ness assumption. It also suggests new possibilities that may have been overlooked as

the result of viewing fundamentalness as a methodological constraint that can only

be circumvented in special cases.

While most of the literature on non-fundamentalness focuses on violations of in-

vertibility, much less attention has been given to violations of causality. For example,

Lippi and Reichlin (1994) excludes the possibility of non-causal disturbances from the

outset. The only non-invertible disturbances considered in that paper are ones that

can be obtained from fundamental disturbances by multiplying them with the inverse

of a Blaschke matrix. Almost all of the subsequent literature has followed their lead.

One exception is Lanne and Saikkonen (2013), which proposes one type of non-causal

VAR model. However, that paper also assumes that disturbances are not Gaussian,

which takes it outside the linear setting of this paper. By contrast, we treat causal

and non-causal disturbances symmetrically, and analyze both using the same linear

methods.

We illustrate the value of our proposal by using it to provide new insights into two

important empirical questions in macroeconomics. First: how important are (neu-

tral) technological disturbances for explaining business cycle fluctuations? Second:

by comparison, how important are independent disturbances in expectations about

technology?

The interesting thing about these questions is that it is not generally possible

to answer them without allowing both for non-causality and non-invertibility. The

reason for this is that economic agents might receive information about future techno-

a population concept.
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logical changes in advance. If they do, then technological disturbances will generally

affect observable variables before they occur, which means they will be non-causal.

Furthermore, it isn’t possible to determine, from current and past observables alone,

the extent to which current changes in expectations are actually the result of sub-

sequent technological developments. To do so, one would need to know what those

subsequent developments are. This means that independent expectational distur-

bances must be non-invertible.

Nevertheless, as long as the econometrician has observations on technological

change (as is typically assumed in the literature on technological “news”), both of

these disturbances are generally recoverable. We use this insight to construct a new

set of structural restrictions that correctly identify the disturbances of interest even

when agents receive advance information of arbitrary form. These restrictions al-

low us to test the hypothesis that agents respond to technological developments in

advance, and to provide quantitative estimates of the extent to which this is the case.

By comparison, most of the existing literature on technological news has not

allowed either for non-invertible or non-causal disturbances. This is true, for example,

in Beaudry and Portier (2006), Barsky and Sims (2011), and Barsky et al. (2015).

The reason is that these papers equate technological disturbances with forecast errors

about technology. However, forecast errors depend both on changes in technology and

expectations, and therefore they confound the independent fluctuations in both. One

exception is the work by Forni et al. (2017a,b), which allows for non-invertibility, but

restricts the disturbances to be causal. Without relaxing causality, it is only possible

to separately identify technological and expectational disturbances in the presence of

advance information of a very special type.

In an application to postwar U.S. data, we find that technological disturbances are

relatively unimportant for explaining business cycle fluctuations (12% of GDP). By

contrast, purely expectational disturbances are much more important (69% of GDP).

Our results are consistent with the view that technology is an important driver of long-

run growth, while shorter-run fluctuations are largely driven by independent changes

in expectations about future technology. Our procedure also allows us to test the

over-identifying restriction that these expectational disturbances are consistent with

agent rationality; we find little evidence to suggest that they are not.
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2 Terms and conditions

This section defines the new concept of recoverability that we propose and presents

a necessary and sufficient condition that can be used to check whether it is satisfied

in any linear model. It also navigates through the thicket of other technical concepts

that have been used in the literature. One challenge is that many of these concepts

have very different economic meanings than their names suggest, mainly because they

have been imported into the economic literature from other fields. Nevertheless, we

opt to follow the current usage rather than propose entirely new names for the same

concepts.

We begin by considering an arbitrary linear economic model mapping structural

disturbances into observable variables,

yt =
∞∑

s=−∞

ϕsεt−s (1)

The nε dimensional process of structural disturbances, {εt}, is orthonormal white

noise. In other words, its values have mean zero, unit variance, and are mutually un-

correlated. The sequence of ny×nε matrices {ϕs} has square summable components,

so that the observable process {yt} is covariance stationary and linearly regular.

All the linear models considered in the literature are special cases of this setup. For

example, if ϕs = 0 for all s < 0, we obtain any model with only causal disturbances.

Definition 1. {εk,t} is causal with respect to {yt} if E[εk,tyl,s] = 0 for all l and t > s.

This definition says that the disturbance at time t cannot affect any observable vari-

able before time t. This notion of causality is not the same as economic causality,

and an important part of our argument will be that it should not be imposed a priori.

A common example of a model with causal disturbances is one with the state-space

structure

yt = Axt and xt = Bxt−1 + Cεt,

where xt is an nx dimensional state vector. In this case, ϕs = ABsC for all s ≥ 0 and

ϕs = 0 for all s < 0.

Now we are ready to define what we mean by recoverability. To do so, let H(y)

denote the closed linear space spanned by the variables yk,t for all k, t. This space

represents the information contained in the process {yt}. Recoverability says that
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the value of the disturbance at each point in time can be perfectly inferred from this

information; that is, from the past, present, and future values of the observables.4

Definition 2. {εk,t} is recoverable from {yt} if εk,t ∈ H(y) for all t.

Recoverability is a weaker notion than invertibility, which has to do with whether

the disturbances can be perfectly inferred only from the past and present (but not

future) values of the observables. To define this formally, we let Ht(y) denote the

closed linear space spanned by all the observable variables only up through time t.

Definition 3. {εk,t} is invertible from {yt} if εk,t ∈ Ht(y) for all t.

Notice that invertibility does not imply causality, which means that it is possible

in principle to infer non-causal disturbances from the current and past history of

observables.

All three of the properties we have defined so far have been stated in terms of a

single scalar process {εk,t}. They can be extended to a multi-dimensional process if

they apply to each of its constituent scalar processes individually. They can also be

extended to any representation of the process {yt}, such as the model in equation

(1). For example, if {εk,t} is causal for all k = 1, . . . , nε, then {εt} is a causal nε

dimensional process and equation (1) is a causal representation of {yt}.
Lastly, we turn to the notion of fundamentalness. As originally defined by Rozanov

(1967), pp.56-57, an orthonormal white noise process {εt} is called fundamental if its

values at time t form an orthonormal basis for the space Dt(y) ≡ Ht(y) 	 Ht−1(y),

which is the orthogonal complement of Ht−1(y) in Ht(y). Apart from being some-

what opaque, this definition has the awkward consequence of making fundamentalness

asymmetrical with respect to causality and invertibility. This is because it implies

that if a multi-dimensional process {εt} is fundamental then none of its constituent

processes {εk,t} can be fundamental. To avoid this implication, we adopt a slightly

modified definition.

Definition 4. {εk,t} is fundamental with respect to {yt} if it is causal and invertible.

This definition coincides with Rozanov’s original definition when it is applied to

all the disturbances in a given representation. To see this, notice that if all the

4Plagborg-Møller and Wolf (2018) independently adopt this same definition in their contempo-

raneous work on variance decompositions in linear projection instrumental variables models.
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recoverable invertible fundamental causal

Figure 1: Relationships between different properties of disturbances.

disturbances are causal, so that ϕs = 0 for all s < 0, then equation (1) implies that

Ht(y) ⊆ Ht(ε), where Ht(ε) is the space spanned by all disturbances up through time

t. If all the disturbances are also invertible, then Ht(ε) ⊆ Ht(y) as well. This means

that Ht(ε) = Ht(y), which, because the disturbances are orthonormal white noise,

implies that the values εk,t for k = 1, . . . , nε form an orthonormal basis for Dt(y). It is

easy to see that the converse is true as well. Figure (1) summarizes the relationships

between recoverability, invertibility, fundamentalness, and causality in the form of a

set diagram.

Our main interest is in determining the conditions under which the theoretical

model in equation (1) predicts that the structural disturbances are recoverable. To

do so, it is helpful to introduce the ny × nε dimensional function

ϕ(λ) =
∞∑

s=−∞

ϕse
−iλs,

which is the (discrete) Fourier transform of the coefficient sequence {ϕs}. This func-

tion is defined for values of λ on the interval [−π, π], and summarizes all the theoret-

ical restrictions embedded in the economic model. For example, if the model has a

state-space structure of the form considered above, then this function takes the form

ϕ(λ) = A(Inx−Be−iλ)−1C. The benefit of working with this function is that it allows

us to state a simple and intuitive condition that is both necessary and sufficient for

recoverability. We first state the theorem and then provide a discussion. Its proof is

in the appendix.

Theorem 1. {εk,t} is recoverable from {yt} if and only if

δk(Inε − ϕ(λ)†ϕ(λ)) = 0
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for almost all λ, where Inε is the nε dimensional identity matrix, δk is the k-th row

of Inε, and † denotes the Moore-Penrose pseudoinverse.

To understand the logic behind this result, it is helpful first to consider the case

without dynamics. Suppose that ϕs = 0 for all s 6= 0, so that there is just a static

relationship between the observable variables and the structural disturbances at each

point in time, yt = ϕ0εt, which means that ϕ(λ) = ϕ0 is a constant matrix. The

best estimate of εt based on the information in yk,t for k = 1, . . . , ny is given by the

projection

ε̃t = ϕ†0yt = ϕ†0ϕ0εt.

This implies that the k-th disturbance is equal to its best estimate exactly when the

k-th row of the matrix ϕ†0ϕ0 is equal to the k-th row of the identity matrix Inε . In

other words, when δk(Inε − ϕ
†
0ϕ0) = 0, which is the condition in the theorem. This

same logic carries over directly to the more general dynamic case, with the only added

proviso that the condition hold for almost all values of λ — that is, for all values of

λ on [−π, π] except possibly a set of Lebesgue measure zero.

If all the disturbances are recoverable, then ϕ(λ)†ϕ(λ) = Inε , which implies that

ϕ(λ) has full column rank. Conversely, if ϕ(λ) has full column rank, then the con-

dition in Theorem (1) will be satisfied for all nε disturbances. By combining these

observations, we arrive at the following corollary.

Corollary 1. {εt} is recoverable from {yt} if and only if rank[ϕ(λ)] = nε for almost

all λ.

According to this corollary, a necessary condition for all the structural disturbances to

be recoverable is that there be at least as many observable variables as disturbances,

ny ≥ nε. The intuition is that it is not possible to identify nε separate sources of

random variation without observations of at least nε random processes. In the more

general case that we are only interested in recovering m ≤ nε of the disturbances, the

necessary condition is that ny ≥ m.

For cases in which it is difficult to check the condition in Theorem (1) analytically,

there is a simple numerical procedure that can be used. The linear regularity of {yt}
implies that ϕ(λ) has a constant rank for almost all λ, which means that it is possible

to draw a number λu randomly from the interval [−π, π] and numerically check which

rows of Inε − ϕ(λu)
†ϕ(λu) are zero vectors. In Matlab, an equivalent procedure is to

7



execute the command

N = null(ϕ(λu)),

and check which rows of N are zero vectors. If N is an empty matrix, then ϕ(λu) is

full column rank, in which case all the disturbances are recoverable.

Example 1. This example demonstrates how to check recoverability numerically. Con-

sider the following dynamic system with three disturbances and three observable

variables,

y1,t = −0.490ε1,t−1 − 0.784ε1,t−2 + 0.098ε2,t−2 + 0.120ε3,t + 0.496ε3,t−1

y2,t = −0.500ε1,t − 0.800ε1,t−1 + 0.100ε2,t−1 + 0.200ε3,t

y2,t = 0.400ε1,t−1 + 0.640ε1,t−2 − 0.080ε2,t−2 − 0.200ε3,t − 0.660ε3,t−1

The associated function ϕ(λ) takes the form

ϕ(λ) =

 −0.490e−iλ − 0.784e−2iλ 0.098e−2iλ 0.120 + 0.496e−iλ

−0.500− 0.800e−iλ 0.100e−iλ 0.200

0.400e−iλ + 0.640e−2iλ −0.080e−2iλ −0.200− 0.660e−iλ


To check the condition in Theorem (1), we randomly draw λu = 0.109 from a uniform

distribution over [−π, π] and execute

N = null(ϕ(λu)) =

 −0.0768 + 0.0000i

−0.9962− 0.0418i

0.0000 + 0.0000i

 .
The third row of N is zero, which tells us that {ε3,t} is recoverable but the other two

disturbances are not. The reason for this is that each element of the second column

of ϕ(λ) is equal to the corresponding element of the first column multiplied by the

factor
−0.100e−iλ

0.500 + 0.800e−iλ
.

So, the first two disturbances cannot be inferred because the patterns of fluctuations

they generate in the observable variables are not dynamically independent. 4

We conclude this section by providing necessary and sufficient conditions for both

causality and invertibility; together these represent necessary and sufficient conditions

for fundamentalness. These conditions are only of tangential importance for our pur-

poses in this paper, but will be helpful for diagnosing situations in which disturbances
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are recoverable but either non-causal or non-invertible. Because they apply to any

linear model, they are also slightly more general than those typically presented in the

literature.

The causality condition follows from a straightforward application of the defini-

tion. It just says that the Fourier coefficients of ϕ(λ) associated with negative powers

of e−iλ must be zero for the disturbance of interest. Regarding notation, we use an

asterisk to denote complex conjugate transposition.

Theorem 2. {εk,t} is causal with respect to {yt} if and only if

1

2π

∫ π

−π
eiλsδkϕ(λ)∗dλ = 0 for all s < 0.

The condition for invertibility is somewhat more involved, and requires us to make

use of Wold’s decomposition theorem (see, e.g. Rozanov, 1967, p.56). This theorem

implies that the observables {yt} can always be represented as a one-sided moving

average

yt =
∞∑
s=0

γswt−s, (2)

where {wt} is an nw dimensional orthonormal white noise process which is fundamen-

tal with respect to {yt}. As we did for the structural model, we can define the function

γ(λ) as the discrete Fourier transform of the coefficients in this representation,

γ(λ) =
∞∑
s=0

γse
−iλs.

With this function, we can state the following theorem.

Theorem 3. {εk,t} is invertible with respect to {yt} if and only if it is recoverable

with respect to {yt} and

1

2π

∫ π

−π
eiλsδkϕ(λ)†γ(λ)dλ = 0 for all s < 0.

3 Motivating example

Why might it be economically interesting to consider recoverable but non-invertible

and non-causal disturbances? This section presents an example. Suppose that an

econometrician is interested in separately determining the importance of disturbances
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to technology and independent disturbances to expectations about future technology.

The basic idea is that if economic agents happen to receive information about future

technological disturbances in advance, it is not generally possible to accomplish this

task without relaxing both causality and invertibility.

To see why this is the case, let us consider a simple but general information

structure in which agents receive advance information about future technology.5 The

level of technology at time t is the accumulation of current and past technological

disturbances,

at =
∞∑
k=0

αkε
a
t−k,

where the sequence of weights {αk} determines the dynamics of technology. At each

time t, in addition to observing the current and past values of at, agents also receive a

signal st that contains additional information about future technological disturbances,

but is contaminated by an independent noise process,

st =
∞∑
k=1

ςkε
a
t+k + vt, vt =

∞∑
k=0

νkε
v
t−k.

Apart from being square-summable, the sequences {αk}, {ςk}, and {νk} are arbitrary.

Agents cannot separately observe the noise process, which means they do not

know whether changes in the signal at time t reflect actual future developments in

technology or unrelated noise. Nevertheless, because the signal is informative, it is

rational for agents to rely on it when forming their expectations of future technology.

As a result, agents’ expectations and actions (insofar as they are forward looking) are

affected both by future technological disturbances and the independent disturbances

in the unobservable noise process. This means that the technological disturbances,

{εat }, are inherently non-causal with respect to agents’ actions, while the independent

disturbances to agents’ expectations, {εvt }, are inherently non-invertible.6

To the extent that these conditions are viewed as necessary conditions for using

time series models like VARs, their inherent violation seems to pose a serious problem.

For this reason, some have concluded that such models simply cannot be used, and

a more fully structural empirical strategy is required. In the following section, we

5We focus on technology and expected technology, but this example can apply equally well to

other primitive driving processes (e.g. the non-systematic components of monetary or fiscal policy).
6The point that signal-extraction problems of this type generate inherent non-invertiblity has

been made by Blanchard et al. (2013).
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describe a proposal that avoids this conclusion. Specifically, we suggest that as long

as the disturbances are recoverable, it is still feasible to identify them using, for

example, a VAR. We will discuss the proposal in more detail below, but before doing

so it makes sense to ask whether the disturbances in this example are recoverable.

Despite the inherent violations of causality and invertibility that advance infor-

mation creates, it is easy to see that both disturbances are still recoverable with

respect to agents’ information. The two variables observed by agents are related to

the structural disturbances by a linear relationship of the form[
at

st

]
=

∞∑
k=−∞

[
αk 0

ς−k νk

][
εat−k

εvt−k

]
,

where αk = νk = 0 for all k < 0 and ςk = 0 for all k < 1. Letting ϕ(λ) denote the

Fourier transform of the sequence of matrix coefficients in this equation, we have

|ϕ(λ)| = α(λ)ν(λ),

where α(λ) and ν(λ) are the Fourier transforms of {αk} and {νk}, respectively. Under

the natural assumption that the technological disturbances are recoverable from tech-

nology and the non-technology disturbances are recoverable from the noise process,

it follows from Corollary (1) that α(λ) and ν(λ), and so also the product of the two,

are nonzero for almost all values of λ. This implies that ϕ(λ) has full column rank,

which indicates that both disturbances are recoverable from agents’ observables.

Of course, it might seem implausible to suppose that an econometrician also ob-

serves the signal process, especially if the signal is interpreted as a way of representing

agents’ imperfect perceptions of future conditions, rather than a literal piece of pub-

licly available data. Fortunately, both disturbances are still recoverable using agents’

expectations instead. To see this, let us define the expectational variable bt = Et[at+h],

for arbitrary h > 0. Then we can write[
at

bt

]
=

∞∑
k=−∞

[
αk 0

φak φvk

][
εat−k

εvt−k

]
, (3)

where the coefficients {φak, φvk}, which are implicitly functions of the other model co-

efficients, solve the linear prediction problem of projecting at+h on the space spanned

by observables up through time t. The determinant of the associated function ϕ(λ)

is given by

|ϕ(λ)| = α(λ)φv(λ),
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where φv(λ) is the Fourier transform of {φvk}. Apart from pathological cases (e.g.

the agents place zero weight on the signal), it follows immediately from the fact that

α(λ) and ν(λ) are nonzero for almost all λ that φv(λ) will be as well. Therefore, both

disturbances continue to be recoverable from the variables which are either directly

or indirectly observable to the econometrician.

This example is meant to illustrate why it might be interesting to entertain distur-

bances which are recoverable even if they are not causal or invertible. We now explain

our general proposal to view recoverability as the key feasibility condition for using

structural time series methods to identify disturbances. Throughout the discussion

it may be helpful to keep this example in mind for concreteness. We return to it in

section (6), where we work through a specific application of our proposal.

4 Main proposal

This section explains our proposal to view recoverability — not fundamentalness —

as the appropriate feasibility condition for identifying structural disturbances from an

unstructured time series model. The time series model that is most commonly used in

macroeconomics, following the proposal by Sims (1980), is the vector autoregression

(VAR). For the sake of concreteness, it will be convenient for us to frame our discussion

in terms of this specific time series model. However, we will make clear as we go along

that nothing about the general strategy is tied to VARs, and other time series models

could be used as well (e.g. models with moving average terms).

According to most treatments, VAR identification of structural disturbances en-

tails at least the following two assumptions:7

(a) The observables {yt} can be adequately represented by a stable VAR model of

the form

yt = B1yt−1 + · · ·+Bpyt−p + ut,

where {ut} is a white noise process with covariance matrix Σ.

(b) In the candidate theoretical model(s) of interest, each structural disturbance

of interest {εk,t} has values which can be expressed as linear combinations of

7See, e.g., Kilian and Lutkepohl (2017) or Stock and Watson (2016).
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one-step-ahead forecast errors

εk,t = Dk(yt − E[yt|Ht−1(y)]),

where Dk is a constant vector.

Taken together, these assumptions suggest the following two-step empirical procedure.

First, use statistical techniques to fit the VAR model in assumption (a) to the data.

Second, use economic theory to select the appropriate vector Dk in assumption (b)

and then identify the structural disturbances as εk,t = Dkut. The advantage of

this approach is that only a subset of the theoretical restrictions from the candidate

model (or class of models) is needed. Its empirical conclusions regarding the structural

disturbances can therefore be interpreted as robust across the range of different models

that are consistent with those restrictions.

Notice that assumption (b) does not say anything about specifically which theo-

retical restrictions should be used. Rather, it just amounts to the requirement that

the structural disturbances must be both causal and invertible. They must be causal

because yl,s ∈ Ht−1(y) for any s < t, so

E[εk,tyl,s] = DkE[(yt − E[yt|Ht−1(y)])yl,s] = 0,

and they must be invertible because

yk,t − E[yk,t|Ht−1(y)] ∈ Ht(y)

for all k, so εk,t ∈ Ht(y) as well. The implication is that a failure of either one of these

conditions poses a problem for the validity of VAR-based identification of structural

disturbances.

By contrast, our proposal is that the problem posed by non-fundamentalness can

be avoided by replacing assumption (b) above with

(b′) In the candidate theoretical model(s) of interest, each structural disturbance of

interest {εk,t} is recoverable with respect to {yt}.

In other words, we suggest removing the purely methodological constraint that the

only admissible theoretical restrictions are ones that can be articulated as linear com-

binations of contemporaneous one-step-ahead forecast errors. The only real require-

ment to identify the structural disturbances is that the observable variables available

13



to the econometrician contain enough information for the disturbances to be inferred,

which is the content of assumption (b′).

We believe this proposal has several advantages, five of which we discuss here.

First, it expands the feasible set of theoretical restrictions that can be entertained

in the economic step of the analysis. If there are good economic reasons to impose

fundamentalness, of course this option is still available. But under our proposal there

is no problem associated with imposing alternative restrictions instead. Like assump-

tion (b), assumption (b′) does not say anything about specifically which theoretical

restrictions should be used. Under either assumption, the appropriate restrictions

will depend on the theory and the type of disturbances the researcher has in mind.

The difference is that (b′) does not entail a pre-commitment to imposing restrictions

only of a particular type.

Second, it clarifies that the appropriateness of using VARs is unrelated to the

question of whether the structural disturbances are fundamental. This is because

the only purpose of the VAR is to summarize the dynamic relationships among the

observable variables. In other words, it is used as a flexible tool for estimating au-

tocovariances.8 Whether or not this is a good idea is really a statistical issue, and

statistical criteria for evaluating goodness of fit can and should be used to guide this

part of the analysis. In some cases, it may be that alternative unstructured time

series models are preferred. In those cases, assumption (a) can be modified to reflect

the time series model that makes the best statistical sense. But the point is that a

rejection of assumption (b) does not require a rejection of assumption (a).

Third, it clarifies exactly when non-fundamentalness is an omitted variables prob-

lem — namely, when the structural disturbances are not recoverable. Sometimes

non-fundamentalness is seen as an omitted variables problem, for which the solution

is adding more data.9 The disadvantage of this view is that it prematurely eliminates

options by conflating fundamentalness and recoverability. Non-fundamentalness may

or may not be a symptom of an an omitted variables problem, and it can be helpful

to know when it is; when it is not, other options may be available. Furthermore,

8This is consistent with the original proposal of Sims (1980): “The style I am suggesting we

emulate is that of frequency-domain time series theory..., in which what is being estimated (e.g., the

spectral density) is implicitly part of an infinite-dimensional parameter space...” (p.15).
9See, e.g. Alessi et al. (2011), Forni and Gambetti (2014), Kilian and Lütkepohl (2017), Nakamura

and Steinsson (2018), or Beaudry et al. (2019).
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there are certain situations (such as the example in the previous section) in which

the disturbances are inherently non-fundamental with respect to any realistic set of

observables. In such situations, conflating fundamentalness and recoverability risks

giving the false impression that there is no feasible path forward for identifying these

disturbances.

Fourth, it reduces the emphasis placed on one-step-ahead forecast errors. Most

papers require disturbances to be linear combinations of current forecast errors, while

some have suggested that linear combinations of current and future forecast errors

should be allowed as well.10 The assumption that the disturbances are recoverable of

course implies that there must be some relationship between them and the forecast

errors, but it does not restrict what that relationship should look like. Forecast errors

are just transformations of the observables, and one could easily imagine many other

transformations (e.g. backcast errors). Though forecast errors have been given special

attention in the literature, they are not — and should not be — inherently tied to

structural disturbances.

Fifth, it incorporates recent advances in VAR-based identification. Papers by

Mertens and Ravn (2010) and Forni et al. (2017a,b), for example, combine VARs

with theoretical restrictions to analyze structural disturbances that are causal but

not invertible. We add to this literature in our application below, where we are

interested in identifying a set of disturbances that is neither causal nor invertible.

Instead of appearing unusual or non-standard because they are inconsistent with

assumption (b), these applications fit in naturally alongside the rest of the existing

VAR literature under assumption (b′).

In addition to these advantages, there are also a few other aspects of our proposal

that deserve comment. One is the question of whether it is correct to think that

our proposal requires a greater reliance on economic theory.11 The answer is that it

does not, once we think of fundamentalness itself as an economic restriction. The

identification of non-fundamental disturbances entails relaxing the economic restric-

tion of fundamentalness and imposing alternative restrictions in its place. The fact

that these alternative restrictions are different does not imply that they are stronger.

Indeed, it is possible that they could even be weaker from an economic perspective,

10Bernanke (1986) and Blanchard and Watson (1986) only allow current forecast errors, while

Lippi and Reichlin (1994) only allow current and future forecast errors.
11Cf. the discussion on p.597 of Kilian and Lütkepohl (2017).
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as we will suggest in the case of our application below.

Another question is the extent to which our proposal is relevant to debates about

the appropriateness of fitting one fully specified time series model in the statistical

step of the empirical procedure described above.12 The answer is that our proposal is

conceptually independent of this debate. As we have mentioned above, the usefulness

of the time series model (e.g. the VAR) is as a tool for estimating the autocovariances

of the observable variables. Even if it is preferable to estimate these autocovariances

using alternative time series methods in certain situations, the question still arises:

should we only try to identify fundamental disturbances, and if not, is there some al-

ternative concept that tells us which disturbances cannot be identified? Our proposal

addresses this question.

Lastly, it is worth pointing out that it is possible to weaken our assumption (b′) at

the cost of being able to say less about the disturbances of interest. This assumption is

necessary for identifying the disturbances, and it implies that all other objects of eco-

nomic interest related to these disturbances are identified as well: impulse responses,

variance shares, time decompositions, etc. However, if the objective were only to

identify some of these objects of interest (as in the literature on external instruments;

e.g. Stock and Watson, 2018), or only to set identify them (as in Plagborg-Møller

and Wolf, 2018), then it would be possible to consider disturbances that are not

recoverable. Nevertheless, much of the structural time series literature on set identi-

fication, such as the literature on sign identification (cf. Uhlig, 2017), operates under

the assumption that the underlying structural disturbances are fundamental.

5 VAR procedure

This section implements our proposal and shows how to use VAR methods to ana-

lyze the two types of structural disturbances from the example in section (3). The

fact that both disturbances are generally recoverable from observations of technology

and expectations suggests a natural set of structural restrictions that can be used

in a VAR analysis. The first is that technological disturbances are the fundamental

disturbances in technology. As long as technology is observable, technological distur-

bances can be identified without any reference to agents’ beliefs about technology.

12See, e.g. Jordà (2005) and Nakamura and Steinsson (2018).
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The second is that the independent disturbances to expectations are the fundamental

disturbances in the part of expectations that is independent of technology at all leads

and lags. In the information structure above, the only reason that expectations about

technology fluctuate apart from actual fluctuations in technology is because of the

independent fluctuations generated by the noise process. To summarize, we can make

these identifying assumptions:

(i) {εat } are the fundamental disturbances in {at} such that E[atε
a
t ] ≥ 0, and

(ii) {εvt } are the fundamental disturbances in {bt − E[bt|H(a)]} such that E[(bt −
E[bt|H(a)])εvt ] ≥ 0.

These restrictions amount to imposing the following “zeros” in the mapping from

structural disturbances to observables,[
at

bt

]
= · · ·+

[
0 0

∗ 0

][
εat+1

εvt+1

]
+

[
∗ 0

∗ ∗

][
εat

εvt

]
+

[
∗ 0

∗ ∗

][
εat−1

εvt−1

]
+ · · · ,

which is consistent with the theoretical model in equation (3). The sign restrictions

in (i) and (ii) are included because fundamental disturbances in scalar processes are

only unique up to a sign change. They reflect the normalization that a positive

technological disturbance generates a positive response in technology on impact, with

the analogous normalization for the expectational disturbances.

Before describing the details of how we incorporate these restrictions into a VAR

analysis, we pause to discuss three ways that these restrictions are related to others in

the existing literature. First, the technological disturbances identified by restriction

(i) are not forecast errors in technology with respect to all the observables. A common

practice in the VAR literature is to associate the technological disturbance at time t

with some version of the forecast error

wat = at − Et−1[at] (4)

The problem is that these forecast errors are affected both by disturbances in tech-

nology and non-technological disturbances in expectations. Since we are interested in

disentangling these two types of disturbances it would not make sense for us to follow

this practice. Instead, we follow Basu et al. (2006) and identify the technological

disturbance from technology only.
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Second, the expectational disturbances identified by restriction (ii) are not fore-

cast errors in expectations that are orthogonal to forecast errors in technology. The

macroeconomic VAR literature on “news” follows the practice of identifying techno-

logical disturbances according to equation (4), and then builds on this by identifying

expectational disturbances as proportional to the orthogonalized forecast error

wbt = (bt − Et−1[bt])− E[(bt − Et−1[bt])|wat ] (5)

Like the forecast errors in equation (4), these orthogonalized forecast errors also

mix technological and non-technological disturbances. They do not identify variation

in expectations that are independent of technology, making them inappropriate for

assessing the independent causal role of expectations. This point is discussed in

greater detail in Chahrour and Jurado (2018).

Third, restriction (ii) correctly identifies the expectational disturbances for any

information structure in the general class described above. A recent paper by Forni

et al. (2017b) aims to identify noise in agents’ signals about future technology. At

one point, they observe that a natural restriction for identifying such noise is the

requirement that technology “is not affected by noise at any lag” (p.130). However,

in their subsequent analysis, they do not use this restriction. Instead, they propose

an alternative multi-step alogrithm which is only able to correctly identify the signal

noise in the special case of the above information structure where ςk = 0 for all k but

one. By contrast, restriction (ii) has the advantage of both being more transparent

and more general, in the sense that it works for any sequence of weights {ςk}.
To demonstrate how restrictions (i) and (ii) can be used as part of a VAR anal-

ysis, let {yt} denote the ny dimensional process observed by the econometrician.

Restriction (i) requires the econometrician to observe technology, so at is included

as an element of yt. For now, we will continue to suppose that the observable pro-

cess is covariance stationary and linearly regular. It is straightforward to allow for

different forms of non-stationarity, as we do in practice; however, explicitly doing

so at this point would unnecessarily complicate the discussion. Restriction (ii) re-

quires the econometrician to observe expectations of future technology. To meet

this requirement, we follow the common practice in the VAR literature of equating

agents’ expectations with optimal econometric forecasts. Therefore, we assume that

bt = Et[at+h] = E[at+h|Ht(y)] for any t and h. We should note that this assumption

is only necessary for identifying the expectational disturbances, and not the techno-
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logical ones.

The first stage of the analysis involves fitting an unstructured VAR model of the

form

yt = B1yt−1 + · · ·+Bpyt−p + ut,

where {ut} is a white noise process with covariance matrix Σ. The purpose of this

step is just to characterize the autocovariances; by using a VAR we are assuming that

this type of model is adequate for that purpose. The autocovariances implied by this

VAR are conveniently summarized by the spectral density, which in this case takes

the form

fy(λ) =
1

2π
(Iny −B1e

−iλ − · · · −Bpe
−iλ)−1Σ[(Iny −B1e

−iλ − · · · −Bpe
−iλ)−1]∗.

Taking this spectral density as given, the second stage of the analysis is to use

restrictions (i) and (ii) to identify the structural disturbances of interest. To do this,

let us focus on the joint dynamics of technology and expectations. Letting δa denote

the 1 × ny constant vector such that at = δayt, and bt =
∑∞

s=0 βsyt−s the optimal

forecast of at+h implied by the VAR, the joint spectral density of {at} and {bt} is

given by

f(λ) =

[
fa(λ) fab(λ)

fba(λ) fb(λ)

]
=

[
δa

β(λ)

]
fy(λ)

[
δ′a β(λ)∗

]
,

where β(λ) is the Fourier transform of {βs}. Now we need to obtain a unique factor-

ization of f(λ) of the form

f(λ) =
1

2π
ϕ(λ)ϕ(λ)∗, (6)

where the factor ϕ(λ) is the one defined by our restrictions. The Fourier coefficients of

ϕ(λ) then define the linear relationship from the structural disturbances to technology

and expectations, [
at

bt

]
=

∞∑
s=−∞

ϕs

[
εat

εvt

]
.

To solve our factorization problem, we begin by observing that one implication of

restriction (ii) is that ϕ(λ) must have a lower-triangular form,

ϕ(λ) =

[
ϕ11(λ) 0

ϕ21(λ) ϕ22(λ)

]
.
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This reflects the assumption that the expectational disturbances are independent

of technology. Substituting this expression for ϕ(λ) into equation (6), we have the

system [
fa(λ) fab(λ)

fba(λ) fb(λ)

]
=

1

2π

[
|ϕ11(λ)|2 ϕ11(λ)ϕ21(λ)

ϕ21(λ)ϕ11(λ) |ϕ21(λ)|2 + |ϕ22(λ)|2

]
.

First, consider the upper-left equation. Restriction (i) says that ϕ11(λ) can be ob-

tained from fa(λ) by finding the version of Wold’s decomposition of {at} with a

non-negative leading coefficient. The coefficients in this decomposition are unique

and can be computed using standard procedures (e.g. Rozanov (1967) pp.45-47).

Next, the lower-left equation uniquely determines ϕ21(λ) as a function of fba(λ) and

ϕ11(λ), the second of which has already been determined from the upper-left equation.

Lastly, the lower-right equation says that

1

2π
|ϕ22(λ)|2 = fb(λ)− 1

2π
|ϕ21(λ)|2.

By restriction (ii), ϕ22(λ) is uniquely determined from Wold’s decomposition of the

process with spectral density fb(λ)− 1
2π
|ϕ21(λ)|2. This can be computed in the same

manner as ϕ11(λ). Therefore, we have shown that the factor ϕ(λ) is unique and how

to obtain it from the unstructured VAR coefficients.

Given ϕ(λ), the structural disturbances εt = (εat , ε
v
t )
′ can be recovered from the

observables via a linear transformation of the form

εt =
∞∑

s=−∞

ψsyt−s,

where {ψs} are the Fourier coefficients of

ψ(λ) = ϕ(λ)−1

[
δa

β(λ)

]
.

Using this mapping from observables to structural disturbances, it is possible to

compute other objects of interest as well. For example, the response of yk,t+s to a

unit impulse in εl,t is given by

IRk,l(s) =

∫ π

−π
eiλsδkfy(λ)ψ(λ)∗δ′ldλ.

Or, the share of the variance in the process {yk,t} due to the disturbance {εl,t} over

the frequency range ∆ = [λ1, λ2] is given by

VSkl(s) =

∫
∆

|δkfy(λ)ψ(λ)∗δ′l|2dλ
(∫

∆

fy,kk(λ)dλ

)−1
.
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6 Empirical results

We now use restrictions (i) and (ii) from the previous section section to evaluate

the importance of disturbances to technology and expectations in postwar U.S. data.

Our analysis uses seven quarterly macroeconomic variables from 1948:Q1-2018:Q4:

a measure of technology, real gross domestic product (GDP), real consumption of

non-durable goods and services, hours worked in the non-farm business sector, an

index of real stock prices, inflation in the GDP deflator, and the real interest rate

on 3-month Treasury bills. The measure of technology is utilization-adjusted total

factor productivity (TFP) (Basu et al., 2006), the stock price index is the quarterly

NYSE/AMEX/NASDAQ value-weighted index from CRSP, and all other variables

are taken from FRED. Real variables are constructed from their nominal counterparts

using the GDP deflator, and all variables except inflation and the interest rate are

used in natural logarithms.

We use ordinary least squares to estimate a fourth-order VAR on the levels of

the seven macroeconomic variables. To allow for the possibility that technology may

be integrated of order one, we modify restrictions (i) and (ii) in the following way:

letting at denote the natural logarithm of TFP and bt = Et[at+h],

(i) {εat } are the fundamental disturbances in {∆at} such that E[∆atε
a
t ] ≥ 0, and

(ii) {εvt } are the fundamental disturbances in {∆bt − E[∆bt|H(∆a)]} such that

E[(∆bt − E[∆bt|H(∆a)])εvt ] ≥ 0.

Lastly, we need to specify the forecast horizon h that we consider. Because we are

interested in business-cycle fluctuations, we set h = 20, which is roughly the midpoint

of the conventional business-cycle range of 6 to 32 quarters. In the appendix, we report

Monte Carlo results showing that the procedure described in this paragraph works

nearly perfectly in long samples, and does a good job in finite samples as well.

Figure (2) displays the estimated impulse response coefficients of at and bt to εat

and εvt .
13 The top left panel of the figure plots the response of technology at to a

technological disturbance which occurs at time t = 0. It shows that technology is

close to being a random walk, as other papers have found. The bottom left panel

plots the response of expected technology bt to a technological disturbance. It shows

a small but statistically significant response in anticipation of this disturbance (values

13These are computed by cumulating the responses of ∆at and ∆bt from t = −10 to t = 20.
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Figure 2: Impulse responses estimated from U.S. data. These figures display how TFP

and expected TFP respond to a one standard deviation impulse in the disturbance

to technology (left column) and the independent disturbance to expectations (right

column) at time t = 0. The dashed lines are the point estimates and the solid

lines represent the 90% bias-corrected bootstrap confidence interval. All units are

annualized log points.

to the left of zero), with a peak response around one year in advance. This indicates

that agents can at least partially anticipate future developments in technology.

The upper right panel of Figure (2) shows the response of technology to the purely

expectational disturbance, which is zero at all horizons, consistent with the identifying

assumption that these disturbances are independent of technology. Finally, the lower

right panel shows that expected technology increases in response to the expectational

disturbance, with an effect that gradually declines over time. This gradual decline is

consistent with the standard effects of noise shocks under rational expectations.

Figure (3) plots the responses of the other observable variables to the same two

disturbances. The first column shows that GDP, consumption, and hours all exhibit

modest but statistically significant increases in anticipation of the technological dis-

turbance. Stock prices also increase, while inflation and interest rates are essentially

unchanged. Contemporaneously with the realization of the technological disturbance

at time zero, hours fall substantially, while GDP and consumption are essentially

unchanged, consistent with the findings of Basu et al. (2006). After the disturbance

occurs, GDP and consumption gradually rise, consistent with technological distur-
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bances having long-run macroeconomic effects.

The second column of Figure (3) plots the responses of the same endogenous

variables to the expectational disturbance. This disturbance generates positive co-

movement between GDP, consumption, hours, and stock prices. These variables all

increase contemporaneously with the disturbance and subsequently evolve in a hump-

shaped manner. For all variables other than stock prices, impulse responses are small

and insignificant in the time periods prior to the disturbance. While our identifying

assumptions require this disturbance to affect expected technology only starting at

time zero, the fact that we also see essentially no advance responses in the other vari-

ables is a result. This result is consistent with a rational expectations interpretation

of these disturbances as noise in agents’ signals of future technology. The exception

to this pattern is in the stock price, which is marginally significant just prior to time

zero, perhaps suggesting some deviations from rationality in stock price behavior.

Figure (4) plots the share of the variance in the six macroeconomic variables that

is attributable to disturbances in technology and expectations over business cycle

frequencies (6-32 quarters). The left column shows that technological disturbances

themselves explain a relatively small portion of the business cycle fluctuations in

all variables, exceeding 20% only in the case of hours. By contrast, expectational

disturbances explain a large portion of the business-cycle variation in real variables:

over 60% for GDP, over 40% for hours, and nearly 40% for consumption. These results

are qualitatively similar to the findings of Blanchard et al. (2013) and Chahrour

and Jurado (2018), both of which estimate a fully-structural equilibrium model with

noise in agents’ signal of future technology. Our results here contrast with these

earlier papers, however, in finding larger effects of expectational disturbances for GDP

relative to consumption. The remaining panels show that expectational disturbances

explain only a modest portion of the business-cycle variation in stock prices, and even

less for inflation and interest rates.

Overall, our results indicate that disturbances to expectations about future tech-

nology can play a relatively large role in explaning business cycle fluctuations in

real variables. To a large degree, our findings are consistent with fully structural

estimates of the importance of these disturbances. The small effect of expecational

disturbances on inflation and interest rates is also consistent with the reason that

these disturbances drive large fluctuations in fully structural models; the propagation

of disturbances to signal noise requires a high degree of nominal rigidity in prices
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Figure 3: Impulse responses estimated from U.S. data. These figures display how the

levels of six macroeconomic variables respond to a one standard deviation impulse in

the technological disturbance (left column) and the expectational disturbance (right

column) at time t = 0. The dashed lines are the point estimates and the solid

lines represent the 90% bias-corrected bootstrap confidence interval. All units are

annualized log points.
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Figure 4: Variance shares estimated from U.S. data. These figures display the share of

the variance in six macroeconomic variables attributable to disturbances in technology

and expectations over business cycle frequencies (6-32 quarters). The dashed line is

the point estimate and the solid line is the distribution of bias-corrected bootstrap

estimates.
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and wages, and a weak response of interest rates. However, the fact that these dis-

turbances are especially important for GDP does contrast with the findings of fully

structural analyses, suggesting that the additional structure imposed by these models

is not fully consistent with the observed data.

7 Conclusion

Much of the empirical literature in macroeconomics is focused on recovering struc-

tural disturbances. In this paper, we have provided a formal condition which allows

researchers to test whether the variables they have at hand are sufficient for this task.

This condition holds in many cases where researchers have previously concluded that

VAR approaches to recovering shocks were not feasible. We have suggested that

allowing for non-invertible and non-causal disturbances can open the door to more

plausible and more robust identification restrictions, especially those pertaining to

expectations. While we have focused on disturbances to technology and expected

technology, it would be natural to extend our analysis to other types of disturbances

as well.
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A Proofs

We prove the results in this paper by first specifying the appropriate space of complex

functions on which we will operate. The notation and terminology closely follows

Rozanov (1967). We write the spectral representation of an arbitrary covariance

stationary process {ξt} as

ξt =

∫ π

−π
eiλtΦξ(dλ), (7)

where Φξ(dλ) is its associated random spectral measure. We say that a 1×nξ dimen-

sional vector function ψ(λ) belongs to the space L2(Fξ) if∫ π

−π
ψ(λ)Fξ(dλ)ψ(λ)∗ ≡

∫ π

−π

nξ∑
k,l=1

ψk(λ)ψl(λ)f
(µ)
ξ,kl(λ)µ(dλ) <∞,

where Fξ(dλ) denotes the spectral measure of {ξt}, µ(dλ) denotes any non-negative

measure with respect to which all the elements of Fξ(dλ) are absolutely continu-

ous, f
(µ)
ξ,kl(λ) = Fξ,kl(dλ)/µ(dλ) for k, l = 1, . . . , nξ, and the asterisk denotes complex

conjugate transposition.14 If we define the scalar product

(ψ1, ψ2) =

∫ π

−π
ψ1(λ)Fξ(dλ)ψ2(λ)∗,

and do not distinguish between two vector functions that satisfy ‖ψ1 − ψ2‖ = 0, then

L2(Fξ) becomes a Hilbert space.15

This space of functions is helpful for describing linear transformations between

stationary processes. We say that {ηt} can be obtained from {ξt} by a linear trans-

formation whenever it can be represented in the form

ηt =

∫ π

−π
eiλtψ(λ)Φξ(dλ) (8)

14Recall that Fξ,kl(∆) ≡ E[Φξ,k(∆)Φξ,l(∆)] for k, l = 1, . . . , nξ and any Borel set ∆.
15The generalization of the Riesz-Fischer Theorem that is required to establish this fact is proven

in Lemma 7.1, Ch. 1, of Rozanov (1967).
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for all t, where ψ(λ) is an nη × nξ function with rows in L2(Fξ). We call the function

ψ(λ) in this expression the spectral characteristic associated with the transformation.

The following lemma says that recoverability is equivalent to the existence of a linear

transformation of this type.

Lemma 1. {ηt} is recoverable from {ξt} if and only if {ηt} can be obtained from {ξt}
by a linear transformation of the type in equation (8).

Proof of Lemma (1). First, we observe that H(ξ) is isomorphic to L2(Fξ).
16 This

can be seen by defining a correspondence between elements h ∈ H(ξ) of the form

h =

∫ π

−π
ψ(λ)Φξ(dλ), (9)

where ∫ π

−π
|ψk(λ)|2Fξ,kk(dλ) <∞, k = 1, . . . , nξ, (10)

and the vector functions ψ(λ) ∈ L2(Fξ) which occur in the representation (9). This

correspondence is linear, since h1 ↔ ψ1 and h2 ↔ ψ2 implies

α1h1 + α2h2 =

∫ π

−π
(α1ψ1(λ) + α2ψ2(λ))Φξ(dλ)↔ α1ψ1 + α2ψ2

for arbitrary scalars α1, α2. Moreover, it is isometric, because

(h1, h2) =

∫ π

−π
ψ1(λ)Fξ(dλ)ψ2(λ)∗ = (ψ1, ψ2).

Because the closed linear manifold spanned by elements of the form (9) coincides

with H(ξ), and the closed linear manifold spanned by elements ψ(λ) of the form (10)

coincides with L2(Fξ), it follows that correspondence we have defined can be extended

by continuity to H(ξ) and L2(Fξ), preserving both its linearity and isometry. Now

we proceed to the main part of the proof.

Necessity: If H(η) ⊆ H(ξ), then ηk,0 ∈ H(ξ) for all k = 1, . . . , nη. Because H(ξ)

is isomorphic to L2(Fξ), there exists a unique vector function ψ(λ), whose rows are

elements of L2(Fξ), such that

η0 =

∫ π

−π
ψ(λ)Φξ(dλ).

16Recall that two Hilbert spaces are said to be “isomorphic” if it is possible to define a one-to-one

correspondence between their elements which is linear and isometric.
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For every stationary process {ηt}, there exists a family of unitary operators Ut, −∞ <

t <∞, on H(ξ) such that

Utηk,s = ηk,t+s, k = 1, . . . , nη

for any t, s. To the unitary operator Ut in H(η) corresponds the operator of multipli-

cation by eiλt in L2(Fη); that is, for all k = 1, . . . , nη,

Utηk,0 = Ut

[∫ π

−π
δkψ(λ)Φξ(dλ)

]
= ηk,t =

∫ π

−π
eiλtδkψ(λ)Φε(dλ),

where δk is a 1× nη constant vector with components δkk = 1 and δkl = 0 for k 6= l.

From this it follows that ηt has a representation of the form (8).

Sufficiency: Suppose there exists a function ψ(λ) with rows in L2(Fξ) such that

equation (8) holds. Then the function eiλtδkψ(λ) is evidently also an element of L2(Fξ)

for each k = 1, . . . , nη, since∫ π

−π
eiλtδkψ(λ)Fξ(dλ)ψ(λ)∗δ∗ke

−iλt =

∫ π

−π
δkψ(λ)Fξ(dλ)ψ(λ)∗δ∗k <∞.

Because L2(Fξ) is isomorphic to H(ξ), this means that ηk,t ∈ H(ξ) for k = 1, . . . , nη.

Therefore, H(η) ⊆ H(ξ).

Our strategy for proving Theorem (1) is to project the values of the disturbance

{εk,t} at each point in time onto the spaceH(y) and then state necessary and sufficient

conditions under which the projection error is zero. The following lemma states the

optimal projection formula.

Lemma 2 (Optimal Smoothing). The stationary process {ε̃t} consisting of the best

linear estimates of {εt} on the basis of the values yk,s, k = 1, . . . , ny, −∞ < s < ∞,

is obtained from {yt} by a linear transformation of the form

ε̃t =

∫ π

−π
eiλtϕ(λ)†Φy(dλ).

Proof of Lemma (2). By Lemma (1), the projections ε̃k,t form an nε dimensional

stationary process {ε̃t} which is obtained from the process {yt} by a linear transfor-

mation,

ε̃t =

∫ π

−π
eiλtψ(λ)Φy(dλ),
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where ψ(λ) is some nε × ny function whose rows are elements of L2(Fy). For the

prediction errors εk,t− ε̃k,t, k = 1, . . . , nε, to be orthogonal to the space H(y), it must

be that

E[(εt − ε̃t)y∗s ] =
1

2π

∫ π

−π
eiλ(t−s)

[
ϕ(λ)∗ − ψ(λ)ϕ(λ)ϕ(λ)∗

]
dλ = 0

for any t and s. This is true if and only if

ϕ(λ)∗ = ψ(λ)ϕ(λ)ϕ(λ)∗ (11)

for almost all λ. By definition, ψ(λ) = ϕ(λ)† is a solution. Moreover, this solution is

unique, in the sense that its rows are uniquely determined as elements of the space

L2(Fy). To see this, consider any other function, ψ(λ) 6= ϕ(λ)†, whose rows are

elements of L2(Fy), which also satisfies (11). Then

‖δkϕ(λ)† − δkψ(λ)‖2 =

∫ π

−π
δk(ϕ(λ)† − ψ(λ))ϕ(λ)ϕ(λ)∗(ϕ(λ)† − ψ(λ))∗δ∗kdλ = 0

for each k = 1, . . . , nε, where δk denotes a 1 × nε constant vector with components

δkk = 1 and δkl = 0 for k 6= l.

Proof of Theorem (1). Using the optimal smoothing formula from Lemma (2),

‖εk,t − ε̃k,t‖2 =
1

2π

∫ π

−π
δk(Inε − ϕ(λ)†ϕ(λ))(Inε − ϕ(λ)†ϕ(λ))∗δ∗kdλ,

which equals zero if and only if δk(Inε − ϕ(λ)†ϕ(λ)) = 0 almost everywhere.

Our strategy for proving Theorem (3) is to project the values of the disturbance

{εk,t} at each point in time onto the space Ht(y) and then state necessary and suf-

ficient conditions under which the projection error is zero. We first prove a lemma

which states the optimal projection formula. To do so, we introduce some additional

notation: for any function ϕ(λ) with Fourier expansion

ϕ(λ) =
∞∑

s=−∞

ϕse
−iλs,

let [ϕ(λ)]+ denote the function obtained by removing all the Fourier coefficients as-

sociated with negative values of s,

[ϕ(λ)]+ =
∞∑
s=0

ϕse
−iλs.
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Lemma 3 (Optimal Filtering). The stationary process {ε̂t} consisting of the best

linear estimates of {εt} on the basis of the values yk,s, k = 1, . . . , ny, −∞ < s ≤ t, is

obtained from {yt} by a linear transformation of the form

ε̂t =

∫ π

−π
eiλt[ϕ(λ)†γ(λ)]+γ(λ)†Φy(dλ),

where γ(λ) comes from some version of Wold’s decomposition of {yt}.

Proof of Lemma (3). First we observe that the projections of εk,t and ε̃k,t on Ht(y)

coincide. Combining the representation of {ε̃t} from Lemma (2) with the Wold rep-

resentation of {yt} in equation (2), we obtain

ε̃t =

∫ π

−π
eiλtϕ(λ)†γ(λ)Φw(dλ).

Using this representation of {ε̃t}, we can see that the projections ε̂k,t form a stationary

process {ε̂t} which is obtained from {wt} by a linear transformation of the form

ε̂t =

∫ π

−π
eiλt[ϕ(λ)†γ(λ)]+Φw(dλ).

Since γ(λ) has full column rank for almost all λ, it follows that γ(λ)†γ(λ) = Iry ,

where ry is the rank of fy(λ). Therefore

Φw(dλ) = γ(λ)†Φy(dλ).

Substituting this into the previous expression for Φw(dλ) gives the linear transforma-

tion reported in the lemma. Analogously to the proof of Lemma (2), the uniqueness

of the projections ε̂k,t implies that the spectral characteristic in this representation

has rows which are all unique elements of L2(Fy).

Proof of Theorem (3). By Theorem (1), recoverability of {εk,t} means that

εk,t =

∫ π

−π
eiλtδkϕ(λ)†Φy(dλ) =

∫ π

−π
eiλtδkϕ(λ)†γ(λ)†Φw(dλ),

where the second equality uses Wold’s decomposition of {yt}. Combining this with

the optimal filtering formula from Lemma (3),

‖εk,t− ε̂k,t‖2 =
1

2π

∫ π

−π
δk(ϕ(λ)†γ(λ)− [ϕ(λ)†γ(λ)]+)(ϕ(λ)†γ(λ)− [ϕ(λ)†γ(λ)]+)∗δ∗kdλ,

which equals zero if and only if δk[ϕ(λ)†γ(λ)]+ = δkϕ(λ)†γ(λ) for almost all λ. In

other words, the Fourier coefficients of δkϕ(λ)†γ(λ) must vanish for all s < 0, which

is the condition stated in the theorem.
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B Monte Carlo

To evaluate the ability of our procedure to uncover technological and expectational

disturbances in practice, we perform two Monte Carlo exercises. In the first, we apply

our procedure to model-generated data with an large sample (100,000 time periods) to

show that, in population, the procedure nearly perfectly recovers the true structural

impulse responses. In the second, we apply the procedure to one thousand artificial

samples of the same length as our actual data (T = 284), and find our approach does

a good job of recovering the truth on average.

As a data generating process, we use the equilibrium model estimated in section

(E) of Chahrour and Jurado (2018). This model includes a standard set of frictions,

such as nominal wage and price rigidities, external consumption habits, and invest-

ment adjustment costs. The model includes disturbances to technology, expectations

of future technology, government spending, and monetary policy. Exogenous policy

processes are first-order autoregresssions, while the process for technology and asso-

ciated information structure is a special case of the information structure in section

(3) of this paper, with

α0 = σa and αk = 0 for all k 6= 0,

ςk = σa

(
1− ρ
1 + ρ

)
ρk for all k > 0

νk =
1

2π

∫ π

−π
σv(1− e−iλ)

1− 2(β + β̄)e−iλ + |β|2e−iλ2

1− 2ρe−iλ + ρ2e−iλ2
dλ

There is also a nonlinear restriction on the paramters σa, σv, ρ, and β, which ensures

that {at} can be alternatively written as the sum of a permanent component with

first-order autoregressive dynamics in first differences, and a transitory component

with first-order autoregressive dynamics in levels. Such information structures ap-

pear frequently in the related literature. For paramter values, we use the maximum

likelihood estimates in column 2 of table 6 in the online appendix of Chahrour and

Jurado (2018).

From the model, we simulate data on four variables: GDP, consumption, hours,

and technology. The VAR procedure we apply is the same one that is described in

the main text.

Panels (a) and (b) of Figure (5) compare the point estimates from the long sample
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and the true, model-implied responses. The two are nearly identical in all cases,

indicating that — even though our model does not have an exact VAR representation

— a fourth-order VAR almost perfectly approximates the time series properties of

the generated data. We conclude that, in population, our approach is well-suited to

identifying the true impulse responses.

Panels (a) and (b) of Figure (6) compare the distribution of estimated impulse

responses and variances contribution across the 1000 simulations of length T = 284,

with the corresponding true, model-implied values. In virtually all cases, the truth

lies within the simulated bounds. There is evidence of a downward finite-sample

bias both in the impulse responses and the variance shares, which is somewhat more

pronounced in the case of the expectational disturbance. Such a finite-sample bias

often appears in the presence of persistent observable variables. This is why, in the

results we report in the main text, we bias adjust our bootstrap estimates.
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Figure 5: Large sample Monte Carlo. Solid lines are the estimates and dashed lines

are the truth.
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Figure 6: Small sample Monte Carlo. Solid lines in (a) are 90% bands across 1000

simulations and in (b) are distributions of the estimates. Dashed lines are the truth.
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