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Abstract

We examine monetary policy shifts by taking a new approach to regime switching in

a small scale DSGE model with threshold-type switching in the monetary policy rule.

The policy response to inflation is allowed to switch endogenously between two regimes,

hawkish and dovish, depending on whether a latent regime factor crosses a threshold

level. Endogeneity stems from the historical impacts of structural shocks driving the

economy on the regime factor. By estimating our DSGE model using the U.S. data,

we quantify the endogenous feedback from each structural shock to the regime factor to

understand the sources of the observed policy shifts. This new channel sheds new light

on the interaction between policy changes and measured economic behavior.
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1 Introduction

In time series analysis, there is a long tradition in modeling structural change as the outcome of

a regime switching process [Hamilton (1988, 1989)]. By introducing an unobserved discrete-state

Markov chain governing the regime in place, this class of models affords a tractable framework for

the empirical analysis of time-varying dynamics that is endemic to many economic and financial

phenomena.1

Despite the popularity of the Markov switching approach, its dynamics are ultimately governed

by a regime switching process that is exogenous. This is especially unsatisfactory if we seek to

truly understand the nature of policymaking and its impact on economic phenomena. As argued in

Chang et al. (2017), the presence of endogeneity in regime switching is indeed ubiquitous2 and, if

ignored, may yield substantial biases and significantly deteriorate the precision in model parameter

estimates. It follows that a more desirable approach to modeling occasional but recurrent regime

shifts would admit some form of endogenous feedback from the behavior of underlying economic

fundamentals to the regime generating process [Diebold et al. (1994), Chib and Dueker (2004), Kim

(2004, 2009), Kim et al. (2008), Bazzi et al. (2014), Kang (2014), Kalliovirta et al. (2015), Kim and

Kim (2018), among others].

The purpose of this paper is to introduce a threshold-type endogenous regime switching frame-

work into dynamic stochastic general equilibrium (DSGE) models. Over the past 20 years, DSGE

models have become a useful tool for quantitative macroeconomic analysis in both academia and

policymaking institutions. One particularly important development is the effort to incorporate the

possibility of exogenous regime shifts (e.g., changes in monetary policy) into the model specifica-

tion. By making policy regime shifts endogenous, our framework allows for a greater scope for

understanding the complex interaction between policy changes and measured economic behavior.

Following Chang et al. (2017), an essential feature of our model is that the monetary policy regime

alternates between two regimes, hawkish and dovish, depending on whether an autoregressive latent

factor crosses some threshold level. In our approach, two sources of random innovations jointly drive

the latent factor and hence the policy regime change: (i) the internal innovations that represent

the fundamental shocks inside the model; (ii) an external innovation that captures all other shocks

1Among recent developments of this approach, Kim (1994) made an important extension to the state space

representation of dynamic linear models amenable to classical inference, whereas Chib (1996) presented a full Bayesian

analysis for finite mixture models based on Gibbs sampling. An introductory exposition and overview of the related

literature can be found in the monograph by Kim and Nelson (1999).
2This endogeneity can be illustrated for instance by the fact that central banks switch to unconventional policies

when the policy rate becomes constrained by the zero lower bound. Another example relates to mortgagors being

subject to stringent borrowing conditions either when credit growth has been excessive or when there is a downturn

in the economy. Binning and Maih (2017) present a general framework for modeling occasionally-binding constraints

using regime switching. More recently, Benigno et al. (2020) apply similar techniques to document endogenous

switches into and out of financial crises in Mexico.
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left outside the model. The relative importance of the former source determines the degree of

endogeneity in regime changes. The autoregressive nature of the latent factor, on the other hand,

makes such endogenous effects long-lasting. Most importantly, regime switching of this type renders

the transition probabilities time-varying in that they are all functions of the model’s fundamentals.

In the special case where regime shifts are purely driven by the external innovation, our model

becomes observationally equivalent to one with conventional Markov switching.

The key contribution of this paper is to provide a framework within which we study the origins

of monetary policy shifts. Ever since the seminal work of Clarida et al. (2000), modeling the time-

varying behavior of monetary policy has remained an active research agenda for macroeconomists.

While regime switching has emerged as a promising approach to modeling the time variation in

monetary policy, scant attention in the literature has been paid to the macroeconomic origins that

give rise to monetary policy shifts over time. Our paper takes a first step toward filling in this

important gap—the aim here is not to identify policy switches that standard approaches would

miss but rather to shed light into the reasons why the switching occurs.

Due to the substantial improvement in model fit, a multitude of empirical studies have proposed

to estimate regime-switching DSGE models [Schorfheide (2005), Liu et al. (2011), Bi and Traum

(2012, 2014), Bianchi (2013), Davig and Doh (2014), Bianchi and Ilut (2017), Bianchi and Melosi

(2017), Best and Hur (2019), among others]. We complement the recent literature on likelihood-

based estimation of DSGE models with exogenous Markov switching by making regime changes

endogenous. At the core of our analysis is the endogenous feedback effect of underlying struc-

tural shocks on the regime generating process. As a result, economic agents update their beliefs

each period about future regimes conditional on the realizations of shocks disturbing the economy.

For pedagogical purposes, Section 2 employs a simple model adopted from Chang et al. (2018b)

to endogenize regime switching in monetary policy, which admits analytical characterizations of

the mechanism at work. Section 3 extends the simple model to a prototypical new Keynesian

DSGE model, and derives its state space form that can be analyzed with our endogenous-switching

Kalman filter. We find that price markup shocks play an important role in triggering the historical

regime changes in the postwar U.S. monetary policy. To the best of our knowledge, modeling and

quantifying such endogenous feedback channel are novel in the literature.

An important precursor to our study is Davig and Leeper (2006a), who applied a projection

method to solve and calibrate a new Keynesian model where monetary policy rule changes when-

ever its target variables (e.g., inflation and output gap) cross some thresholds.3 More recently,

Guerrieri and Iacoviello (2015, 2017) developed piece-wise linear solution toolkit and likelihood-

based estimation method for DSGE models subject to an occasionally binding constraint (e.g., the

zero lower bound on nominal interest rates). In their setup, each state of the constraint—slack or

3Using the same solution method, Bi and Traum (2012, 2014) estimated a real business cycle model where the

government partially defaults on its debt whenever the debt level rises beyond a ‘fiscal limit’.
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binding—is handled as one of two distinct regimes under the same model. Like these studies, one

may argue that it is more natural to assign the immediate triggers of regime switch to the state

variables rather than the structural shocks. In this regard, our regime switching is indeed endoge-

nous with respect to shocks. However, linking the regime factor directly to shocks is technically

appealing because the dynamics of all state variables are ultimately driven by a small number of

structural shocks. Moreover, the ultimate goal of macroeconomic policy is to stabilize the economy

by mitigating the impacts of various shocks. A prominent example is the 1970s oil crisis when the

U.S. experienced severe petroleum shortages with elevated prices, and this oil price shock serves

the dual role of adverse supply disturbance and potential trigger of monetary policy to a more

aggressive regime in the 1980s. We therefore view the structural shocks that generate aggregate

fluctuations as the macroeconomic origins of regime shifts, and establish a novel feedback channel

by which they contribute to regime switching. Our analytical and empirical examples illustrate

how the underlying structural shocks impact agents’ expectations formation and monetary policy

regimes through this endogenous feedback channel.

2 Analytical Example

We first consider the simple frictionless model of inflation determination studied in Davig and

Leeper (2006a), comprising a standard Fisher relation and an interest rate rule for monetary pol-

icy. We solve the model based on the assumption that economic agents, when forming rational

expectations about future endogenous variables, exogenous shocks, and regime states, can observe

their current and all past realizations. The regime factor, however, remains latent to agents as well

as econometricians.4 As will be shown subsequently, it merely serves as an auxiliary variable that

rationalizes the specific functional forms of time-varying transition probabilities. Consequently, the

model can be solved without reference to the regime factor. From an empirical perspective, though,

it is interesting to extract the latent regime factor from the data, which may be correlated with

measured economic behavior in a meaningful way.5 In what follows, all variables are written in

terms of log-deviations from their steady state values.

4Instead, we assume that agents always know which regime they are in. However, they need to compute the

transition probabilities in order to make decisions. In the exogenous switching case, these probabilities are constant.

Clearly, it is hard to believe that monetary policy would randomly switch between different states irrespective of the

state of the economic system. In our model, these probabilities are a function of the history of shocks and the law

of motion for the regime factor process.
5For instance, using the same regime switching approach as in this paper, Chang et al. (2019) estimated a

reduced-form model of monetary-fiscal regime changes and found that fiscal variables, particularly the tax to GDP

ratio and net interest payment to government spending ratio, are among the most important variables in explaining

the monetary regime factor.
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2.1 The Setup First, given a perfectly competitive endowment environment with flexible prices

and one-period nominal bonds, the Fisher relation arises from the bond pricing equation and is, in

its linearized form, given by

it “ Etπt`1 ` Etrt`1 (2.1)

where it denotes the short-term nominal interest rate, πt the inflation rate between periods t ´ 1

and t, and Et the conditional expectation given information available through period t. The real

interest rate rt evolves as an autoregressive process

rt “ ρrrt´1 ` σrεr,t, εr,t „ Np0, 1q (2.2)

where 0 ď ρr ă 1 and σr ą 0.

Second, the monetary authority follows an interest rate feedback rule that systematically varies

its response to contemporaneous inflation depending on the underlying policy regime, which is given

by

it “ φstπt ` σiεi,t, φst “ φ0p1´ stq ` φ1st, εi,t „ Np0, 1q (2.3)

where 1 ă φ0 ă φ1 and σi ą 0.6 Here the response of policy rate to inflation is allowed to switch

between, in the spirit of Leeper’s (1991) terminology, ‘more active’ and ‘less active’ monetary

regimes. The regime index evolves according to st “ 1twt ě τu and the autoregressive regime

factor follows wt “ αwt´1`vt. Nevertheless, our approach and its supporting software is not bound

by the assumption of only two regimes. By introducing either multiple regime factors or threshold

levels, the model can switch among more than two regimes.

Finally, we introduce an endogenous feedback channel from the current structural shocks to the

future regime changes. There are two standardized shocks—the real rate shock εr,t and the monetary

policy shock εi,t—driving this simple economy, but for illustration purposes, we only consider the

feedback from the current monetary policy shock εi,t through its potential correlation with the next

period regime factor innovation vt`1. That is,

¨

˝

εi,t

vt`1

˛

‚„ N

¨

˝

¨

˝

0

0

˛

‚,

¨

˝

1 ρ

ρ 1

˛

‚

˛

‚, ´1 ă ρ ă 1 (2.4)

where ρ “ corrpεi,t, vt`1q is a correlation parameter that measures the strength of endogeneity in

regime switching. The above specification is simple enough to admit an analytical solution, yet rich

enough to highlight the general features of a rational expectations model with endogenous regime

6For analytical tractability, we assume that the monetary authority does not respond to output gap.
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change in monetary policy.

It follows from (2.4) that

wt`1 “ αwt ` ρεi,t `
a

1´ ρ2ηt`1, ηt`1 „ Np0, 1q (2.5)

where the internal innovation εi,t and the external innovation ηt`1 are orthogonal to each other. This

alternative representation of the regime factor points to the endogenous feedback from monetary

interventions to the regime generating process. For example, when εi,t and vt`1 are orthogonal

(i.e., ρ “ 0), regime shifts become the outcome of an exogenous process driven entirely by the

non-structural shock ηt`1; as ρ approaches one in absolute value, today’s monetary shocks bear

more directly on tomorrow’s regime factor; when |ρ| “ 1, future regimes turn out to depend only on

monetary shock in the current period. In general, one would expect 0 ă |ρ| ă 1.7 The autoregressive

coefficient α, on the other hand, determines the persistency and hence the expected duration of

each regime—as α takes values towards positive (negative) unity, the model will on average undergo

less (more) frequent regime shifts.

2.2 Transition Probability Like any regime switching model, it is essential to compute the

associated transition probabilities. From a modeling point of view, it can be helpful to treat the

regime factor as a computational device that produces the specific functional forms of transition

probabilities adopted by this paper. To see that, first note

Ppwt`1 ă τ |wt, εi,tq “ P

˜

ηt`1 ă
τ ´ αwt ´ ρεi,t

a

1´ ρ2

ˇ

ˇ

ˇ

ˇ

wt, εi,t

¸

“ Φρpτ ´ αwt ´ ρεi,tq

where Φρpxq “ Φpx{
a

1´ ρ2q. Moreover, wt is independent of εi,t and follows Np0, 1{p1 ´ α2qq.

Therefore, we can obtain the transition probability of staying in regime-0 (i.e., the less active

regime) between periods t and t` 1 explicitly as

p00pεi,tq “ Ppst`1 “ 0|st “ 0, εi,tq

“
Ppwt`1 ă τ, wt ă τ |εi,tq

Ppwt ă τq

“

şτ
?

1´α2

´8
Φρpτ ´ αx{

?
1´ α2 ´ ρεi,tqpNpx|0, 1qdx

Φpτ
?

1´ α2q

“

ş

τ´ρεi,t?
1´ρ2

´8

şτ
?

1´α2

´8
pNpx, y|µ0,Σ0qdxdy

Φpτ
?

1´ α2q
(2.6)

7From now on, we dispense with |ρ| “ 1 because predetermined regimes, though theoretically possible, make less

economic sense.
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Figure 1: Transition probabilities as functions of εi,t at selected values of pα, τ, ρq.

where µ0 “ r0, 0s
1, Σ0 “ r1, c; c, 1 ` c2s, and c “ α{p

a

1´ ρ2
?

1´ α2q. Analogously, the transition

probability from regime-1 (i.e., the more active regime) in period t to regime-0 in period t` 1 can

be computed as

p10pεi,tq “ Ppst`1 “ 0|st “ 1, εi,tq

“
Ppwt`1 ă τ, wt ě τ |εi,tq

Ppwt ě τq

“

ş8

τ
?

1´α2 Φρpτ ´ αx{
?

1´ α2 ´ ρεi,tqpNpx|0, 1qdx

1´ Φpτ
?

1´ α2q

“

ş

τ´ρεi,t?
1´ρ2

´8

ş´τ
?

1´α2

´8
pNpx, y|µ1,Σ1qdxdy

1´ Φpτ
?

1´ α2q
(2.7)

where µ1 “ r0, 0s1 and Σ1 “ r1,´c;´c, 1 ` c2s. Accordingly, we have p01pεi,tq “ 1 ´ p00pεi,tq

and p11pεi,tq “ 1 ´ p10pεi,tq. Finally, the integrals in (2.6)–(2.7) can be easily evaluated using the

cumulative bivariate normal distribution function. See the Online Appendix for derivation details.

In sum, our endogenous feedback mechanism renders the transition probabilities, which now

become an integral part of the model solution, time-varying because they are all functions of εi,t.

A key difference from Chang et al. (2017), though, lies in that their εi,t corresponds to a univariate

regression error that can be readily computed given the data and parameter values, whereas ours

represents structural shocks whose values remain latent to the econometrician and hence must be

inferred from the data. In the special case of ρ “ 0, transition probabilities (2.6)–(2.7) become

constants and our model reduces to one with conventional Markov switching.

Figure 1 plots transition probabilities as functions of monetary policy shock at selected values of
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pα, τ, ρq, which is intended to highlight the distinct role of each parameter in shaping these func-

tions while holding other parameters fixed. Overall, pα, τq uniquely determine the constant levels of

pp00, p11q under exogenous Markov switching (solid and dash-dotted lines) owing to their one-to-one

correspondence. Specifically, increasing the value of α from ´0.9 to 0.9, for example, raises the like-

lihood of remaining in the current regime by making the regime factor more persistent. Meanwhile,

decreasing the value of τ from 0 to ´1 favors the more active regime by making it relatively easier

for the regime factor to stay above the threshold. On the other hand, the endogeneity parameter ρ

introduces shock-specific variations into pp00, p11q (dashed line). Due to the positive feedback effect

(ρ “ 0.9), for instance, a one-time unanticipated tightening εi,t ą 0 (loosening εi,t ă 0) of policy

today increases the probability of staying in or shifting to the systematically tighter (looser) policy

in the next period. Of course, the overall shapes of transition probability functions rest on all three

parameters.

2.3 Equilibrium Characteristics Together with the transition probabilities (2.6)–(2.7), equa-

tions (2.1)–(2.3) constitute a nonlinear rational expectations system in the endogenous variables

pπt, itq that is driven by the exogenous variables prt, εi,tq. Substituting (2.2) and (2.3) into (2.1)

delivers a regime-specific expectational difference equation in inflation

φstπt ` σiεi,t “ Etπt`1 ` ρrrt (2.8)

Now solving the model entails mapping the minimum set of state variables prt, εi,tq into the endoge-

nous variable pπtq. We find such a minimum state variable solution with the method of undetermined

coefficients by postulating a regime-specific solution that takes an additive form

πt “ Astrt `Bstεi,t (2.9)

Chang et al. (2018b) show that these coefficients can be expressed as

Ast “
ρr
φst

pφ1 ´ φ0qpst,0pεi,tq ` φ1

´

φ0
ρr
´ Ep00pεi,tq

¯

` φ0Ep10pεi,tq

pφ1 ´ ρrq
´

φ0
ρr
´ Ep00pεi,tq

¯

` pφ0 ´ ρrqEp10pεi,tq
, Bst “ ´

σi
φst

(2.10)

where Ast also depends on εi,t and the unconditional expectations Ep00pεi,tq and Ep10pεi,tq are con-

stant terms.

Two special cases arise from the general solution (2.10). When regime changes are purely exoge-
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nous (i.e., ρ “ 0), (2.10) reduces to

Ast “
ρr
φst

pφ1 ´ φ0qpst,0 ` φ1

´

φ0
ρr
´ p00

¯

` φ0p10

pφ1 ´ ρrq
´

φ0
ρr
´ p00

¯

` pφ0 ´ ρrqp10

, Bst “ ´
σi
φst

(2.11)

where pst,0 and hence Ast become independent of εi,t. Further imposing the restriction φ0 “ φ1 “

φ ą 1 gives the equilibrium inflation under fixed regime

Ast “
ρr

φ´ ρr
, Bst “ ´

σi
φ

(2.12)

where both Ast and Bst are non-random constants. It is clear from (2.12) that a more aggressive

monetary stance (i.e., higher φ) can effectively insulate inflation against exogenous disturbances.

In all cases, we have Ast ą 0 so that a positive real rate shock, as it does in a fixed regime,

raises the contemporaneous demand for consumption and thus inflation. With endogenous feed-

back in regime change, it immediately follows from (2.10) that two distinct effects on inflation

emerge after a monetary policy intervention. First, conditioning on the prevailing policy regime,

a monetary contraction tends to curtail inflation through its linear and direct effect captured by

the Bst ă 0 term. Second, and more importantly, a monetary contraction also generates an en-

dogenous expectations-formation effect—the difference between the impacts of a shock when the

regime switches endogenously and when it switches exogenously—that is captured by the transition

probability pst,0pεi,tq in the Ast term. This nonlinear effect arises in that the intervention induces

a change in agents’ beliefs about the future policy regime. The resultant adjustment in agents’

behavior can shift the projected path and probability distribution of equilibrium inflation in eco-

nomically meaningful ways. As opposed to the endogenous switching case, such forward-looking

effect vanishes in (2.11) under exogenous switching and thus there is no channel by which monetary

interventions can alter agents’ expectations about future regime.

To make the analytics more concrete, Figure 2 isolates the endogenous expectations-formation

effect by comparing the contemporaneous responses of inflation to exogenous shocks under endoge-

nous (ρ “ 0.9) and exogenous switching (ρ “ 0). We consider a policy process that adjusts nominal

rate only ‘mildly’ in the less active regime (φ0 “ 1.1), but to a degree more consistent with the

standard Taylor rule specification when the more active regime is in place (φ1 “ 1.5). We also

have the regime factor relatively persistent (α “ 0.9) and somewhat favor the more active regime

(τ “ ´1).8 Panel B illustrates a slice of the impulse response surface reported in Panel A for a

given positive real rate rt “ 0.5%. Starting with the less active policy, contractionary monetary

shocks trigger a positive feedback effect with endogenous switching, which leads agents to revise

8The implied transition probabilities under exogenous switching are given by pp00, p11q “ p0.8, 0.9q. See Figure 1

for a visualization of the transition probability functions associated with endogenous switching.
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Figure 2: Impulse response functions for inflation. Notes: Parameter settings under endogenous switching
are pφ0, φ1q “ p1.1, 1.5q, pρr, σr, σiq “ p0.9, 0.1, 0.1q, and pα, τ, ρq “ p0.9,´1, 0.9q. Responses under exoge-
nous switching are obtained by setting ρ “ 0 while keeping other parameters unchanged. The current
regime is set to be less active, i.e., st “ 0.

their beliefs towards a tigher policy in the subsequent period (as evinced by Figure 1). In com-

parison with the exogenous switching case, this shift in expectations about future policy helps to

further mitigate the inflationary effect of a positive real rate on impact. Analogously, expansionary

monetary shocks trigger a negative feedback effect that bolsters agents’ beliefs in the looser policy

for the next period. Although less noticeable, the same positive real rate thus has larger impacts

on current inflation.9

Formally, we measure expectations-formation effects from a policy intervention based on condi-

tional inflation forecasts along the lines of Leeper and Zha (2003). Since private agents can observe

current and all past realizations of endogenous variables pπt, itq, exogenous shocks prt, εi,tq, and

regime states st, they formulate rational expectations about future inflation based on the informa-

tion set FT “ σptπt, it, rt, εi,t, stu
T
t“0q. Let IT be a hypothetical intervention at period T , specified

as a K-period sequence of exogenous policy actions IT “ tεi,T`1, . . . , εi,T`Ku. Given the analytical

solution under endogenous switching (2.10), it is straightforward to evaluate the forecast of πT`K

conditional on IT as

ErπT`K |IT ,FT s “ ppsT ,0A0pεi,T`Kq ` psT ,1A1pεi,T`Kqqρ
K
r rT ` ppsT ,0B0 ` psT ,1B1qεi,T`K

where psT ,sT`K for sT`K “ 0, 1 are the K-period-ahead transition probabilities that depend on the

sequence tεi,T , . . . , εi,T`K´1u. Likewise, forecasts under exogenous switching ErπT`K |IT ,FT , ρ “ 0s

9The analysis with a negative real rate is similar and therefore omitted here to conserve space.
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Figure 3: Expectations-formation effects on inflation. Notes: Panel A plots the inflation forecasts condi-
tional on the intervention IT “ t3, 2, 1, 0.5, 0, . . . , 0u. Panel B plots their differentials as in the definitions
of expectations-formation effects. Panel C reports the ratio of endogenous to total effects. Panel D plots
the K-period-ahead probabilities of remaining in the less active regime. The current set of state variables
is set to prT , εi,T , sT q “ p0.5%, 0, 0q. See Figure 2 notes for parameter settings.

and fixed regime ErπT`K |IT ,FT , st “ 0, t “ T ` 1, . . . , T ` Ks can be computed using solutions

(2.11) and (2.12), respectively. The total expectations-formation effect—a term coined by Leeper

and Zha (2003)—refers to the difference between the impacts of a policy intervention when regime

can and cannot switch, respectively

Total effect ” ErπT`K |IT ,FT s ´ ErπT`K |IT ,FT , st “ 0, t “ T ` 1, . . . , T `Ks (2.13)

We focus on its endogenous component which is more relevant in our context

Endogenous effect ” ErπT`K |IT ,FT s ´ ErπT`K |IT ,FT , ρ “ 0s (2.14)

Of course, the difference between (2.13) and (2.14) quantifies the exogenous component.

For illustration purpose, we suppose the monetary authority undertakes a one-year contractionary

intervention IT “ t3, 2, 1, 0.5, 0, . . . , 0u with gradually declining magnitudes from 3 to 1/2 standard
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deviations σi of the monetary policy shock. Panel A of Figure 3 records the conditional forecasts

of inflation obtained from the three models.10 As expected, the intervention further tempers the

initial inflationary impact of rT “ 0.5% by about 1% with endogenous switching and 0.7% with

exogenous switching relative to the fixed regime baseline.11 These discrepancies among the forecasts

translate into sizable expectations-formation effects in Panel B, which slowly taper off over the 10-

year forecasting horizon. More importantly, over 30% of the total effect during the intervention can

be attributed to its endogenous component (see Panel C). At very short horizons, the consecutive

spikes in policy rate put forth a significantly positive feedback effect with endogenous switching,

placing nearly all probability weight on the more active regime (see Panel D). Once the intervention

ends after one year, the probability of remaining in the less active regime eventually converges to the

long-run level, which is lower relative to the exogenous switching case under the current parameter

setting.

3 Empirical Illustration

We now consider a small-scale new Keynesian DSGE model based on An and Schorfheide (2007) with

the following features: a representative household and a continuum of monopolistically competitive

firms; each firm produces a differentiated good and faces nominal rigidity in terms of quadratic price

adjustment cost; a cashless economy with one-period nominal bonds; a monetary authority that

controls nominal interest rate as well as a fiscal authority that passively adjusts lump-sum taxes

to ensure its budgetary solvency; a labor-augmenting technology that induces a stochastic trend in

consumption and output.

3.1 The Setup The model’s equilibrium conditions in terms of the detrended variables can be

summarized as follows. First, the household’s optimizing behavior implies

1 “ βEt

«

ˆ

ct`1

ct

˙´τc Rt

γzt`1πt`1

ff

(3.1)

where 0 ă β ă 1 is the discount factor, τc ą 0 the coefficient of relative risk aversion, ct the

detrended consumption, Rt the nominal interest rate, πt the inflation between periods t´ 1 and t,

zt an exogenous shock to the labor-augmenting technology that grows on average at the rate γ, and

Et represents the conditional expectation given information available at time t. The firm’s optimal

10In the special case of one-period intervention IT “ t1, 0, . . . , 0u, these forecasts correspond to the conventional

impulse response analysis.
11Similar to Davig and Leeper (2006a), our modeling of endogenous switching monetary policy is preemptive in

that shocks realized at T shift agents’ beliefs about the unknown regime at T `1 through their impacts on the regime

factor wT`1. This preemptive feature is absent when regimes switch exogenously. Because inflation rises by much

less under endogenous switching, a preemptive policy behavior increases the effectiveness of monetary policy.

12
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price-setting behavior yields

1 “
1´ cτct
νt

` φpπt ´ πq

„ˆ

1´
1

2νt

˙

πt `
π

2νt



´ φβEt

«

ˆ

ct`1

ct

˙´τc yt`1

yt
pπt`1 ´ πqπt`1

ff

(3.2)

where φ is the degree of price stickiness that relates to the slope of the so-called new Keynesian

Phillips curve κ via φ “ τcp1 ´ νq{pνπ2κq, π the steady state inflation, 1{ν the steady state of the

demand elasticity 1{νt “ ut{put ´ 1q, ut an exogenous price markup shock with the steady state u,

and yt the detrended output. The goods market clearing condition is given by

yt “ ct `

ˆ

1´
1

gt

˙

yt `
φ

2
pπt ´ πq

2yt (3.3)

where gt is an exogenous government spending shock with the steady state g.

Second, the monetary authority follows an interest rate feedback rule that reacts to deviations of

inflation from its steady state and output from its potential value

Rt “ R˚1´ρR
t RρR

t´1e
σRεR,t , R˚t “ R

´πt
π

¯ψπ
ˆ

yt
y˚t

˙ψy

(3.4)

where 0 ď ρR ă 1 is the degree of interest rate smoothing, σR ą 0, R the steady state nominal

interest rate, ψπ ą 0 and ψy ą 0 the policy rate responsive coefficients, y˚t “ p1 ´ νtq
1{τcgt the

detrended potential output that would prevail in the absence of nominal rigidities (i.e., φ “ 0), and

εR,t an exogenous policy shock.

Finally, each of pln zt, lnut, ln gtq evolves as an autoregressive process

ln zt “ ρz ln zt´1 ` σzεz,t (3.5)

lnut “ p1´ ρuq lnu` ρu lnut´1 ` σuεu,t (3.6)

ln gt “ p1´ ρgq ln g ` ρg ln gt´1 ` σgεg,t (3.7)

where 0 ď ρz, ρu, ρg ă 1 and σz, σu, σg ą 0. The model is driven by the four innovations

pεz,t, εu,t, εg,t, εR,tq that are serially uncorrelated, independent of each other at all leads and lags,

and normally distributed with zero mean and unit standard deviation.

There has been ample empirical evidence of time variation in estimated monetary policy rules

documented in the literature. To keep the illustration simple and concrete, we allow the response

of policy rate to inflation deviations to switch between more active and less active (or possibly

‘passive’) monetary policy regimes

ψπpstq “ ψπ,0p1´ stq ` ψπ,1st, 0 ď ψπ,0 ă ψπ,1 (3.8)

13
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where the policy regime index evolves according to st “ 1twt ě τu and the regime factor follows

wt “ αwt´1 ` vt. To introduce the sources of endogeneity in regime change, we allow all current

structural shocks to jointly influence the next period regime through their correlations with the

innovation vt`1. That is,

¨

˝

εt

vt`1

˛

‚„ N

¨

˝

¨

˝

04ˆ1

0

˛

‚,

¨

˝

I4 ρ

ρ1 1

˛

‚

˛

‚, ρ1ρ ă 1 (3.9)

where ρ “ rρzv, ρuv, ρgv, ρRvs
1 “ corrpεt, vt`1q. To keep the illustration simple and concrete, we

abstract from time variation in the model structure other than that from the policy parameter

ψπpstq.
12

It follows from (3.9) that a more explicit representation of the regime factor can be written as

wt`1 “ αwt ` ρzvεz,t ` ρuvεu,t ` ρgvεg,t ` ρRvεR,t
looooooooooooooooooooomooooooooooooooooooooon

endogenous drivers

`
a

1´ ρ1ρηt`1
loooooomoooooon

exogenous driver

, ηt`1 „ Np0, 1q (3.10)

where the internal innovations pεz,t, εu,t, εg,t, εR,tq and the external innovation ηt`1 are all orthogonal

and have unit variance. Equation (3.10) asserts a complete separation between the four individual

endogenous drivers pεz, εu, εg, εRq and the exogenous driver η of the regime factor. Also recall that

pρ2
zv, ρ

2
uv, ρ

2
gv, ρ

2
Rv, 1 ´ ρ1ρ) measure the percentage contributions of pεz, εu, εg, εR, ηq to the uncondi-

tional variance of w and hence the extents to which these drivers trigger historical regime changes.

In what follows, we quantify how much of the U.S. monetary policy shifts can be attributed, re-

spectively, to each of technology growth, price markup, government spending, and monetary policy

shocks.

3.2 Solution Method The model is completed by deriving the probabilities governing regime

transition from one period to the next. Analogous to the scalar case in the analytical model, the

implied (endogenous) transition probabilities to the less active regime, which become an important

part of the model solution, are given by

p00pεtq “ Ppst`1 “ 0|st “ 0, εtq “

şτ
?

1´α2

´8
Φρpτ ´ αx{

?
1´ α2 ´ ρ1εtqpNpx|0, 1qdx

Φpτ
?

1´ α2q
(3.11)

p10pεtq “ Ppst`1 “ 0|st “ 1, εtq “

ş8

τ
?

1´α2 Φρpτ ´ αx{
?

1´ α2 ´ ρ1εtqpNpx|0, 1qdx

1´ Φpτ
?

1´ α2q
(3.12)

12Initiated by Sims and Zha (2006), allowing for regime switching in both policy rules and shock volatilities has

also come under scrutiny in DSGE models, but it would require introducing multiple regime factors in our setup,

which is beyond the scope of this paper.
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where Φρpxq “ Φpx{
?

1´ ρ1ρq. See the Online Appendix for derivation details. When εt and vt`1

are orthogonal (i.e., ρ “ 04ˆ1), transition probabilities (3.11)–(3.12) become constants so that our

model nests the exogenous Markov switching as a special case.

Equations (3.1)–(3.7) and (3.11)–(3.12) constitute a rational expectations system that can be

cast into the generic form

Erfstpxt`1, xt, xt´1, εtq|Fts “ 0 (3.13)

where st “ 1, . . . , h is the regime at time t, fst a vector of nonlinear functions, xt a vector of model

variables, and εt a vector of shock innovations. As mentioned earlier, private agents can observe

current and all past realizations of endogenous variables, exogenous shocks, and regime states, but

not the regime factors. Accordingly, they formulate rational expectations about future variables on

the basis of the information set Ft “ σptxk, εk, sku
t
k“0q.

System (3.13) has to be solved before the model can be taken to data. To that end, a spate

of theoretical and empirical efforts have managed to solve regime-switching rational expectations

models using numerical techniques. One strand of the literature embraces the projection method

to iteratively construct policy functions over a discretized state space [Davig (2004), Davig and

Leeper (2006a,b), Bi and Traum (2012, 2014), Davig et al. (2010, 2011), Richter et al. (2014)].

Nevertheless, global approximations suffer from, among other problems, the curse of dimensionality

that renders the practical implementation computationally costly even for small-scale models. The

second strand begins with a linear or linearized model as if its parameters were constant and then

annexes Markov switching to certain parameters [Svensson and Williams (2007), Farmer et al.

(2011), Bianchi (2013), Cho (2016), Bianchi and Ilut (2017), Bianchi and Melosi (2017)]. While

this approach is not as limited by the model size as the projection method, linearization without

accounting for the switching parameters may be inconsistent with the optimizing behavior of agents

who are aware of the switching process in the original nonlinear model. The third strand circumvents

the above problems by embedding regime switching in perturbation solutions whose accuracy can

be enhanced with higher-order terms [Maih (2015), Foerster et al. (2016), Barthélemy and Marx

(2017), Bjørnland et al. (2018), Maih and Waggoner (2018)].

We obtain the model solution to the nonlinear rational expectations system (3.13) using the

perturbation approach of Maih and Waggoner (2018), which is more general than the ones found in

the earlier literature. As opposed to Foerster et al. (2016), for example, it requires no partition of

the switching parameters, allows for the possibility of multiple steady states and, more importantly,

can handle models with endogenous transition probabilities.13 To fix ideas, we seek a regime-specific

13Barthélemy and Marx (2017) also generalized standard perturbation methods to solve a class of nonlinear rational

expectations models with endogenous regime switching.
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policy function for xt that depends on the minimum set of state variables pxt´1, εtq

xt “ gstpxt´1, εtq (3.14)

Substituting (3.14) into (3.13) and integrating out the future regime yield

E

«

h
ÿ

j“1

pi,jpεtqfipgjpgipxt´1, εtq, εt`1q, gipxt´1, εtq, xt´1, εtq

ˇ

ˇ

ˇ

ˇ

Ft

ff

“ 0 (3.15)

where the notational convention that st “ i and st`1 “ j is followed. In general, there is no

analytical solution to (3.15) even when fi is linear. Maih and Waggoner (2018) proposed to obtain a

Taylor series approximation to (3.14) by introducing an auxiliary argument χ (i.e., the perturbation

parameter)

xt “ gipxt´1, εt, χq (3.16)

that solves a perturbed version of (3.15)

E

«

h
ÿ

j“1

qi,jpεt, χqfipgjphipxt´1, εt, χq, χεt`1, χq, gipxt´1, εt, χq, xt´1, εtq

ˇ

ˇ

ˇ

ˇ

Ft

ff

“ 0 (3.17)

with perturbed transition probability qi,jpεt, χq and perturbed policy function hipxt´1, εt, χq.

The principle of perturbation is to choose qi,jpεt, χq and hipxt´1, εt, χq such that (3.17) becomes

the original system (3.15) when χ “ 1, but it reduces to a tractable and interpretable system

when χ “ 0. While (3.17) is already successful in eliminating the stochastic disturbances when

χ “ 0, choices of qi,jpεt, χq and hipxt´1, εt, χq still play a key role in interpreting the model’s steady

state xi “ gipxi, 0, 0q around which the solution is expanded. In the context of exogenous Markov

switching, Foerster et al. (2016) set qi,jpεt, χq “ pi,j and hipxt´1, εt, χq “ gipxt´1, εt, χq. Plugging

their choice into (3.17) and evaluating it at the steady state give

h
ÿ

j“1

pi,jfipgjpxi, 0, 0q, xi, xi, 0q “ 0

Since the only point at which we know how to evaluate gj is pxj, 0, 0q, this implies that xi “ xj for

each j and hence the steady state must be independent of any regime.14 By contrast, recognizing

14In this regard, the literature typically defines the steady state as the one associated with the ergodic mean values

of Markov switching parameters. Such unique steady state, however, need not be an attractor—a resting point

towards which the model tends to converge in the absence of further shocks. For example, Aruoba et al. (2017)

presented a model that exhibits two distinct attractors, i.e., a targeted-inflation steady state and a deflationary

steady state.
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that switching parameters may imply distinct steady states, Maih and Waggoner’s (2018) choice of

qi,jpεt, χq “

$

&

%

χpi,jpεtq, i ‰ j

χppi,ipεtq ´ 1q ` 1, i “ j

and hipxt´1, εt, χq “ gipxt´1, εt, χq ` p1´ χqpxj ´ xiq implies

fipxi, xi, xi, 0q “ 0

Consequently, xi can be readily interpreted as the deterministic steady state that would prevail in

regime-i when it is considered in isolation.

In practice, the solution algorithm of Maih and Waggoner (2018) has been coded up in RISE, a

flexible object-oriented MATLAB toolbox developed by Junior Maih, that is well-suited for solving

a general class of regime-switching DSGE models.15 See the Online Appendix for a user guide.

3.3 Econometric Method We estimate the model with Bayesian methods using a common

set of quarterly observations, ranging from 1954:Q3 to 2007:Q4: per capita real output growth

(YGR), annualized inflation rate (INF), and effective federal funds rate (INT).16 The actual data

are constructed as in Appendix B of Herbst and Schorfheide (2015) and available from the Federal

Reserve Economic Data (FRED). The observable variables are linked to the model variables through

the following measurement equations

¨

˚

˚

˚

˝

YGRt

INFt

INTt

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

γpQq

πpAq

πpAq ` rpAq ` 4γpQq

˛

‹

‹

‹

‚

` 100

¨

˚

˚

˚

˝

lnpztyt{yt´1q

4 lnpπt{πq

4 lnpRt{Rq

˛

‹

‹

‹

‚

(3.18)

where pγpQq, πpAq, rpAqq are connected to the model’s steady states via γ “ 1 ` γpQq{100, β “

1{p1 ` rpAq{400q, and π “ 1 ` πpAq{400. Let θ be a vector collecting all model parameters. In

conjunction with the model solution, a first-order approximation to equations (3.18) and (3.16)

around steady states can be cast into a nonlinear state space model.17 To evaluate the associated

likelihood function ppY1:T |θq, we adopt the endogenous-switching Kalman filter developed by Chang

et al. (2018a), which is based on the algorithms of Kim (1994) and Chang et al. (2017). Calculations

15The toolbox is available, free of charge, at https://github.com/jmaih/RISE toolbox.
16Our sample begins when the federal funds rate data first became available and ends before the federal funds rate

nearly hit its effective lower bound.
17The standard stability concept for constant-parameter linear rational expectations models does not extend to

the regime switching case. Instead, following the lead of Svensson and Williams (2007) and Farmer et al. (2011)

among others, we adopt the concept of mean square stability to characterize first-order stable solutions.
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are simplified by an appropriate augmentation of the transition equation and exploiting the condi-

tionally linear and Gaussian structure. Unlike simulation-based filters, this avoids sequential Monte

Carlo integration and as such makes our filter computationally efficient. As a useful by-product of

running the filter, the estimated autoregressive latent factor can be readily constructed from the

filter outputs.18 See the Online Appendix for technical details.

In the Bayesian paradigm, the likelihood obtained from the state space model is completed with

a prior distribution ppθq summarizing the researcher’s initial views of the model parameters. This

prior information is updated with the sample information via Bayes’ theorem

ppθ|Y1:T q9ppY1:T |θqppθq (3.19)

where the posterior distribution ppθ|Y1:T q characterizing the researcher’s updated parameter beliefs

is calculated up to the normalization constant. Since the posterior surface can be highly irregular

(e.g., non-elliptical and multimodal) in sophisticated DSGE models, we adopt the tailored random-

ized block Metropolis-Hastings (TaRB-MH) algorithm of Chib and Ramamurthy (2010) to sample

the parameters from their joint posterior distribution. Two defining features of this algorithm,

which are designed to overcome the difficulties in irregular problems, are worth mentioning in re-

lation to the more standard posterior samplers (e.g., the random-walk MH algorithm) in empirical

macroeconomics. One feature is the random clustering of the parameters into an arbitrary number

of blocks at every iteration. Each block is then sequentially updated through an MH step. This

proves to be particularly useful when the researcher does not have a priori knowledge about the cor-

relation pattern of the parameters so that the grouping by correlation principle becomes infeasible.

Another feature is the local tailoring of the proposal density to the location and curvature of the

posterior distribution for a given block using an optimization routine. This allows for sizable moves

from the neighborhood of the current parameter draw. To accelerate the TaRB-MH algorithm, we

also explore an additional feature—blocking and tailoring at random frequencies instead of every

iteration—advocated by Chib et al. (2021) that allows the researcher to obtain an efficient posterior

sample within a reasonable amount of runtime.

3.4 Priors Following standard practice, we assume that all structural parameters are a priori

independent. Table 1 reports the priors of all structural parameters using 5% and 95% quantiles

of the distributions. For the steady state parameters, the quarterly growth rate γpQq follows a nor-

mal distribution with quantiles 0.14 and 0.79; the annualized inflation rate πpAq follows a gamma

distribution with quantiles 1.23 and 7.60; and the annualized real rate rpAq follows a gamma distri-

18The filter is developed for the econometrician to evaluate the model’s likelihood function. The latent factor itself,

however, is not (explicitly) filtered by the economic agents. Having observed the history of shocks, and knowing

the structure of the latent factor, the economic agents proceed to compute the probability that a regime switch will

occur, which helps them make the economic decisions.
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Table 1: Priors and Posteriors of DSGE Parameters

Prior Posterior

Parameter Density 5% 95% Mode 5% 95% Ineff Factor

τc G 1.25 2.88 4.20 3.59 5.00 17.8

κ G 0.06 0.38 0.30 0.19 0.44 23.5

ψy G 0.17 0.96 0.24 0.08 0.45 8.4

ρz B 0.33 0.66 0.48 0.37 0.57 8.0

ρu B 0.33 0.66 0.89 0.87 0.91 10.3

ρg B 0.33 0.66 0.54 0.38 0.70 2.8

ρR B 0.33 0.66 0.76 0.73 0.79 11.6

rpAq G 0.34 0.67 0.47 0.33 0.63 3.0

πpAq G 1.23 7.60 3.54 2.89 3.86 4.7

γpQq N 0.14 0.79 0.45 0.35 0.53 3.3

ν B 0.03 0.19 0.08 0.02 0.16 5.2

c{y B 0.65 0.97 0.92 0.74 0.99 8.8

100σz IG 0.08 1.12 0.66 0.58 0.76 7.9

100σu IG 0.08 1.12 2.20 1.63 2.65 27.9

100σg IG 0.08 1.12 0.30 0.21 0.41 5.5

100σR IG 0.08 1.12 0.25 0.23 0.28 6.4

ψπ,0 G 0.84 1.17 0.85 0.76 0.96 9.2

ψπ,1 G 1.60 2.42 1.77 1.51 2.03 7.8

α B 0.80 0.96 0.94 0.89 0.97 4.4

τ N ´0.82 0.82 ´0.29 ´0.83 0.43 4.9

ρzv B ´0.66 0.66 ´0.19 ´0.53 0.24 7.1

ρuv B ´0.66 0.66 ´0.71 ´0.84 ´0.26 5.2

ρgv B ´0.66 0.66 0.02 ´0.54 0.56 4.1

ρRv B ´0.66 0.66 0.16 ´0.14 0.40 3.5

Notes: The following abbreviations are used: Gamma distribution (G), Normal distribution (N), Beta distribution
(B), and Inverse-Gamma type-I distribution (IG). The posterior mode is obtained using the BFGS quasi-Newton
method (available as a MATLAB function csminwel written by Chris Sims). This procedure is repeated multiple
times, each of which is initialized at a high density point out of a large number of prior parameter draws.

bution with quantiles 0.34 and 0.67. The priors on the structural shock processes are harmonized:

the autoregressive coefficients pρz, ρu, ρg, ρRq are beta distributed with quantiles 0.33 and 0.66, and

the standard deviation parameters pσz, σu, σg, σRq, all scaled by 100, follow inverse-gamma type-I

distribution with quantiles 0.08 and 1.12. Furthermore, the priors on the private sector parameters
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pτc, κ, ν, c{yq and the policy response to output ψy are largely adopted from An and Schorfheide

(2007), whereas those on the policy responses to inflation pψπ,0, ψπ,1q closely follow the specification

in Davig and Doh (2014), which a priori rule out the possibility of ‘label switching’ by imposing

ψπ,0 ă ψπ,1 and hence achieve regime identification. Finally, turning to the parameters for the au-

toregressive regime factor, the prior on α centers at a rather persistent value that, together with the

prior mean of τ , implies symmetric transition probabilities p0.85, 0.85q under exogenous switching.

On the other hand, the relatively diffuse priors on pρzv, ρuv, ρgv, ρRvq centering at zero reflect an

agnostic view about the sign and degree of endogeneity in regime switching.19

3.5 Posterior Estimates We sample a total of 11,000 draws from the posterior distribution

using the TaRB-MH algorithm and discard the first 1,000 draws as burn-in phase. The resulting

10,000 draws form the basis for performing our posterior inference. Owing to the efficiency gains

achieved by the TaRB-MH algorithm, the required number of draws is substantially smaller than

the number typically used for the conventional random-walk MH algorithm. Evidence of such gains

can be seen from the very low inefficiency factors (ranging from 2.3 to 27.9, with most values below

10) in Table 1.20 In conjunction with a rejection rate of approximately 50% in the MH step, the

small inefficiency factors suggest that the Markov chain mixes well. We highlight several aspects of

the posterior estimates reported in Table 1 as follows.

First, the 90% credible intervals show that the posterior distributions for most of the parameters

are different from those implied by the prior. Hence, the data are informative about most of the

estimated parameters. Second, turning to the switching parameters, there remains considerable

cross-regime difference in the policy response to inflation, although the overall monetary policy

stance appears to be somewhat less aggressive than assumed a priori—the 90% posterior inter-

vals of pψπ,0, ψπ,1q are both shifted downward. Third, moving to the parameters pα, τq unique to

our threshold switching, a prior-posterior comparison reveals that the data support an even more

persistent process for the regime factor, and slightly favor the more active regime by making it

relatively easier for the regime factor to remain above the threshold. Finally, the posterior mode of

ρ attributes a significant portion of regime developments to past price markup shocks (about 50%)

and, to a lesser extent, technology growth shocks (about 4%) as well as monetary policy shocks

(about 3%).21

19We use the non-standard beta distribution Bp´1, 1q to bound each correlation parameter within its natural

support p´1, 1q. Moreover, we impose the constraint ρ2zv ` ρ
2
uv ` ρ

2
gv ` ρ

2
Rv ă 1 so as to avoid making future regimes

completely predetermined. Note that if X „ Bpa, bq, then Y “ pX ´ aq{pb´ aq „ Bp0, 1q.
20The inefficiency factor is defined as 1` 2

řK
j“1 wpj{Kqρpjq, where we set the truncation parameter K “ 200 and

weight the autocorrelation function ρp¨q using the Parzen kernel wp¨q. An efficient sampler produces autocorrelations

that decay to zero within a few lags and hence lead to low inefficiency factors.
21We do not separately estimate the exogenous switching case because it is nested as a special case of our approach

(i.e., by imposing the parameter restriction ρ “ 04ˆ1). Although not reported in the paper, we find that the exogenous

switching model yields comparable parameter estimates and a marginally smaller log marginal likelihood. The
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Figure 4: Prior and posterior density functions of correlation parameters. Notes: The vertical lines
delineate the posterior means. All posterior densities are estimated using the Epanechnikov kernel function.

Figure 4 compares the prior and posterior densities of the correlation parameters pρzv, ρuv, ρgv, ρRvq,

which further substantiate the relevance of accounting for the endogenous feedback from historical

macroeconomic shocks to the prevailing policy regime. Despite the diffuse priors, the data turn out

to be informative to land the posteriors onto narrower areas of the parameter space that deliver

tightly estimated degrees of endogeneity in regime switching. Most noticeable is the endogenous

feedback from price markup shock, whose posterior mass falls almost entirely on the negative ter-

ritory. As a result, adverse supply disturbances unambiguously increase the likelihood of staying

in or shifting to the less active regime, consistent with a countercyclical monetary policy that is

‘leaning against the wind’. Less evident is the posterior distribution of the endogenous feedback

from technology growth shock that concentrates somewhat more on the negative territory. Thus, on

balance, favorable technological advancements tend to make the less active regime more likely, sug-

associated log likelihoods, however, can still be significantly different. To see this, let ∆ “ ln ppY1:T |θ̂q´ln ppY1:T |θ̂, ρ “

04ˆ1q, where θ̂ denotes the posterior mode under each model, and compare twice the differential ∆ (10.99) to the 5%

critical value of χ2 limit distribution with four degrees of freedom (9.49). It follows that the data favor the model

that accounts for the endogeneity in regime changes.
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Figure 5: Dynamic responses to price markup shocks at the posterior mode under endogenous switching.
Notes: Panels A–C plot the projected paths of key endogenous variables conditional on a two-year sequence
of price markup shocks t2, 2.5, 3, 2.5, 2, 1.5, 1, 0.5, 0, . . . , 0u. The exogenous-switching response is obtained
by setting ρzv “ ρuv “ ρgv “ ρRv “ 0 while keeping other parameters unchanged. The current regime is
set to be more active and held constant to compute the fixed regime response. All variables are in level
deviations from steady state.

gesting an accommodative monetary policy to promote long-term economic growth. These patterns

connect broadly to theoretical work and empirical observations about how central banks routinely

act.22 Government spending shock, on the other hand, plays no observable role in driving the regime

changes since in this simple model it only affects output but not output gap (hence consumption,

inflation, and nominal rate).

Just as the analytical example of Section 2 demonstrates, endogenizing regime changes here can

generate important expectations-formation effects beyond what the exogenous switching can do.

For example, consider a sequence of positive markup shocks t2, 2.5, 3, 2.5, 2, 1.5, 1, 0.5, 0, . . . , 0u that

aims to mimic the sharp increases in oil prices beginning in 1973 (see Panel A of Figure 6 below)

and reproduces the dire inflationary scenario afterward. This exogenous ‘intervention’ persists for

two years and peaks in magnitude after two quarters since it hits the economy. Figure 5 displays

22See Section 2 for an analysis of the endogenous feedback caused by monetary policy shock.
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the conditional forecasts of key model variables for the three cases.23 With the more active regime

initially in place, higher price markups not only dampen aggregate supply and hence engender the

usual stagflation—a mix of rising inflation (Panel B) and falling economic activity (Panel A)—as

in the fixed regime, but also trigger a negative feedback effect (ρuv “ ´0.71) that induces agents

to form a stronger belief in the less active regime under which inflation rises by more and output

falls by less. This shift in agents’ expectations spells out the discrepancies in the forecasts under

exogenous and endogenous switching (i.e., with and without the restriction ρuv “ 0). In response

to the inflationary pressure that outweighs the recessionary pressure, the monetary authority raises

the nominal rate according to its policy rule (Panel C).

Unlike the Markov switching filter of Kim (1994), our filter also produces an important by-

product—an estimated time series of the regime factor wt|t as portrayed in Panel A of Figure

6—that complements the information contained in the estimated regime-1 probability p1
t|t (Panel

C). In particular, this series exhibits prolonged swings that identify the U.S. monetary policy as

sluggishly fluctuating between the more active (i.e., wt|t ě τ) and less active (i.e., wt|t ă τ) regimes,

the timing and nature of which are broadly consistent with the previous empirical findings. Such

a pattern also aligns quite well with the narrative record of policymakers’ beliefs documented in

Romer and Romer (2004): the more active stance of the late 1950s and most of the 1960s under

chairman William McChesney Martin Jr. and of the mid-1980s and beyond under Paul Volcker and

Alan Greenspan stemmed from the conviction that inflation has high costs and few benefits; the

less active stance of most of the 1970s under Arthur Burns and G. William Miller stemmed from

an overestimate of the natural rate of unemployment as well as an underestimate of the sensitivity

of inflation to economic slack.

We conclude with a final remark on the regime factor. Loosely speaking, it conveniently packs,

through a reduced-form mechanism, various structural and extraneous sources of regime changes

into one single index that is likely to proxy for some observables relevant to the regime generating

process. To corroborate this interpretation, Panel A of Figure 6 relates the estimated regime factor

to a common measure of oil price inflation. The apparent negative correlation since 1973 stems

from the fact that the latter variable potentially identifies the price markup shock, which is found

to be the most important structural driver of monetary regime changes according to our estimated

DSGE model. For example, the precipitous run-ups in oil prices during the 1970s are well captured

23Because the model is inherently nonlinear and does not admit an analytical solution, sequential Monte Carlo

methods are required to numerically integrate out the regime index in each period. To compute the condi-

tional forecasts under endogenous switching, for instance, we simulate N “ 500 trajectories of regime states

ts
piq
T`1, . . . , s

piq
T`Ku

N
i“1 according to the time-varying transition probabilities (3.11)–(3.12), apply the regime-specific

policy function (3.14) to obtain the corresponding model variables tx
piq
T`1, . . . , x

piq
T`Ku

N
i“1 conditional on a pre-specified

sequence of markup shocks tεu,T`1, . . . , εu,T`Ku but zeroing out all other shocks, and take the sample average of

tx
piq
t u

N
i“1 for t “ T ` 1, . . . , T `K. In the special case of one-period shock t1, 0, . . . , 0u, these forecasts are equivalent

to the generalized impulse response functions of Koop et al. (1996).
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Figure 6: Filtered regime factor, markup shock, and regime-1 probability at the posterior mode under
endogenous switching. Notes: The left and right vertical axes in Panel A measure the filtered autoregressive
regime factor (solid line) and the oil price inflation (dashed line, constructed as the growth rate of Spot
Crude Oil Price: West Texas Intermediate (WTI) [WTISPLC], retrieved from FRED), respectively. The
horizontal line in Panel A delineates the threshold level. The policy regime is more (less) active when the
regime factor is above (below) the threshold level. Shaded bars indicate recessions as designated by the
National Bureau of Economic Research.

by the continuous upticks in the estimated markup shocks (Panel B).

4 Concluding Remarks

This paper aims at broadening the scope for understanding the complex interaction between recur-

rent regime changes and measured economic behavior. To that end, we introduce a threshold-type

endogenous regime switching into the popular DSGE models. In our approach, regime changes are,

through an autoregressive latent factor, jointly driven by the internal innovations that represent the

fundamental shocks inside the model and an external innovation that captures all other shocks left

outside of the model. This allows the behavior of underlying economic fundamentals to bear more

directly on the regime generating process. When regime switches are purely driven by the external
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innovation, our model reduces to one with exogenous Markov switching.

As an application of our methodology, we estimate a prototypical new Keynesian DSGE model

with threshold switching in monetary policy rule, and illustrate how the underlying structural shocks

impact agents’ expectations formation and monetary policy regimes through our novel endogenous

feedback channel. We find compelling statistical support for the endogenous feedback from historical

shocks to the prevailing policy regime.

We remind the reader that quantifying such feedback mechanism depends on nearly every aspect

of private and policy behavior. A comprehensive investigation calls for a richly structured medium-

scale DSGE model with fiscal details in both the model specification and the observable data.

Another natural extension of our framework is to permit multiple regimes and latent factors. We

defer these extensions to a sequel to this paper.
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Online Appendix

Throughout this appendix, we employ the following notation. Let Npµ,Σq denote the normal

distribution with mean vector µ and covariance matrix Σ, pNp¨|µ,Σq its probability density function,

and Φp¨q the cumulative distribution function of Np0, 1q. In particular, Np0nˆ1, Inq denotes the n-

dimensional standard normal distribution. Moreover, pp¨|¨q and Pp¨|¨q denote the conditional density

and probability functions, respectively. Lastly, Y1:T is a matrix that collects the sample for periods

t “ 1, . . . , T with row observations y1t.
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Appendix A: Transition Probability The prerequisite to computing transition probabilities

is to evaluate integrals of the form

F pa, b, c, d,m, V q “

ż 8

´8

ż a

´8

Φpb` cx` dyqpNpx|0, 1qpNpy|m,V qdxdy

“ PpZ1 ď a, Z2 ď b` cZ1 ` dZ3q (A.1)

for some a, b, c, d P R, where Z1, Z2 „ Np0, 1q, Z3 „ Npm,V q, and pZ1, Z2, Z3q are independent of

each other. Define W1 “ Z1 „ Np0, 1q and W2 “ Z2 ´ dZ3 „ Np´dm, 1` d2V q. Then pW1,W2q are

independent and (A.1) can be rewritten as

F pa, b, c, d,m, V q “ PpW1 ď a,W2 ´ cW1 ď bq

“

ż b

´8

ż a

´8

pNpx, y|µ,Σqdxdy (A.2)

where

µ “

¨

˝

0

´dm

˛

‚, Σ “

¨

˝

1 ´c

´c 1` c2 ` d2V

˛

‚

Therefore, the expected transition probabilities in Algorithm 1 of Appendix B can be calculated

as

ż 8

´8

Ppst “ 0|st´1 “ 0, λt´1,Ft´1qppλt´1|st´1 “ 0,Ft´1qdλt´1

“
1

Φpτ
?

1´ α2q
F

ˆ

τ
?

1´ α2,
τ

?
1´ ρ1ρ

,´
α

?
1´ ρ1ρ

?
1´ α2

,´
1

?
1´ ρ1ρ

, ρ1ς0
d,t´1|t´1, ρ

1P 0
d,t´1|t´1ρ

˙

and

ż 8

´8

Ppst “ 0|st´1 “ 1, λt´1,Ft´1qppλt´1|st´1 “ 1,Ft´1qdλt´1

“
1

1´ Φpτ
?

1´ α2q
F

ˆ

´τ
?

1´ α2,
τ

?
1´ ρ1ρ

,
α

?
1´ ρ1ρ

?
1´ α2

,´
1

?
1´ ρ1ρ

, ρ1ς1
d,t´1|t´1, ρ

1P 1
d,t´1|t´1ρ

˙

Moreover, the expected transition probabilities in Section 2.3 can be calculated as

Ep00pεi,tq “
1

Φpτ
?

1´ α2q
F

˜

τ
?

1´ α2,
τ

a

1´ ρ2
,´

α
a

1´ ρ2
?

1´ α2
,´

ρ
a

1´ ρ2
, 0, 1

¸
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and

Ep10pεi,tq “
1

1´ Φpτ
?

1´ α2q
F

˜

´τ
?

1´ α2,
τ

a

1´ ρ2
,

α
a

1´ ρ2
?

1´ α2
,´

ρ
a

1´ ρ2
, 0, 1

¸

Lastly, the transition probabilities in Section 2.2 and 3.2 can be calculated as

p00pεtq “
1

Φpτ
?

1´ α2q
F

ˆ

τ
?

1´ α2,
τ ´ ρ1εt
?

1´ ρ1ρ
,´

α
?

1´ ρ1ρ
?

1´ α2
, 0, ¨, ¨

˙

and

p10pεtq “
1

1´ Φpτ
?

1´ α2q
F

ˆ

´τ
?

1´ α2,
τ ´ ρ1εt
?

1´ ρ1ρ
,

α
?

1´ ρ1ρ
?

1´ α2
, 0, ¨, ¨

˙

Appendix B: Endogenous-Switching Kalman Filter We first introduce the threshold-

type endogenous switching framework, which extends that of Chang et al. (2017) and nests the

conventional Markov switching as a special case, into the state space form of a general dynamic

linear model. Like any regime switching model, the associated likelihood function depends on all

possible histories of the entire regime path. This history-dependent nature creates a tight upper

bound on the sample size that any exact recursive filter can comb through within a reasonable

amount of time.24 Any pragmatic solution will inevitably require some approximations. Building

on the ‘collapsing’ method of Kim (1994) to truncate the full history-dependence, we then develop

an endogenous-switching version of the Kalman filter to approximate the likelihood function and

estimate the unknown parameters as well as the state variables, including the autoregressive latent

factor.

B.1 State Space Model Let yt be an lˆ 1 vector of observable variables, xt an mˆ 1 vector of

latent state variables, and zt a k ˆ 1 vector of predetermined explanatory variables. Consider the

following regime-dependent linear state space model

yt “ Dst ` Zstxt ` Fstzt ` Ω1{2
st ut, ut „ Np0lˆ1, Ilq (B.1)

xt “ Cst `Gstxt´1 ` Estzt `MstΣ
1{2
st εt, εt „ Np0nˆ1, Inq (B.2)

where the measurement equation (B.1) links the observable variables to the state variables subject to

an lˆ1 vector of measurement errors Ω
1{2
st ut, the transition equation (B.2) describes the evolution of

the state variables driven by an nˆ1 vector of exogenous innovations Σ
1{2
st εt, and put, εtq are mutually

and serially uncorrelated at all leads and lags. The coefficient matrices pD¨, Z¨, F¨, C¨, G¨, E¨,M¨q and

the covariance matrices pΩ¨,Σ¨q are both allowed to depend on an index variable st “ 1twt ě τu

24As noted by Kim (1994), even with two regimes, there would be over 1000 cases to consider by period t “ 10.
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driven by a stationary autoregressive latent factor

wt “ αwt´1 ` vt, vt „ Np0, 1q (B.3)

where ´1 ă α ă 1 controls the persistency of wt.
25 As a result, the model is switching between

regime-0 and regime-1, depending upon whether wt takes a value below or above the threshold level

τ . In what follows, we call wt the regime factor.

We allow all current standardized transition innovations εt to jointly influence the next period

regime through their correlations with the innovation vt`1 to wt`1. Specifically,

¨

˝

εt

vt`1

˛

‚„ N

¨

˝

¨

˝

0nˆ1

0

˛

‚,

¨

˝

In ρ

ρ1 1

˛

‚

˛

‚, ρ1ρ ă 1 (B.4)

where ρ “ rρ1, . . . , ρns
1 “ corrpεt, vt`1q is a vector of correlation parameters that determines the

degree of endogeneity in regime changes—as ρ approaches to one in modulus, today’s transition

innovations impinge more forcefully on tomorrow’s regime factor. This type of endogenous impacts is

not only sustained due to the autoregressive form of wt, but also renders the transition probabilities

time-varying because they are all functions of εt as will be shown subsequently. In the special case

where εt and vt`1 are orthogonal (i.e., ρ “ 0nˆ1), the transition probabilities become constants and

the model reduces to one with conventional Markov switching; in fact, there exists a one-to-one

correspondence between our threshold-type switching specified by pα, τq and the Markov switching

specified by two transition probabilities [see Chang et al. (2017), Lemma 2.1].

Since ppvt`1|εtq is normal, we can replace vt`1 by

vt`1 “

n
ÿ

k“1

ρkεk,t `

˜

1´
n
ÿ

k“1

ρ2
k

¸1{2

ηt`1, ηt`1 „ Np0, 1q (B.5)

where tεk,tu
n
k“1 and the idiosyncratic innovation ηt`1 are all orthogonal and have unit variance. On

the surface, the residual ηt`1 of projecting vt`1 onto εt appears to be a vague source of regime change

in many economic applications where εt is interpreted as structural shocks with clear behavioral

meanings. But it indeed captures potential misspecification of the transition equation—ideally one

would expect the regime change to be fully driven by εt under the ‘true’ model—that leads to

systematic disparities between model-implied and actual observables. To the extent that ηt`1 picks

up those missing components beyond what are incorporated in εt, we may readily call εk,t and ηt

the k-th internal and external innovation, respectively.

25In the context of DSGE models, (B.2) represents a first-order approximation to the model’s regime-specific policy

function, and the coefficient and covariance matrices in (B.1)–(B.2) become sophisticated functions of structural

parameters as well as the regime index. See Section 3 for such an example.
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To quantify the importance of each source of regime change, iterate forward on (B.3) to obtain

wt`h “ αhwt `
řh
j“1 α

h´jvt`j for h ě 1. Combining with (B.5), we have the conditional variance

Vartpwt`hq “
n
ÿ

k“1

ρ2
k

h
ÿ

j“1

α2ph´jq

loooooomoooooon

due to εk

`

˜

1´
n
ÿ

k“1

ρ2
k

¸

h
ÿ

j“1

α2ph´jq

loooooooooooooomoooooooooooooon

due to η

“

h
ÿ

j“1

α2ph´jq

loooomoooon

total

, h ě 1 (B.6)

It follows directly that the percent of the h-step-ahead forecast error variance of the regime factor

due to the k-th internal (or external) innovation is given by ρ2
k (or 1 ´

řn
k“1 ρ

2
k), which is inde-

pendent of h. Letting h Ñ 8, ρ2
k (or 1 ´

řn
k“1 ρ

2
k) also measures the percentage contribution to

the unconditional variance of the regime factor and hence the extent to which the k-th internal (or

external) innovation contributes to the regime changes. For example, using a new Keynesian DSGE

model with endogenous regime switching, Section 3 presents an empirical calculation on how much

of the U.S. monetary policy shifts can be attributed to various internal innovations with distinct

behavioral interpretations.

B.2 Filtering Algorithm Estimating the state space model (B.1)–(B.2) entails the dual ob-

jectives of likelihood evaluation and filtering, both of which require the calculation of integrals over

the latent variables (i.e., xt and st). While the system is linear in xt and driven by Gaussian in-

novations, a complication arises from the presence of st; it introduces into the overall model struc-

ture additional nonlinearities that invalidate evaluating these integrals via the standard Kalman

filter. Nevertheless, approximate analytical integration is still possible through a marginalization-

collapsing procedure. In the marginalization step, we integrate out the state variables by exploiting

the linear and Gaussian structure conditional on the most recent regime history, for which the

standard Kalman filter can be applied. In the collapsing step, we approximate an otherwise ex-

ponentially growing number of history-dependent filtered distributions by two mixture Gaussian

distributions in each period. This reduction effectively breaks the full history-dependence of the

likelihood function and therefore makes the computation feasible and highly efficient. We call the

resulting algorithm the endogenous-switching Kalman filter.

The key to operationalizing the above two-step procedure is an appropriate augmentation of the

state space model. To that end, we introduce a dummy vector dt “ εt and augment the state vector
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xt as ςt “ rx
1
t, d

1
ts
1. Accordingly, we rewrite the measurement and transition equations as

yt “ Dst ` Fstzt
looooomooooon

rDst

`

´

Zst 0lˆn

¯

loooooomoooooon

rZst

¨

˝

xt

dt

˛

‚

loomoon

ςt

`Ω1{2
st ut (B.7)

¨

˝

xt

dt

˛

‚

loomoon

ςt

“

¨

˝

Cst ` Estzt

0nˆ1

˛

‚

looooooomooooooon

rCst

`

¨

˝

Gst 0mˆn

0nˆm 0nˆn

˛

‚

loooooooomoooooooon

rGst

¨

˝

xt´1

dt´1

˛

‚

looomooon

ςt´1

`

¨

˝

MstΣ
1{2
st

In

˛

‚

looooomooooon

ĂMst

εt (B.8)

where the dependence of p rDst , rCstq on zt has been suppressed for notational convenience. As will be

shown in Algorithm 1 below, our main filtering algorithm, which is based on the augmented state

space system (B.7)–(B.8), tracks the regime indices of both the current period and its preceding

period in each recursion. At an exponentially rising computation cost though, one may improve the

approximation by tracking even earlier regime history and, in the end, recover the exact likelihood

function.

Let Ft ” σptzs, ysusďtq denote the information available at period t. Define the predictive proba-

bility of regime-j at period t, joint with regime-i at period t´ 1, as p
pi,jq
t|t´1 ” Ppst´1 “ i, st “ j|Ft´1q

and the filtered marginal probability of regime-j at period t as pjt|t ” Ppst “ j|Ftq. Also write a

battery of four conditional forecasts of ςt and their forecast error covariances as

ς
pi,jq
t|t´1 ” Erςt|st´1 “ i, st “ j,Ft´1s

P
pi,jq
t|t´1 ” Erpςt ´ ςt|t´1qpςt ´ ςt|t´1q

1
|st´1 “ i, st “ j,Ft´1s

where ςt|t´1 “ Erςt|Ft´1s. Then the filter can be summarized by the following steps.

Algorithm 1. (Endogenous-Switching Kalman Filter)

1. Initialization. For i “ 0, 1, initialize the conditional mean vector and covariance matrix of

ς0, pς i0|0, P
i
0|0q, using the invariant distribution under regime-i. Set p0

0|0 “ Φpτ
?

1´ α2q and

p1
0|0 “ 1´ p0

0|0 according to the invariant distribution of wt, i.e., Np0, 1{p1´ α2qq.

2. Recursion. For t “ 1, . . . , T , the filter accepts two sets of triple inputs tpς it´1|t´1, P
i
t´1|t´1,

pit´1|t´1qu
1
i“0, invokes the one-step Kalman filter to calculate the required integrals conditional

on four possible mixes of the regimes in the current period and its preceding period, and

returns two sets of updated triple outputs tpςjt|t, P
j
t|t, p

j
t|tqu

1
j“0.

(a) Forecasting. First, apply the forecasting step of the Kalman filter for the state variables
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to obtain

ς
pi,jq
t|t´1 “ rCj ` rGjς

i
t´1|t´1 (B.9)

P
pi,jq
t|t´1 “ rGjP

i
t´1|t´1

rG1j `
ĂMj

ĂM 1
j (B.10)

for i “ 0, 1 and j “ 0, 1. Next, define λt ” ρ1εt and compute the predictive joint

probabilities

p
p0,0q
t|t´1 “ Ppst “ 0|st´1 “ 0,Ft´1qPpst´1 “ 0|Ft´1q

“ p0
t´1|t´1

ż 8

´8

Ppst “ 0|st´1 “ 0, λt´1,Ft´1qppλt´1|st´1 “ 0,Ft´1qdλt´1 (B.11)

and p
p0,1q
t|t´1 “ p0

t´1|t´1 ´ p
p0,0q
t|t´1. To evaluate the integral in (B.11), note that the predic-

tive transition probability of remaining in regime-0 between periods t ´ 1 and t can be

computed as

Ppst “ 0|st´1 “ 0, λt´1,Ft´1q “ Ppst “ 0|st´1 “ 0, λt´1q

“

şτ
?

1´α2

´8
Φρpτ ´ αx{

?
1´ α2 ´ λt´1qpNpx|0, 1qdx

Φpτ
?

1´ α2q

where Φρpxq ” Φpx{
?

1´ ρ1ρq, the first equality holds since ppwt|wt´1, λt´1,Ft´1q “

ppwt|wt´1, λt´1q, and the second equality will be derived in Section 2.2. Clearly, the

transition probability Ppst “ 0|st´1 “ 0, λt´1q depends on the value of λt´1 and hence

εt´1 but becomes a constant when ρ “ 0nˆ1. Moreover, we approximate

ppλt´1|st´1 “ 0,Ft´1q « pNpλt´1|ρ
1ς0
d,t´1|t´1, ρ

1P 0
d,t´1|t´1ρq

where pς0
d,t´1|t´1, P

0
d,t´1|t´1q can be extracted from pς0

t´1|t´1, P
0
t´1|t´1q corresponding to dt´1.

To the extent that the filtered distribution of εt´1 serves as an essential input into the

approximation of ppλt´1|st´1 “ 0,Ft´1q, this justifies augmenting the state space system

by the dummy vector dt “ εt. Taken together, (B.11) can be approximated as

p
p0,0q
t|t´1 «

p0
t´1|t´1

Φpτ
?

1´ α2q

ż τ?
1´ρ1ρ

´8

ż τ
?

1´α2

´8

pNpx, y|µ0,Σ0qdxdy (B.12)
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where

µ0 ”

¨

˝

0
ρ1ς0

d,t´1|t´1?
1´ρ1ρ

˛

‚, Σ0 ”

¨

˚

˝

1 α?
1´ρ1ρ

?
1´α2

α?
1´ρ1ρ

?
1´α2

1` α2

p1´ρ1ρqp1´α2q
`

ρ1P 0
d,t´1|t´1

ρ

1´ρ1ρ

˛

‹

‚

Similarly, we can approximate

p
p1,0q
t|t´1 «

p1
t´1|t´1

1´ Φpτ
?

1´ α2q

ż τ?
1´ρ1ρ

´8

ż ´τ
?

1´α2

´8

pNpx, y|µ1,Σ1qdxdy (B.13)

and p
p1,1q
t|t´1 “ p1

t´1|t´1 ´ p
p1,0q
t|t´1, where

µ1 ”

¨

˝

0
ρ1ς1

d,t´1|t´1?
1´ρ1ρ

˛

‚, Σ1 ”

¨

˚

˝

1 ´α?
1´ρ1ρ

?
1´α2

´α?
1´ρ1ρ

?
1´α2

1` α2

p1´ρ1ρqp1´α2q
`

ρ1P 1
d,t´1|t´1

ρ

1´ρ1ρ

˛

‹

‚

Finally, the integrals in (B.12)–(B.13) can be easily evaluated using the cumulative bi-

variate normal distribution function. Formulas for calculating the transition probabilities

are in Appendix A.

(b) Likelihood evaluation. Apply the forecasting step of the Kalman filter for the observ-

able variables to obtain

y
pi,jq
t|t´1 “ rDj ` rZjς

pi,jq
t|t´1 (B.14)

F
pi,jq
t|t´1 “ rZjP

pi,jq
t|t´1

rZ 1j ` Ωj (B.15)

for i “ 0, 1 and j “ 0, 1. Then the period-t likelihood contribution can be computed as

ppyt|Ft´1q “

1
ÿ

j“0

1
ÿ

i“0

pNpyt|y
pi,jq
t|t´1, F

pi,jq
t|t´1qp

pi,jq
t|t´1 (B.16)

(c) Filtering. First, apply the Bayes formula to update

p
pi,jq
t|t “

pNpyt|y
pi,jq
t|t´1, F

pi,jq
t|t´1qp

pi,jq
t|t´1

ppyt|Ft´1q
(B.17)

and calculate pjt|t “
ř1
i“0 p

pi,jq
t|t . Next, apply the filtering step of the Kalman filter for the

state variables to obtain the updated conditional forecasts of ςt and their forecast error
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covariances

ς
pi,jq
t|t “ ς

pi,jq
t|t´1 ` P

pi,jq
t|t´1

rZ 1jpF
pi,jq
t|t´1q

´1
pyt ´ y

pi,jq
t|t´1q (B.18)

P
pi,jq
t|t “ P

pi,jq
t|t´1 ´ P

pi,jq
t|t´1

rZ 1jpF
pi,jq
t|t´1q

´1
rZjP

pi,jq
t|t´1 (B.19)

for i “ 0, 1 and j “ 0, 1. To avoid a twofold increment in the number of cases to consider

for the next period, collapse pς
pi,jq
t|t , P

pi,jq
t|t q into26

ςjt|t «
1
ÿ

i“0

p
pi,jq
t|t

pjt|t
ς
pi,jq
t|t , P j

t|t «

1
ÿ

i“0

p
pi,jq
t|t

pjt|t

”

P
pi,jq
t|t ` pςjt|t ´ ς

pi,jq
t|t qpς

j
t|t ´ ς

pi,jq
t|t q

1
ı

(B.20)

Further collapsing pςjt|t, P
j
t|tq into

ςt|t «
1
ÿ

j“0

pjt|tς
j
t|t, Pt|t «

1
ÿ

j“0

pjt|t

”

P j
t|t ` pςt|t ´ ς

j
t|tqpςt|t ´ ς

j
t|tq

1
ı

(B.21)

gives the filtered state variables.

3. Aggregation. The likelihood function is given by ppY1:T q “
śT

t“1 ppyt|Ft´1q.

Several remarks about this filtering algorithm are in order. First, while its general structure

resembles that of the mixture Kalman filter in Chen and Liu (2000), our filter requires no sequential

Monte Carlo integration and is thus computationally efficient. By analytically integrating out xt

and st, our filter also simplifies estimating the model via classical or Bayesian approach that would

otherwise require a stochastic version of the expectation-maximization algorithm or Gibbs sampling,

respectively [Wei and Tanner (1990), Tanner and Wong (1987)].

Second, in line with Kim (1994), the collapsing step (B.20) involves an approximation—its input

ς
pi,jq
t|t does not calculate the conditional expectation Erςt|st´1 “ i, st “ j,Fts exactly since ppςt|st´1 “

i, st “ j,Ftq amounts to a mixture of Gaussian distributions for t ą 2. Consequently, the period-t

likelihood ppyt|Ft´1q and filtered states ςt|t only approximately calculate their true values.

Third, an estimated regime factor wt|t can be easily extracted as a useful by-product of running

the filter. Using the stored values of ς id,t´1|t´1, P i
d,t´1|t´1, pit´1|t´1, pNpyt|y

pi,jq
t|t´1, F

pi,jq
t|t´1q, and ppyt|Ft´1q,

26If pjt|t “ 0, the conditional probability p
pi,jq
t|t {p

j
t|t “ Ppst´1 “ i|st “ j,Ftq in (B.20) is not well defined. In this

case, we set pςjt|t, P
j
t|tq “ pς

1´j
t|t , P 1´j

t|t q.
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it is straightforward to evaluate

ppwt|Ftq “

1
ÿ

i“0

ż 8

´8

ppwt, st´1 “ i, λt´1|Ftqdλt´1

“

1
ÿ

i“0

ppyt|wt, st´1 “ i,Ft´1qp
i
t´1|t´1

ppyt|Ft´1q

ż 8

´8

ppwt|st´1 “ i, λt´1qppλt´1|Ft´1qdλt´1 (B.22)

where ppyt|wt, st´1 “ i,Ft´1q “ pNpyt|y
pi,jq
t|t´1, F

pi,jq
t|t´1q for j “ 1twt ě τu and

ppwt|st´1 “ i, λt´1q “

$

’

’

’

&

’

’

’

%

Φ

ˆ
c

1´ρ1ρ`α2ρ1ρ
1´ρ1ρ

´

τ´
αpwt´λt´1q

1´ρ1ρ`α2ρ1ρ

¯

˙

Φpτ
?

1´α2q
pN

´

wt|λt´1,
1´ρ1ρ`α2ρ1ρ

1´α2

¯

, i “ 0

1´Φ

ˆ
c

1´ρ1ρ`α2ρ1ρ
1´ρ1ρ

´

τ´
αpwt´λt´1q

1´ρ1ρ`α2ρ1ρ

¯

˙

1´Φpτ
?

1´α2q
pN

´

wt|λt´1,
1´ρ1ρ`α2ρ1ρ

1´α2

¯

, i “ 1

(B.23)

is derived in Corollary 3.3 of Chang et al. (2017). Moreover, we again approximate ppλt´1|Ft´1q

by pNpλt´1|ρ
1ς id,t´1|t´1, ρ

1P i
d,t´1|t´1ρq or simply the Dirac measure δρ1ςi

d,t´1|t´1
pλt´1q for st´1 “ i. Then

the filtered regime factor can be computed as

wt|t “

ż 8

´8

wtppwt|Ftqdwt «
N
ÿ

k“1

wkt p̂pw
k
t |Ftq

where we approximate ppwt|Ftq by a discrete density function p̂pwt|Ftq defined on a swarm of grid

points twkt u
N
k“1 with their corresponding weights p̂pwkt |Ftq “ ppwkt |Ftq{

řN
k“1 ppw

k
t |Ftq.

Lastly, it is also possible to allow the model to switch among more than two regimes, but this

would require introducing either multiple regime factors or threshold levels to operationalize in our

setup. Such an extension, though theoretically appealing, is beyond the consideration of this paper.

Appendix C: User Guide This is a brief tutorial that provides information for implementing

the perturbation approach of Maih and Waggoner (2018) to solve the empirical model in Section

3.1.

C.1 RISE Model File It is the file as07_cmt with extension .rs that contains declarations of

endogenous variables, exogenous variables and parameters. Those atoms are respectively declared

using keywords @endogenous, @exogenous and @parameters. All declarations are separated with a

comma and/or with one or more white spaces. All exogenous variables (shocks) are assumed to be

normally distributed with mean zero and standard deviation 1. This assumption is not restrictive

as those variables can always be scaled by a parameter.

Whenever a parameter is switching, we have to attach it to a Markov process controlling its

behavior and declare the number of states for the parameter, e.g., @parameters(vol,3) siga sigb
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means that Markov process vol has three states and controls the behavior of siga and sigb. Those

parameters switch in locksteps. A parameter cannot be controlled by two or more Markov processes.

There could be many Markov processes in each model. Each Markov process gives rise to tran-

sition probabilities that are either constant (exogenous switching) or time-varying (endogenous

switching). Transition probabilities follow a specific syntax with exactly three underscores, e.g.,

vol_tp_1_3 is the transition probability in Markov process vol, for going from state 1 in the

current period to state 3 in the next period.

Constant transition probabilities are declared as parameters while time-varying transition prob-

abilities are endogenous variables with equations defined in the model block (see below).

For a Markov process in h states (h ą 1), only h ˆ ph ´ 1q transition probabilities need to

be declared (exogenous switching) or given equations for (endogenous switching). The missing h

transition probabilities are the ones on the diagonal of the transition matrix, i.e., the probabilities

of staying in each state. RISE does not allow those to be defined.

The keyword for declaring the model block is @model. The model block contains the structural

equations for the system as well as, possibly, equations for time-varying transition probabilities in

case there are some. It may also contain local definitions. These are preceeded by a # sign. The

equations for time-varying transition probabilities are preceeded by a ! sign. All equations end with

a semicolon.

If one wants to conduct a filtering or a filtering-based exercise, observable variables have to be

declared. The keyword for declaring observable variables is @observables.

C.2 Differentiation Because RISE uses perturbation as the main solution strategy, it needs to

be able to take derivatives of each function. The symbolic and automatic differentiators in RISE are

prepared to take derivatives of most common functions : abs, acos, acosh, &, asin, asinh, atan,

atanh, cos, cosh, cot, eq, erf, exp, ge, gt, le, log, log10, lt, max, min, minus, plus, mpower,

mrdivide, mtimes, ne, normcdf, normpdf, or, power, rdivide, sign, sin, sinh, sqrt, tan, tanh,

times, uminus, uplus, and combinations of those.

However, in some applications the user may have a function that does not belong in the list

above. In our application, this is the case for a function we named yoosoon.m, which computes the

integrals entering the calculation of our time-varying transition probabilities. Whenever we face a

situation where we are in the presence of a function that RISE does not know how to differentiate,

the user has to provide the derivatives of the function up to the order of approximation desired.

Suppose the alien function takes k arguments. Then it should be written in such a way that it

accepts another two arguments, i.e., k ` 2 arguments in total. Whenever RISE wants to evaluate

the function, it will call it with k arguments. But whenever it wants to compute a derivative,

the function will be called with k ` 2 arguments. Argument number k ` 1 is always ’diff’, while

argument number k`2 is the order of differentiation. Therefore, y=yoosoon(z,a,L,H) will evaluate

the function whereas dy=yoosoon(z,a,L,H,’diff’,1) will compute the first-order derivative (with
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respect to the first argument), dy2=yoosoon(z,a,L,H,’diff’,2) will compute the second-order

derivate, and dyn=yoosoon(z,a,L,H,’diff’,n) will compute the nth-order derivative.

C.3 Constructing a RISE Model Object When the RISE toolbox is loaded, a model object

is constructed by issuing the statement m=rise(modelFilename), where in the current example,

modelFilename=’as07_cmt’.

In the presence of alien functions, those functions need to be declared to RISE at the construction

of the model object. The syntax m=rise(modelFilename) now becomes m=rise(modelFilename,

’alien_list’,listOfAliens), where in our application listOfAliens=’yoosoon’, but could in

general be a cell array of strings.

C.4 Solving a (Parameterized) Model in the Presence of Regime Switching With-

out regime switching, we solve a model by issuing the command m=solve(m), provided that the

model is parameterized and that the steady state is either provided or easy to compute numerically.

The solving of the model in this way involves a standard perturbation, which turns off the effect of

the uncertainty stemming from future shocks.27

In the presence of regime switching, an advanced perturbation strategy is called for. In addition to

turning of the uncertainty from future shocks, this perturbation also has to turn off the uncertainty

coming from a different type of shocks: markov processes. Two main perturbation strategies are

available. The one we use in this paper is the one by Maih and Waggoner (2018) as described in

the main text. We instruct RISE to choose that perturbation strategy by issuing the command

m=solve(m,’solve_perturbation_type’,’mw’).

By default, RISE solves a regime switching model using functional iteration. In the pres-

ence of the Maih-Waggoner perturbation, there are computational gains to be had. RISE im-

plements two solvers to accompany the Maih-Waggoner perturbation. One of them with name

’dsge_schur’ uses the generalized Schur decomposition and the other one with name ’dsge_udc’

uses the method of undetermined coefficients. To add a particular solver, use the command

m=solve(m,’solver’,solverName), where solverName could be ’mn’ (Newton solver), ’mfi’

(functional iteration), ’fwz’ (Farmer et al. (2011)), ’dsge_udc’, ’dsge_schur’, etc.
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