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Abstract

Changes in product offerings are important for understanding changes in market outcomes in

the automobile industry. In a global industry, national subsidies affect global market outcomes

through firms’ product portfolio decisions. This paper proposes a new model to study prod-

uct entry in a multi-market setting with product differentiation and heterogeneous consumer

preferences within and across countries. Methodologically, the contribution of this paper is to

provide a method to estimate and solve entry games with multiple asymmetric firms, each mak-

ing multiple discrete choices. Using data on global passenger vehicle sales, prices, and product

characteristics, I estimate large overhead product line costs, which imply that firms have strong

incentives to offer the same product in different markets to achieve sufficient scale. I quantify

the effects of discriminatory production and consumption subsidies favoring US brands in the

United States. I find that global product portfolio changes in response to these policies cause

profit shifting towards US brands worldwide and that changes in consumer surplus vary greatly

across markets due to heterogeneity in preferences.
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1 Introduction

The automobile sector consists of a relatively stable set of firms offering an evolving mix of

products throughout the globe. The number of active automobile firms in the United States barely

changed between 1980 and 2018, while the number of products offered doubled (Grieco et al. 2023).

Given the recent resurgence of trade and industrial policy, an important topic in policy discussions

is the extent to which the large consumer and producer subsidies outlined in policy packages like

the Inflation Reduction Act or the European Green Deal will affect the structure of the industry,

and thus which firms and consumers will benefit throughout the world. Yet, despite the apparent

importance of product entry in an industry subject to significant government interventions, little

is known about its role in determining the effect of national policies on global market outcomes.

This paper studies how national government policies affect firms’ global product offerings and

consumer and firm-level outcomes throughout the world. In the model, firms choose their global

product portfolios to maximize profits, given heterogeneous consumer preferences and policies

across countries. Thus, national policies affect global market outcomes through firms’ product

portfolio decisions. In this setting, firms face multiple interdependent choices. First, because de-

veloping differentiated products is costly, firms have an incentive to offer them in multiple countries

so as to ensure sufficient scale. Second, firms know that offering an additional product in a country

can reduce or cannibalize demand for its other products. To deal with a model incorporating these

features tractably, I derive inequalities that bound the probabilities of firms’ entry decisions and

show how to use them to estimate the model and solve it under different policy scenarios.

The framework I propose allows for heterogeneity in preferences across product characteristics

as in Berry et al. (1995) and incorporates both product portfolio and market entry decisions. The

model features a finite set of firms, each endowed with a set of potential products. Firms make

portfolio and market entry decisions in a sequential game with three stages. In the first stage, firms

choose which subset of their potential products to include in their global product portfolio, subject

to a fixed cost per product line. In the second stage, firms choose which subset of their portfolio

to offer in each market, subject to market entry fixed costs. In the third and final stage, firms set

prices for each product in each market.

Methodologically, the key contribution of this paper is to show how to estimate fixed costs

and compute the impact of counterfactual policies in entry games with multiple asymmetric firms,

each making multiple discrete choices. Two main challenges arise in such settings. First, the

existence and uniqueness of Nash equilibria are not guaranteed. Second, solving for the equilibria

of the model may be computationally infeasible, particularly in settings with a large number of

heterogeneous players, each with a large set of potential choices, as in the automobile industry.

I estimate fixed costs and solve for counterfactual outcomes using novel inequalities that bound

the probabilities of firms’ portfolio and market entry decisions. Firms’ portfolio and market entry

fixed costs depend on an observed and an unobserved component to the researcher; I refer to the

latter as fixed cost shocks. The inequalities are derived under two assumptions: unobserved rival

fixed cost shocks and submodularity of variable profits with respect to product offerings. A ben-
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efit of the first property is that it guarantees the existence of a pure strategy Nash equilibrium,

which is not ensured with complete information. The second property implies that the change in

variable profits from offering a product in a market declines with the set of offered products.1 I

apply submodularity to derive bounds on the gains from offering a product in a market, which I

use to derive necessary conditions for entry that hold across all equilibria. Fan and Yang (2024)

also employ submodularity to derive necessary conditions for entry, though in a complete rather

than incomplete-information framework. Such conditions permit integrating the unobserved com-

ponent of the fixed cost shocks, under any assumed distribution, to obtain bounds on firms’ choice

probabilities that depend on the fixed cost parameters and firms’ expectations over rivals’ actions.2

For estimation, I further bound firms’ choice probabilities to derive moment inequalities that

depend only on fixed cost parameters and observed data. My moment inequalities are valid under

equilibrium multiplicity, as are those in Ciliberto and Tamer (2009). Compared to their approach,

my method does not require computing the equilibria of the model under any set of parameters,

making it computationally feasible to implement even in games with a large number of discrete

choices.3 I follow two additional steps to derive moment inequalities. First, I use convex upper and

concave lower bounds on the cumulative distribution function (CDF) of fixed costs. This relates to

Dickstein and Morales (2018), Dickstein et al. (2024), and Porcher et al. (2024), who use convex odds

functions or linear approximations to derive moment inequalities in a single-agent setting, though

my approach directly bounds choice probabilities in a game. Then, I apply Jensen’s inequality to

construct moments that depend on the observed realization of rivals’ offerings. This extends the

insights from Pakes (2010) and Dickstein and Morales (2018) to an incomplete-information game,

where firms’ expectations are over rivals’ endogenous entry decisions rather than over exogenous

ex-post realized variables.

My moment inequalities have two features that are desirable for estimation in entry games.

First, they identify both the mean and variance of the distributions of fixed costs, which is sufficient

to characterize the distribution fully under commonly used specifications.4 This is an advantage

relative to common approaches in multi-product entry games that only identify the mean and not

the full fixed cost distribution and, therefore, complicate the simulation of counterfactual outcomes.

Second, assuming that firms do not observe their rivals’ fixed cost shocks allows using the observed

realization of firms’ entry choices for estimation, which I show renders the moment inequalities

informative about the fixed cost parameters both in simulations and in practice.

To evaluate the effects of policies given estimated parameters, I develop a novel solution algo-

rithm for multi-product entry games. My solution algorithm has two main advantages relative to

existing approaches that assume complete information on firms’ fixed cost shocks. First, it provides

1The change in variable profits from offering a product in a given market when the set of products offered in the
market is Ω is smaller than when the set of products offered in that market is Ω′ ⊆ Ω.

2Submodularity is stronger than required for estimation, but plays a more critical role in the method for solving
the model.

3With only 10 firms each making 10 discrete choices, there are 2100 ≈ 1030 possible entry configurations. It is
infeasible to compute all of them.

4For instance, commonly used specifications include the log-normal, normal, or logistic distributions.
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bounds on the equilibrium distribution of entry decisions even in settings with multiple asymmetric

oligopolistic firms.5 Second, my solution approach does not rely on approximation methods or equi-

librium selection assumptions and bounds, in a computationally feasible manner, any equilibrium

of the entry game. I find informative bounds on counterfactual outcomes in practice.

The solution method operates as follows. I start by evaluating changes in profits for each

product at the most competitive conditions (all potential products are simultaneously offered) and

least competitive conditions (no other potential product is offered). This yields weak upper and

lower bounds on the probability that any product is offered in a market. I then show how to

simulate tighter upper bounds by evaluating the change in expected profits from offering a product

using the initialized lower bounds on rival product offering probabilities. Similarly, I simulate

tighter lower bounds by evaluating the change in expected profits using the initialized upper bound

rival offering probabilities. I prove that iterating on this procedure yields monotonically tighter

bounds on the joint equilibrium probability distribution of offerings in each country, which I then

use to compute bounds on market outcomes of interest such as consumer surplus.6

I estimate the model with 2019 IHS Markit data on the universe of new passenger vehicle

registrations in a representative set of countries. I complement this main dataset with gravity

variables from CEPII; PPP and Gini data from the World Bank; and the MRI Simmons 2019

US Crosstab Report. The latter provides information relating vehicle characteristics to buyers’

demographics. With these cross-sectional data, I estimate a heterogeneous agent demand model

similar to Berry et al. (1995) for passenger vehicles using micro-moments as in Petrin (2002).

Demand and marginal cost estimates yield average own-price elasticities and markups consistent

with previous estimates in the automotive industry (i.e., Berry et al. 1995, Grieco et al. 2023).

I find substantial heterogeneity in distaste for high prices across the income distribution and a

considerable home market bias, as in Coşar et al. (2017); consumers are willing to pay on average

over $1500 to purchase from a local brand, all else equal. My marginal cost estimates reveal a

positive relationship between cost and distance to the brand’s headquarters country, as well as

larger costs of producing vehicles that are bigger or have greater horsepower.

Using my method, I obtain fixed cost estimates that reveal important economies of scale at the

product level. The estimates imply that, with 95% confidence, the median fixed cost of maintaining

a product line is between $138-548 million, while the median fixed market entry cost for a product

is $8-15 million.7 The large quantitative difference between the product and market entry costs

implies important interdependence across markets arising from scale economies. High product level

costs mean that firms have an incentive to offer similar bundles of products across markets to ensure

sufficient scale. I estimate additional parameters that describe the variance of the distributions of

5Jia (2008) also uses a procedure to bound the Nash equilibria in a duopolistic entry game, but the procedure in
that paper is not valid when there are more than two players.

6The solution method bounds the equilibrium distribution of product offerings in each market in the sense of first-
order stochastic dominance. The approach is reminiscent of solution methods that iteratively eliminate dominated
strategies, albeit in a setting of incomplete rather than complete information.

7My product fixed cost estimates align with industry estimates of product development costs in the automobile
industry provided by IHS Global.
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fixed costs. These estimates reveal significant unobserved heterogeneity in market and product fixed

costs, which confirm the importance of allowing for terms observed by firms but not by researchers.

With fixed cost estimates in hand, I use my solution algorithm to explore the effects of national

policies on global consumer and firm-level outcomes. I conduct two experiments relevant to the

current policy landscape. First, recognizing recent large policy packages such as the Inflation

Reduction Act that disproportionately favor production of domestic over foreign brands, I study

the effect of a policy that reduces the marginal cost for US brands by 20%.8 Second, given the rise of

protectionist consumer-side subsidies favoring domestic over foreign brands, I study the effects of a

50% consumption subsidy favoring US brands in the United States. Large consumer-side subsidies

of similar magnitudes have been implemented in several countries to favor some vehicle types over

others.9 These policy experiments showcase the importance of product entry in determining the

global effects of currently discussed policies in the automotive industry, particularly when the policy

is implemented in large markets like the United States.

The first policy, which reduces American brands’ costs by 20%, affects global market outcomes

both through the intensive margin (prices/quantities) and the extensive margin (products offered).

The policy increases American brand dominance throughout the globe, with American brands’

market shares rising by at least 3 percentage points in Japan or over 13 percentage points in the UK.

American brands’ variable profits also rise in all markets, with near threefold increases in multiple

countries. Meanwhile, the effect on non-American brands is the opposite. Increased competition

from cheaper American products tends to reduce their profits and market shares worldwide.

A key finding is that endogenous product portfolio adjustments amplify the increase in American

brand dominance following the policy. Intuitively, American brands expand their product portfolios

in anticipation of greater profits, while non-American brands downsize their product offerings,

knowing they will be relatively less competitive. I find that across many jurisdictions, ignoring

endogenous product portfolio adjustments would lead to significantly underestimating the rise

in US brand shares and profits. For instance, across most markets, product entry accounts for

over 25% of the increase in the lower and upper bound of US-brand market shares. This shows

that accounting for product portfolio adjustments following the policy is crucial for understanding

changes in firm-level outcomes.

I find that consumers throughout the world unambiguously benefit from access to now-cheaper

American products, so detrimental product exit by non-US brands induced by the policy does

not outweigh the consumer gains. Endogenous portfolio decisions do not amplify increases in

consumer surplus very significantly due to such offsetting effects on the extensive margin. The

gains in consumer surplus are heterogeneous across countries. Consumers in countries like Brazil

or Mexico, who are poorer and particularly value low prices, benefit more, with raises in consumer

surplus of over 10%. Likewise, US consumers benefit more than consumers in other rich nations

8Since the focus of the paper is not on production location decisions, I reduce the marginal cost of all products
produced by brands headquartered in the United States.

9For instance, in China, consumer subsidies on electric vehicles peaked at around 40-60% in 2014, according to
the Environmental Energy Study Institute (Lu 2018).
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due to home bias; Americans value cheap American cars more than Europeans or Australians.

Contrary to the production subsidy, the 50% consumption subsidy on US-branded products in

the United States does not affect potential products’ cost or preference fundamentals overseas. I

find that such a policy significantly increases consumer surplus in the United States by over 42%

and shifts US profits and shares towards US brands, while the effects on other markets are small.

Both in the United States and in other markets, the consumer subsidy induces entry of US-branded

product offerings. However, I find that the marginal new product introduced by a US brand is

relatively unpopular and, therefore, does not cause significant shifts in market shares in countries

other than the United States.

Three main takeaways arise from these exercises. First, both policies benefit consumers so that

harmful exit by brands that face discrimination does not dominate the beneficial entry of additional

products by favored brands. Second, product entry amplifies profit shifting towards brands that

benefit from the policies. Finally, a national US consumer subsidy favoring US brands results in

profit shifting towards US brands only in the United States because the newly introduced products

are relatively unattractive to unsubsidized consumers abroad. Meanwhile, production subsidies

that make American cars cheaper lead to significant profit shifting towards US brands worldwide.

This paper relates to previous work studying the effects of government policies in the automobile

industry. My framework contributes to Berry et al. (1995), Goldberg (1995), Petrin (2002), Coşar

et al. (2017), Grieco et al. (2023), and Allcott et al. (2024) by providing a model of product entry

in the international automobile industry to study the cross-market effects of national policies on

global consumer and firm-level outcomes. While such papers focus on pricing behavior and market

power in the passenger vehicle industry, I study international product entry. My methodological

contribution to this literature is to show how to estimate and solve a product entry game while

accounting for horizontal and vertical product differentiation, heterogeneous consumer preferences,

and strategic pricing.

I develop a multi-product entry model with features similar to those in Eizenberg (2014), Woll-

mann (2018), Fan and Yang (2024), and Montag (2024). These papers also define a set of potential

products that firms can offer and use moment inequalities to estimate fixed costs. However, my

paper differs in two key dimensions. First, I model product entry in a global setting, allowing

firms to develop products and leverage scale economies by selling them in multiple markets. Thus,

my aim is to understand the role of scale economies at the product level in shaping cross-country

outcomes. Second, my methods rely on the assumption of unobserved rival fixed cost shocks, while

such papers assume complete information. As such, their approach makes it challenging to com-

pute counterfactual outcomes, except in low-dimensional settings or otherwise using approximation

methods or equilibrium selection rules. In contrast to Eizenberg (2014) and Wollmann (2018), but

similarly to Fan and Yang (2024), my moment inequalities do not impose support restrictions on

firms’ fixed cost shocks and identify both the mean and variance of the fixed cost distributions, but

require a distributional assumption on the fixed costs.

This paper also contributes to the international trade literature studying interdependent global
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firm decisions, including Tintelnot (2016), Antràs et al. (2017), Morales et al. (2019), Head and

Mayer (2019), Alfaro-Urena et al. (2023), Castro-Vincenzi (2024), Castro-Vincenzi et al. (2024),

and Head et al. (2024). There are two key differences relative to this literature. First, I focus on

global product portfolio decisions rather than production location, sourcing, or dynamic market

entry decisions. Second, in my model, firms behave strategically and are not atomistic. Moreover,

my model has features that have been studied in previous theoretical and empirical work in in-

ternational trade, including scale economies (as in Krugman 1980, Venables 1987, Thomas 2011,

Costinot et al. 2019), oligopolies (as in Atkeson and Burstein 2008) and multi-product firms (as

in Bernard et al. 2011 and Mayer et al. 2021). My contribution to this literature is to provide a

quantitative framework suitable for studying policy questions in settings with multi-product firms,

strategic behavior, and endogenous global product entry. A key distinction relative to many papers

in the international trade literature is that while I allow for heterogeneous consumers and products,

flexible substitution patterns in demand, and strategic behavior, I hold fixed general equilibrium

variables such as wages and focus on an industry equilibrium.

Methodologically, this paper contributes to the literature on solution methods in settings with

multiple interdependent discrete choices. In single-agent settings, Arkolakis et al. (2023), Alfaro-

Urena et al. (2023), and Castro-Vincenzi et al. (2024) provide solution algorithms that exploit

knowledge of complementarity or substitutability across discrete choices. In a strategic setting, Seim

(2006) solves an incomplete-information game with ex-ante symmetric firms. Jia (2008) provides an

algorithm to solve a complete-information entry game with two asymmetric firms making multiple

entry decisions. My contribution is to provide a method to solve entry games featuring multiple

asymmetric firms, each making multiple discrete choices, in an incomplete-information setting.

The remainder of the paper is organized as follows. Section 2 overviews the data and the

industry setting. Section 3 develops a model of multi-product and multi-market entry. Section 4

provides bounds on firms’ choice probabilities and explains how to use them to partially identify the

fixed cost parameters. Section 5 reports estimation results. Section 6 develops a solution algorithm

to bound the equilibrium distribution of product offerings in each market. Section 7 evaluates the

effects of US policies favoring domestic brands on global market outcomes. Section 8 concludes.

2 Data and Industry Setting

My primary source of data is information on the universe of new passenger vehicle registrations

in the year 2019 in 12 countries: Australia, Brazil, China, France, Germany, India, Italy, Japan,

Mexico, Spain, the United Kingdom, and the United States. I obtain these data from IHS Markit.10

The data contain manufacturer-suggested retail prices (MSRP) in USD, units sold, and other

characteristics such as fuel type, body type, horsepower, length, height, width, and weight. The

data is at the quarterly-trim-country level and include 177 different brands and 73 different parent

10Previous literature has used various versions of these data, e.g., Coşar et al. (2017) and Head and Mayer (2019).
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companies.11 I merge this dataset with the brand’s headquarters country and with information from

CEPII on the distance between the destination country and the brand’s headquarters country.

To obtain product market shares at the year-country level, I divide units sold in 2019 by market

size. I follow Grieco et al. (2023) and define market size as the product of the number of households

in a country in 2019 and the average number of vehicles per household in such a country, divided

by the average tenure of car ownership, which is assumed to be 5 years.

I also obtain micro-moments relating the income of vehicle buyers to the prices of vehicles they

purchase from the MRI-Simmons 2019 Crosstab Report for the United States. I obtain market-

level data on PPP income per capita and Gini coefficients from the World Bank. Assuming income

follows a log-normal distribution in each country, income per capita and the Gini coefficient are

sufficient to back out the location and scale parameters of the income distributions.

I refer to parent companies (e.g., Ford) as firms. Each firm has a set of brands (e.g., Ford,

Lincoln). I define a product as a brand-body type-fuel type combination. The set of possible body

types includes Cars, SUVs, wagons, multi-purpose vehicles (MPVs), and convertibles.12 Possible

fuel types are internal combustion engine (ICE), (plug-in) electric, or hybrid. For instance, a

potential product is a Lincoln SUV with an internal combustion engine.13

I aggregate the remaining characteristics of these products (e.g., size or horsepower) by taking

a quantity-weighted average across all trims within this category. In Appendix A, I discuss the

procedure used to impute product characteristics for potential products that I do not observe in

my sample. After dropping brands specializing in luxury products, there are 49 parent companies,

130 brands, and 1530 potential products.14

Figure 1 reports the fraction of potential products that firms sell in at least one market and

how it varies across product categories (Panel A) and across firms (Panel B). Firms offer fewer

than 30% of their potential products across all markets. Across the firm distribution, no firm offers

more than 50% of its potential products.

Figure 1 also shows that global product offerings vary substantially across product categories,

which suggests a response to demand conditions that vary across product types. While more than

40% of potential SUV products are offered in at least one market, fewer than 10% of potential

hybrid or wagon products are offered.

Figures 2 and 3 condition on the set of products sold in at least one market and show that across

all body types and fuel types, a substantial fraction of products are sold in a single market. For

11A trim is a definition used by manufacturers to identify a vehicle’s special features and level of equipment at
a finer level than a nameplate. An example of a nameplate is a Toyota Corolla. Within the nameplate, there is
typically differentiation across trims, for instance, the Toyota Corolla ZR or the Toyota Corolla Ascent, which may
have different characteristics like horsepower.

12As stated in Appendix A, I define a Car to be a sedan, hatchback, or coupe.
13This is a different level of aggregation than in most of the literature on automobiles, which usually aggregates

across trims at the brand-nameplate level (e.g., Head and Mayer 2019, Grieco et al. 2023), e.g., Toyota Corolla.
My product definition permits the extrapolation of the full set of product characteristics to all potential products,
whereas it is not possible to take a stance on a brand’s potential nameplates.

14Brands like Ferrari, Maserati, Lamborghini, or Rolls-Royce have small quantity shares and substantially higher
prices across markets. Thus, I excluded them from the estimation sample to avoid issues with small market shares
and because they belong to a substantially different segment of the market.
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Figure 1: Fraction of Potential Products Offered Globally

Panel A: Across Product Categories Panel B: Across Firms

Notes: In Panel A, the “All” category reports the percentage of potential products (potential brand-body
type-fuel type combinations) that are sold in at least one market. All other categories report the fraction
of potential products of that category that are sold in at least one market. “ICE” stands for internal
combustion engine and “MPV” stands for multi-purpose vehicle. Panel B reports the distribution of the
fraction of potential products offered in at least one market across parent companies (e.g., Ford).

Figure 2: Number of Markets Offered Conditional on Portfolio, by Body Type

Panel A: Not Quantity Weighted

0 20 40 60 80 100
Percent

Wagon

SUV

MPV

Convertible

Car

1 Market
2-5 Markets
6-9 Markets
>9 Markets

Panel B: Quantity Weighted

Notes: Both Panel A and Panel B condition on the products that are observed to be offered in at least
one market in the data. For each body type, Panel A reports the percentage of products within that body
type that are offered in different number-of-market categories. Panel B reports the quantity share of each
number-of-market category across body type categories.

instance, around 60% of SUVs or Cars are sold in a single market. Still, a considerable fraction of

such products (for these categories, around 20%) is sold in over 9 markets. There is also significant

heterogeneity in entry patterns across product categories, with the most extreme example being

electric vehicles, the majority of which are sold in a single market. The right panel in Figure

2 shows that weighting by quantity changes these statistics. Products offered in over 9 markets
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Figure 3: Number of Markets Offered Conditional on Portfolio, by Fuel Type

Panel A: Not Quantity Weighted Panel B: Quantity Weighted

Notes: Both Panel A and Panel B condition on the products that are observed to be offered in at least
one market in the data. For each fuel type, Panel A reports the percentage of products within that fuel
type that are offered in different number-of-market categories. Panel B reports the quantity share of each
number-of-market category across fuel type categories.

Figure 4: Fraction of Products Offered

Panel A: Not Quantity Weighted Panel B: Quantity Weighted

Notes: Panel A plots the distribution of the fraction of products offered across firm-market pairs. Panel B
weights by the total units sold by the firm in the market.

account for the vast majority of units sold (70-80% for Cars and SUVs). This shows that product

market shares differ substantially, with some capturing a large share of world demand.

Finally, automotive firms not only serve multiple markets but also offer a portfolio of multiple

products. Both Panel A and Panel B in Figure 4 show that, in most cases, firms sell a strict subset

of their products in each market. Panel A shows that only in around 30% of firm-markets there

is near-zero entry. Moreover, only in around 17% (22% if quantity-weighted) of the cases do firms

sell all their products in a market.
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3 Model of Strategic Global Multi-Product Entry

In this section, I develop a model of strategic product portfolio choice and market entry. A set

F = {1, ..., f, ..., F} of firms competes in a set M = {1, ...,m, ...,M} of markets.15 A given firm f

is endowed with a set of potential products. I denote a firm’s potential set of products as Af . I

denote the union of all potential products across firms by A.

I model firms’ portfolio and market entry choices in three stages. In Stage 1, each firm f realizes

a set of product portfolio fixed cost shocks {νgj }j∈Af for each of their potential products, and upon

observing these, chooses which products to introduce in its global product portfolio, Gf . In Stage

2, each firm f realizes a set of market entry fixed cost shocks {νejm}j∈Gf ,m and chooses which subset

of products Ωf
m ⊆ Gf in its portfolio to offer in each potential market m.16 Finally, in Stage 3, each

firm realizes a set of demand and marginal cost shocks for each product offered in each market and

chooses which prices to charge. Firms solve the model by backward induction. Figure 5 illustrates

the timing of the game.

A key assumption is that throughout Stages 1 and 2, firms do not observe their rivals’ fixed

cost shocks when making their entry decisions. Thus, in Stages 1 and 2, firms play a Bayesian

Nash equilibrium in product entry decisions.

Figure 5: Timing of the Game

Firms observe own {νgj }j∈Af

and choose their
global product portfolio Gf

Firms observe own {νejm}j∈Gf ,m

and choose which products
to offer in each market Ωf

m

Offerings decisions (Ωf
m,Ω−f

m )
in all markets are realized
and observed by all firms

Demand and marginal cost shocks
are realized, observed by all firms and
prices set according to a Nash-Bertrand

equilibrium in each market

Assumption 1 (Unobservability of Rival Fixed Cost Shocks) Firms’ fixed cost shocks

{νgj }j∈Af and {νejm}j∈Gf ,m are private information at the time of making product portfolio and

market entry decisions throughout Stages 1 and 2 of the game.

I summarize the key informational assumption in Assumption 1 for future reference. I now

describe the three stages of the game in reverse order.

15I hold the set of firms fixed due to evidence that product entry has been more important than firm entry in
leading to changes in market structure in this industry from 1980-2018 (see Grieco et al. 2023). However, the model
can be extended to allow for firm or brand entry provided their potential products’ characteristics are defined.

16I lighten notation by referring to collections of variables across markets {Ym}m∈M as {Ym}m.
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3.1 Stage 3

3.1.1 Demand and Marginal Costs

The demand side of the model follows a mixed logit specification, as in Berry et al. (1995). Buyer

i in market m chooses to purchase a new passenger vehicle j from the set of offerings Ωm or the

outside option so as to maximize utility. Within a market, buyers have idiosyncratic demographic

characteristics, which determine how much they value the different attributes of each good, as well

as their distaste for prices. The indirect utility that buyer i in market m derives from product j is

given by,

Uijm = βm + βb(j) − αipjm + βxXXXjm + ξjm + εijm (1)

= δ̃jm − αipjm + ξjm + εijm. (2)

In equation (1), XXXjm denotes a set of non-price attributes of product j ∈ Ωm or brand-market

characteristics. I allow buyers to have different preferences across markets over (a subset of) these

characteristics. XXXjm includes market identifiers interacted with (i) a dummy denoting whether

the product is electric or hybrid, (ii) a set of dummies for different body type categories, and

(iii) size. It also includes horsepower/weight, horsepower, and a home market dummy denoting

whether the brand’s headquarters are located in market m.17 βb(j) is a brand fixed effect, and ξjm

is a product-market demand shock that is realized at this stage of the game and, subsequently,

perfectly observed by all buyers and firms. δ̃jm denotes the mean non-price utility of product j in

market m net of the demand shock ξjm. Buyer i has a marginal utility of income,

αi = exp(α0 + α1 log(incomei) + α2Chinai + σyui)

where ui are i.i.d. normal shocks. I allow distaste for prices to be different in China, conditional

on income, in light of the unique policy environment that characterizes China during my sample

period, which makes consumers seemingly less price sensitive. Finally, εijm denotes an i.i.d. Type

1 Extreme Value distributed preference shock that is buyer-product-market specific. The mean

utility of the outside good (good 0) is normalized to zero, such that Ui0m = εi0m.

The above specification of indirect utility yields buyer-specific logit probabilities that can then

be integrated over the joint distribution of market-specific buyer demographics and taste shocks to

obtain market shares sjm. Then, the quantity of product j sold in market m can be obtained by

multiplying the market share sjm by the market size Mm.

The marginal cost of supplying a unit of product j in market m is given by,

log(cjm) = γm + γb(j) + γfueltype(j) + γ1 log(hpj) + γ2 log(hpwj)

+ γ3 log(sizej) + γ4 log(distjm) + ωjm

= c̃jm + ωjm (3)

17Horsepower/weight proxies inversely for fuel efficiency, which is an omitted variable in my dataset.
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where hp and hpw denote horsepower and horsepower/weight, respectively, and distjm denotes the

distance between market m and the headquarters country of brand b. γm is a market fixed effect

and γb(j) is a brand fixed effect. c̃jm denotes the mean (log) marginal cost of product j in market m

net of the product-market marginal cost shock ωjm. Marginal costs, therefore, depend on observed

characteristics and a marginal cost shock ωjm that is realized at this stage of the game.

Demand and marginal cost shocks {ξjm, ωjm}j∈Ωm,m are i.i.d. and I assume they follow a

bivariate normal distribution.18

3.1.2 Pricing

Firms set prices according to a complete-information information, Nash-Bertrand pricing game

in each market m, as in Berry et al. (1995).

When firms choose prices, demand and marginal cost shocks {ξjm, ωjm}j∈Ωm are known by all

firms for all products Ωm offered in market m. Each firm chooses its prices to maximize its variable

profits, given by,

Πf,3
m =

∑
j∈Ωf

m

(pjm − cjm)Mmsjm(Ωf
m,Ω−f

m , pppfm, ppp−f
m , ξξξm)

=
∑
j∈Ωf

m

πjm(Ωf
m,Ω−f

m , pppfm, ppp−f
m , ξξξm,ωωωm).

I use boldface notation to denote vectors of variables. pppfm is the vector of prices in market m

across products Ωf
m offered by firm f , ppp−f

m denotes the prices charged for products Ω−f
m offered

by firms other than firm f , and (ξξξm,ωωωm) stand for the demand and marginal cost shocks for all

products Ωm offered in market m.

I denote equilibrium variable profits given demand and marginal cost shocks, and product

offerings Ωm, by,

π∗
jm(Ωf

m,Ω−f
m , ξξξm,ωωωm) := πjm(Ωf

m,Ω−f
m , pppf,∗m , ppp−f,∗

m , ξξξm,ωωωm)

where pppf,∗m denotes the equilibrium price vector that emerges in market m at (Ωf
m,Ω−f

m ) given

demand and marginal cost shocks.

3.2 Stage 2: Market Entry Decisions

At this stage, firms have chosen their global product portfolio Gf and realize a set of market

entry fixed cost shocks {νejm}j∈Gf ,m for each product in their portfolio in each market. Firms make

market entry decisions conditional on what they know; the information set of firm f in Stage 2 is,

If,2 := (Gf , {νejm}j∈Gf ,m, I),
18Other papers have made alternative assumptions on the distribution of these shocks. For instance, Wollmann

(2018) draws from the empirical distribution of these shocks when computing counterfactual experiments.
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where set I denotes the component of the information set that is common knowledge to all firms

and is given by,

I := ({δ̃jm}j∈A,m, {c̃jm}j∈A,m,Af ,A−f ).

Set I also includes knowledge of the distributions of unobserved demand, marginal cost, and fixed

cost shocks, policies in the counterfactual, and the equilibrium strategies that firms play.19

Given this information, each firm f chooses offerings in each market Ωf
m so as to maximize

expected profits. That is, it solves,

Πf,2
m (If,2) = max

Ωf
m⊆Gf

∑
j∈Ωf

m

Ojm[E[π∗
jm(Ωf

m,Ω−f
m , ξξξm,ωωωm)|I]− F e

jm(νejm; θe, σe)] (4)

where

Ojm = 1 ⇐⇒ j ∈ Ωf
m.

The variable F e
jm(νejm; θe, σe) denotes the market entry fixed cost of offering product j in market

m. Assumption 2 makes a parametric assumption regarding these fixed costs.

Assumption 2 (Market Entry Fixed Costs) The fixed cost of offering product j ∈ Gf in mar-

ket m is given by,

F e
jm(νejm; θe, σe) = exp(Z ′

jmθe + σeν
e
jm)

where Zjm is I-measurable and νejm|I ∼i.i.d. Normal(0, 1).

In the empirical implementation, I assume that Zjm is a constant. Note that this specification

rules out economies and diseconomies of scope, as the fixed costs are independent of the firm’s

decisions to offer other products. In Appendix E, I explain how the model and method could be

extended to allow for such interdependencies through fixed costs and why it is difficult to estimate

the corresponding parameters given my data.

Firms choose which subset of their portfolio to offer in each market while best responding to

other firms’ product entry strategies and taking into account cannibalization across their products.

The expectation in equation (4) is with respect to the distribution of (ξξξm,ωωωm) that are realized

in Stage 3 and the distributions of ννν−f,e and ννν−f,g determining rival firms’ offerings. Due to

Assumption 1, only the information in the common part of the information set I is useful to

predict variable profits, so I remove conditioning on the private information component in the

conditional expectation in equation (4). When a firm chooses which products to offer in a market,

it takes expectations over the market structure against which it will be competing and the markups

it will be able to charge for each product it potentially sells in such a market. Such expectations are

19In summary, I denotes knowledge of the data-generating process.
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conditional on firms’ knowledge of the policy environment subsumed in I, which firms anticipate

affects rival firms’ offerings in equilibrium.

3.3 Stage 1: Global Portfolio Decision

In the first stage of the game, firms realize a set of product portfolio fixed cost shocks {νgj }j∈Af

for each of their potential products. The information set of firm f is therefore,

If,1 := ({νgj }j∈Af , I).

Each firm f chooses its product portfolio by maximizing expected profits,

Πf,1(If,1) = max
Gf⊆Af

E
ï∑

m

Πf,2
m (Gf , νννf,em , I)

∣∣Iò− ∑
j∈Af

GjF
g
j (ν

g
j ; θg, σg), (5)

where

Gj = 1 ⇐⇒ j ∈ Gf .

The variable F g
j (ν

g
j ; θg, σg) denotes the fixed cost of introducing product j into the firm’s global

product portfolio. Assumption 3 makes a parametric assumption regarding these fixed costs.

Assumption 3 (Product Portfolio Fixed Costs) The fixed cost of introducing product j ∈ Af

into firm f ’s global product portfolio is given by,

F g
j (ν

g
j ; θg, σg) = exp(Z ′

jθg + σgν
g
j )

where Zj is I-measurable and νgj |I ∼i.i.d. Normal(0, 1).

In the empirical implementation, I assume that Zj is a constant. As in Assumption 2, this specifi-

cation rules out economies of scope.

Firms choose their portfolio so as to best respond to other firms’ portfolio and market entry

strategies. The portfolio decision affects the expected profits of firm f in all potential markets

since including a product in its portfolio gives the firm the option to sell it in any country in the

second stage. As in Stage 2, firm f ’s expectation is over other firms’ portfolio and market entry

shocks ννν−f,e and ννν−f,g determining rival firms’ offerings in each market, and ex-post demand and

marginal cost shocks. At this stage of the game, firm f also takes expectations over its own market

entry fixed cost shocks νννf,e, which it does not realize until Stage 2. Assumption 1 implies that only

information contained in I is useful to predict market-level profits Πf,2
m , so I remove conditioning

on the private information component in the conditional expectation in equation (5). The product-

specific fixed cost F g
j induces a complementarity across markets. Greater expected profitability for

product j in market m can lead to the introduction of product j into the firm’s global product

portfolio and its offering in other markets in Stage 2.
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3.4 Marginal Value and Submodularity

I introduce the concept of the marginal value of offering a product into a given market.

Definition 1 The marginal value of introducing product j in market m at market structure Ωm

under demand and marginal cost shocks (ξξξm,ωωωm) is given by,

MVjm(Ωf
m,Ω−f

m ;ξξξm,ωωωm) := π∗
jm(Ωf

m,Ω−f
m , ξξξm,ωωωm)︸ ︷︷ ︸

variable profits from j in m

(6)

+
∑

j′ ̸=j,j′∈Ωf
m

[π∗
j′m(Ωf

m,Ω−f
m , ξξξm,ωωωm)− π∗

j′m(Ωf
m \ {j},Ω−f

m , ξξξm,ωωωm)]

︸ ︷︷ ︸
cannibalization: change in variable profits for other products when j is offered

.

It is the change in variable profits from offering product j in market m for firm f when the initial

market structure is given by Ωf
m \ {j} and under demand and marginal cost shocks in market m

given by (ξξξm,ωωωm).

Throughout the remainder of the paper, I will leverage the following property.

Assumption 4 (Submodularity) MVjm(Ωf
m,Ω−f

m ;ξξξm,ωωωm) is decreasing in Ωf
m and Ω−f

m at any

demand and marginal cost shocks (ξξξm,ωωωm).

While ideally, this property should be formally proven, doing so requires comparing profits

across Nash-Bertrand pricing equilibria, which is beyond the scope of this paper.20 However, I find

that at estimated parameters and under thousands of (ξξξm,ωωωm) draws, there is no instance in which

it is violated, which is consistent with the economic forces present in the model.

3.5 Discussion of Modeling Assumptions

While Stage 3 of the model is standard, Assumption 1 is a departure from previous papers such

as Jia (2008), Ciliberto and Tamer (2009), Eizenberg (2014), or Wollmann (2018), which assume

that firms perfectly observe other firms’ fixed cost shocks when making their entry decisions.

As shown in Appendix F, under Assumption 1, Milgrom and Weber (1985) and Balder (1988)

guarantee pure strategy equilibrium existence in both Stage 1 and Stage 2 of the game. This is an

advantage relative to complete information, where the existence of a pure strategy equilibrium is

not guaranteed in games featuring strategic substitutes with more than two players.21

Assumption 4 is more likely to hold when (i) marginal costs are constant and when (ii) the

unobserved shocks (ξξξ,ωωω) are independent of firms’ portfolio and market entry decisions. The latter

20In practice, I solve for prices by using the contraction mapping from Morrow and Skerlos (2011) to compute a
unique “resting point.” Conlon and Gortmaker (2020) show that this resting point reliably finds an equilibrium and is
computationally 3-12 faster than Newton-type approaches. This is, in practice, an equilibrium selection assumption
that uniquely determines the MVjm mapping as a function only of offerings and demand and marginal cost shocks.

21In Appendix F.1, I provide an example of a complete information game with strategic substitutes and 3 players
where no pure strategy Nash equilibrium exists. Magnolfi and Roncoroni (2022) provide an identification approach
for discrete games under a weaker informational assumption but do not deal with within-firm interdependencies.
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assumption is guaranteed due to the timing assumption on the demand and marginal cost shocks,

which are realized in Stage 3. This timing assumption allows one to use the standard techniques

(i.e., Berry et al. 1995) to estimate demand and marginal costs.

In Appendix E, I show how the model and methods can be extended to cases where the variable

profit function exhibits complementarities across product offerings within a market. For instance,

if marginal cost synergies are large, two products could be net complements rather than substitutes

from the firm’s perspective. With knowledge of the sign of the interdependence across any pair of

choices, I show that my moment inequality approach discussed in Section 4 can be used to estimate

the model’s fixed cost parameters.

4 Moment Inequality Estimation

There are two main challenges in estimating fixed costs in settings where firms have multiple

discrete choices and behave strategically. First, it is computationally infeasible to solve the model

fully under each vector of fixed cost parameters (θe, σe, θg, σg). With only 20 discrete choices

per firm and 10 firms, this gives 2200 ≈ 1060 possible entry configurations that can be realized

in equilibrium. Evaluating all such configurations once is already computationally infeasible, let

alone evaluating them many times as would be required for parameter estimation with standard

techniques. Second, while the existence of a pure strategy Nash equilibrium is guaranteed in my

model, uniqueness is not. Thus, even if solving the model fully and quickly were possible, one would

have to make an equilibrium selection assumption or use moments robust to multiplicity to employ

standard point identification techniques such as MLE or GMM. These two reasons suggest using

moment inequalities, which do not require computing entry equilibria under different parameter

vectors and remain valid irrespective of the Bayesian Nash equilibrium that generates the data.

An additional challenge in estimating fixed cost parameters in product entry games has been

to allow for fixed cost shocks that are observable to firms when they make their entry decisions but

unobservable to researchers. I develop a new approach that allows for (i) multiple discrete choices

per agent, (ii) selection on unobserved (to the researcher) fixed cost shocks, and (iii) strategic entry.

In this section, I first show how to derive bounds on firms’ choice probabilities. Then, I show how

to use these bounds to derive moment inequalities that partially identify the fixed cost parameters.

Throughout, I assume that all demand and marginal cost parameters have been estimated. Together

with the Nash-Bertrand pricing assumption in Stage 3, such parameters are sufficient to obtain

variable profits for each product-market pair given any demand and marginal cost shock realizations

(ξξξm,ωωωm) and market structures Ωm. I then compute the marginal value of product j in market m,

MVjm(Ωf
m,Ω−f

m ;ξξξm,ωωωm) under any offerings and demand and marginal cost shocks.

4.1 Bounds on Choice Probabilities

The methodological insights in this paper rely on computing bounds on firms’ market entry and

product portfolio choice probabilities. In this section, I first provide intuition on the derivation of
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the bounds on the probability of market entry. In Appendix B, I provide the formal derivations of

these bounds and the corresponding bounds on the probability of portfolio introduction. Bounding

firms’ choice probabilities is the first step toward deriving moment inequalities for estimation.

First, consider a firm f in Stage 2 of the game that has chosen a singleton product portfolio,

{j}, in Stage 1. In this case, the optimal choice in market m is straightforward to characterize as,

Ojm = 1 ⇐⇒ E[πjm({j},Ω−f
m )|I, νejm,Gf = {j}]− F e

jm(νejm; θe, σe) ≥ 0. (7)

That is, firm f offers product j in market m if and only if the expected profits from doing so are

weakly positive. When making this choice, firm f conditions on what it knows, which includes the

common information set I, and the firm’s private information, νejm and its portfolio, Gf = {j}. A
key insight is that due to Assumption 1, firm f ’s private information is independent of rival firms’

chosen offerings, Ω−f
m , conditional on I. Therefore, I remove conditioning on νejm in the expectation

in condition (7) and obtain,

Ojm = 1 ⇐⇒ E[πjm({j},Ω−f
m )|I,Gf = {j}]− F e

jm(νejm; θe, σe) ≥ 0.

As such, and because νejm is realized after Gf is chosen, I use the known distribution of νejm|I
given by Assumption 2 to obtain,

P(Ojm = 1|I,Gf = {j}) = Γjm(E[πjm({j},Ω−f
m )|I,Gf = {j}]; θe, σe), (8)

where Γjm is the CDF of a log-normal distribution with location Z ′
jmθe and scale σe.

Equation (8) demonstrates the tractability that Assumption 1 provides. Despite strategic be-

havior, it is possible to obtain an expression for the probability that the firm chooses to enter

market m, similar to that in a binary and single-agent probit or logit model. Under complete in-

formation, equation (8) is not valid because rival firms’ offerings in market m would be correlated

with νejm (even conditional on I), which makes it impossible to integrate νejm without solving the

model fully. As discussed earlier, with complete information, challenges arise regarding equilibrium

existence, multiplicity, and computational feasibility.

In my setting, I also need to address an additional difficulty: firms are, in general, multi-product.

This feature implies that the decision to offer product j in market m is not independent of the

decision to offer product j′ ̸= j. That is, firms’ best-response bundle Ωf
m in market m depends on

all market entry fixed cost shocks it realizes {νejm}j∈Gf ,m and in particular on νejm. Thus, necessary

conditions for entry of product j conditioning on the observed bundle would lead to a selection

problem for characterizing the probability that such a product is offered; the researcher does not

know the distribution of νejm conditional on the observed bundle Ωf
m.22

In Appendix B, inspired by Fan and Yang (2024), I leverage Assumption 4 to deal with this

selection problem and derive upper bound inequality,

22Eizenberg (2014) and Wollmann (2018) deal with this issue by imposing support restrictions on fixed cost shocks,
which allows them to generate moment inequalities that average out the unobserved fixed cost shocks.
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1{E[MVjm({j},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} ≥ Ojm, (9)

and lower bound inequality,

1{E[MVjm(Gf ,Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) < 0} ≥ 1−Ojm. (10)

Inequalities (9) and (10) hold for any entry opportunity for product j ∈ Gf in market m, thus

overcoming the selection problem.23 Inequality (9) says that if product j is offered in market m

(Ojm = 1), necessarily an upper bound on the expected profit gain from doing so must be weakly

positive. If it is not offered, such an upper bound could be positive or negative. Under Assumption

4, I obtain an upper bound on the expected profit gain by evaluating the marginal value as if product

j were the only product to be offered by the firm in the market, i.e., at bundle {j}. At this extreme

bundle, there can be no cannibalization. Inequality (10) says that if j is not offered in market

m (Ojm = 0), necessarily a lower bound on the expected gain from this choice must be negative.

If it is offered, then this lower bound could be positive or negative. Assumption 4 provides the

extreme bundle that minimizes such possible gains and calls for evaluating the marginal value as if

all products in the firm’s portfolio, Gf , were simultaneously offered in market m, which maximizes

cannibalization within the firm.24 Importantly, these bundles are not chosen optimally by the firm

given its private information {νejm}j∈Gf ,m, which eliminates the selection problem generated by not

knowing the distribution of νejm conditional on the observed and optimal bundle Ωf
m.

The key insight now is that in inequalities (9) and (10), the unobserved fixed cost shock is

independent of the expectation operators inside the indicator functions; that is, independent of I
and Gf . For firm f , knowing νejm is not useful for predicting the bounds on its expected gain in

variable profits. Thus, I take expectations conditional on I on both sides of inequalities (9)-(10)

and use the known distribution of νejm|I to obtain bounds on the probability that any product j

in the firm’s portfolio is offered in market m,

Γjm(E[MVjm(Gf ,Ω−f
m )|I,Gf ]; θe, σe) ≤ P(Ojm = 1|I,Gf ) (11)

≤ Γjm(E[MVjm({j},Ω−f
m )|I,Gf ]; θe, σe)

The inequalities in (11) provide bounds on the ex-ante probability that product j ∈ Gf is

offered in market m. The lower bound is the probability that the market entry fixed cost is smaller

than the change in variable profits from offering product j in market m obtained under maximal

cannibalization. The upper bound is the probability that the market entry fixed cost is smaller than

the change in variable profits for product j in market m obtained under minimal cannibalization.

23Fan and Yang (2024) deal with the selection problem in a multiple discrete choice setting by bounding the
probability of entry below by the probability that entry is dominant and above by the probability that entry is not
dominated. They similarly implement their inequalities using submodularity of variable profits, though in a setting
of complete rather than incomplete information.

24In Appendix E, I show that for estimation, Assumption 4 is stronger than required. What is needed for estimation
is the existence of product-market-specific within-firm bundles that bound the variable profit gains from offering any
product in a market.
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In Appendix B.2, I derive bounds on the probability, P(Gj = 1|I), that product j is introduced

in the firm’s global product portfolio using similar methodological insights as in the derivations of

inequalities (9) and (10). Instead of bounding the marginal value of offering a product in a market,

the derivations bound the change in value from introducing a product into the firm’s portfolio. An

additional complication arises, which is that I have to deal with subgame perfection: firms make

portfolio decisions in Stage 1, anticipating that they will make optimal market entry decisions in

Stage 2. In Appendix B.2 I show how to deal with this issue and that,

Λ̃j

Å{
E[MVjm(Af ,Ω−f

m )|I]
}
m

ã
≤ P(Gj = 1|I) ≤ Λ̃j

Å{
E[MVjm({j},Ω−f

m )|I]
}
m

ã
, (12)

where Λ̃j is an increasing function in each of its M arguments and depends both on the distribution

of portfolio fixed costs Λj and the distributions of market entry fixed costs across markets {Γjm}m.

Intuitively, bounds on the probability of portfolio introduction depend on (i) bounds on the addi-

tional variable profits that the product can earn in each market, (ii) the distribution of portfolio

fixed costs determining how costly it is to include the product in the firm’s portfolio, and (iii) the

distributions of market entry fixed costs which determine how costly it is to offer the product in

each market conditional on being included in the firm’s portfolio.

In summary, I showed how to derive bounds on firms’ choice probabilities in a strategic setting

with multiple firms making multiple discrete choices under Assumptions 1 and 4.

4.2 Moment Inequalities using Convex/Concave Bounds of the Fixed Cost CDF

In this subsection, I show how to use the bounds on firms’ market entry probabilities to derive

moment inequalities that are useful for the estimation of (θe, σe). In Appendix B.2, I similarly

show how to derive moment inequalities that partially identify (θg, σg) based on the bounds on the

probability of portfolio introduction.

The inequalities in (11) provide bounds on the ex-ante probability of product offerings, but these

depend on firms’ expectations over rivals’ product offerings Ω−f
m in the equilibrium that generates

the data. I develop moment inequalities that do not require solving the model and only depend on

observed data and parameters.

To obtain an upper bound moment inequality for estimation of fixed cost parameters (θe, σe),

I bound the term on the right-hand side of the inequalities in (11) with a convex upper bound of

Γjm, which I denote by Γjm.25 This step relates to how Dickstein and Morales (2018), Dickstein

et al. (2024), and Porcher et al. (2024) use a convex odds or linear approximation function to derive

moment inequalities in a single-agent setting. Such a bound yields,

Γjm(E[MVjm({j},Ω−f
m )|I,Gf ]; θe, σe) ≥ E[Ojm|I,Gf ]. (13)

25There are many potential convex upper bounds of any CDF function. In Appendix B, I discuss the implemen-
tation in detail.
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Since Γjm is convex, I apply Jensen’s inequality to obtain,

E[Γjm(MVjm({j},Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≥ 0. (14)

Inequality (14) is a conditional moment inequality that depends on observed data, and in

particular on the realization of rivals’ offerings, Ω−f
m . This relates to previous work that shows how

to derive moment inequalities that depend on the ex-post realization of payoff-relevant variables

(i.e., Pakes 2010, Pakes et al. 2015, Dickstein and Morales 2018); I extend the tricks developed

in such papers to an incomplete-information game where expectations are over rivals’ endogenous

entry decisions. Due to the assumption that rivals’ fixed cost shocks are unobserved when firms

decide their product offerings, rival firms’ entry decisions are independent (conditional on I) of

firm f ’s entry decisions, which permits using the realized set of entry decisions for estimation,

while simultaneously allowing for selection on unobserved (own) fixed cost shocks. Under complete

information, inequality (14) would be invalid due to violation of this independence result. The

unobservability of rival fixed cost shocks effectively reduces the issue of selection on unobservables,

yielding model-consistent bounds that are tighter than the analogous moment inequalities obtained

under the assumption of complete information.26 I also derive, using similar arguments but instead,

a concave lower bound for the log-normal CDF, which I denote by Γjm,

E[Γjm(MVjm(Gf ,Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≤ 0. (15)

Conditional moment inequalities (14) and (15) partially identify (θe, σe). I also prove the

corresponding conditional moment inequalities that partially identify (θg, σg), which are based on

bounds on the probability of product portfolio introduction, given by the inequalities in (12). The

derivations in Appendix B.2 show how to use the bounds on the probability of portfolio introduction

to obtain moment inequalities (A36)-(A37) using similar insights as used for inequalities (14)-(15).

I summarize the identification result in Theorem 1.

Theorem 1 The set of parameter vectors consistent with conditional moment inequalities (14)-

(15) and (A36)-(A37) contains the true parameter vector (θe, σe, θg, σg).

Proof. See Appendix B.

My moment inequality approach is based on moments that bound firms’ choice probabilities,

which makes them suitable for computing counterfactual exercises. In my setting, Assumption

26Under complete information, one could obtain the analogous model-consistent inequality,

E[Γjm(MVjm({j}, ∅); θe, σe)−Ojm|I] ≥ 0.

Indeed, under Assumption 4, the largest gain from offering product j in market m is obtained when product j is the
only product (other than the outside option) offered in market m. This extreme bundle is independent of all of the
firms’ fixed cost shock realizations. With complete information, such an extreme bound is required because it is the
only way to obtain a valid bound that is independent of the (unobserved) information set of any given firm, which is
what is required to integrate the unobserved fixed cost shocks. The bounds are less informative when applied to the
same data because MVjm({j}, ∅) ≥ MVjm({j},Ω−f

m ) for all j ∈ A and all m ∈ M.
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1 provides a model of firms’ expectations over rivals’ actions, which I exploit in Section 6 to

provide a solution method. In other settings, one could use the moment inequalities directly to

compute counterfactual exercises. For instance, the insights discussed above apply to multiple

discrete-choice single-agent settings where expectations are over an exogenous, ex-post realized,

payoff-relevant variable.

Though I assume that the distributions of both product portfolio and market entry fixed costs

are log-normal, the arguments discussed in Section 4 apply under different assumptions on the fixed

cost distributions.27 I assume a log-normal specification because it is a natural benchmark in a

setting with significant product-market heterogeneity.

4.2.1 Identification

My approach yields moment inequalities based on the derived bounds on product introduction

probabilities. Excessive product portfolio costs can be rejected if they imply that the upper bound

on the probability of portfolio introduction (see inequality (A36) in the Appendix) is smaller than

the empirical probability of portfolio introduction. Insufficient portfolio costs can be rejected if they

imply that the lower bound on the probability of portfolio introduction (see inequality (A37) in the

Appendix) is larger than the empirical probability. Similarly, market entry fixed cost parameters

can be rejected whenever the empirical probability of market entry (conditional on the observed

portfolios) does not lie within the bounds given by inequalities (14) and (15). The product portfolio

and market entry fixed costs rationalize the cross-sectional entry patterns discussed in Section 2:

firms do not introduce all potential products in their portfolio and do not sell all products in their

portfolio in all markets.

The inequalities identify not only the location parameters of the log-normal distributions but

also the scale parameters, determining the variance of (log) fixed costs. Too large a scale parameter

(holding fixed the location parameter) can be rejected because it would imply too low a probability

of product introduction for highly profitable products. This is because a large scale parameter

makes the tails of the fixed cost distributions fatter, therefore making the implied bounds on

the probability of product introduction tend towards 0.5 irrespective of the magnitude of MVjm.

Similarly, scale parameters that are too small can be rejected because they would imply that the

rate of product introduction tends to 1 for highly profitable deviations, which is not what is observed

in the data. Intuitively, the variance of fixed costs must be large enough to rationalize market entry

and portfolio deviations that are apparently highly profitable and yet are not undertaken by firms.

Identifying the second moment of the fixed cost distribution is a key advantage relative to

previous approaches in the multi-product entry literature, such as Eizenberg (2014) or Wollmann

(2018), which only identify the mean. By estimating all the parameters describing the fixed cost

distributions, one can accurately integrate firms’ fixed cost shocks, which is necessary to solve for

27More precisely, the log-normal assumption only matters for the construction of the convex/concave bound of
the fixed cost CDFs. Under a different distributional assumption and, therefore, a different CDF, the convex upper
bound and concave lower bound functions would differ, but all remaining arguments would still be valid.
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model-consistent counterfactual outcomes.

To summarize, I have shown how to derive moment inequalities in a setting with multiple

discrete choices in a computationally feasible manner robust to equilibrium non-uniqueness. The

inequalities solely depend on changes in variable profits, which can be computed using the model

for variable profits (Stage 3), observable entry decisions Ojm and Ω−f
m , and fixed cost parameters.

4.3 Simulations to Determine the Informativeness of the Moment Inequalities

In Appendix G.2, I simulate a solvable version of the model to evaluate the tightness of the

moment inequalities under various assumptions on the data-generating process. The simplified

model has the exact same structure as described in Section 3 but relies on symmetry across firms

and products to tractably obtain a full solution.28 I simulate N symmetric firms with 3 symmetric

potential products that they can offer across 12 heterogeneous markets. Firms earn variable profits

in each market m according to

Πf
m(Nf

m, N−f
m ) = Am

Nf
m

1 + (Nf
m)κo(N−f

m )κr

,

where Nf
m denotes the number of products offered by firm f in market m and N−f

m denotes the total

number of products offered by rival firms in market m. Am is a market profit shifter, and κo and

κr regulate substitutability across products within and across firms, respectively. Firms pay fixed

portfolio and market entry costs to develop products and offer them across markets, respectively.

In the simulations, I vary the number of firms, κo and κr, to understand how changes in such

fundamentals affect the moment inequalities’ informativeness of the global portfolio and market

entry fixed cost parameters. These fundamentals are relevant to the informativeness of the mo-

ment inequalities, which depends on the loss from using “extreme” bundles to bound changes in

variable profits (which depends on substitutability across products), as well as the loss from using

convex/concave bounds together with Jensen’s inequality to average out firms’ expectational errors

(which are affected by the size of firms relative to the overall market).

I find that both the number of firms and κo play an important role in determining the tightness

of the bounds on both the portfolio and market entry fixed cost parameters. Greater degrees

of substitutability across products within the firm (higher κo) render the moment inequalities

less informative. If products are independent or there is low substitutability within the firm,

the moment inequalities become extremely informative. Thus, my method is particularly useful

for studying entry by firms with a single product. A larger number of firms renders them more

informative, all else equal. Interestingly, substitutability across firms (κr) does not significantly

affect the informativeness of the moment inequalities. While substitutability across firms can affect

the level of equilibrium profits, it does not directly affect the informativeness of the moments used

to inform the fixed cost parameters.

28Despite this simplicity, I attempt to calibrate the simulated model’s parameters so as to match some observed
features in the data, such as the share of potential products introduced in firms’ portfolios.
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4.4 Moments and Inference

To use the conditional moment inequalities from Theorem 1 for estimation, I first construct

instrument functions that are positive-valued and exogenous to obtain unconditional moment in-

equalities.29 My approach is similar to two-stage least squares: I project endogenous variables onto

exogenous variables and then use the first-stage predicted values to compute instruments. I provide

additional details about the implementation in Appendix D.2.

First, I simulate S draws of demand and marginal cost shocks (ξξξ,ωωω) using the fitted bivariate

normal distribution. Second, I use the model for Stage 3 of the game to compute ‘MV jm({j},Ω−f
m ),‘MV jm(Gf ,Ω−f

m ), and ‘MV jm(Af ,Ω−f
m ), where the ‘MV notation denotes that such marginal values

are averaged across the S simulation draws for (ξξξ,ωωω). Third, I project each of the endogenous‘MV jm({j},Ω−f
m ), ‘MV jm(Gf ,Ω−f

m ), and ‘MV jm(Af ,Ω−f
m ) on exogenous (I−measurable) market

size Mm, and interactions of market identifiers with δ̃jm, c̃jm and δ̃jm × c̃jm using PPML, where

δ̃jm and c̃jm are defined in equations (2) and (3). I then use the predicted values from the PPML

model to construct instruments. Introducing notation, let x̂jm, x̂hjm, and x̂ljm be the predicted

values of ‘MV jm({j},Ω−f
m ), ‘MV jm(Gf ,Ω−f

m ), and ‘MV jm(Af ,Ω−f
m ), respectively. For inequality

(14), I build instruments based on percentile category bins of x̂jm i.e.,

1{x̂jm ∈ Qτ (x̂jm)}

where Qτ denotes a percentile category bin τ .30 Similarly, I construct instruments of inequality (15)

according to 1{x̂hjm ∈ Qτ (x̂
h
jm)}. For the Stage 1, upper and lower bound inequalities, I construct

percentile category bin indicators, respectively, of the form,

1

ß ∑
m∈M

x̂jm ∈ Qτ

Å ∑
m∈M

x̂jm

ã™
and 1

ß ∑
m∈M

x̂ljm ∈ Qτ

Å ∑
m∈M

x̂ljm

ã™
.

These instruments are positive and exogenous (I-measurable), given that they only depend

on factors that firms know at the time of making their product entry decisions.31 Interacting the

moments with indicators for different levels of an exogenous measure of the profitability of the

product (or product-market) provides information on the fixed cost parameters. On the one hand,

interactions with products (or product-markets) that are apparently unprofitable provide an upper

bound: fixed costs must be small enough to rationalize that some of them enter. On the other

hand, interactions with seemingly profitable products provide a lower bound: fixed costs must be

large enough to rationalize the empirical fact that not all such products enter. To implement the

moment inequalities empirically, I compute the empirical counterparts of the moments in Theorem

1, interacted with the discussed instruments. I report such empirical analogs in Appendix D.3.

29More precisely, one requires instruments that are positive and I-measurable.
30For instance, if we have data on Xi, and we construct Q1(Xi), Q2(Xi), and Q3(Xi), then xi ∈ Q1(Xi) if and

only if xi lies below the 33th percentile of the empirical distribution of Xi.
31See Appendix D.2 for a detailed description of the construction of instruments. In the main specifications, I use

3 bins for the Stage 2 inequalities, 5 bins for the Stage 1 inequalities, and polynomials of the PPML-predicted values.
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To conduct inference, I proceed sequentially by constructing confidence sets using Andrews

and Soares (2010). First, I construct a confidence set for (θe, σe) using the empirical analogs of

inequalities (14)-(15), interacted with the instruments. Then, I construct a confidence set for

(θg, σg) using the empirical analogs of the portfolio introduction moment inequalities (see (A36)-

(A37) in the Appendix) interacted with the instruments, and the confidence set obtained for (θe, σe)

in the first step. Throughout, I perform a grid search and apply a Bonferroni correction to account

for the multiple-testing issue. For the (θe, σe) confidence set, I rely on asymptotics as JM → ∞.

The (θg, σg) confidence set relies on asymptotics as J → ∞.

An issue with inference in this setting is that, due to the strategic nature of the model, expecta-

tional errors are correlated, leading to the violation of statistical independence across observations.

Ideally, one would observe many realizations of the global equilibrium and implement inference

relying on asymptotics as the number of games goes to infinity, but this is not feasible in practice.

Recent literature has begun to provide approaches to inference that rely on a unique realization of

a Bayesian game and many players for asymptotics, much as in my setting. Menzel (2016) develops

an asymptotic theory for discrete action games with many players. As the number of players goes

to infinity, firms can more precisely forecast all payoff-relevant aspects of the market structure due

to the law of large numbers.

In Appendix G.3, I address these potential inference issues by simulating a solvable version of

the model and showing that the Andrews and Soares (2010) confidence sets perform well in terms of

coverage even if a single cross-section is used to estimate the fixed costs. I replicate my estimation

procedure with simulated data and show that undercoverage is very limited even when using a

robust variance-covariance matrix, particularly when the number of firms is large.

5 Estimation Results

In this section, I report the estimates of model parameters. The timing of the model implies

that estimation can be done in 3 steps. First, I estimate demand and marginal cost parameters.

Then, I sequentially estimate (θe, σe, θg, σg) in two steps, as described in Section 4.

5.1 Demand and Marginal Costs

Demand estimation follows Petrin (2002). I use Gandhi and Houde (2019) differentiation in-

struments and micro-moments that match the probability that buyers of different incomes purchase

vehicles in different price ranges. The key identifying assumption leverages the assumption that

demand and marginal cost shocks are realized after firms make their portfolio and market entry

choices. This guarantees that E[(ξjm, ωjm)|I] = 0, which makes standard Berry et al. (1995) or

Gandhi and Houde (2019) instruments valid. Additional details about the implementation are

included in Appendix D.1.

Table 1 reports the demand and marginal cost estimates. The signs and magnitudes of all

estimates are consistent with previous estimates in the literature. Moreover, all of the key parameter
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Table 1: Stage 3 Parameter Estimates

Parameter estimate Standard error

Demand
Mean parameters
price (α0) 2.88 0.690
home market 1.01 0.153
horsepower (log) 5.00 2.46
horsepower/weight (log) -2.19 1.44

Non-linear parameters (price coefficient)
Income (α1) -0.790 0.117
China -1.51 0.297
Shock Std (σy) 0.809 0.131

Marginal Costs (log)
electric 0.340 0.051
hybrid 0.272 0.030
horsepower/weight (log) -0.426 0.111
horsepower (log) 1.00 0.112
size (log) 0.251 0.209
distance to brand HQ (log) 0.062 0.007

Observations 1,414
Mean Share-Weighted Implied Own Price Elasticity -8.41
Percent Implied Negative Marginal Costs 0

Notes: The demand specification includes body-type and electric-hybrid dummies interacted with market
dummies. It also includes size interacted with market dummies. Both specifications include brand and
market fixed effects. Standard errors are clustered at the brand level.

estimates are significant at the 95% significance level. The mean share-weighted implied own-price

elasticity is -8.41 across all countries, higher (in absolute value) than that obtained for the United

States in Grieco et al. (2023) (they find it to be -6.37 in 2018). The coefficient of -0.790 for the

interaction of each buyer’s income with its price sensitivity is highly significant and in line with

previous estimates of around -1 in the literature (e.g., Coşar et al. 2017 obtain a point estimate

of -0.997). The coefficient on the home market dummy shows that consumers are willing to pay

a substantial premium to purchase from a local brand. The coefficient of 1.01 implies that, on

average, across the world income distribution, consumers’ additional utility from a home brand is

valued, all else equal, equivalently to a $1,518 US dollars decrease in price. Consumers significantly

value vehicles with greater horsepower and vehicles with less horsepower/weight, which is negatively

correlated with fuel efficiency (an omitted variable in my dataset). Finally, interacting the price

coefficient with a China dummy proves to be important. The coefficient of -1.51 is highly significant

and shows that all else equal, Chinese consumers appear to be less price-sensitive. I hypothesize

that this is due to aggressive and unobserved demand-side policies that render the MSRP an

overestimate of consumer prices in China. I interpret this dummy as a control for such unobserved

policies in China, which I will hold fixed in counterfactual policy experiments.

Marginal cost estimates align with prior institutional knowledge of the industry. In my sample
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period, supplying an electric vehicle is substantially more costly than a hybrid or internal com-

bustion engine (ICE) vehicle. The marginal cost of ICE vehicles is around 31% (40%) lower than

that of a hybrid (electric) vehicle. It is also more costly to supply a vehicle with higher horsepower

and size, though the latter coefficient is not statistically significant. It is less costly to supply

vehicles with higher horsepower/weight. Finally, it is also substantially more expensive to supply

markets that are distant from the brand’s headquarters country. A 1% increase in distance from

the headquarters country raises the marginal cost of supplying a given market by around 0.06%.

Marginal costs are recovered from prices given the Nash-Bertrand conduct assumption, so they

contain information on optimal sourcing decisions from 2019 production locations. I treat these as

fixed in counterfactual experiments and interpret my marginal cost parameters and fixed effects as

capturing firms’ sourcing possibilities.

Given demand estimates and the Nash-Bertrand pricing assumption, I computeMVjm(Gf ,Ω−f
m ),

MVjm(Af ,Ω−f
m ), and MVjm({j},Ω−f

m ), which are the pieces of “data” required for my moment in-

equality procedure.32

5.2 Fixed Costs

Implementing the moment inequality procedure, I separately identify the parameters deter-

mining the distributions of global product portfolio and market entry fixed costs. In Section 2, I

provided descriptive evidence that both portfolio and market entry costs matter for understanding

cross-sectional product offering patterns. The goal now is to learn about the magnitude of the fixed

costs through the lens of the structural model. Obtaining these estimates is a first step towards

quantifying policy effects using my framework.

In a world with high global portfolio fixed costs and low product market entry costs, firms would

sell similar (or the same) varieties across all countries. In such a setting, reduced globalization or

policies limiting firms’ ability to leverage international markets to scale up their operations are

likely to significantly affect product offerings and market outcomes across countries. Instead, a

world with low global portfolio fixed costs and large market entry costs is a world of independent

markets, where global market integration plays a small role in shaping industry outcomes. In which

world do we live in?

Figure 6 and Table 2 provide evidence on this question. Figure 6 projects the 4-dimensional

95% confidence set for (θe, σe, θg, σg) into a 2-dimensional grid by plotting the (θe, σe) and (θg, σg)

separately. Recall that these parameters determine the location and scale parameters of the log-

normal fixed cost distributions. Table 2 reports the confidence set limits for all 4 parameters.

The estimates show that the distribution of product fixed costs has a higher median than the

distribution of market entry fixed costs. The estimates imply that the median fixed cost of adding

32Ideally, one should account for the statistical uncertainty regarding demand and marginal cost estimates when
computing standard errors for fixed cost parameters. One way of doing this is by bootstrapping the entire estimation
procedure. Given the computational burden of this approach, I currently treat these marginal values as data and
do not account for the statistical uncertainty regarding demand and marginal cost parameters when computing
confidence sets for the fixed cost parameters.
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Figure 6: 95% Confidence Set

Notes: This figure projects the 95% confidence set for the location and scale parameters describing the
distributions of product portfolio and market entry fixed costs on a two-dimensional grid on the location-
scale dimensions.

Table 2: Stages 1 and 2 Parameter Confidence Set Limits

95% Confidence Set Limits

Stage 2: Market Entry Fixed Cost
θe (Location) [-4.8, -4.2]
σe (Scale) [2.9, 4.4]

Stage 1: Product Fixed Cost
θg (Location) [-1.8, -0.6]
σg (Scale) [1.6, 3.3]

Observations - Stage 2 3240
Observations - Stage 1 739

Notes: Confidence sets are computed using Andrews and Soares (2010). First, I implement a grid search to
compute a 97.5% confidence set for parameters (θe, σe) using the Stage 2 moment inequalities. Then, I use
the Stage 1 moment inequalities to compute a 97.5% confidence set for (θg, σg), evaluating the moments at
the accepted values of (θe, σe). The Bonferroni correction yields a 95% confidence set for all 4 parameters.
Marginal values are in billions of US dollars.

an additional product to a firm’s portfolio is $138-549 million.33 Meanwhile, the estimates imply

that the median fixed cost of offering a product in a market is $8-15 million per product. This

suggests that scale economies at the product level are important and are likely to generate strong

33A downside of this product definition is that it abstracts away from studying the entry of Toyota Corollas or
Honda Civics, which is a more common product definition in this industry. An advantage of aggregating at a coarser
rather than at a finer level is that it reduces the concern that product development costs are shared across product
categories. For instance, developing a Toyota Corolla might be very inexpensive once the Camry has been designed,
so assuming that this is a joint decision might be a decent approximation. Meanwhile, a Toyota SUV is a substantially
different product line, with a different chassis or marketing campaign. For similar reasons, products of different fuel
types are likely to face different development costs. I see my product definition as a compromise between respecting
product differentiation on the dimensions that matter most for consumers while reducing the concern that the bulk
of the product development cost is shared across different product categories.
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interdependence in global market outcomes in the automobile industry.

Moreover, the estimates reveal sizeable scale parameters for both the global portfolio and market

entry fixed cost (log-normal) distributions, which determine the variance of (log) fixed costs from

the perspective of the researcher. Such scale parameters rationalize why some firms make some

apparently unprofitable choices and why they do not make some seemingly profitable choices. Thus,

these parameters reflect complexities that firms observe, and researchers do not.34

The magnitudes of the estimates accord well with other evidence in the literature. Wollmann

(2018) estimates that, in the truck industry, it costs $5-25 million on average to introduce a product

into the United States. My median market entry costs of $8-15 million per product lie within this

range. While I am unaware of previous estimates of product portfolio costs in the automotive

industry, I follow the approach in Wollmann (2018) to convert my cross-sectional estimates into

“dynamic” estimates. Under a discount factor of 0.9 (a hurdle rate of 0.1), my estimates imply a

median of $1.4-5.5 billion per product.35 Meanwhile, IHS Global reports that the cost of developing

and maintaining product lines in the automotive industry is $1-6 billion per product, which aligns

with my estimates (Autoblog 2010).

A limitation of identifying fixed costs from cross-sectional product offerings is that it makes it

impossible to distinguish fixed from sunk costs fully. My preferred interpretation of the estimates

is that, through the lens of a static model, I capture “steady state” magnitudes that rationalize

the observed product offerings throughout the globe. While incorporating dynamics is definitely

an important direction for future research, my framework captures many important features of the

automobile industry and is capable of separately identifying product and market entry fixed costs.

Finally, these results are highly robust to the choice of instruments. In Appendix D.4.1, I show

that even with more instrument bins, it is not possible to reject the model by obtaining an empty

confidence set. Much as in an over-identification test, the fact that I fail to reject the model with

a greater number of moments increases my confidence in the results.

6 Solution Method for Product Entry Games

Computing the Bayesian Nash equilibria of the model is computationally challenging but is

required to study counterfactual policy experiments. In these settings, it is desirable to have

a solution method that is computationally feasible and robust to equilibrium multiplicity. In this

section, I develop a method with these properties that bounds the distribution of firms’ equilibrium

product offerings in each market given any policy environment implied by the information set I.
Given any information set I, and implied equilibrium distribution of product offerings in market

m, which I denote by µµµ∗
m, the algorithm yields bounds µµµ

m
and µµµm such that,

34The estimated scale parameters could potentially also reflect omitted variables from the fixed cost specification.
For instance, the specification for market entry costs does not allow for systematic variation with the distance to the
brand’s headquarters.

35This approach converts fixed costs estimated from a cross-section into sunk costs in a model that assumes that
firms choose product offerings myopically without anticipating future changes in market structure.
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µµµ
m

≤FOSD µµµ∗
m ≤FOSD µµµm. (16)

This solution approach does not rely on approximation methods nor equilibrium selection rules

(e.g., order of entry assumptions) and is computationally feasible to implement even in settings

with many firms making many discrete choices.36

Throughout this section, I treat the set of fixed cost parameters (θe, σe, θg, σg) determining the

distributions of global portfolio and market entry fixed costs as known for ease of exposition. Recall

that the CDF of the fixed cost of offering product j in market m is denoted by Γjm, while the CDF

of the global portfolio fixed cost is denoted by Λj .

The solution method relies on the same baseline inequalities that bound choice probabilities

discussed in Section 4.1. Given any policy environment I, from inequalities (11), I obtain,

Γjm

(
Eµµµ∗

m

[
MVjm(Af ,Ω−f

m )|I
]
; θe, σe

)
≤ P(Ojm = 1|I, Gj = 1)

≤ Γjm

(
Eµµµ∗

m

[
MVjm({j},Ω−f

m )|I
]
; θe, σe

)
. (17)

The inequalities in (17) provide bounds on the probability that product j is offered in market m,

conditional on being in the firm’s global portfolio.37

In Appendix B.2, I derive the corresponding inequalities that bound the probability that product

j is introduced into the firm’s product portfolio. Recall from inequalities (20) that,

Λ̃j

Å{
Eµµµ∗

m
[MVjm(Af ,Ω−f

m )|I]
}
m

ã
≤ P(Gj = 1|I) ≤ Λ̃j

Å{
Eµµµ∗

m
[MVjm({j},Ω−f

m )|I]
}
m

ã
, (18)

where Λ̃j is increasing in the expected marginal values of offering product j across markets.

As discussed in Section 4, the inequalities in (17) and (18) follow from Assumptions 1 and 4.

Upper bounds are obtained by evaluating expected changes in profits at minimal cannibalization

(only that product is offered by firm f), while lower bounds are obtained by computing expected

changes in profits at maximal cannibalization (the product is offered alongside all other firm f

potential products).

In the model, firms care about the true distribution of rivals’ offerings in each market, µµµ∗
m. In

Appendix C, I show that provided fixed cost draws are independent conditional on I, the product

of the lower and the upper bounds in inequalities (17) and (18) yield bounds on the probability

that product j is offered in market m, P(Ojm = 1|I).
In practice, neither inequalities (17) nor (18) are useful to solve the model because the expec-

tation entering the fixed cost CDFs depend on µµµ∗
m in each market m, which are the objects of

36Common heuristic approaches in the literature approximate Nash equilibria by iterating over deviations from a
given action vector in payoff-improving directions, such as the “greedy” algorithm or simulated annealing.

37For notational simplicity I have omitted demand and marginal cost shocks (ξξξm,ωωωm), but recall that the expec-
tation operator inside the CDF function is not only with respect to the true distribution of rival entry decisions Ω−f

m

under µµµ∗
m, but also under demand and marginal cost shocks which will be realized in Stage 3 of the game. Also, note

that the lower bound inequality differs from the lower bound in inequality (11) in that I now use all of the firm’s
potential products as the extreme bundle instead of conditioning on the firm’s chosen portfolio Gf . This helps to
deal with subgame perfection, as shown in Appendix C.
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interest in this section. To address this issue, I exploit Assumption 4 to initialize the algorithm.

Under submodularity, I derive the weakest possible bounds on µµµ∗
m by integrating over rival offerings

according to µµµ0
m and µµµ0

m
, degenerate random vectors such that µ0

jm = 1 (product j is introduced in

market m with probability 1) and µ0
jm

= 0 (product j is introduced in market m with probability

0) for all j ∈ A. That is,

Γjm

(
Eµµµ0

m

[
MVjm(Af ,Ω−f

m )|I
]
; θe, σe

)
≤ P(Ojm = 1|I, Gj = 1)

≤ Γjm

(
Eµµµ0

m

[
MVjm({j},Ω−f

m )|I
]
; θe, σe

)
, (19)

and

Λ̃j

Å{
Eµµµ0

m
[MVjm(Af ,Ω−f

m )|I]
}
m

ã
≤ P(Gj = 1|I) ≤ Λ̃j

Å{
Eµµµ0

m
[MVjm({j},Ω−f

m )|I]
}
m

ã
. (20)

Submodularity permits the computation of the weakest possible bounds on the marginal value

of any product j in each market m. The highest marginal value of product j in each market is

obtained by evaluating it at the least competitive conditions possible: only product j (and the

outside option) is offered in market m. The lowest possible marginal value of product j in market

m is obtained under the hypothesis that all potential products are simultaneously being offered,

the most competitive conditions possible. Evaluating the marginal values at such extreme bundles

in market m yields bounds on the probability that product j is offered in such a market conditional

on being in the firm’s portfolio, given by the inequalities in (19). Evaluating the marginal values

at such extreme bundles across all markets yields bounds on the probability that product j is

introduced in the firm’s portfolio, given by the inequalities in (20). Computing the product of the

two upper bounds and the two lower bounds in inequalities (19) and (20) gives an upper and a

lower bound on the probability that product j is offered in market m: µ1
jm and µ1

jm
, respectively.

I implement this procedure for each potential product j ∈ A and each market m ∈ M. In

Appendix C, I show that,

µµµ1
m

≤FOSD µµµ∗
m ≤FOSD µµµ1

m,

where µµµ1
m

and µµµ1
m are vectors of independent (conditional on I) Bernoulli random variables. Thus,

bounds on the marginal probabilities of offering each product, P(Ojm = 1|I), bound the joint

distribution of product offerings in each market. Moreover, while any equilibrium distribution of

offerings µµµ∗
m in market m exhibits within-firm interdependence arising from cannibalization, the

bounding random vectors µµµ1
m

and µµµ1
m are instead vectors of independent random variables. This

result holds because (i) the within-firm bounds eliminate any dependence within the firm arising

from the multi-product problem, and (ii) firms’ inability to observe rivals’ fixed cost shocks means

that conditional on I, entry decisions across firms are independent.
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Then, I show that one can tighten the initialized bounds by simulating,

Γjm

Å
Eµµµ1

m
[MVjm(Af ,Ω−f

m )|I]; θe, σe
ã
≤ P(Ojm = 1|I, Gj = 1)

≤ Γjm

Å
Eµµµ1

m
[MVjm({j},Ω−f

m )|I]; θe, σe
ã
, (21)

and

Λ̃j

Å{
Eµµµ1

m
[MVjm(Af ,Ω−f

m )|I]
}
m

ã
≤ P(Gj = 1|I) ≤ Λ̃j

Å{
Eµµµ1

m
[MVjm({j},Ω−f

m )|I]
}
m

ã
, (22)

where inequalities (21) and (22) use the initialized bounds µµµ1
m

and µµµ1
m to compute the expectation

over rival firms’ offerings.38

As before, I multiply the upper bounds and lower bounds in inequalities (21) and (22) across

all products j ∈ A to obtain vectors of conditionally independent Bernoulli random variables µµµ2
m

and µµµ2
m
, respectively, which also bound the distribution of product offerings conditional on I.

The intuition is that, due to substitution across firms arising from Assumption 4, “dominated”

strategies can be iteratively eliminated. For instance, if the probability that a product is offered

at the most competitive conditions is high, it must be weakly higher in any equilibrium. Similarly,

if the probability that a product is offered at the least competitive conditions possible is low,

it must be weakly lower in any equilibrium. All firms know how to compute these maximal and

minimal probabilities conditional on I, so iterating on this logic provides bounds on any equilibrium

distribution of product offerings, as stated in Theorem 2.

Theorem 2 Under Assumptions 1-4, the iterative algorithm converges monotonically to bounds,

in the sense of first-order stochastic dominance, of any equilibrium distribution of product offerings

in each market m given any information set I. That is, for any iteration k > 0 and any m ∈ M,

µµµk−1
m

≤FOSD µµµk
m

≤FOSD µµµ∗
m ≤FOSD µµµk

m ≤FOSD µµµk−1
m .

Proof. See Appendix C for the proof and formal arguments.

The proof leverages submodularity, which implies that MVjm is a decreasing function, and the

fact that a probability distribution X first-order stochastically dominates Y if and only if for every

monotonically decreasing function f , E[f(X)] ≤ E[f(Y )].39

To summarize, the method provides a mapping from parameters and exogenous product charac-

teristics and the policy environment to bounds on the joint distribution of product offerings implied

by the Bayesian Nash conduct assumption. This is related to how, in Berry et al. (1995), exogenous

variables and parameters, together with the Nash-Bertrand assumption, yield equilibrium markups.

38I simulate T = 100 sets of J × M uniformly distributed draws to compute the expectation for each product j
and each market m and for each of the bounds. Details on the implementation are provided in Appendix C.1.

39In Appendix E, I show how a similar algorithm can be derived if the primitive variable profit function exhibits
global supermodularity rather than global submodularity within each market.
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7 The Impact of National US Policies on Global Market Outcomes

In recent years, the world has witnessed the resurgence of aggressive industrial and trade poli-

cies. In the automotive industry, policies promoting clean vehicles have been implemented across

jurisdictions. Such policies include highly generous production and consumption tax credits or

subsidies as part of policy packages such as the Inflation Reduction Act in the United States or the

European Green Deal. Aggressive policy has long been prevalent in China.

To assess the impact of subsidies implemented in a large market on market structures across

the globe, I study the effects of marginal cost and consumer subsidies favoring US-headquartered

brands in the United States. The counterfactual experiments disentangle the effects of such policies

on market outcomes in other countries, both through the intensive margin (prices/quantities) and

through the extensive margin (products offered) in a world of interdependent product offerings.

They also demonstrate the quantitative importance of product entry in determining profit-shifting

and consumer surplus effects in other markets.

I focus on the protectionist rather than the environmental consequences of these policies to

reduce concerns about the lack of dynamics in my model. Focusing only on the entry of electric and

hybrid vehicles is difficult through the lens of a model that holds 2019 market conditions (including

preference and cost parameters) fixed. Moreover, while many of the policies implemented in the

United States outline incentives contingent on the production location of the brand rather than

the location of its headquarters, I consider a policy that favors only brands headquartered in the

United States. According to publicly available data at the Good Jobs First Subsidy Tracker (Good

Jobs First 2024), brands with US headquarters are the primary recipients of US federal and state

subsidies. It is also a good approximation of policies that have been implemented in China, which

have overwhelmingly benefited brands with local headquarters.

To assess the quantitative impact of national policies on global market outcomes while allowing

for endogenous product portfolio responses, I use the iterative algorithm described in Section 6. For

instance, because consumer surplus is increasing in the set of products offered, I bound expected

consumer surplus given any policy environment I using,

Eµµµ
m
[CSm|I] ≤ Eµµµ∗

m
[CSm|I] ≤ Eµµµm

[CSm|I].

I follow a similar approach to bound other outcomes of interest, such as brand-level market shares

and variable profits.40

Computing counterfactual experiments in a manner robust to equilibrium multiplicity is crucial,

particularly if policymakers are interested in profit-shifting motives, where the identity of entrants

40To simulate a lower bound on brand-level shares and profits, I integrate other brands’ entry choices using µµµ−b
m

and brand b’s entry choices using µµµb

m
. To simulate an upper bound on brand-level shares and profits, I integrate other

brands’ entry choices using µµµ−b

m
and brand b’s entry choices using µµµb

m. I report bounds on counterfactual outcomes
under a point in the confidence set: (θe, σe, θg, σg) = (−4.5, 3.6,−1.2, 2.5). This point lies in the midpoint of the 95%
confidence set limits. In counterfactual experiments, I compute expectations with respect to the solved bounds on
the equilibrium distribution of offerings in each market and over demand and marginal cost shocks. In Appendix H,
I show that the conclusions do not change significantly at different points in the confidence set.
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is of interest. Suppose that there are two equilibria – one where it is more likely for Ford to

introduce additional products and another where it is more likely for Geely (a Chinese brand)

to introduce additional varieties. Whether the subsidy leads to one equilibrium or another could

potentially have different effects on firms’ profits and consumer surplus.

7.1 Effect of a 20% Production Subsidy on American Brands

I study the equilibrium effects of a policy that leads to a 20% reduction in the marginal cost

cjm of each product potentially offered by a brand with headquarters in the United States in

any market. The American brands that receive the production subsidy include Buick, Cadillac,

Chevrolet, Chrysler, Dodge, Ford, GMC, Jeep, Lincoln, and Tesla. The actual policy outlined in the

Inflation Reduction Act targets clean and energy-efficient vehicles with 10% production subsidies

for stages like critical mineral or electrode active material production, in addition to a subsidy of

$35 per kilowatt-hour for battery cell manufacturing and $10 per kilowatt-hour for battery module

assembly, according to the 45X production tax credit (Banks 2023). In addition to federal policies,

there are a wide range of additional state-level production incentives (Good Jobs First 2024).

7.1.1 Consumer Surplus

First, I report in Figure 7 the effects of the policy on consumer surplus across countries. The

intervals in orange report bounds on the overall effects, accounting for changes in prices and quan-

tities (intensive margin) as well as changes in product offerings (extensive margin). The intervals

Figure 7: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer
surplus following a 20% marginal cost reduction for US brands. The expectation is over bounds on the
probability distribution of firms’ offerings and demand and marginal cost shocks. The intervals in orange
show the change in expected consumer surplus accounting for the change in the (bounds of) the equilibrium
distribution of product offerings following the policy. The intervals in green show the change in expected
consumer surplus using the bounds on the distribution of product offerings before the policy is implemented.
The intervals in green only reflect the intensive margin response.
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in green showcase the effects of the policy holding constant bounds on the distribution of product

offerings at the pre-policy values.

Figure 7 shows large minimum gains in consumer surplus throughout many countries, with gains

of over 8% in the United States, Mexico, or Brazil, and minimum gains greater than 3% in India.

The 20% decline in the marginal cost of producing US products has significantly larger effects in

poorer nations like Brazil than in richer nations like Germany. This illustrates the importance of

preference heterogeneity in understanding the global repercussions of national industrial policies.

In this case, lower-income countries benefit more from access to cheaper US products than richer

nations due to their stronger distaste for high prices. Moreover, the United States benefits more

than other rich countries due to home bias – American consumers prefer American brands and thus

benefit more from the decline in costs than Germans or Italians.

The effects of the policy on consumer surplus do not seem to reflect changes on the extensive

margin. While the upper and lower bounds of the green intervals lie slightly below those of the

orange intervals, such differences are small. This suggests either that (i) product entry does not

change in response to the policy or (ii) there are offsetting changes in market structure from the

point of view of consumers. To shed light on this, I now report the effects on brand-level outcomes.

7.1.2 Products Offered

Figure 8 shows the effect of the policy on the composition of products offered across countries.

Panel A shows that the policy leads to an expansion of the sets of products offered by US brands

throughout the globe. Lower marginal costs generate greater profitability in all markets, which

leads to a greater number of product offerings. Panel B shows that because of competition from

Figure 8: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries
before (blue) and after (orange) a 20% reduction in US brands’ marginal costs. The expectation is over
bounds on the probability distribution of firms’ offerings and demand and marginal cost shocks. Panel B
displays the corresponding bounds on the expected number of non-US-branded products before and after
the policy is implemented.
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Figure 9: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before
(blue) and after (orange) a 20% reduction in US brands’ marginal costs. The expectation is over bounds on
the probability distribution of firms’ offerings and demand and marginal cost shocks. The intervals in green
are the bounds on US-brand market shares after the policy is implemented, computed using the bounds on
the distribution of product offerings in each market before the policy is implemented. The intervals in green
only reflect the intensive margin response. Panel B displays the corresponding bounds on the expected total
market share of non-US brands before and after the policy is implemented.

Figure 10: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries
before (blue) and after (orange) a 20% reduction in US brands’ marginal costs. The expectation is over
bounds on the probability distribution of firms’ offerings and demand and marginal cost shocks. The intervals
in green are the bounds on US-brand (log) total variable profits after the policy is implemented, computed
using the bounds on the distribution of product offerings in each market before the policy is implemented.
The intervals in green only reflect the intensive margin response. Panel B displays the corresponding bounds
on the expected (log) total variable profits of non-US brands before and after the policy is implemented.

US brands, non-US brands tend to downsize their product offerings across markets, with both the

upper bound and lower bound number of non-US varieties declining across the globe.
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7.1.3 Market Shares and Variable Profits

Figure 9 shows the overall effect of the policy on the market shares of US brands. Comparing

the blue intervals to the orange intervals in Panel A, there are very significant and heterogeneous

effects of the policy across markets. In the United Kingdom, the increase in the share of US brands

is greater than 10 percentage points, whereas in Japan, only 3 to 4 percentage points. In the United

States, there is also a substantial increase of at least 7 percentage points.

Importantly, product entry amplifies the increase in the share of US brands, as seen by compar-

ing the green to the orange intervals in Panel A. Across most non-US jurisdictions, product entry

accounts for over 25% of the rise in the lower and the upper bound of the US-brand market shares.

Knowledge of the subsidy causes US brands to expect higher profitability in all markets, which

enables them to strengthen their position by offering more products. Meanwhile, non-US brands

anticipate reduced profitability due to their relatively greater cost of production. Their expected

market share declines by more after accounting for the endogenous exit of non-US brands.

In Figure 10, I plot bounds on expected (log) total variable profits of US brands before and after

the subsidy is implemented. The plot shows very substantial increases in profits of more than 1 log

point (172%) in countries like the United Kingdom, India, or Germany and very sizeable increases

in variable profits across most jurisdictions, with the smallest minimum increase in the United

States. As with market shares, the rise in profits (comparing the green to the orange intervals)

would be underestimated if one ignored endogenous product offering changes. A similar and reverse

story can be told for non-US brands, who observe a decline in their expected variable profits across

most markets, though the decline is not as large as the rise in US brands’ profits.

7.2 Effect of a 50% Consumption Subsidy on American Brands

In this section, I study the effect of a 50% US consumption subsidy on products offered by US

brands. The motivation for studying the effect of a consumer-side subsidy is the large and generous

consumer-side policies implemented throughout the world providing incentives to purchase clean

vehicles. As with production-side subsidies, many of these policies have implicitly or explicitly

favored local brands over foreign brands. In China, a highly protected automotive market since its

inception, subsidies favoring Chinese-made electric vehicles covered around 40-60% of their price

in 2014 (Lu 2018). In the United States, clean vehicles are heavily subsidized with tax credits of

up to $7,500, with Buy American incentives contingent on local final assembly.

7.2.1 Consumer Surplus

First, I report the effects of the policy on consumer surplus worldwide. Figure 11 shows a

large minimum increase in consumer surplus in the United States following the policy of over 42%.

Moreover, ignoring product entry would lead to underestimating the rise in consumer surplus. In

other countries, this large US subsidy has small effects on consumer surplus.
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Figure 11: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer
surplus following a 50% consumer subsidy for US-branded products in the United States. The expectation
is over bounds on the probability distribution of firms’ offerings and demand and marginal cost shocks. The
intervals in orange show the change in expected consumer surplus accounting for the change in the (bounds
of) the equilibrium distribution of product offerings following the policy. The intervals in green show the
change in expected consumer surplus using the bounds on the distribution of product offerings before the
policy is implemented. The intervals in green only reflect the intensive margin response.

7.2.2 Products Offered

Figure 12 shows the effect of the policy on the composition of products offered across countries.

Panel A shows that the policy leads to an expansion of the sets of products offered by US brands

throughout the globe. The large consumer subsidy on US brands induces the entry of US-branded

products into firms’ portfolios, which firms can choose to offer overseas. In the United States,

the policy leads to a contraction of varieties offered by foreign brands in light of their reduced

profitability. Interestingly, non-US brands do not significantly contract their product offerings in

other markets. This suggests that the decline in profits resulting from the discriminatory policy in

the United States is not large enough to induce the global exit of many non-US products.

7.2.3 Market Shares and Variable Profits

Figure 13 shows the overall effect of the policy on market shares of US and non-US brands

across markets. The policy has a very large effect on the market share of US brands in the United

States, with a rise of over 23 percentage points. Non-US brands lose most of their market share

in the United States, with a drop of at least 16 percentage points. Interestingly, the rise in the

US-brand market share in the United States appears to be mostly driven by the intensive margin,

and not by the introduction of new products in the United States. This shows that while the policy

has the effect of expanding US brands’ offerings, the marginal new product being introduced is

relatively unpopular and captures a small market share.

For this reason, the policy does not lead to very significant effects on US brand dominance
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Figure 12: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries
before (blue) and after (orange) a 50% consumer subsidy on US-branded products in the United States. The
expectation is over bounds on the probability distribution of firms’ offerings and demand and marginal cost
shocks. Panel B displays the corresponding bounds on the expected number of non-US-branded products
before and after the policy is implemented.

Figure 13: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before
(blue) and after (orange) a 50% consumer subsidy on US-branded products in the United States. The
expectation is over bounds on the probability distribution of firms’ offerings and demand and marginal cost
shocks. The intervals in green are the bounds on US-brand market shares after the policy is implemented,
computed using the bounds on the distribution of product offerings in each market before the policy is
implemented. The intervals in green only reflect the intensive margin response. Panel B displays similar
bounds on the expected total market share of non-US brands before and after the policy is implemented.

outside of the United States. While US brands significantly expand their product offerings in other

markets (as shown in Figure 12), the effect on their dominance is small due to small effects on the

intensive margin. Consumers are relatively unimpressed by the availability of these new products,

which leads to small effects of their offering on brand-level market shares overseas. This contrasts
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Figure 14: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries
before (blue) and after (orange) a 50% consumer subsidy on US-branded products in the United States.
The expectation is over bounds on the probability distribution of firms’ offerings and demand and marginal
cost shocks. The intervals in green are the bounds on US-brand (log) total variable profits after the policy
is implemented, computed using the bounds on the distribution of product offerings in each market before
the policy is implemented. Panel B displays similar bounds on the expected (log) total variable profits of
non-US brands before and after the policy is implemented.

with the previous exercise, where cheaper US products do threaten foreign brands’ positions in

markets other than the United States.

Figure 14 shows the effects on variable profits. The effects reported in Panel A and Panel B

mirror the previously discussed effects on market shares. While the national consumer subsidy

favoring US brands has large effects on US brand dominance in the United States, there is little

profit shifting in other markets.

Relative to the production subsidy, the consumer subsidy in the United States can only affect

foreign outcomes through product entry and not directly through the intensive margin. This is a

major difference between the two policies, which contributes to making the US consumer subsidy

have a smaller effect on global market outcomes than the US production subsidy.

8 Conclusion

Changes in product offerings are a major force affecting market structure and outcomes in the

automobile industry. Due to its size and effects on the environment, national governments imple-

ment ambitious policies that aim to affect which products firms offer. In global industries, national

policies affect global market outcomes through firms’ product portfolio decisions. Studying changes

in global product offerings in response to policy is challenging because of the many interdependent

possibilities that firms face.

The key methodological contribution of this paper is to develop a tractable method both to

estimate and solve an incomplete-information entry game with multiple asymmetric firms, each
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making multiple discrete choices. Entry games with asymmetric firms are challenging because (i)

there may exist multiple equilibria, each with potentially different policy implications, and (ii)

with a large number of interdependent and discrete choices, it is computationally infeasible to find

the equilibria of the game. The method overcomes these challenges using novel inequalities that

bound the ex-ante equilibrium probabilities of firms’ portfolio and market entry choices before the

unobserved components (to the researcher) of firms’ fixed costs are realized. Such inequalities are

the basis for both estimating and solving the model.

First, I estimate large product portfolio fixed costs, which imply that firms have an incentive to

offer similar bundles of products across markets. Then, using my solution method, I study the effects

of a production and a consumption subsidy favoring US brands. Three key findings emerge: (i)

both policies induce entry of additional US products globally, (ii) consumers benefit heterogeneously

from the additional entry of US products despite the exit of non-US varieties, and (iii) product

portfolio choices cause profit shifting towards US brands worldwide under the production subsidy,

but not under a consumption subsidy that does not benefit unsubsidized consumers abroad, since

marginally introduced products are relatively unpopular. Such findings illuminate the potential

effects of currently proposed policies in many different jurisdictions.

With the novel methods developed in this paper, researchers can study the effects of different

policies on global market structures or the role of product entry in other industries. International

mergers, bans on specific products, or subsidies to electric and hybrid vehicles are examples of

different policies that could be quantitatively evaluated with these insights. As in the automobile

industry, many other sectors consist of firms that offer differentiated products to consumers with

heterogeneous preferences. Additionally, the methods developed in this paper could potentially be

extended to other discrete choice models featuring interdependencies. Of course, the framework

has some limitations. Incorporating dynamics is definitely an important direction for future work.

Finally, allowing for richer interdependencies through fixed or sunk costs is potentially important,

particularly in settings where platform-sharing is common.
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A Data Cleaning & Imputation of Product Characteristics

In this section, I explain the procedure to obtain my estimation sample from the raw data. I first describe

preliminary data cleaning procedures. Then, I describe in detail how I aggregate and impute product characteristics

to all potential products A.

A.1 Preliminary Cleaning

The IHS Markit 2019 sample contains information on the universe of passenger vehicle registrations for 12

countries: Australia, Brazil, France, Germany, India, Italy, Japan, Mainland China, Mexico, Spain, the United

Kingdom, and the United States. The data are at the quarterly-trim-country level.

Fuel type categories: I define 3 fuel type categories using information on fuel type in the dataset. First, I

define “Electric” vehicles as any vehicle that fits in a plug-in category. For instance, I observe Plug-In Electric or

Plug-in (Petrol or Diesel) vehicles. Any such fuel type will be considered part of the“Electric” category. Second,

I define a “Hybrid” vehicle as any non-plug-in vehicle with a fuel type in the hybrid category. Finally, I define an

internal combustion engine vehicle (“ICE”) as any vehicle that is neither hybrid nor plug-in, be it Petrol or Diesel.

Body type categories: The dataset does not contain the vast majority of large pickups or vans, so I drop

the small number of instances of such items from my sample. I use the SUV and Wagon categories in the data to

define the respective body types. I define the Convertible body type as including convertibles, retractable hardtops,

and roadsters. Finally, I define the Car category as including either sedans, hatchbacks, or coupes. This gives 5

different possible body types.

Drop the most high-end vehicles: In the sample, I also observe certain products in extreme price ranges.

Since the goal of this paper is, in part, to estimate product development fixed costs, I drop the most luxurious

products, which are likely designed and produced with very different technologies than the typical passenger vehicle.

I drop all products with observed prices higher than $150,000 or pertaining to the following brands: Lamborghini,

McLaren, Bentley, Ferrari, Aston Martin, Maserati, Bugatti, and Rolls-Royce.

A.2 Demand Estimation Sample

I aggregate the data at the product-year level, where the product definition is a brand-body type-fuel type

combination. I obtain total units sold by summing across all quarters and trims corresponding to my product

definition. I aggregate the remaining characteristics (including horsepower, weight, length, width, and height) by

taking a quantity-weighted average of such characteristics across all quarter-trim observations within my product

definition. I merge this dataset with information from CEPII containing the distance between any two countries

(population-weighted), which gives the distance between the headquarters country of the brand and the destination

country. Market size is defined using the formula,

Mm = {Num. of HH’s in m} × {Avg Num. of Vehicles per HH in m}/{Avg Tenure of Car Ownership},

where I assume the average tenure of car ownership is 5 years, as in Grieco et al. (2023). The number of households

in each country in 2019 and the average number of vehicles per household are obtained from the World Population

Review and other publicly available sources, respectively. For instance, the number of vehicles per household in the

United States is readily available on the Department of Transportation website.

I obtain market shares for each product in each market by dividing the total units sold by market size. As

typical in the automobile literature that estimates mixed logit demand models, I drop very small market shares.

More precisely, I drop all products with shares smaller than 0.00001 within a market. I only do this for demand and
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marginal cost estimation. In the estimation of fixed costs, I will treat these products as part of the set of products

in firms’ global portfolios as well as in the set of product offerings in such markets.

A.3 Fixed Cost Estimation Sample & Product Characteristic Imputation

For the fixed cost estimation sample, I require a dataset at the (potential) product-market level that contains

the observed characteristics of each product-market pair. This is what is required to use the demand and marginal

cost model to predict variable profits under any arbitrary market structure for each possible entry opportunity.

Given that I defined the set of potential products as the set of all brand-body type-fuel type combinations, I

need to impute all observed characteristics that enter the demand and marginal cost specification for all potential

products. These characteristics include horsepower, horsepower/weight, and size (length × width). To do this, I

use the characteristics of the products that are observed in the data. Below, I describe how I impute each of the

characteristics for all products that are not observed in the data.

Imputing size: I impute size for all products not observed in the IHS Markit sample according to the following

sequential procedure: (1) using the mean size of observed products of the same body type sold by the same brand;

(2) if there are no such products, I use the mean size of observed products of the same body type sold by the same

parent company; (3) if there are no such products, I use the mean size across observed products of said body type.

Imputing horsepower and horsepower/weight: I impute horsepower (and horsepower/weight) for all

products not observed in the IHS Markit sample according to the following procedure: (1) using the mean horsepower

(horsepower/weight) of observed products sold of the same fuel type and body type sold by the same parent company;

(2) if there are no such products, I use the mean horsepower (horsepower/weight) of observed products with the

same body type and fuel type offered in that country; (3) if there are no such products, I use the mean horsepower

(horsepower/weight) of all products with the same fuel type and body type.

After imputing these characteristics, I use the estimated demand and marginal cost systems (together with the

retrieved brand and market fixed effects) to predict variable profits given any market structure and realization of

demand and marginal cost shocks.

Observed product offerings: I treat a product as offered in a market (Ojm = 1) if and only if at least one

unit is sold in that market. This is standard in previous papers studying product entry.

Observed product portfolios: I define a product as being in a firm’s product portfolio (Gj = 1) if and only

if it is observed to be sold in at least one market in my sample. This definition assumes that there are no products

that are only offered in markets that are not included in my sample. This is a decent assumption, given that the

markets in my sample account for most of the global demand. An additional caveat is that, through the lens of my

model, it could be that a firm introduces a product in its portfolio and then draws market entry costs that are large

enough in all markets so that the product is ultimately not offered anywhere. If this were the case, setting Gj = 0

for such products when actually Gj = 1 would lead to an underestimate of the fraction of products introduced in

the firms’ portfolios and would likely lead to overestimates of product portfolio fixed costs. Such bias is likely to be

very small because, with large enough product portfolio costs and independent market entry cost shocks, it is highly

unlikely that a firm would introduce a product in its portfolio and then optimally choose not to sell it anywhere.

B Proof of Theorem 1: Moment Inequality Derivations

In this section, I derive the key results that I use for the estimation of (θe, σe, θg, σg). In Section B.1, I derive

moment inequalities that partially identify (θe, σe). In Section B.2, I derive moment inequalities that partially

identify (θe, σe, θg, σg). For ease of notation, let,
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Γjm(x; θe, σe) := P(F e
jm(νejm; θe, σe) ≤ x)

where

F e
jm(νejm; θe, σe) = exp(Z ′

jmθe + σeν
e
jm),

and

Λj(x; θg, σg) := P(F g
j (ν

g
j ; θg, σg) ≤ x)

where

F g
j (ν

g
j ; θg, σg) = exp(Z ′

jθg + σgν
g
j ).

Also for notation, let,

1Cf = 1{Cf is chosen by firm f}.

where Cf is a bundle product offerings chosen by firm f .

B.1 Stage 2: Market Entry Inequalities

Upper bound inequality: At this stage, firms have already chosen their product portfolios Gf . By revealed

preference and best response, I write for any j ∈ Gf ,

(1Ωf
m
+ 1Ωf

m\{j})1{E[MVjm(Ωf
m,Ω−f

m )|{νejm}j∈Gf ,m, I,Gf ]− F e
jm(νejm; θe, σe) ≥ 0} = (1Ωf

m
+ 1Ωf

m\{j})1Ωf
m
. (A1)

Equation (A1) says that conditional on firm f choosing Ωf
m or Ωf

m \ {j}, the firm chooses Ωf
m if and only if it is

weakly preferred to Ωf
m \ {j}. At this point in the game, firm f knows both I, its ex-ante chosen portfolio choices

Gf , and the realization of the market entry fixed cost shocks {νejm}j∈Gf ,m.

Under Assumption 4, the largest possible change in expected profits from introducing product j in market m

can be obtained by offering no product other than j in market m. Thus, I obtain inequality,

(1Ωf
m
+ 1Ωf

m\{j})1{E[MVjm({j},Ω−f
m )|{νejm}j∈Gf ,m, I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} ≥ (1Ωf
m
+ 1Ωf

m\{j})1Ωf
m
. (A2)

In inequality (A2), inside the indicator function, the expected marginal value is evaluated at a set of entry

decisions that is not optimal and is therefore independent of {νejm}j∈Gf ,m conditional on I. Also, due to Assumption

1, rivals’ product offerings Ω−f
m are independent of {νejm}j∈Gf ,m conditional on I. This implies that,

(1Ωf
m
+ 1Ωf

m\{j})1{E[MVjm({j},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} ≥ (1Ωf
m
+ 1Ωf

m\{j})1Ωf
m
. (A3)

Note that inequality (A3) holds for all bundles Ωf
m containing product j, and that

1{E[MVjm({j},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0}

is now independent of both Ωf
m and Ωf

m \ {j}.
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Therefore, realizing that,

Ojm =
∑

Ωf
m:j∈Ωf

m

1Ωf
m

and

1−Ojm =
∑

Ωf
m:j∈Ωf

m

1Ωf
m\{j},

I sum inequality (A3) across all such mutually exclusive bundles to obtain,

1{E[MVjm({j},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} ≥ Ojm. (A4)

That is, if product j is offered in market m, the largest possible change in profits from offering product j in

market m must be weakly positive. The term E[MVjm({j},Ω−f
m )|I,Gf ] is independent of νejm, so I take expectations

conditional on I and Gf to derive,

Γjm

(
E[MVjm({j},Ω−f

m )|I,Gf ]; θe, σe

)
≥ E[Ojm|I,Gf ], (A5)

where recall that Γjm denotes the CDF of F e
jm given θe and σe. Inequality (A5) gives an upper bound on the

probability that product j is offered in market m, conditional on I and Gf . To make further progress towards

constructing a moment inequality, I now use a convex upper bound of CDF Γjm. For instance, if F e
jm is log-normal,

it has inflection point x̌jm(θe, σe) = exp(Z ′
jmθe − σ2

e), so one can define,

Γ
1

jm(x; θe, σe) := Γjm(x; θe, σe)1{x < x̌jm(θe, σe)}

+ [Γjm(x̌; θe, σe) + γjm(x̌jm; θe, σe)(x− x̌jm(θe, σe))]1{x ≥ x̌jm(θe, σe)} (A6)

where γjm denotes the PDF of the corresponding log-normal distribution. In the empirical implementation, I use,

Γjm(x, x̂; θe, σe) := Γ
1

jm(x; θe, σe)1{x̂ < x̌jm(θe, σe)}

+max{Γjm(x̂; θe, σe) + γjm(x̂; θe, σe)(x− x̂),Γjm(x; θe, σe)}1{x̂ ≥ x̌jm(θe, σe)}, (A7)

where x̂ is a I-measurable approximation point.

That is, if the I-measurable approximation point lies below the inflection point, I use the convex upper bound

given by equation (A6). Otherwise, I use a linear approximation at the approximation point (which is on the

concave part of the CDF), bounded below by the CDF, Γjm. Figure 15 illustrates the convex upper bounds.

Thus, given convex upper bound Γjm(x, x̂jm; θe, σe), I derive,

Γjm

(
E[MVjm({j},Ω−f

m )|I,Gf ], x̂jm; θe, σe

)
≥ E[Ojm|I,Gf ].

Γjm is convex, so I now apply Jensen’s inequality and obtain,

E[Γjm

(
πjm({j},Ω−f

m ), x̂jm; θe, σe

)
−Ojm|I,Gf ] ≥ 0 (A8)

Inequality (A8) is a conditional moment inequality that can be used for estimation. Given this conditional

moment inequality, unconditional moment inequalities can be derived using positive functions of I. Moreover,
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Figure 15: Convex Upper Bounds of a Log-Normal CDF

provided the approximation points x̂jm are I-measurable, one can use observation-specific upper bound functions

Γjm.41

Lower bound inequality: I start in a manner similar to equation (A1), by writing,

(1Ωf
m∪{j} + 1Ωf

m
)1{E[MVjm(Ωf

m ∪ {j},Ω−f
m )− F e

jm(νejm; θe, σe) ≤ 0} = (1Ωf
m∪{j} + 1Ωf

m
)1Ωf

m
. (A9)

The above equation says that conditional on firm f choosing either Ωf
m ∪ {j} or Ωf

m, it will choose Ωf
m if and

only if it is preferred to Ωf
m ∪ {j}. Equation (A9) holds for all bundles Ωf

m such that j /∈ Ωf
m.

Then, submodularity implies that the lowest possible expected change in profits from offering product j in

market m is obtained whenever the firm is offering all products in its portfolio Gf in market m, which implies that,

(1Ωf
m∪{j} + 1Ωf

m
)1{E[MVjm(Gf ,Ω−f

m )|{νejm}j∈Gf ,m, I,Gf ]− F e
jm(νejm; θe, σe) ≤ 0} (A10)

≥ (1Ωf
m∪{j} + 1Ωf

m
)1Ωf

m
.

As with the upper bound inequality, I remove conditioning on {νejm}j∈Gf ,m in the expectation in inequality

(A10) due to Assumption 1. Realizing that, ∑
Ωf

m:j /∈Ωf
m

1Ωf
m
= 1−Ojm

and ∑
Ωf

m:j /∈Ωf
m

1Ωf
m∪{j} = Ojm,

I sum inequality (A10) over all bundles Ωf
m with j /∈ Ωf

m to obtain,

41Porcher et al. (2024) also employ observation-specific linear approximations to derive moment inequalities, though in
a single-agent setting and using odds-based inequalities rather than bounding choice probabilities using convex upper and
concave lower bounds of the CDF of the unobserved shock.
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1{E[MVjm(Gf ,Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≤ 0} ≥ 1−Ojm. (A11)

Taking expectations conditional on I and Gf on both sides of inequality (A11) yields,

Γjm

(
E[MVjm(Gf ,Ω−f

m )|I,Gf ]; θe, σe

)
≤ E[Ojm|I,Gf ]. (A12)

Inequality (A12) provides a lower bound on the probability that product j is offered in market m, conditional

on I. I now follow a very similar logic as with the upper bound and use a concave lower bound for Γjm before

applying Jensen’s inequality. A family of such concave lower bounds is given by,

Γ1
jm(x; θe, σe) := Γ(x; θe, σe)1{x ≥ x̌jm(θe, σe)}

+ [Γjm(x̌; θe, σe) + γjm(x̌jm; θe, σe)(x− x̌jm(θe, σe))]1{x < x̌jm(θe, σe)} (A13)

where, as before, x̌jm(θe, σe) = exp(Z ′
jmθe − σ2

e) denotes the inflection point of the distribution of market entry

fixed costs given θe and σe. In the empirical implementation, I use,

Γjm(x, x̂; θe, σe) := Γ1
jm(x; θe, σe)1{x̂ ≥ x̌jm(θe, σe)}

+min{Γjm(x̂; θe, σe) + γjm(x̂; θe, σe)(x− x̂),Γjm(x; θe, σe)}1{x̂ < x̌jm(θe, σe)}. (A14)

That is, if the approximation point lies above the inflection point, I use the concave lower bound given in

equation (A13). Otherwise, I use a linear approximation at the approximation point (which is in the convex part

of the CDF), bounded above by the CDF, Γjm. Figure 16 illustrates the concave lower bound functions.

Given such a concave lower bound, together with Jensen’s inequality, I obtain

E[Γjm(MVjm(Gf ,Ω−f
m ), x̂jm; θe, σe)−Ojm|I,Gf ] ≤ 0. (A15)

As with the upper bound, conditional moment inequality (A15) can now be used for estimation given positive-

valued functions of I, which yield unconditional moment inequalities. Also, as before, provided x̂jm is I-measurable,

one can use observation-dependent lower bound functions Γjm.

Figure 16: Concave Lower Bounds of a Log-Normal CDF
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Importantly, note that because by assumption, market entry fixed cost shocks {νejm}j∈Gf ,m are unobserved at

the time of choosing Gf , I condition on the observed product portfolios when using conditional moment inequalities

(A8) and (A15) for estimation.

This concludes the derivation of the inequalities used to estimate bounds on (θe, σe). In the next subsection, I

derive inequalities that provide bounds on (θg, σg).

B.2 Stage 1: Global Portfolio Choice Inequalities

At this stage, firms choose their global product portfolios Gf . The derivation of the inequalities at this stage

follows a similar logic as the derivations in Stage 2. For the derivations that follow, I will use the following result:

Proposition 1 The function g : R → R given by,

g(y) = EX [1(X ≤ y)(y −X)] = EX [y −X|X ≤ y]PX(X ≤ y)

is convex in y for any continuous random variable X provided FX(y) := PX(X ≤ y) > 0 i.e., the conditional

expectation is well defined.

Proof. Differentiating with respect to y, I obtain,

g′(y) = FX(y)

[
1− fX(y)

FX(y)
(y − E[X|X ≤ y])

]
+ E[y −X|X ≤ y]fX(y)

= FX(y)

where fX denotes the density of random variable X. But then, clearly, g′′(y) = f(y) > 0, which proves convexity.

To derive the inequalities at this stage, I first define the value of a given portfolio for a firm f as,

Vf (Gf , {νgj }j∈Af , I) = E

[ ∑
m∈M

max
{Ωf

m⊆Gf}
Πf

m(Ωf
m;Gf , {νejm}j∈Gf ,m, I)

∣∣∣∣I
]
−

∑
j∈Af

GjF
g
j (ν

g
j ; θg, σg) (A16)

where

Πf
m(Ωf

m;Gf , {νejm}j∈Gf ,m, I) = E

[ ∑
j∈Ωf

m

[πjm(Ωf
m,Ω−f

m )− F e
jm(νejm; θe, σe)]

∣∣∣∣Gf , {νejm}j∈Gf ,m, I

]
.

That is, given any chosen product portfolio Gf and realized global portfolio fixed cost shocks, the firm can

compute its Stage 1 value as the expected maximal profits it will obtain once it realizes its market entry fixed cost

shocks for each product and chooses offerings in each market optimally. Importantly, the expectation in equation

(A16) is only conditional on I, so the firm must also integrate over its own market entry fixed costs shocks. At

Stage 2, firm f ’s optimal entry decisions depend on the portfolio it chooses in Stage 1 and the market entry fixed

cost shocks it realizes in Stage 2. Thus, I write the decision rule in each market as Ωf
m(Gf , {νejm}j∈Gf , I).

Henceforth, I will abuse notation and denote by ΩGf

m the decision rule under portfolio Gf (at given market entry

fixed cost shocks and at I) and OGf

jm will likewise denote the optimal entry decision rule for product j in market m

under Gf corresponding to ΩGf

m .

Upper bound inequality: First, I proceed similarly to how I derived the second-stage inequalities and write,
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(1Gf + 1Gf\{j})1

ß
Vf (Gf , {νgj }j∈Af , I)− Vf (Gf \ {j}, {νgj }j∈Af , I) ≥ 0

™
= (1Gf + 1Gf\{j})1Gf . (A17)

That is, conditional on choosing either portfolio Gf or portfolio Gf \ {j}, the firm chooses Gf if and only if it

is preferred to Gf \ {j}. Next, notice that a lower bound of Vf (Gf \ {j}, {νgj }j∈Af , I) can be obtained by using the

fact that the entry decisions in all markets for products j ∈ Gf \ {j} must weakly dominate the optimal-under-Gf

entry decision rules for such products. This means that the equality (A17) implies the following inequality,

(1Gf + 1Gf\{j})1

ß ∑
m∈M

(
E[Πf

m(ΩGf

m )−Πf
m(ΩGf

m \ {j})|I]
)
− F g

j (ν
g
j ; θg, σg) ≥ 0

™
≥ (1Gf + 1Gf\{j})1Gf . (A18)

That is, the change in value from including j into the portfolio starting from a suboptimal entry decision rule

in the second stage of the game – which mandates choosing the same entry decisions in each market under Gf \ {j}
as under Gf for all products j′ ̸= j – must be higher than the actual change in expected value from introducing

product j into the firm’s portfolio at the best response. I re-write inequality (A18) as,

(1Gf + 1Gf\{j})×

1

ß ∑
m∈M

(
E
[
OGf

jm

[
E
[
MVjm(ΩGf

m \ {j},Ω−f
m )|I, {νejm}j∈Gf ,m,Gf

]
− F e

jm(νejm; θe, σe)
∣∣I])− F g

j (ν
g
j ; θg, σg) ≥ 0

™
≥ (1Gf + 1Gf\{j})1Gf (A19)

where MVjm is defined in Definition 1. Inequality (A19) shows that if product j is introduced in firm f ’s global

portfolio, it must be that the change in profits from offering it in each market in which firm f chooses to offer

product j (evaluated at the optimal entry decisions under Gf ) is weakly positive net of the portfolio fixed cost. The

next step is to again use submodularity of variable profits to bound the expression inside the indicator function by

above and make it independent of the optimal portfolio choice. Under Assumption 4, inequality (A19) implies,

(1Gf + 1Gf\{j})×

1

ß ∑
m∈M

(
E
[
OGf

jm

[
E
[
πjm({j},Ω−f

m )|I, {νejm}j∈Gf ,m,Gf
]
− F e

jm(νejm; θe, σe)
∣∣I])− F g

j (ν
g
j ; θg, σg) ≥ 0

™
(A20)

≥ (1Gf + 1Gf\{j})1Gf .

I therefore obtain,

(1Gf + 1Gf\{j})1

ß ∑
m∈M

(
E
[
O

{j}
jm

[
E
[
πjm({j},Ω−f

m )|I
]
− F e

jm(νejm; θe, σe)
∣∣I])− F g

j (ν
g
j ; θg, σg) ≥ 0

™
(A21)

≥ (1Gf + 1Gf\{j})1Gf

where

O
{j}
jm = 1

{
E[πjm({j},Ω−f

m )|I]− F e
jm(νejm; θe, σe) ≥ 0

}
.

That is, the contribution of product j into firm f ’s Stage 1 value has to be smaller than the contribution if it

were the only product the firm sold in each market, conditional on positive profits from product j in each market

net of the fixed market entry cost.

Summing all inequalities of the form of (A21) across all bundles containing product j, I obtain,
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1

ß ∑
m∈M

(
E
[
O

{j}
jm

[
E
[
πjm({j},Ω−f

m )|I
]
− F e

jm(νejm; θe, σe)
∣∣I])− F g

j (ν
g
j ; θg, σg) ≥ 0

™
≥ Gj . (A22)

The expectation inside the indicator function in inequality (A22) is an expectation such as that in Proposition

1.42 Applying Jensen’s inequality, I obtain,

1

ß
E
ï ∑
m∈M

Γjm

(
πjm({j},Ω−f

m )
)[
πjm({j},Ω−f

m )− E[F e
jm(νejm)|I, F e

jm(νejm) ≤ πjm({j},Ω−f
m )

]]∣∣Iò
− F g

j (ν
g
j ; θg, σg) ≥ 0

™
≥ Gj . (A23)

Henceforth, the analysis is identical to the derivation of the Stage 2 inequalities. As before, νgj is now independent

of the expectation inside the indicator function in inequality (A23). I take expectations on both sides conditional

on I to obtain,

Λj

Å
E
ï ∑
m∈M

Γjm

(
πjm({j},Ω−f

m )
)[
πjm({j},Ω−f

m )− E[F e
jm(νejm)|I, F e

jm(νejm) ≤ πjm({j},Ω−f
m )]

]
|I
ò
; θg, σg

ã
(A24)

≥ E[Gj |I].

As with the Stage 2 inequalities, I use the convex upper bound of Λj of the form of that in equation (A7), at

an I-measurable approximation point x̂j , such that, applying Jensen’s inequality,

E
ï
Λj

Å ∑
m∈M

Γjm

(
πjm({j},Ω−f

m )
)[
πjm({j},Ω−f

m )− E[F e
jm(νejm)|I, F e

jm(νejm) ≤ πjm({j},Ω−f
m )]

]
, x̂j ; θg, σg

ã
−Gj |I

ò
≥ 0. (A25)

Inequality (A25) can now be used to estimate θg and σg. Note that

E
[
F e
jm(νejm)|I, F e

jm(νejm) ≤ πjm({j},Ω−f
m )

]
can be computed using numerical integration or Gaussian quadrature. I use the QuadGK Julia package to evaluate

this conditional mean.

Lower bound inequality: I now derive a lower bound conditional moment inequality starting from the fact

that the following equality must hold at the best response for any Gf with j /∈ Gf ,

(1Gf∪{j} + 1Gf )1
{
Vf (Gf ∪ {j}, {νgj }j∈Af , I)− Vf (Gf , {νgj }j∈Af , I) ≤ 0

}
= (1Gf∪{j} + 1Gf )1Gf . (A26)

The above equation says that conditional on firm f choosing either Gf ∪ {j} or Gf , it chooses Gf if and only

if Gf is preferred to Gf ∪ {j}. Consider now the following sub-optimal second-stage decision rules under portfolio

Gf ∪ {j} in all markets m,

ΩGf∪{j}
m =

OGf

j′m, j′ ̸= j

Oj′m, j′ = j.

That is, the firm chooses the decision rule used for products Gf under portfolio Gf ∪ {j} for all non-j products and

42I lighten notation by removing the (θe, σe) arguments from Γjm and F e
jm.
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uses the Ojm decision rule for product j, where for now this decision rule is any arbitrary decision rule that must

depend on I and any set of realized market entry fixed cost realizations. I therefore obtain,

(1Gf∪{j} + 1Gf )1

ß ∑
m∈M

E
[
Πf

m

(
ΩGf∪{j}

m

)
−Πf

m

(
ΩGf

m

)
|I
]
− F g

j (ν
g
j ; θg, σg) < 0

™
≥ (1Gf∪{j} + 1Gf )1Gf

or

(1Gf∪{j} + 1Gf )1

ß ∑
m∈M

E
[
Ojm

[
E
[
MVjm(ΩGf

m ,Ω−f
m )|I, {νejm}j∈Gf ,m,Gf

]
− F e

jm(νejm)|I
]
− F g

j (ν
g
j ; θg, σg) < 0

™
≥ (1Gf∪{j} + 1Gf )1Gf . (A27)

As with the upper bound, I use submodularity of variable profits to further bound the expression inside the

indicator function in inequality (A27). In particular,

(1Gf∪{j} + 1Gf )1

ß ∑
m∈M

E
[
Ojm

[
E
[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)|I
]
− F g

j (ν
g
j ; θg, σg) < 0

™
≥ (1Gf∪{j} + 1Gf )1Gf . (A28)

Inequality (A28) holds for all bundles Gf that do not contain product j. Thus, all such inequalities across all

bundles Gf that do not contain product j yields,

1

ß ∑
m∈M

E
[
Ojm

[
E
[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)|I
]
− F g

j (ν
g
j ; θg, σg) < 0

™
≥ 1−Gj . (A29)

Next, I let,

Ojm = 1
{
E[MVjm(Af ,Ω−f

m )|I]− F e
jm(νejm) ≥ 0

}
.

Under Proposition 1, and letting y := MVjm(Af ,Ω−f
m ), a lower bound of

g(E(y|I)) := E[1{E(y|I)− F e
jm(νejm) ≥ 0}[E(y|I)− F e

jm(νejm)]|I]

can be obtained by taking a first-order approximation around some I-measurable point x̂jm. This yields,

g(E(y|I)) ≥ Γjm(x̂jm)[E[y|I]− E[F e
jm(νejm)|F e

jm ≤ x̂jm, I]]

= Γjm(x̂jm)[E[MVjm(Af ,Ω−f
m )|I]− E[F e

jm(νejm)|F e
jm(νejm) ≤ x̂jm, I]]. (A30)

Plugging inequality (A30) into inequality (A29), I obtain,

1

ß
E
ï ∑
m∈M

Γjm

(
x̂jm

)[
MVjm(Af ,Ω−f

m )− E[F e
jm(νejm)|F e

jm(νejm) ≤ x̂jm, I]
]∣∣Iò− F g

j (ν
g
j ; θg, σg) ≥ 0

™
≤ Gj (A31)

where recall Γjm was the CDF of F e
jm (given θe and σe). Given that the expectation term is now independent of

νgj conditional on I, I take expectations conditional on I and obtain,

Λj

Å
E
ï ∑
m∈M

Γjm

(
x̂jm

)[
MVjm(Af ,Ω−f

m )− E[F e
jm(νejm)|F e

jm(νejm) ≤ x̂jm, I]
]∣∣Iò; θg, σg

ã
≤ E[Gj |I]. (A32)
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Finally, I use the concave lower bound (as in equation (A14)) Λj at an I-measurable approximation point x̂j

and apply Jensen’s inequality to obtain,

E
ï
Λj

Å ∑
m∈M

Γjm

(
x̂jm

)[
MVjm(Af ,Ω−f

m )− E[F e
jm(νejm)|F e

jm(νejm) ≤ x̂jm, I]
]
, x̂j ; θg, σg

ã
−Gj

∣∣Iò ≤ 0. (A33)

I now have shown how to derive the inequalities that can be used for estimation of parameters θg and σg. These

are given by inequalities (A25) and (A33).

In sum, I have proven Theorem 1, which I formally restate below.

Theorem 1 The following conditional moment inequalities partially identify the true fixed cost parameters (θe, σe)

and (θg, σg):

E[Γjm(MVjm({j},Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≥ 0, (A34)

E[Γjm(MVjm(Gf ,Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≤ 0, (A35)

E
ï
Λj

Å ∑
m∈M

Γjm(πjm({j},Ω−f
m ); θe, σe)

× [πjm({j},Ω−f
m )− E[F e

jm(νejm)|I, F e
jm(νejm) ≤ πjm({j},Ω−f

m )]]; θg, σg

ã
−Gj

∣∣Iò ≥ 0,

(A36)

E
ï
Λj

Å ∑
m∈M

Γjm(x̂l
jm; θe, σe)[MVjm(Af ,Ω−f

m )− E[F e
jm(νejm)|F e

jm(νejm) ≤ x̂l
jm, I]]; θg, σg

ã
−Gj

∣∣Iò ≤ 0, (A37)

where x̂l
jm is an I−measurable approximation of MVjm(Af ,Ω−f

m ) and Λj and Λj are convex and concave upper

and lower bounds of the CDF of F g
j , respectively.

C Solution Method Based on Inequalities

In this section, I provide a method to bound the equilibrium distribution of product offerings in each market.

The method relies on first-order stochastic dominance for multivariate random vectors. Before defining first-order

stochastic dominance, I define a partial order in Rn. Throughout, I say that xxx ≥ yyy if and only if xi ≥ yi for all

i ∈ {1, ..., n}. An upper set in Rn is any set U of the form U(yyy) = {xxx : xxx ≥ yyy}.

Definition 2 Let XXX and YYY be two random vectors in Rn such that,

P(XXX ∈ U) ≥ P(YYY ∈ U) for all upper sets U ⊆ Rn.

Then XXX is said to first-order stochastically dominate YYY .

In my context, I will be dealing with Bernoulli random vectors, and thusXXX first order stochastically dominating

YYY amounts to,

P
Å⋂

i∈Ω

{Xi = 1}
ã
≥ P
Å⋂

i∈Ω

{Yi = 1}
ã

for any Ω ⊆ {1, ..., n}.

I will also employ the following result.

Theorem 3 (Shaked 2007) XXX FOSD YYY if and only if E[u(XXX)] ≥ E[u(YYY )] for all non-decreasing functions u for

which the expectations exist.
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In counterfactual exercises, I am interested in learning about changes in the equilibrium market structure and

product offerings in response to policies subsumed in I. Notice that a change in I could be a subsidy, a tax, a

change in the ownership structure of firms, or any other change in market conditions that is known at the time of

making portfolio and market offerings choices. To obtain counterfactual bounds to these entry probabilities, I use

Bayes’ rule to write,

P(Ojm = 1|I) = P(Ojm = 1|I, Gj = 1)P(Gj = 1|I).

From the moment inequality sections, recall that from inequalities (A4) and (A11), I derived that conditional

on product j ∈ Gf ,

O∗
jm ≤ O∗

jm ≤ O
∗
jm,

where

O
∗
jm := 1{Eµµµ∗

m
[MVjm({j},Ω−f

m )|I]− F e
jm(νejm) ≥ 0} (A38)

O∗
jm := 1{Eµµµ∗

m
[MVjm(Af ,Ω−f

m )|I]− F e
jm(νejm) ≥ 0}, (A39)

Moreover, recall from (A22) and (A29) that,

G∗
j ≤ G∗

j ≤ G
∗
j

where

G
∗
j := 1

ß ∑
m∈M

E
[
O

∗
jm[Eµµµ∗

m
[MVjm({j},Ω−f

m )|I]− F e
jm(νejm)|I

]
− F g

j (ν
g
j ) ≥ 0

™
(A40)

G∗
j := 1

ß ∑
m∈M

E
[
O∗

jm

[
Eµµµ∗

m
[MVjm(Af ,Ω−f

m )|I]− F e
jm(νejm)|I

]
− F g

j (ν
g
j ) ≥ 0

™
. (A41)

In equations (A38)-(A41), µµµ∗
m denotes the distribution of firms’ offerings decisions in market m at whichever

equilibrium emerges under I.43

Independence: Under Assumptions 2-3, for each market m, the sequences {O∗
jm}j∈A, {O

∗
jm}j∈A, {G∗

j}j∈A,

and {G∗
j}j∈A are all sequences of independent random variables conditional on I bounding the equilibrium binary

decisions {O∗
jm}j∈A and {G∗

j}j∈A.

Importantly, the true equilibrium sequences are not independent sequences of random variables given that firms’

product introduction choices are correlated due to interdependencies coming from cannibalization. The asterisks in

the definitions of the bounding random variables in (A38)-(A41) denote that firms’ expectations are with respect to

the true joint distribution of entry decisions made by other firms. Firms care about which products are ultimately

sold in each market and, therefore, about the joint distribution (across products and markets) of random variables

{V ∗
jm}j∈A, where,

V ∗
jm = O∗

jmG∗
j = O∗

jm, (A42)

that is, the event that product j is offered in market m. The latter equality holds because, in equilibrium, O∗
jm = 1

43Firm f only integrates over rival firms’ offerings decisions. I simplify notation by using a µµµ∗
m subscript, rather than a

µµµ∗,−f
m subscript.
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implies G∗
j = 1. I define auxiliary random variables V ∗

jm for ease of exposition in the derivations that follow. It

follows that,

V ∗
jm ≤ V ∗

jm ≤ V
∗
jm, (A43)

where

V ∗
jm := O∗

jmG∗
j ,

V
∗
jm := O

∗
jmG

∗
j .

By construction, O
∗
jm and G

∗
j as well as O∗

jm and G∗
j , are independent conditional on I. Also, within each

market m, {V ∗
jm}j∈A and {V ∗

jm}j∈A are independent sequences of random variables conditional on I.
From equation (A43), I derive by taking expectations conditional on I,

P(O∗
jm = 1|I)P(G∗

j = 1|I) = P(V ∗
jm = 1|I) ≤ P(O∗

jm = 1|I) (A44)

≤ P(V ∗
jm = 1|I) = P(O∗

jm = 1|I)P(G∗
j = 1|I).

By Assumption 4, it also follows that,

P(Ok
jm = 1|I)P(Gk

j = 1|I) = P(V k
jm = 1|I) ≤ P(O∗

jm = 1|I) ≤ P(V k

jm = 1|I) = P(Ok

jm = 1|I)P(Gk

j = 1|I),

where

O
k

jm := 1{Eµµµk−1
m

[MVjm({j},Ω−f
m )|I]− F e

jm(νejm) ≥ 0}, (A45)

Ok
jm := 1{Eµµµk−1

m
[MVjm(Af ,Ω−f

m )|I]− F e
jm(νejm) ≥ 0}, (A46)

G
k

j := 1

ß ∑
m∈M

E
[
O

k

jm

[
Eµµµk−1

m

[
MVjm({j},Ω−f

m )
∣∣I]− F e

jm(νejm)
∣∣I]− F g

j (ν
g
j ) ≥ 0

™
, (A47)

Gk
j := 1

ß ∑
m∈M

E
[
Ok

jm

[
Eµµµk−1

m

[
MVjm(Af ,Ω−f

m )
∣∣I]− F e

jm(νejm)
∣∣I]− F g

j (ν
g
j ) ≥ 0

™
, (A48)

provided

µµµk−1
m

≤FOSD µµµ∗ ≤FOSD µµµk−1
m .

This is an immediate consequence of submodularity implying that MVjm is a decreasing function together with

Theorem 3. I let,

µoffer
jm,k

= P(Ok
jm = 1|I) = Γjm

(
Eµµµk−1

m
[MVjm(Af ,Ω−f

m )|I]
)
, (A49)

µoffer
jm,k = P(Ok

jm = 1|I) = Γjm

(
Eµµµk−1

m
[MVjm({j},Ω−f

m )|I]
)
, (A50)

µportfolio
j,k

= P(Gk
j = 1|I) = Λj

Å ∑
m∈M

E
[
Ok

jm[Eµµµk−1
m

[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)]|I
]ã

, (A51)

µportfolio
j,k = P(Gk

j = 1|I) = Λj

Å ∑
m∈M

E[Ok

jm

[
Eµµµk−1

m

[
MVjm({j},Ω−f

m )|I
]
− F e

jm(νejm)
]
|I]
ã
, (A52)
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µ
jm,k

= µoffer
jm,k

µportfolio
j,k

,

µjm,k = µoffer
jm,k µportfolio

j,k .

Based on these iterative objects, I devise an algorithm that converges to bounds – in the sense of first-order

stochastic dominance – of any distribution of equilibrium entry probabilities under I.

Algorithm 4 1. At iteration k = 0, set the unconditional probabilities of entry as µ
jm,0

= 0 and µjm,0 = 1 for

all products j and all markets m. Then, compute µoffer
jm,1

, µoffer
jm,1 , µportfolio

j,1
, µportfolio

j,1 using (A49)-(A52) and

obtain,

µ
jm,1

= µoffer
jm,1

µportfolio
j,1

µjm,1 = µoffer
jm,1 µportfolio

j,1

2. Using µµµ1 and µµµ1 together with formulas (A49)-(A52), obtain updated offering probability bounds and portfolio

probability bounds. This yields,

µ
jm,2

= µoffer
jm,2

µportfolio
j,2

µjm,2 = µoffer
jm,2 µportfolio

j,2

3. Repeat until convergence to obtain the tightest possible bounds on the distribution of product offerings in each

market.

Theorem 2 Under Assumptions 1-4, Algorithm 4 converges monotonically to bounds, in the sense of first-order

stochastic dominance, of any equilibrium distribution of product offering decisions in each market m given any

information set I. That is, for any k > 0 and any m ∈ M, and any equilibrium distribution of product offerings

µµµ∗
m under I, µµµk−1

m
≤FOSD µµµk

m
≤FOSD µµµ∗

m ≤FOSD µµµk
m ≤FOSD µµµk−1

m .

Proof. I first prove that for any product j and any market m, {µjm,k}∞k=0 is a decreasing sequence and {µ
jm,k

}∞k=0

is an increasing sequence. I prove this by induction. By construction µ
jm,1

> 0 = µ
jm,0

and µjm,1 < 1 = µjm,0.

Assume that the hypothesis is true up to index K > 0. I now show that (i) µ
jm,K+1

≥ µ
jm,K

and (ii) µjm,K+1 ≤
µjm,K . To prove (i), note that by definition,

µ
jm,K+1

= Γjm

(
EµµµK

m
[MVjm(Af ,Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
OK+1

jm [EµµµK
m

[
MVjm(Af ,Ω−f

m )
∣∣I]− F e

jm(νejm)
]
|I
]ã

.

By the inductive hypothesis, µjm,K ≤ µjm,K−1 for each j and m. By definition of first-order stochastic

dominance, and due to independence, this implies that µµµK
m ≤FOSD µµµK−1

m . It follows from Assumption 4 and

Theorem 3 that,

µ
jm,K+1

= Γjm

(
EµµµK

m
[MVjm(Af ,Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
OK+1

jm

[
EµµµK

m

[
MVjm(Af ,Ω−f

m )
∣∣I]− F e

jm(νejm)
]
|I]
ã

≥ Γjm

(
EµµµK−1

m

[
MVjm(Af ,Ω−f

m )|I
])
Λj

Å ∑
m∈M

E
[
OK

jm

[
EµµµK−1

m

[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)
]
|I
]ã

= µ
jm,K

.
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I have therefore proven that for each product j and each market m, the sequence of lower bound probabilities

is increasing. Again, due to independence, this also implies that µµµK+1
m ≥FOSD µµµK

m for each K and each market m.

I analogously prove (ii). Indeed,

µjm,K+1 = Γjm

(
EµµµK

m

[
MVjm({j},Ω−f

m )|I
])
Λj

Å ∑
m∈M

E
[
OK+1

jm

[
EµµµK

m

[
MVjm({j},Ω−f

m )|I
]
− F e

jm(νejm)
]∣∣I]ã.

By the inductive hypothesis, µ
jm,K

≥ µ
jm,K−1

for each j and in each m. By definition of first-order stochastic

dominance, and due to independence, this implies that µµµK
m

≥FOSD µµµK−1
m

. It follows from submodularity and

Theorem 3 that,

µjm,K+1 = Γjm

(
EµµµK

m
[MVjm({j},Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
O

K+1

jm

[
EµµµK

m

[
MVjm({j},Ω−f

m )|I
]
− F e

jm(νejm)
]∣∣I]ã

≤ Γjm

(
EµµµK−1

m
[MVjm({j},Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
O

K

jm

[
EµµµK

m

[
MVjm({j},Ω−f

m )|I
]
− F e

jm(νejm)]
∣∣I]ã

= µjm,K .

Next, I prove that for all k, it must be that,

µµµk
m

≤FOSD µµµ∗
m ≤FOSD µµµk

m (A53)

where asterisks denote any equilibrium distribution of product offering decisions under any arbitrary information

set I, for each m ∈ M. I also prove this by induction. Inequalities (A53) clearly hold for k = 0. Assume they hold

for arbitrary K ∈ N. I now prove that it must hold for K + 1. To do so, take any arbitrary subset W ⊆ A. Note

that W = W1 ∪W2 ∪ ... ∪Wf , a partition across firms. Then,

P
Å ⋂

j∈W
{V K+1

jm = 1}|I
ã
=

F∏
f=1

∏
j∈Wf

P
(
V

K+1

jm = 1|I
)

(A54)

=

F∏
f=1

∏
j∈Wf

Γjm

(
EµµµK

m

[
MVjm({j},Ω−f

m )|I
]
)Λj

Å ∑
m∈M

E
[
O

K+1

jm

[
EµµµK

m

[
MVjm({j},Ω−f

m )|I]
]
− F e

jm(νejm)
]∣∣I]ã

≥
F∏

f=1

∏
j∈Wf

Γjm

(
Eµµµ∗

m
[MVjm({j},Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
O

∗
jm

[
Eµµµ∗

m

[
MVjm({j},Ω−f

m )|I
]
− F e

jm(νejm)
]∣∣I]ã (A55)

=

F∏
f=1

∏
j∈Wf

P(O∗
jm = 1|I)P(G∗

j = 1|I) =
F∏

f=1

∏
j∈Wf

P(V ∗
jm = 1|I) =

F∏
f=1

∏
j∈Wf

E(V ∗
jm|I)

= E
ï F∏
f=1

∏
j∈Wf

V
∗
jm|I

ò
(A56)

≥ E
ï F∏
f=1

∏
j∈Wf

V ∗
jm|I

ò
= P
Å ⋂

j∈W
{V ∗

jm = 1}|I
ã
,

where (A54) and (A56) follow from the (conditional) independence of the upper bounds and (A55) follows from the

inductive hypothesis. This proves µµµK+1 ≥FOSD µµµ∗. I analogously prove the other direction. Indeed,
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P
Å ⋂

j∈W
{V K+1

jm = 1}|I
ã
=

F∏
f=1

∏
j∈Wf

P
(
V K+1

jm = 1|I
)

(A57)

=

F∏
f=1

∏
j∈Wf

Γjm

(
EµµµK

m

[
MVjm(Af ,Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
OK+1

jm

[
EµµµK

m

[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)
]∣∣I]ã

≤
F∏

f=1

∏
j∈Wf

Γjm

(
Eµµµ∗

m
[MVjm(Af ,Ω−f

m )|I]
)
Λj

Å ∑
m∈M

E
[
O∗

jm

[
Eµµµ∗

m

[
MVjm(Af ,Ω−f

m )|I
]
− F e

jm(νejm)
]∣∣I]ã (A58)

=

F∏
f=1

∏
j∈Wf

P(O∗
jm = 1|I)P(G∗

j = 1|I) =
F∏

f=1

∏
j∈Wf

P(V ∗
jm = 1|I) =

F∏
f=1

∏
j∈Wf

E(V ∗
jm|I)

= E
ï F∏
f=1

∏
j∈Wf

V ∗
jm|I

ò
(A59)

≤ E
ï F∏
f=1

∏
j∈Wf

V ∗
jm|I

ò
= P
Å ⋂

j∈W
{V ∗

jm = 1}|I
ã
,

where (A57) and (A59) follow from (conditional) independence of the lower bounds and (A58) follows from the

inductive hypothesis.

This concludes the proof.

Notice that this proof only relies on Assumption 1, Assumption 4, and conditional independence of fixed cost

shocks. It does not rely on the log-normality assumption.

C.1 Implementation

To implement Algorithm 4 in practice, I need to compute expectations Eµµµm
, which are over the distribution of

rival firms’ offerings decisions given µµµm and over demand and marginal cost shocks. Thus, I first take 100 draws

from the joint distribution of (ξξξ,ωωω) across 9766 product markets, yielding a 9766 × 100 matrix of demand shocks

and a similar matrix of marginal cost shocks. Second, I draw a 9766× 100 matrix Uoffer and a 1530× 100 matrix

Uport of uniformly distributed draws on (0, 1). I hold all draws fixed throughout all iterations.

The Uport matrix yields thresholds for the portfolio decisions given by probabilities µportfolio
j,k (both the upper

and lower bound). If a given product has a draw smaller than µportfolio
j,k , then that product is introduced in the

firm’s portfolio under that draw at iteration k. Otherwise, at iteration k and under such a draw, that product is

not introduced in the firm’s global product portfolio. The Uoffer matrix yields thresholds for the offering choices

given by probabilities µoffer
jm,k (both the upper and lower bounds). For instance, if for product-market the Uoffer

draw is less than the µoffer
jm,k probability at iteration k, then that draw corresponds to such a product being offered

in such a market at iteration k (conditional on being in the firm’s portfolio). Otherwise, that product is not offered

in market m under iteration k and that draw. For a product to be offered in a market, it must satisfy both the

offering and portfolio thresholds.

It follows that under each iteration k, I need to compute 9766× 100 marginal values across all product-market

pairs. Then, I average them across the 100 draws to obtain simulated values of the expected marginal values at the

product-market level. This averaging yields the expectations that enter the fixed cost CDFs in equations (A49)-

(A52). To compute the marginal values under any draw, I use the Morrow and Skerlos (2011) contraction mapping

for the pricing equilibria with 500 income and normal draws for each market.

I run Algorithm 4 for 6 iterations under each parameter vector (θe, σe, θg, σg) and each policy counterfactual. I

find that after k > 6, the additional gains in informativeness are small in my application.
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D Estimation Implementation

D.1 Demand and Marginal Cost Estimation

Demand estimation follows Petrin (2002). The assumption that (ξξξ,ωωω) are realized after firms make offerings

choices implies that E[(ξjm, ωjm)|I] = 0. Under this assumption, standard Berry et al. (1995) or Gandhi and Houde

(2019) instruments are valid. I use size, horsepower, and horsepower/weight to build Gandhi and Houde (2019)

differentiation instruments. These instruments are constructed by using the characteristics of products that are

“close” in the characteristics space. The intuition is that these characteristics will have a larger impact on the price

set on product j (pjm) while being, by assumption, uncorrelated with the demand and marginal cost shocks. I use

the PyBLP Python package to construct the differentiation instruments (Conlon and Gortmaker 2020). For each

of the three characteristics, I build two instruments. Let xjmℓ denote the value of any such characteristic, indexed

by ℓ. I construct, for each ℓ ∈ {size, horsepower, horsepower/weight}:

zotherjmℓ =
∑

k∈Ωf
m\{j}

1{|djkmℓ| < SDℓ}

zrivaljmℓ =
∑

k∈Ω−f
m

1{|djkmℓ| < SDℓ}

where djkmℓ = xjmℓ−xkmℓ and SDℓ denotes the standard deviation of all such pairwise differences computed across

all markets. This yields 6 differentiation instruments.

To improve the precision of my estimates, I include 4 additional moments. First, I include (i) the log of distance

to the brand’s HQ country, which enters my marginal cost specification, and (ii) the average price of the same

product in other markets / the average price of products of the same parent company in other markets (when a

given product is only sold in one market). The latter set of instruments is reminiscent of the Hausman (1996)

instruments, which are valid provided demand and marginal cost shocks (ξξξm,ωωωm) are uncorrelated across markets.

Second, I use micro-moments, similarly to Petrin (2002). I use micro-data from the 2019 MRI-Simmons Crosstab

report to help pin down the heterogeneity in preferences for prices within countries. I match the probabilities that

a consumer in the United States is within a given income group conditional on purchasing a vehicle in a given price

range. More specifically, I match the following two moments:

(a) E[incomei > $100, 000|pricejm > $50, 000,m = United States]

(b) E[incomei ∈ [$60, 000, $100, 000]|pricejm > $50, 000,m = United States].

I jointly estimate demand and marginal costs using Python’s PyBLP package. To integrate over the distribution

of income in each market/country, I take 20,000 simulation draws in each market m from a log-normal distribution

with scale

σm =
√
2Φ−1

Å
Ginim + 1

2

ã
,

and location,

µm = log(GDP per capita PPPm)− σ2
m/2.

I obtain the Gini coefficient and PPP GDP per capita in each market m from the World Bank. The above

parametrization ensures that income is drawn from a log-normal distribution with mean and Gini coefficients equal
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to the observed values.

The main results from the estimation are in the main text, Table 1. Below, I report the matched micro-moments:

Moment Observed Estimated Difference

a 0.631 0.612 0.0188
b 0.212 0.245 -0.0329

D.1.1 Distribution of (ξξξ,ωωω)

The Berry et al. (1995) contraction mapping yields product-market specific demand and marginal cost shocks

(ξjm, ωjm) as a by-product of demand and marginal cost estimation. I fit a bivariate normal distribution for

the distribution of demand and marginal cost shocks, which I assume firms know at the time of making product

portfolio and product offerings decisions. Figure 17 shows the marginal distributions of ξ and ω. The estimated

variance-covariance matrix is reported in Table 3.44

Table 3: Bivariate Normal Parameters for Joint Distribution of (ξ, ω)
ξ ω

ξ 2.36
ω 0.081 0.024.

Figure 17: Empirical Distribution of (ξ, ω) - Marginals

D.2 Fixed Cost Estimation - Instruments

To estimate fixed costs, I implement the moment inequalities derived in Sections B.1 and B.2. As described

in the main text, I first construct instruments using an approach similar to two-stage least squares. I then use

these instruments to build unconditional moment inequalities. I use the empirical counterparts of these moment

inequalities to estimate (θe, σe, θg, σg). The steps are described in the main text, Section 4.

To construct the instruments, I use the Stage 3 model for variable profits, together with the fitted distribution

of (ξξξ,ωωω) to compute the ingredients necessary to implement the inequalities in Theorem 1. I simulate S = 200

44I do not report standard errors for these estimates. Doing so would require bootstrapping the demand and marginal
cost estimation procedure.
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draws {ξsjm, ωs
jm}200s=1,j∈A,m∈M from the fitted bivariate normal distribution and construct, for each product j and

each market m, ‘MV jm({j},Ω−f
m ) =

1

S

S∑
s=1

MVjm({j},Ω−f
m ; ξsjm, ωs

jm) (A60)‘MV jm(Gf ,Ω−f
m ) =

1

S

S∑
s=1

MVjm(Gf ,Ω−f
m ; ξsjm, ωs

jm) (A61)‘MV jm(Af ,Ω−f
m ) =

1

S

S∑
s=1

MVjm(Af ,Ω−f
m ; ξsjm, ωs

jm). (A62)

To obtain an exogenous (I- measurable) predictor of the above marginal values, I project the log of the predicted

values in (A60)-(A62) on the following objects: (i) the log of δ̃jm = βm+βb(j)+βxXXXjm, the non-price mean utility

of product j in market m net of unobserved heterogeneity ξjm, (ii) c̃jm = log(cjm)− ωjm, the (log) marginal cost

of supplying market m with product j net of the unobserved heterogeneity ωjm, and (iii) log(δ̃jm)× c̃jm. To carry

out the projection, I estimate 4 PPML specifications. I first project (A60)-(A61), conditional on j ∈ Gf , using,

ŷjm = exp(κ1Mm + κ2
mδ̃jm + κ3

mc̃jm + κ4
mc̃jm × δ̃jm) + εjm. (A63)

I then use the same specification to project (A60) and (A62), using the full sample of potential products.

The results from these PPML regressions are reported in Table 4. As described in the main text, I then use

predicted values from these regressions to construct the unconditional moments that can be used for estimation.

To implement the Stage 2 inequalities that partially identify (θe, σe), I use tercile bin indicators for the predicted

values in the PPML regressions (1)-(2) from Table 4, x̂
g

jm and x̂h
jm, respectively. I also use the squares of such

(positive) predicted values interacted with an indicator function denoting whether the log of the predicted value

(in billions of USD) is greater than -2, which selects more profitable products. This helps to provide bounds on the

scale parameter σe, as argued in Section 4.

To implement the Stage 1 inequalities that partially identify (θg, σg), I use quintile bin indicators (5 bins) for

the sum across markets of the predicted values arising from PPML regressions (3)-(4) in Table 4 – x̂
a

jm and x̂l
jm,

respectively –, as well as squares of such sums of predicted values, interacted with an indicator function for whether

the log of the sum (in billions of USD) is greater than 0.

D.2.1 Approximation Points Used for Convex and Convex CDF Bounds

To implement the moment inequality procedure, I use observation-specific upper and lower bounds of the fixed-

cost CDFs. I use the convex and concave families of functions in equations (A7) and (A14), respectively. The

approximation points I use for the Stage 2 upper and lower bound inequalities are x̂
g

jm and x̂h
jm, respectively. I use∑

m x̂
a

jm and
∑

m x̂l
jm, respectively, for the Stage 1 upper and lower bound inequalities.

D.3 Fixed Cost Estimation - Empirical Analogues of Moments in Theorem 1

As described in the main text, I construct positive-valued instruments and interact them with the conditional

moments in Theorem 1 to construct empirical unconditional moment inequalities. These take the form,

1

JgM

∑
j∈G,m∈M

[Γjm(MVjm({j},Ω−f
m ); θe, σe)−Ojm]1{x̂a

jm ∈ Qτ (x̂
g

jm)] ≥ 0, (A64)
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Table 4: PPML Estimates

(1) (2) (3) (4)
VARIABLES Max MV - Portfolio Min MV - Portfolio Min MV - All Potential Max MV - All Potential

Mkt Size -0.000*** -0.000*** -0.000*** -0.000***
[0.000] [0.000] [0.000] [0.000]

AUS ×δ̃ 1.142*** 1.186*** 1.142*** 1.101***
[0.130] [0.117] [0.100] [0.124]

BRA ×δ̃ 1.573*** 1.451*** 1.409*** 1.428***
[0.156] [0.111] [0.107] [0.125]

FRA ×δ̃ 1.017*** 0.934*** 0.914*** 0.999***
[0.137] [0.119] [0.108] [0.141]

DEU ×δ̃ 1.188*** 1.049*** 1.036*** 1.089***
[0.195] [0.145] [0.147] [0.223]

IND ×δ̃ 1.412*** 1.444*** 1.307*** 1.387***
[0.084] [0.127] [0.104] [0.073]

ITA ×δ̃ 1.348*** 1.350*** 1.278*** 1.294***
[0.182] [0.152] [0.117] [0.154]

JPN ×δ̃ 0.911*** 0.381*** 0.001 0.708***
[0.135] [0.109] [0.115] [0.139]

CHN ×δ̃ 1.759*** 1.698*** 1.104*** 1.200***
[0.114] [0.121] [0.090] [0.082]

MEX ×δ̃ 1.906*** 1.746*** 1.007*** 1.132***
[0.458] [0.350] [0.247] [0.328]

ESP ×δ̃ 1.248*** 1.061*** 1.188*** 1.298***
[0.161] [0.122] [0.115] [0.152]

GBR ×δ̃ 0.969*** 1.161*** 1.230*** 1.082***
[0.145] [0.150] [0.109] [0.124]

USA ×δ̃ 2.025*** 1.827*** 1.287*** 1.585***
[0.175] [0.175] [0.102] [0.094]

AUS ×c̃ -6.571*** -6.485*** -6.494*** -6.474***
[0.185] [0.170] [0.142] [0.189]

BRA ×c̃ -6.124*** -6.038*** -6.463*** -6.399***
[0.128] [0.117] [0.099] [0.129]

FRA ×c̃ -6.368*** -6.287*** -6.428*** -6.397***
[0.159] [0.145] [0.124] [0.166]

DEU ×c̃ -6.443*** -6.337*** -6.517*** -6.501***
[0.150] [0.136] [0.117] [0.155]

IND ×c̃ -7.177*** -7.102*** -7.398*** -7.405***
[0.152] [0.148] [0.125] [0.154]

ITA ×c̃ -6.380*** -6.296*** -6.429*** -6.399***
[0.159] [0.145] [0.124] [0.166]

JPN ×c̃ -6.246*** -6.119*** -6.377*** -6.413***
[0.133] [0.122] [0.100] [0.138]

CHN ×c̃ -4.319*** -4.234*** -5.382*** -5.291***
[0.227] [0.233] [0.083] [0.072]

MEX ×c̃ -6.286*** -6.224*** -6.394*** -6.314***
[0.162] [0.146] [0.128] [0.174]

ESP ×c̃ -6.570*** -6.475*** -6.562*** -6.543***
[0.171] [0.156] [0.132] [0.176]

GBR ×c̃ -7.142*** -7.148*** -7.273*** -7.108***
[0.179] [0.165] [0.137] [0.181]

USA ×c̃ -4.665*** -4.577*** -5.667*** -5.581***
[0.202] [0.207] [0.077] [0.066]

AUS ×δ̃ × c̃ -0.013 -0.019 -0.015 -0.011
[0.013] [0.012] [0.010] [0.013]

BRA ×δ̃ × c̃ -0.067*** -0.058*** -0.050*** -0.051***
[0.015] [0.010] [0.010] [0.012]

FRA ×δ̃ × c̃ -0.013 -0.007 -0.003 -0.010
[0.013] [0.011] [0.010] [0.014]

DEU ×δ̃ × c̃ -0.036** -0.027** -0.024* -0.026
[0.017] [0.013] [0.013] [0.020]

IND ×δ̃ × c̃ -0.075*** -0.079*** -0.065*** -0.069***
[0.008] [0.011] [0.009] [0.007]

ITA ×δ̃ × c̃ -0.041** -0.042*** -0.035*** -0.035**
[0.017] [0.015] [0.011] [0.015]

JPN ×δ̃ × c̃ 0.011 0.054*** 0.088*** 0.031**
[0.013] [0.010] [0.010] [0.013]

CHN ×δ̃ × c̃ -0.080*** -0.077*** -0.012 -0.020***
[0.012] [0.013] [0.008] [0.008]

MEX ×δ̃ × c̃ -0.093** -0.080** -0.007 -0.018
[0.045] [0.034] [0.025] [0.034]

ESP ×δ̃ × c̃ -0.034** -0.019 -0.029*** -0.038***
[0.015] [0.012] [0.011] [0.015]

GBR ×δ̃ × c̃ -0.023* -0.038*** -0.041*** -0.033***
[0.013] [0.013] [0.010] [0.011]

USA ×δ̃ × c̃ -0.117*** -0.101*** -0.041*** -0.068***
[0.017] [0.017] [0.010] [0.009]

Observations 3,240 3,240 8,868 8,868
Portfolio Only Yes Yes No No
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1

JgM

∑
j∈G,m∈M

[Γjm(MVjm(Gf ,Ω−f
m ); θe, σe)−Ojm]1{x̂h

jm ∈ Qτ (x̂
h
jm)] ≤ 0, (A65)

1

J

∑
j∈A

ï
Λj

Å ∑
m∈M

Γjm

(
πjm({j},Ω−f

m )
)[
πjm({j},Ω−f

m )

− E
[
F e
jm(νejm)|I, F e

jm(νejm) ≤ πjm({j},Ω−f
m )

]]
; θg, σg

ã
−Gj

ò
× 1

ß ∑
m∈M

x̂
a

jm ∈ Qτ

Å ∑
m∈M

x̂
a

jm

ã™
≥ 0,

(A66)

1

J

∑
j∈A

ï
Λj

Å ∑
m∈M

Γjm

(
x̂l
jm

)[
MVjm(Af ,Ω−f

m )− E
[
F e
jm(νejm)|F e

jm(νejm) ≤ x̂l
jm, I

]]
; θg, σg

ã
−Gj

ò
× 1

ß ∑
m∈M

x̂l
jm ∈ Qτ

Å ∑
m∈M

x̂l
jm

ã™
≤ 0, (A67)

where the expectation of the truncated fixed costs in inequalities (A66)-(A67) are computed using the QuadGK

Julia package (Gaussian quadrature). Jg denotes the number of products in the sample that are offered in at least

one market.

D.4 Fixed Cost Estimation - Robustness

D.4.1 More Instrument Bins

I report the estimation results using more instrument bins for both Stage 2 and Stage 1 inequalities. I construct

10 bins for the Stage 2 inequalities and 8 bins for the Stage 1 inequalities using the regressions from Section

D.2. Recall that the baseline specification used 3 bins for Stage 2 and 5 bins for Stage 1. I keep the remaining

polynomial-based instruments as they are in the main specification.

I do not find that including more instrument bins leads to model rejection. Table 5 and Figure 18 show that

the confidence sets do not change very significantly under more instrument bins. And, if anything, the limits of the

confidence sets become wider. This is due to increased covariance across more instruments.

Table 5: Stages 1 and 2 Parameter Confidence Set Limits

95% Confidence Set Limits

Stage 2: Market Entry Fixed Cost
θe (Location) [-4.9, -4.1]
σe (Scale) [2.9, 4.4]

Stage 1: Product Fixed Cost
θg (Location) [-1.9, -0.5]
σg (Scale) [1.5, 3.6]

Observations - Stage 2 3240
Observations - Stage 1 739

Notes: Confidence sets computed using Andrews and Soares (2010). First, I implement a grid search to compute a 97.5% confidence
set for parameters (θe, σe) using the Stage 2 moment inequalities. Then, I use the Stage 1 moment inequalities to compute a 97.5%
confidence set for (θg , σg), evaluating the moments at the accepted values of (θe, σe). The Bonferroni correction yields a 95% confidence
set for all 4 parameters (θe, σe, θg , σg). Marginal values are in billions of US dollars.
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Figure 18: 95% Confidence Set

Notes: This figure projects the 95% confidence set for the location and scale parameters describing the distributions of product portfolio
and market entry fixed costs on a two-dimensional grid on the location-scale dimensions.

Table 6: Stages 1 and 2 Parameter Confidence Set Limits

95% Confidence Set Limits

Stage 2: Market Entry Fixed Cost
θe (Location) [-4.8, -4.2]
σe (Scale) [2.8, 4.3]

Stage 1: Product Fixed Cost
θg (Location) [-1.9, -0.6]
σg (Scale) [1.5, 3.7]

Observations - Stage 2 3240
Observations - Stage 1 739

Notes: Confidence sets computed using Andrews and Soares (2010). First, I implement a grid search to compute a 97.5% confidence
set for parameters (θe, σe) using the Stage 2 moment inequalities. Then, I use the Stage 1 moment inequalities to compute a 97.5%
confidence set for (θg , σg), evaluating the moments at the accepted values of (θe, σe). The Bonferroni correction yields a 95% confidence
set for all 4 parameters (θe, σe, θg , σg). Marginal values are in billions of US dollars.

Figure 19: 95% Confidence Set

Notes: This figure projects the 95% confidence set for the location and scale parameters describing the distributions of product portfolio
and market entry fixed costs on a two-dimensional grid on the location-scale dimensions.
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D.4.2 Fewer Instrument Bins

Due to the results from Section D.4.1, which show that under more instrument bins, the confidence sets are

larger, I also report the confidence sets under fewer instrument bins. I now report the results with 2 bins for both

Stage 2 and Stage 1. Again, all remaining instruments are left unchanged.

Figure 19 and Table 6 show that the confidence sets do not change much relative to the main specification.

This increases my confidence in the results and shows that they are robust to the number of instrument bins.

E Discussion of Model Extensions

In this section, I discuss possible model extensions and the relaxation of several assumptions.

E.1 Submodularity of Variable Profits

First, I discuss the role that submodularity plays in the moment inequalities I derive for estimation. I then

discuss its relevance for the iterative solution method.

E.1.1 Moment Inequalities and Submodularity

To show how the submodularity assumption could potentially be relaxed, I discuss the derivation of the upper

bound market entry fixed cost moment inequality analyzed in section B.1. Notice that equation (A1) still holds.

Recall that this equation is,

(1Ωf
m
+ 1Ωf

m\{j})× [1{E[MVjm(Ωf
m,Ω−f

m )|I, {νejm}j∈Gf ,m∈M,Gf ]− F e
jm(νejm; θe, σe) ≥ 0︸ ︷︷ ︸

Ωf
m is preferred to Ωf

m \ {j}

} − 1Ωf
m
] = 0

It says that if either bundle Ωf
m or Ωf

m \ {j} is chosen, then bundle Ωf
m is chosen if and only if Ωf

m is preferred

to Ωf
m \ {j}. Thus, this equality does not use submodularity. Submodularity does arise in the next step when I use

it to find an upper bound for E[MVjm(Ωf
m,Ω−f

m )|I, {νejm}j∈Gf ,m∈M,Gf ] that is independent of private information

{νejm}j∈Gf . For the derivation of the moment inequalities, this is the only role that submodularity plays. What is

really needed for estimation is not that the demand and pricing model implies that MVjm is submodular, but that

for any j ∈ A, any m ∈ M, and any Ω−f
m , there exists known product bundles Bf

jm and Bf
jm, independent of the

fixed cost shock realizations {νejm} such that,

E[MVjm(Bf
jm,Ω−f

m )|I,Gf ] ≤ E[MVjm(Ωf
m,Ω−f

m )|I, {νejm}j∈Gf ,m∈M,Gf ] ≤ E[MVjm(Bf

jm,Ω−f
m )|I,Gf ]. (A68)

For instance, suppose that there are two firms competing in market m. Firm 1 has 2 products in its portfolio,

and firm 2 has only 1 product. For firm 2, the inequality follows trivially, as there is only one potential deviation it

can undertake and, therefore, no interdependence across products. For firm 1, suppose that marginal cost synergies

are very large between the two products so that independently of whether firm 2 is offering its product or not, it is

the case that, for products j ∈ {1, 2},

E[MVjm({1, 2},Ω2
m)|I,Gf ] > E[MVjm({j},Ω2

m)|I,Gf ].

That is, the expected marginal value of offering a given product is always higher when the other product is

also sold due to high enough marginal cost synergies between both products. In this case, one can derive the upper

bound inequality for firm 1 as,
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(1Ωf
m
+ 1Ωf

m\{j})× [1{E[MVjm({1, 2},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} − 1Ωf
m
] ≥ 0.

Summing, as in the main text, across bundles with j ∈ Ωf
m, I obtain inequality,

1{E[MVjm({1, 2},Ω−f
m )|I,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} −Ojm ≥ 0.

Taking expectations conditional on I and Gf yields,

Γjm(E[MVjm({1, 2},Ω−f
m )|I,Gf ]; θe, σe) ≥ E[Ojm|I,Gf ].

Finally, using a convex upper bound for Γjm and applying Jensen’s inequality yields:

E[Γjm(MVjm({1, 2},Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≥ 0

or

E[Γjm(MVjm(Gf ,Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≥ 0.

So, in the case in which marginal cost synergies can be proven to dominate consumer substitution across

products, such an alternative upper bound moment inequality can be derived. In this simple case, the two products

of firm 1 exhibit complementarities rather than substitutabilities.

Thus, for estimation, neither supermodularity nor submodularity is needed. Condition (A68) is more general but

requires knowledge of model-consistent bounding bundles Bf

jm and Bf
jm. For instance, Castro-Vincenzi et al. (2024)

provides a non-strategic model where any pair of a firm’s discrete choices can be proven to be either complements

or substitutes in the increasing (decreasing) differences sense. Properties like these could potentially be exploited

to construct such bounds.

E.1.2 Solution Algorithm and Submodularity

The solution algorithm relies more heavily on submodularity, given that I need to apply Theorem 3 to prove the

monotonicity and convergence properties of the iterative algorithm (Theorem 2). An analogous iterative algorithm

works in the case that variable profits are globally supermodular in product offerings. In this case, the upper bound

inequalities (both for market entry and product portfolio) are based on

E[MVjm(Af ,Ω−f
m )|I]

while the lower bound inequalities use

E[MVjm({j},Ω−f
m )|I].

The algorithm can be modified to exploit supermodularity rather than submodularity. To initialize the modified

algorithm under complementarity, one now uses µµµ0
m

= 000 and µµµ0
m = 111 to construct the lower bound and upper bound

probabilities of product offerings in each market, respectively. The iteration then continues exactly in the same

fashion as in Algorithm 4, but by using the updated µµµ1
m

and µµµ1
m to construct updated lower bounds and upper

bounds, respectively. The algorithm iterates on this mapping and converges to bounds, in the sense of FOSD, of the

equilibrium distribution of product offerings market by market, assuming that all discrete choices are complements

rather than substitutes. Under supermodularity, convergence and monotonicity follow immediately using Theorem
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3, given that the MVjm function is now monotonically increasing.

E.2 Moment Inequalities and Economies of Scope

The model described in the main text assumes that portfolio fixed costs and market entry fixed costs are

independent of the firms’ chosen portfolio and offerings bundles. In this subsection, I show how this assumption

can be relaxed. In particular, I allow market entry fixed costs to exhibit a version of economies of scope. Similar

arguments can also be used to allow for economies of scope in global portfolio fixed costs.

Suppose that the total market entry fixed costs paid by firm f if it offers products Ωf
m are,

F e,f
m = θ01{|Ωf

m| ≥ 1}+
∑

j∈Ωf
m

F e
jm.

That is, firms pay a constant amount θ0 to enter the market, and then market entry fixed costs with a specification

as in the main text, given by Assumption 2. Throughout, I assume that a natural lower bound on θ0 is 0 to

be consistent with the fact that fixed costs are positive under the log-normal assumption. Then, I apply similar

arguments to those in the main text to derive a lower and an upper bound inequality. As before, I start with

revealed-preference equality,

(1Ωf
m
+ 1Ωf

m\{j})

× [1{E[MVjm(Ωf
m,Ω−f

m )|I, {νejm}j∈Gf ,m,Gf ]− θ01{Ωf
m = {j}} − F e

jm(νejm; θe, σe) ≥ 0︸ ︷︷ ︸
Ωf

m is preferred to Ωf
m \ {j}

} − 1Ωf
m
] = 0,

where I have now allowed the fixed cost to be higher if j is the first product to be introduced into market m. Under

submodularity and θ0 ≥ 0, one can derive upper bound inequality,

(1Ωf
m
+ 1Ωf

m\{j})× [1{E[MVjm({j},Ω−f
m )|I, {νejm}j∈Gf ,m,Gf ]− F e

jm(νejm; θe, σe) ≥ 0} − 1Ωf
m
] ≥ 0.

Under θ0 ≥ 0, one can always derive an upper bound inequality by ignoring θ0, which maximizes the marginal

value net of marginal fixed cost. For the upper bound, I then follow the same arguments as in the main text to

derive upper bound inequality,

E[Γjm(MVjm({j},Ω−f
m ); θe, σe)−Ojm|I,Gf ] ≥ 0. (A69)

Inequality (A69) does not provide any bound on θ0. For the lower bound, I proceed in a similar fashion.

Minimizing MVjm and maximizing marginal fixed costs, I derive inequality,

(1Ωf
m
+ 1Ωf

m\{j})× [1{E[MVjm(Gf ,Ω−f
m )|I, {νejm}j∈Gf ,m,Gf ]− θ0 − F e

jm(νejm; θe, σe) ≥ 0} − 1Ωf
m
] ≤ 0.

Following similar steps as in section B.1, I obtain conditional moment inequality,

E[Γjm(MVjm(Gf ,Ω−f
m )− θ0; θe, σe)−Ojm|I] ≤ 0.

This inequality provides a lower bound on θ0. Therefore, the inequalities discussed so far only identify a lower

bound and not an upper bound of the new parameter of interest θ0. In the following subsection, I discuss additional

inequalities that partially identify θ0.
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E.2.1 Additional Inequalities

To derive additional inequalities, I explore what happens if I condition on either a single product or no product

being offered in market m. That is, I now start with,

(1{j}m
+ 1∅m

)× [1{E[MVjm({j},Ω−f
m )|I, {νejm}j∈Gf ,m,Gf ]− θ0 − F e

jm(νejm; θe, σe) ≥ 0︸ ︷︷ ︸
{j}m is preferred to ∅m

} − 1{j}m
] = 0.

To deal with the issue of selection, I first re-write the above inequality as,

(1{j}m
+ 1∅m

)× 1{E[MVjm({j},Ω−f
m )|I, {νejm}j∈Gf ,m,Gf ]− θ0 − F e

jm(νejm; θe, σe) ≥ 0} = 1{j}m
.

Because (1{j}m
+ 1∅m

) ≤ 1, the following upper bound inequality holds,

1{E[MVjm({j},Ω−f
m )|I, {νejm}j∈Gf ,m∈M,Gf ]− θ0 − F e

jm(νejm; θe, σe) ≥ 0} − 1{j}m
≥ 0.

The above inequality says that if only a single product j is offered in market m, then the change in profits from

doing so must necessarily be weakly positive. Letting O1
jm denote the event that only product j is sold in market

m by firm f , I follow steps similar to those in the main text to derive inequality,

E[Γjm(MVjm({j},Ω−f
m )− θ0; θe, σe)−O1

jm|I] ≥ 0.

To implement this moment inequality in practice, the empirical counterpart of E[O1
jm|I] averages across firm-

markets a dummy equal to 1 if a given firm introduces a singleton bundle in a given market. Intuitively, an upper

bound on θ0 is identified because a value of θ0 that is too large would imply too few observations of singleton

product entry across markets.

In practice, this is difficult to implement in my data because of a lack of statistical power. I do not observe

sufficient instances of singleton product entry to obtain informative bounds on θ0.

F Equilibrium Existence in the Global Entry Game

To prove this result, I use Theorem 3.1 from Balder (1988). This paper provides general existence results for

equilibria in Bayesian games. More precisely, the paper shows that provided,

1. The payoff function is measurable on the product set of actions and types,

2. The payoff function is continuous on actions given types,

3. The payoff function is bounded by some L1 function,

4. The measure of types is absolutely continuous,

5. The action set for each player is a compact set,

then a Nash equilibrium in behavioral strategies exists. In my setting, action sets are finite. This trivially implies

that condition 5 holds true. Moreover, because any convergent sequence in a finite set is eventually constant,

condition 2 also holds. Condition 3 holds because payoffs are bounded below by 0 (firms can always choose to

exit all markets and earn 0 profits) and bounded above by monopoly profits. In addition, the measure of types is

absolutely continuous in my setting due to my assumption of independent and log-normal private types. Finally,

the payoff function is measurable on the product set of actions and types. This holds because the payoff function

27



is continuous on own and rivals’ actions (since actions are a finite set), own types, and also other firms’ types

since other firms’ types only enter a firm’s payoff function through actions. Thus, due to Balder (1988), a Nash

equilibrium in behavioral strategies exists.

I now show that I can focus without loss of generality on pure strategy Nash equilibria. To prove this, I use

Theorem 4 from Milgrom and Weber (1985). This theorem states that under some conditions, any mixed strategy

equilibrium has a “purification”, i.e., a pure strategy equilibrium at which each player has the same expected payoff

and distribution of observable behavior as at the mixed strategy equilibrium in each of the informational states.

The conditions that suffice in my setting are that,

1. Players’ types are independent,

2. Players’ types are atomless,

3. Each player’s payoff depends only on its own type and the list of actions,

4. The action set is finite for each player.

Note that all of these conditions hold in my setting. Therefore, I have proven the following proposition.

Proposition 2 Under Assumptions 1-4, there exists a pure strategy Bayesian Nash equilibrium of the global product

introduction game.

F.1 Counterexample: No PSNE under Complete Information with More than 2

Players and Strategic Substitutes

Consider the following game:

P3 plays 1 P3 plays 0

P1/ P2 1 0

1 (−5,−5,−2) (−4, 0, 1)

0 (0, 1,−1) (0, 0, 2)

P1 / P2 1 0

1 (1,−1, 0) (2, 0, 0)

0 (0, 1, 0) (0, 0, 0)

This is a static binary choice complete information entry game. Each player’s payoff from entering is weakly

decreasing in the set of entry decisions chosen by other players. No pure strategy Nash equilibrium exists.

G Simulating the Method

In this section, I use simulation to:

1. Test the behavior of the moment inequalities proposed in Section B under varying data-generating processes

(DGPs),

2. Test the performance of the inference methods used in this paper, based on Andrews and Soares (2010), when

a single realization of the product entry game is observed.

To simulate data, I need to solve the model fully. Thus, I simulate a solvable version of my product entry model,

which I describe in Section G.1.
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G.1 Fully Solvable Version of Global Product Entry Game

The solvable model features N symmetric J-product firms competing in M markets. I set J = 3 so that firms

have 3 potential products that they can introduce in their global product portfolios and across markets. Both firms

and products are symmetric in their profit shifters, but markets are allowed to be heterogeneous.

Profits for firm f from selling Nf
m products in market m take the form,

Πf
m(Nf

m, N−f
m ) = Am

Nf
m

1 + (Nf
m)κo(N−f

m )κr

,

where κo ∈ (0, 1) regulates substitutability across the firm’s own products, and κr ∈ (0, 1) regulates substitution

across rival firms’ products. Am is an exogenous market-level profit shifter.

Fixed costs: I assume that firms have log-normal fixed costs with

F e
jm = exp(θe + σeν

e
jm)

F g
j = exp(θg + σgν

g
j ),

where F g
j denotes the cost of introducing product j in the firm’s product portfolio and F e

jm denotes the cost of

offering product j in market m. I abuse notation and index all firms’ potential products as 1, 2, or 3, even though

firms draw independent fixed-cost shock realizations.

Timing: In the first stage of the game, each firm f draws private fixed portfolio cost shocks {νgj } for each of

their 3 potential products. Upon observing this private information, firms choose which products to introduce in

their portfolio. Next, they draw private fixed market entry shocks {νejm}j∈Gf ,m for each product and choose how

many of the products in their portfolio to offer in each market.

Best response: In the second stage of the game, firms know their portfolio Gf and must choose which products

to offer in each market. Due to the fact that products are symmetric, firms’ best response in the second stage is

simple to characterize. Letting Nf
p denote the number of products in the firms’ portfolio in Stage 2, the decision

rule in market m is as follows.

If Nf
p = 1, the firm chooses to sell the product in market m if and only if

E[Πf
m(1, N−f

m )|I]− F e
1m(νe1m) ≥ 0.

If Nf
p = 2, the firm chooses to introduce 1 product only if

E[Πf
m(1, N−f

m )|I]−min{F e
1m(νe1m), F e

1m(νe2m)} ≥ 0

and

E[Πf
m(2, N−f

m )|I]− E[Πf
m(1, N−f

m )|I]−max{F e
1m(νe1m), F e

2m(νe2m)} < 0,

and all 2 products if and only if,

E[Πf
m(2, N−f

m )|I]− E[Πf
m(1, N−f

m )|I]−max{F e
1m(νe1m), F e

2m(νe2m)} ≥ 0.

If Nf
p = 3, the firm chooses to offer all 3 products if,

E[Πf
m(3, N−f

m )|I]− E[Πf
m(2, N−f

m )|I]−max{F e
1m(νe1m), F e

2m(νe2m), F e
3m(νe3m)} ≥ 0;
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2 products if,

E[Πf
m(3, N−f

m )|I]− E[Πf
m(2, N−f

m )|I]−max{F e
1m(νe1m), F e

2m(νe2m), F e
3m(νe3m)} < 0

and

E[Πf
m(2, N−f

m )|I]− E[Πf
m(1, N−f

m )|I]−med{F e
1m(νe1m), F e

2m(νe2m), F e
3m(νe3m)} ≥ 0;

and 1 product if,

E[Πf
m(2, N−f

m )|I]− E[Πf
m(1, N−f

m )|I]−med{F e
1m(νe1m), F e

2m(νe2m), F e
3m(νe3m)} < 0,

and

E[Πf
m(1, N−f

m )|I]−min{F e
1m(νejm), F e

2m(νe2m), F e
3m(νe3m)} ≥ 0.

In Stage 1, I define the value of a portfolio as,

Vf (N
f
p ) = E

ï∑
m

max
Nf

m≤Nf
p

E[Πf

m(Nf
m, N−f

m )|I]
∣∣Iò

where Π
f

m denotes profits net of market entry costs. The firm takes expectations not only over rival firms’ entry

choices but also over its own offering decisions given Nf
p . The best response is to develop 3 products if,

Vf (3)− Vf (2)−max{F g
1 (ν

g
1 ), F

g
2 (ν

g
2 ), F

g
3 (ν

g
3 )} ≥ 0;

2 products if

Vf (3)− Vf (2)−max{F g
1 (ν

g
1 ), F

g
2 (ν

g
2 ), F

g
3 (ν

g
3 )} < 0,

and

Vf (2)− Vf (1)−med{F g
1 (ν

g
1 ), F

g
2 (ν

g
2 ), F

g
3 (ν

g
3 )} ≥ 0;

and 1 product if

Vf (2)− Vf (1)−med{F g
1 (ν

g
1 ), F

g
2 (ν

g
2 ), F

g
3 (ν

g
3 )} < 0,

and

Vf (1)−min{F g
1 (ν

g
1 ), F

g
2 (ν

g
2 ), F

g
3 (ν

g
3 )} ≥ 0.

Solution: The solution of the product entry game consists of 3 thresholds for each market,

te1m = E[Πf
m(1, N−f

m )|I], (A70)

te2m = E[Πf
m(2, N−f

m )|I]− E[Πf
m(1, N−f

m )|I], (A71)

te3m = E[Πf
m(3, N−f

m )|I]− E[Πf
m(2, N−f

m )|I], (A72)
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and 3 thresholds for product development,

tg1 = Vf (1), (A73)

tg2 = Vf (2)− Vf (1), (A74)

tg3 = Vf (3)− Vf (2). (A75)

Vf integrates over other firms’ product offerings as well as firm f ’s own product offerings, which the firm

anticipates will be determined by (te1m, te2m, te3m) in equilibrium.

Computing equilibrium profits given threshold strategies: Let FE
(k)
n denote the kth order statistic in

a sample of size n for the market entry fixed cost and FD(k) denote the kth order statistic of the product portfolio

fixed cost in a sample of size 3. Then, the probabilities that any firm offers n products, for n ∈ {1, 2, 3}, given the

portfolio and market entry strategies, are given by,

p1(ttt
e, tttg) = P(Nf

p = 3)P (Nf
m = 1|Nf

p = 3) + P(Nf
p = 2)P (Nf

m = 1|Nf
p = 2) + P(Nf

p = 1)P (Nf
m = 1|Nf

p = 1)

= P(FD(3) ≤ tg3)[P(FE
(1)
3 ≤ te1)− P(FE

(2)
3 ≤ te2)] (A76)

+ [P(FD(2) ≤ tg2)− P(FD(3) ≤ tg3)][P(FE
(2)
2 ≤ te2)− P(FE

(1)
2 ≤ te1)]

+ [P(FD(1) ≤ tg1)− P(FD(2) ≤ tg2)][P(FE
(1)
1 ≤ te1)],

p2(ttt
e, tttg) = P(Nf

p = 3)P(Nf
m = 2|Nf

p = 3) + P(Nf
p = 2)P(Nf

m = 2|Nf
p = 2) (A77)

= P(FD(3) ≤ tg3)[P(FE
(2)
3 ≤ te2)− P(FE

(3)
3 ≤ te3)] + [P(FD(2) ≤ tg2)− P(FD(3) ≤ tg3)]P[FE

(2)
2 ≤ te2],

p3(ttt
e, tttg) = P(Nf

p = 3)P(Nf
m = 3|Nf

p = 3) (A78)

= P(FD(3) ≤ tg3)P(FE
(3)
3 ≤ te3).

To compute expected profits in the first stage given any Nf
p , first realize that Vf takes the following form,

Vf (N
f
p ) =

∑
m

Nf
p∑

i=1

P(Nf
m = i|Nf

p )[E[Πf
m(i,N−f

m )|I]− i× E[F e
jm|F e

jm ≤ E[Πf
m(i,N−f

m )|I]]].

Equations (A76)-(A78) characterize P(Nf
m = i|Nf

p ) as a function of (ttte, tttp). Given E[Πf
m(i,N−f

m )|I], the term

E[F e
jm|F e

jm ≤ E[Πf
m(i,N−f

m )|I]] is simple to compute numerically using Gaussian quadrature. I use the QuadGK

package in Julia to compute this expectation.

To compute E[Πf
m(i,N−f

m )|I] for each i given (ttte, tttg), I use the DSP package in Julia to perform a convolution

which gives the probability distribution of the number of rival product offerings given the number of firms N and

pn(ttt
e, tttg) for n ∈ {1, 2, 3}.
Solving for (ttte, tttg): Given (ttte, tttg), I showed how to evaluate Vf and E[Πf

m(i,N−f
m )|I] for any i ∈ {1, 2, 3}.

Thus, I solve for (ttte, tttg) by solving the non-linear system of equations given by equations (A70)-(A75). To do so, I

use the NLsolve Julia package.

G.2 Behavior of Moment Inequalities Across DGPs

In this section, I study how the tightness or informativeness of the moment inequalities varies with parameters

κo and κr and with the number of firms N . Intuitively, the informativeness of the inequalities should depend on

the loss from bounding the marginal value of introducing a product by evaluating it at extreme bundles and on the

loss from applying Jensen’s inequality to average out firms’ expectational errors.
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Implementation: I simulate S = 500 different realizations for each of T = 12 different “types” of global

product and market entry game described in the previous section. In each game (s, t), there are N firms competing

in 12 markets. I hold fixed the market-level profit shifters and set them at A
(s,t)
m = 0.2mt for m ∈ {1, 2, ..., 12},

t ∈ {1, 2, ..., 12}, and s ∈ {1, 2, ..., 500}. Different values of t generate variation in profitability across different game

types. In this subsection, I perform valid asymptotics as ST → ∞. With ST = 6000, simulation noise is small, so

I report identified sets, thus ignoring sampling uncertainty (i.e., without computing confidence sets).

True parameters: I set the true parameters to be (θg, σg) = (3, 1) and (θe, σe) = (1, 1).

Instruments: For the Stage 2 inequalities (market entry), I condition on the realized set of portfolio decisions

and construct instruments following the PPML procedure described in the main text. More precisely, I project the

minimal (maximal) marginal values at the product-market level – evaluated at all (no) products in the portfolio

being introduced in the market and at the realized set of rival offerings decisions – on a specification of the form

γ0 exp(γ
t
mA

(s,t)
m ). I then compute the predicted values of both regressions, sort them, and define 4 percentile

categories and bins associated with these categories. This gives 8 instruments in total – 4 for the upper bound

inequality and 4 for the lower bound inequality.

For the Stage 1 inequalities, I implement an equivalent procedure as with the Stage 2 inequalities, but without

conditioning on the realized product portfolios. I project the realized maximal and minimal (where now the minimal

marginal value does not condition on the observed portfolio, so is evaluated at all 3 products being introduced in

each market) marginal values on a specification of the form γ0 exp(γ
t
mA

(s,t)
m ). I then compute the predicted values

of both regressions and sum them across markets. Then, I sort the sums across markets and define 4 percentile

categories for both the lower and the upper bound and define 4 bins associated with these categories, yielding 8

instrument bins - 4 for the lower bound and 4 for the upper bound.

G.2.1 Baseline: N = 10, κo = 0.1, κr = 0.1

In this baseline case, I set the number of firms to N = 10 and set κo = 0.1 and κr = 0.1. In this case, I obtain

the following contour plots and identified sets for (θe, σe) and (θg, σg).

θg σg
Figure 20: Lower Contours

Figure 20 shows the smallest value that the upper bound and lower bound inequalities take (across each of

the 4 instrument bins) as I change the value of θg and σg, holding the other constant at the true value. The

smallest values (or the lower contours) are the most informative because the inequalities are written so that positive

values imply acceptance, while negative values imply rejection. For instance, the left panel in Figure 20 shows

that all 4 unconditional lower bound moment inequalities (in orange) and all 4 unconditional upper bound moment
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θe σe
Figure 21: Lower Contours

Stage 1 Stage 2
Figure 22: Identified Sets

inequalities (in blue) are positive conditional on σg = 1 at the region where both the orange and blue lines are

positive, above the red line indicating that the smallest value of the moments is 0.

Figure 22 shows the identified sets for (θg, σg) and (θe, σe), which I obtained via grid search. As seen in this

figure, the identified set is quite informative both for the Stage 1 and the Stage 2 fixed cost parameters (note: the

scale is not the same for the Stage 1 and the Stage 2 parameters).

G.2.2 High Substitutability Within the Firm: N = 10, κo = 0.25, κr = 0.1

I now study a deviation from the baseline case in which the parameter determining substitution within the firm

is larger, and all else is as in the baseline case.

Figures 23-25 show the results. Compared to the baseline cases, high substitution within the firm reduces the

informativeness of the fixed cost parameter bounds, both for the Stage 1 and for the Stage 2 fixed cost parameters.

This is expected given that the loss from bounding the marginal value of introducing a product at extreme bundles

(all other products vs. no other products offered) is greater when such products are highly substitutable. That is,

greater cannibalization within the firm makes the moment inequalities less informative about the true parameters.
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θg σg
Figure 23: Lower Contours

θe σe
Figure 24: Lower Contours

Stage 1 Stage 2
Figure 25: Identified Sets

G.2.3 Low Substitutability within the Firm: N = 10, κo = 0.01, κr = 0.1

Figures 26-28 show what happens when there is very low substitutability across the firms’ own products.

Interestingly, the tightness of the inequalities increases greatly so that only the true fixed parameters both in Stage

1 and Stage 2 are accepted (given my grid).
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This result is of special significance for anyone wanting to use this estimation approach in a setting where firms

are single-product (rather than multi-product). Indeed, Figure 28 shows that in the absence of any interdependence

within the firm, my estimation procedure is highly informative, and there is very little to no loss from using my

moment inequalities.

θg σg
Figure 26: Lower Contours

θe σe
Figure 27: Lower Contours

Stage 1 Stage 2
Figure 28: Identified Sets
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G.2.4 High Substitutability Across Firms: N = 10, κo = 0.1, κr = 0.25

θg σg
Figure 29: Lower Contours

θe σe
Figure 30: Lower Contours

Stage 1 Stage 2
Figure 31: Identified Sets

Interestingly, high substitution across firms does not seem to change the tightness of the inequalities much

relative to the baseline case. While it seems to slightly reduce the informativeness of the Stage 1 inequalities, it
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does not seem to lead to reduced informativeness in Stage 2. If anything, in this case, the Stage 2 inequalities

yield tighter bounds on θe. The impact of higher κr on the informativeness of the inequalities is therefore not as

quantitatively important as the impact of κo. This makes sense because, by virtue of the unobservability of rivals’

fixed cost shocks, I showed that one can use the realized set of rival offerings decisions to construct the moment

inequalities. Greater substitution across firms reduces the rate of product introduction in equilibrium, but firms

expect this, and the informativeness of the moment inequalities is not significantly affected.

G.2.5 Low Substitutability Across Firms: N = 10, κo = 0.1, κr = 0.01

For completeness, I report the identified sets and lower contours for the case in which there is low substitution

across rival firms’ products. As expected, there are no substantial differences in the informativeness of the moment

inequalities relative to the baseline case for the same reasons as in Section G.2.4.

θg σg
Figure 32: Lower Contours

θe σe
Figure 33: Lower Contours

G.2.6 Large Number of Firms: N = 20, κo = 0.1, κr = 0.1

Figures 35-37 illustrate the effect of having more firms participating in the global entry game. The identified

set becomes slightly smaller when there are more firms. This is due to two effects. First, when there are more firms,
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each firm makes smaller expectational errors. Second, when there are more firms, more products may be offered on

average, which reduces the loss from bounding marginal values with extreme bundles due to submodularity.

Stage 1 Stage 2
Figure 34: Identified Sets

θg σg
Figure 35: Lower Contours

θe σe
Figure 36: Lower Contours
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G.2.7 Small Number of Firms: N = 2, κo = 0.1, κr = 0.1

Figures 38-40 illustrate the effect of having only 2 firms competing globally. In this case, the inequalities clearly

become less informative for the same reasons as argued in Section G.2.6.

G.2.8 Main Takeaways

While the simulations abstract away from heterogeneity across products and across firms, they are still useful

for understanding some of the key properties of the moment inequalities. I have established that much of the

informativeness of the moment inequalities relies on the extent to which products within the firm are substitutable.

High degrees of substitutability within the firm render the moment inequalities less informative, while lower degrees

of substitutability make them tighter. Moreover, the number of firms (relative to the number of products per firm)

matters. With smaller firms relative to the overall market, expectational errors are smaller. If the set of potential

products of a firm is small relative to the set of products that are offered in the market, the loss from bounding

a product’s marginal value with extreme bundles within the firm is smaller. Finally, I showed that all else equal,

substitution across firms does not have much of an effect on the tightness of the moment inequalities.

G.3 Inference Under a Single Realization of Global Product Entry Game

In this section, I use the fully solvable version of the model to assess the properties of Andrews and Soares (2010)

confidence sets in my setting. I simulate S = 100 realizations for each of T = 12 different “types” of global product

and market entry games, just as in Section G.2. In each game (s, t), there are N firms competing in 12 markets. I

hold fixed the market-level profit shifters and set them at A
(s,t)
m = 0.2mt for m ∈ {1, 2, ..., 12}, t ∈ {1, 2, ..., 12} and

s ∈ {1, 2, ..., 100}. Different values of t generate variation in profitability across different game types.

True parameters: I set the true parameters to be (θg, σg) = (3, 1) and (θe, σe) = (1, 1).

Instruments: I construct the instruments in the same way as described in Section G.2. However, I run the

PPML regressions at the (s, t)-level to mimic the actual implementation in the main text, where I only observe a

single realization of the cross-section and use only this information to construct instruments. Thus, the variation

used to construct confidence sets in this section is across product-market pairs.

For each (s, t) pair, I use the simulated data to construct confidence sets for parameters (θe, σe) using the

procedure in Andrews and Soares (2010). For each of the S × T 95% confidence sets, I record: (i) whether the true

values (1, 1) are included in the confidence set (coverage), (ii) the length of the confidence set along the θe dimension

Stage 1 Stage 2
Figure 37: Identified Sets
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θg σg
Figure 38: Lower Contours

θe σe
Figure 39: Lower Contours

Stage 1 Stage 2
Figure 40: Identified Sets

(holding σe = 1 at the truth), (iii) the length of the confidence set along the σe dimension (holding θe = 1 at the

truth). In Table 7, I report the average coverage of the confidence set across all S × T realizations of the global

product entry game. I do this both under a robust variance-covariance matrix and a clustered variance-covariance

matrix with clustering at the market level.

Table 7 shows that undercoverage can occur, particularly when the number of firms is relatively small. As the
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Table 7: Coverage of True (θe, σe) Parameters (%)

SE Type N = 5 N = 25 N = 50 N = 75

Robust 92.9 93.8 94.1 93.7
Clustered 92.4 94.1 94.1 95.0

Notes: This table reports the average coverage across all S × T simulations of the confidence sets. Such confidence sets are computed
at the (s, t)-level, as in my empirical application.

number of firms increases, the coverage of the Andrews and Soares (2010) confidence sets tends to increase. Note

that clustering does not necessarily yield higher coverage, though this is the case when the number of firms is large

(N = 75).

I now report the median length of the confidence set along each of the dimensions of (θe, σe), conditional on the

confidence set not being empty.

Table 8: Median Length of Confidence Set Along (θe, σe)

SE Type N = 5 N = 25 N = 50 N = 75

Robust (0.8, 2.8) (0.4, 0.9) (0.2, 0.6) (0.2, 0.5)
Clustered (0.9, 4.4) (0.4, 1.6) (0.3, 1.1) (0.3, 0.9)

Notes: This table reports across all S × T simulations the median length of the confidence set along each of the two dimensions of the
parameter vector (θe, σe). The first coordinate reports the median length of the θe dimension of the confidence set, conditional on σe

being at the true value. The second coordinate reports the median length of the σe dimension, conditional on θe being at the true
value. Such confidence sets are computed at the (s, t)-level, as in my empirical application.

Table 8 shows that conditional on accepting the truth, the confidence sets are smaller whenever there are more

firms and whenever I do not cluster. In the empirical implementation, I report confidence sets using a robust

variance-covariance matrix because (i) Table 7 shows that it does not seem to suffer from large undercoverage and

is not strictly dominated in terms of coverage by a clustered variance-covariance matrix, and (ii) Table 8 shows that

using a clustered variance-covariance matrix can lead to significantly larger confidence sets.

An important caveat in this exercise is that the simulations require symmetry across firms and products within

a (s, t) pair. While at Stage 2, even in the simulations, firms are not fully symmetric due to variation in how many

products they have in their global product portfolio, greater symmetry relative to reality should worsen correlation

across expectational errors since the realization of the market structure affects firms in (almost) the exact same

way. However, greater symmetry also means that there are no “large” firms in the sample. Large firms with a lot

of market power can potentially deteriorate the asymptotic properties of the estimator.

H Counterfactual Exercises: Robustness

In this section, I report the effects of the policies studied in Section 7 under two additional points in the

confidence set: (θe, σe, θg, σg) = (−4.2, 3.6,−1.8, 2.6) (LH) and (θe, σe, θg, σg) = (−4.8, 3.6,−0.6, 2.5) (HL). Under

the first point, the distribution of market entry fixed costs has a location parameter at the uppermost extreme of

the confidence set, while the location parameter of the product portfolio fixed cost is at the lowermost extreme.

Under the second point, the location parameter of the market entry fixed cost is at the lowermost extreme, while

that of the product fixed cost is at the uppermost extreme. While it is infeasible to compute the counterfactual

outcomes under all points, these two extremes are economically meaningful. High product portfolio fixed costs and

small market entry fixed costs imply that firms have an incentive to offer very similar bundles across countries, while

low product portfolio and high market entry fixed costs increase incentives to tailor varieties to local preferences.
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20% Marginal Cost Subsidy Under Point LH

Figure 41: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer surplus following a 20%
marginal cost reduction for US brands. The expectation is over bounds on the probability distribution of firms’ offerings and demand
and marginal cost shocks. The intervals in orange show the change in expected consumer surplus accounting for the change in the
(bounds of) the equilibrium distribution of product offerings following the policy. The intervals in green show the change in expected
consumer surplus using the bounds on the distribution of product offerings before the policy is implemented.

Figure 42: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. Panel B displays the corresponding bounds on the expected number of non-US-branded products
before and after the policy is implemented.
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Figure 43: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before (blue) and after (orange) a
50% consumer subsidy on US-branded products in the United States. The expectation is over bounds on the probability distribution of
firms’ offerings and demand and marginal cost shocks. The intervals in green are the bounds on US-brand market shares after the policy
is implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented.
The intervals in green only reflect the intensive margin response. Panel B displays similar bounds on the expected total market share
of non-US brands before and after the policy is implemented.

Figure 44: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. The intervals in green are the bounds on US-brand (log) total variable profits after the policy is
implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented. The
intervals in green only reflect the intensive margin response. Panel B displays the corresponding bounds on the expected (log) total
variable profits of non-US brands before and after the policy is implemented.
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20% Marginal Cost Subsidy Under Point HL

Figure 45: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer surplus following a 20%
marginal cost reduction for US brands. The expectation is over bounds on the probability distribution of firms’ offerings and demand
and marginal cost shocks. The intervals in orange show the change in expected consumer surplus accounting for the change in the
(bounds of) the equilibrium distribution of product offerings following the policy. The intervals in green show the change in expected
consumer surplus using the bounds on the distribution of product offerings before the policy is implemented.

Figure 46: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. Panel B displays the corresponding bounds on the expected number of non-US-branded products
before and after the policy is implemented.
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Figure 47: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before (blue) and after (orange) a
50% consumer subsidy on US-branded products in the United States. The expectation is over bounds on the probability distribution of
firms’ offerings and demand and marginal cost shocks. The intervals in green are the bounds on US-brand market shares after the policy
is implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented.
The intervals in green only reflect the intensive margin response. Panel B displays similar bounds on the expected total market share
of non-US brands before and after the policy is implemented.

Figure 48: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. The intervals in green are the bounds on US-brand (log) total variable profits after the policy is
implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented. The
intervals in green only reflect the intensive margin response. Panel B displays the corresponding bounds on the expected (log) total
variable profits of non-US brands before and after the policy is implemented.
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50% Consumption Subsidy Under Point LH

Figure 49: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer surplus following a 20%
marginal cost reduction for US brands. The expectation is over bounds on the probability distribution of firms’ offerings and demand
and marginal cost shocks. The intervals in orange show the change in expected consumer surplus accounting for the change in the
(bounds of) the equilibrium distribution of product offerings following the policy. The intervals in green show the change in expected
consumer surplus using the bounds on the distribution of product offerings before the policy is implemented. The intervals in green
only reflect the intensive margin response.

Figure 50: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. Panel B displays the corresponding bounds on the expected number of non-US-branded products
before and after the policy is implemented.
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Figure 51: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before (blue) and after (orange) a
50% consumer subsidy on US-branded products in the United States. The expectation is over bounds on the probability distribution of
firms’ offerings and demand and marginal cost shocks. The intervals in green are the bounds on US-brand market shares after the policy
is implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented.
The intervals in green only reflect the intensive margin response. Panel B displays similar bounds on the expected total market share
of non-US brands before and after the policy is implemented.

Figure 52: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. The intervals in green are the bounds on US-brand (log) total variable profits after the policy is
implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented. The
intervals in green only reflect the intensive margin response. Panel B displays the corresponding bounds on the expected (log) total
variable profits of non-US brands before and after the policy is implemented.
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50% Consumption Subsidy Under Point HL

Figure 53: Change in Consumer Surplus

Notes: This figure plots, for each country, a lower and an upper bound on the expected change in consumer surplus following a 20%
marginal cost reduction for US brands. The expectation is over bounds on the probability distribution of firms’ offerings and demand
and marginal cost shocks. The intervals in orange show the change in expected consumer surplus accounting for the change in the
(bounds of) the equilibrium distribution of product offerings following the policy. The intervals in green show the change in expected
consumer surplus using the bounds on the distribution of product offerings before the policy is implemented. The intervals in green
only reflect the intensive margin response.

Figure 54: Number of Products Offered

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected number of US-branded products offered across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. Panel B displays the corresponding bounds on the expected number of non-US-branded products
before and after the policy is implemented.
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Figure 55: Market Shares

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected total market share of US brands across countries before (blue) and after (orange) a
50% consumer subsidy on US-branded products in the United States. The expectation is over bounds on the probability distribution of
firms’ offerings and demand and marginal cost shocks. The intervals in green are the bounds on US-brand market shares after the policy
is implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented.
The intervals in green only reflect the intensive margin response. Panel B displays similar bounds on the expected total market share
of non-US brands before and after the policy is implemented.

Figure 56: Variable Profits

Panel A: US Products Panel B: Non-US Products

Notes: Panel A displays bounds on the expected (log) total variable profits of US brands across countries before (blue) and after (orange)
a 20% reduction in US brands’ marginal costs. The expectation is over bounds on the probability distribution of firms’ offerings and
demand and marginal cost shocks. The intervals in green are the bounds on US-brand (log) total variable profits after the policy is
implemented, computed using the bounds on the distribution of product offerings in each market before the policy is implemented. The
intervals in green only reflect the intensive margin response. Panel B displays the corresponding bounds on the expected (log) total
variable profits of non-US brands before and after the policy is implemented.
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