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1 Introduction

Historically, crude oil prices have exhibited periods of increased volatility and periods of

relative calm. Spikes in oil prices have been observed in the heels of political unrest in

the Middle East, terrorist attacks on Saudi Arabia’s oil facilities, and have often coincided

with economic downturns in the U.S. economic activity such as the global shutdown that

ensued the onset of the Covid-19 pandemic. Over the years, concerns regarding heightened

volatility and unexpected increases in oil prices –as well as the burdens they may pose on

households, businesses and investors– have been reflected in policy statements by different

chairmen of the Federal Reserve System and other central banks, demands from senators

to the U.S. Commodity Futures Trading Commission, and an extensive literature on the

economic impact of oil price shocks.

How do we best model the transition from periods of calm to periods of turmoil in the oil

market? Do oil price fluctuations and oil price uncertainty affect inflation and the inflation

anchor? Work by Coibion and Gorodnichenko (2015) provides empirical evidence that oil

price increases between 2009 and 2011 played a key role in the rise of household inflation

expectations during the period of moderate inflation. But could unexpected increases in the

rate of growth of oil prices or heightened oil price uncertainty result in starker disagreement

among forecasters or household inflation expectations?

The objective of this paper is to address these questions in the context of structural

vector autoregressive (SVAR) model while at the same time deriving a measure of oil market

risk that could be of use to policy makers and analysts. We start by estimating a Markov

switching model with dynamic feedback and interactions to inquire into the process that

drives transitions from periods of calm to periods of turmoil in oil markets. Our inquiry

into these transitions is prompted by the historical behavior of the West Texas Intermediate

(WTI) and its percentage change depicted in Figure 1. Crude oil prices, as other financial

asset prices, often experience abrupt fluctuations. For instance, as Figure 1 illustrates, the

price of the WTI rose steadily from a $19.46 per barrel in November 2001 to a peak of

$139.96 in June 2008, and then it plunged to $41.96 in January 2009. As for the volatility

of the WTI, it was moderate during the mid and late 1990s, increased considerably in the

early 2000s and skyrocketed during the Covid-19 crisis.

To study oil price dynamics, we estimate an endogenous regime switching model where

we allow the mean and volatility of the growth rate of the WTI to transition in an unsynchro-

nized manner between two (high/low) states of the mean and two (high/low) states of the

volatility, respectively. Hereafter, we will refer to this model as the unsynchronized mean-
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volatility switching model. This modeling strategy allows the mean and volatility regimes

to be determined by two correlated latent factors, one driving the mean regimes and the

other driving the volatility regimes, while it also accounts for possible feedback from past

innovations in the growth of the WTI to both mean and volatility regime factors.

We evaluate the out-of-sample performance of the endogenous regime switching model

relative to that of two close competitors: the standard regime switching model where shifts

are driven by an exogenous Markov chain and the switching model with time-varying tran-

sition probabilities (TVTP) proposed by Diebold et al. (1994) where we use two alternative

predetermined variables (lagged money supply, lagged inflation, and the lagged change in

the WTI price.).1

Several insights regarding the behavior of the WTI prices are derived from our analysis.2

First, the endogenous unsynchronized mean-volatility switching model does a better job at

capturing the evolution of oil prices than an exogenous switching model. Indeed, there is

a great degree of variability in the transition probabilities over time, especially around the

Persian Gulf War, the Great Recession, and the onset of the Covid-19 pandemic. In addition,

the endogenous volatility switching model can outperform the alternatives in forecasting out

of sample.

A result of interest for policy makers, analysts, and investors is that, when the current

regime is known, allowing the regime switching to evolve in an endogenous manner is very

informative regarding the likelihood of whether the oil price change next period will remain

in the same regime. When we examine four periods of low mean and high volatility, we

find that the probability of staying in this regime declined quickly for all episodes, but the

Great Recession. Thus, not all episodes should convey the same degree of “fear” to economic

agents. Clearly, the Covid-19 pandemic resulted in extremely high risk levels not seen in the

previous half century, as reflected in the evolution of the extracted volatility regime factor.

Could this extracted volatility regime factor be used to gauge risk in periods where

alternative measures of oil market volatility are not readily available? After all, the Chicago

Board Options Exchange did not publish the implied oil volatility index, OVX, before 2007.

To answer this question, we compare the extracted volatility regime factor with the OVX

and with commonly-used measures of economic uncertainty. We illustrate how the extracted

1The choice of variables is based on LASSO estimation results, available from the authors upon request,
which suggest these two variables have the most explanatory power for movements in the mean and volatility
of the WTI price. In this way, we try to stack the odds against our specification and towards the TVTP
model.

2Estimation results available from the authors upon request, show similar results for Brent.

2



volatility factor could constitute a measure of oil market “risk” and, thus, provide analysts

and investors with a tool to gauge volatility in the crude oil market.

Using a structural vector autoregressive model, we then show how the extracted regime

factors can aid in understanding the response of inflation, inflation expectations and infla-

tion disagreement to increased uncertainty in oil markets. On the one hand, we find that

unexpected increases in the mean factor (i.e., faster increases in oil prices ) lead to higher in-

flation and short-run and long-run expected inflation, as well as higher disagreement among

both professional forecasters and households. The short-run response of household inflation

expectations and disagreement exceeds that of professional forecasters by an order of mag-

nitude. This result is consistent with the findings of Coibion and Gorodnichenko (2015)

who suggest that oil prices are more salient for households. On the other hand, we find

that increases in the ‘risk factor’ lead to lower inflation as well as short-run and long-run

inflation expectation; this indicates that, as other uncertainty shocks, heightened oil market

uncertainty acts as a negative demand shock. Nevertheless, increases in oil price uncertainty

raise inflation disagreement and, thus, can pose a threat to inflation anchoring.

Our work is closely related to two strands of literature that employ Markov switching

(MS) models in the analysis of oil price fluctuations. Researchers have relied on MS models

to forecast volatility of crude oil prices and compare the predictive ability of MS-GARCH and

MS long memory models to selected GARCH competitors (see e.g., Di Sanzo 2018, Herrera,

Hu and Pastor 2018 and references therein). This strand of literature has found evidence

that MS models tend to have superior predictive ability, especially during periods of turmoil.

Our paper differs in that the forecasting literature mainly relies on MS models where the

transition probabilities evolve in an exogenous manner. In contrast, in the endogenous MS

model employed in this paper, time-variation in the transition probabilities stems from the

feedback mechanism and the dynamic interactions between the mean and volatility regime

factors.3

Our work is also related to studies that employ endogenous MS models to investigate the

relationship between oil price fluctuations and the macroeconomy.4 For instance, Bjørnland

et al. (2018) develop a Markov switching rational expectations New Keynesian model to

study the role of oil price shocks in accounting for variability in the U.S. economy, as well as

3A brief out-of-sample forecasting evaluation shows that our volatility switching model with endogenous
feedback produces a smaller RMSE than the alternative models with time-varying transition probabilities
for five- and ten-year rolling window forecasting schemes.

4Endogenous MS models have also been used to study the transmission of financial, monetary and fiscal
policy shocks. See, for instance, Davig and Leeper (2006), Benigno, et al. (2020), Hubrich and Waggoner
(2021), and Chang, Kwak and Qui (2021).
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the contribution of a more hawkish monetary policy regime to the decline in macroeconomic

volatility. Along similar lines and using data for the euro area, Holm-Hadulla and Hubrich

(2017) identify two different regimes in the response of economic activity and inflation to oil

price shocks: an adverse regime, where oil price shocks result in significant and sustained

changes in economic activity and inflation, and a normal regime where the response of these

variables is smaller and shorter-lived.

Our paper differs from the above strand of literature in several aspects. First, we do not

build a structural model of the interaction between the economy and the oil market. Hence,

we do not identify a-priori the possible sources of changes in regime (e.g., monetary policy

states or past inflation rates), nor do we explicitly model the interactions between oil prices

and the macroeconomy. Instead, we estimate a reduced form model where we endogenize the

transition probabilities by allowing them to depend only on the past behavior of the crude

oil prices. Then, we use the extracted latent regime factors in a small-scale SVAR model

to illustrate how our measure of oil market uncertainty can be useful to policy makers and

analysts in understanding the response of inflation, inflation expectations and disagreement

to increased oil market uncertainty. A disadvantage of our approach is that we cannot

provide a structural interpretation of the source of oil price fluctuations. However, our

approach allows us to be agnostic regarding the variables that might drive the transition

between regimes. Furthermore, estimation is relatively straight-forward – we use a modified

version of the Kalman filter and rely on maximum likelihood estimation instead of Bayesian

methods – and it allows us to derive a measure of oil market “risk”.

Finally, our paper builds on a broad line of literature exploring the drivers of inflation

expectations (see Coibion and Gorodnichanko, 2015 and references therein). It is more

closely related Binder (2018) and Kilian and Zhou (2022) who explore the effect of gasoline

price changes on inflation expectations. Our approach differs from these studies in that we do

not estimate a structural model relating gasoline prices changes and inflation expectations.

Instead, we focus on the effect of the mean and volatility regime factors on inflation, inflation

expectations and, especially, disagreement.

This paper is organized as follows. Section 2 describes the endogenous regime switching

models and the data. Section 3 describes the estimation results for a one factor (volatility

switching) and a two-factor (volatility-mean switching) models, discusses how these estimates

can be used to evaluate the likelihood to remain in a high volatility or a low mean-high

volatility regime, and evaluate the relative out-of-sample performance of the models. Section

4 illustrates how the extracted latent volatility regime factor may constitute a measure of

oil market risk, and inquire into the effect of the increased oil price uncertainty on inflation,
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inflation expectations, and disagreement. Section 5 concludes.

2 The Behavior of Crude Oil Prices: Endogenous ver-

sus Exogenous Regime Switching

An advantage of using a Markov switching model for studying the evolution of oil prices is

that it is well-suited to investigate time series processes characterized by periods of calm

and turmoil. Indeed, several studies suggest such models do a good job at tracking and

forecasting the evolution of crude oil prices.5 While conventional regime switching models

are well-understood and econometric toolboxes are readily available for their estimation,

conventional models do not allow feedback from past oil price changes into the transition

probabilities. As such, they do not provide researchers with an effective tool to infer the

likelihood of transitioning to a different state when the current state is known. In this

section we briefly describe the endogenous Markov-switching models, describe the data and

the estimation strategy.

2.1 Endogenous versus Exogenous Regime Switching Models

Consider an endogenous regime switching model similar to Chang, Choi and Park (2017)

– hereafter CCP –, which differs from their specification in that the mean and volatility of

crude oil price changes are allowed to switch in an unsynchronized manner. Four regimes for

the log difference in oil prices yt are possible:6 (1) low-volatility, low-mean; (2) low-volatility,

high-mean; (3) high-volatility, low-mean; and (4) high-volatility, high-mean. Such a model

is given by

yt − µ (sm,t) =

p∑
k=1

γk (yt−k − µ (sm,t−k)) + σ (sv,t)ut (1)

The parameters µsm,t and σsv,t denote the time-varying conditional mean and volatility of

the oil price changes that depend on two distinct, but correlated state processes sm,t and

sv,t. The process sm,t specifies the binary state of the mean, with sm,t = 0 and 1 respectively

representing low and high mean states. Similarly, the binary volatility state process sv,t

specifies low and high volatility states with sv,t = 0 and 1.7

5See Herrera, Hu and Pastor (2018) for results of Markov switching tests indicating such a model is
appropriate in this context.

6Throughout the text we use the terms oil price change and growth in oil prices to describe yt.
7For regime identification, we assume µ(0) < µ(1) and σ(0) < σ(1).
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We specify the state processes si,t for i = m, v as

si,t = 1 {wi,t ≥ τi}

with a latent regime factor wi,t and a threshold τi. The mean (volatility) regime factor wm,t

(wv,t) determines the switch between states of low and high mean (volatility) according to

whether it is below or above the threshold τm (τv). We let wt= (wm,t, wv,t)
′ and jointly con-

sider the dynamics of the two latent factors by assuming they follow a first-order stationary

bivariate autoregressive process

wt = Awt−1 + vt

where

A =

(
amm amv
avm avv

)
,

the modulus of all eigenvalues of A is less than unity, the innovations vt= (vm,t, vv,t)
′ are

independent and identically distributed over time and correlated with the previous oil price

change innovation ut−1. Specifically, we assume (ut−1, v
′
t)
′ ∼ i.i.d.N(0,P) with a correlation

matrix

P =

(
1 ρ′vu
ρvu Pvv

)
=

 1
ρvm,u 1
ρvv ,u ρvm,vv 1

 (2)

where variances are normalized for identification.

Note that we could restrict the switch in the volatility and the mean to be synchronized,

in which case the model is given by8

yt − µ (st) =

p∑
k=1

γk (yt−k − µ (st−k)) + σ(st)ut. (3)

Then, a single state, st, and latent factor, wt govern switches in both µ and σ, where

wt = αwt−1 + vt, |α| < 1, and

(
ut−1
vt

)
∼ i.i.d.N

(
0,

(
1 ρv,u
ρv,u 1

))
. We refer to that

model as the synchronized switching model. We could further assume that only the volatility

switches between regimes, in which case the model would simplify to

yt = µ+

p∑
k=1

γk (yt−k − µ) + σ (st)ut (4)

8This restricted model is a generalized version of the Markov switching model proposed by Hamilton
(1989, 2010), where the regime switches are endogenized via the covariance between ut−1 and vt, ρu,v.
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where the latent factor, and innovations are specified as above.9 We refer to this model

as the volatility switching model. When ρv,u = 0, the model in (4) is equivalent to the

exogenous Markov switching model for volatility.

However, a-priori, there is no reason to believe that only the volatility switches or that

switches in the mean and volatility are synchronized. For instance, after the oil price collapse

of 1986, the rate of growth of oil prices was below the historical mean while volatility was high.

Volatility also skyrocketed during the Covid-19 pandemic, whereas oil prices plummeted. In

contrast, at the beginning of the Persian Gulf war both the mean and volatility of oil prices

increased.

To get a better grasp of what this generalization of the CCP model entails for the dynam-

ics of crude oil price changes, let us examine the role of the different parameters. In the un-

synchronized model (1), the evolution of the bivariate latent regime factor wt = (wm,t, wv,t)
′

is driven by the innovations vm,t and vv,t collected in the vector vt = (vm,t, vv,t)
′, and by

the dynamic interaction between the two factors captured by the autoregressive coefficient

matrix A and their contemporaneous correlations given by the correlation matrix P . In

particular, if amv 6= 0, then the volatility regime factor helps to predict the mean regime

factor. Conversely, if avm 6= 0, then the mean regime factor helps to predict the volatility

regime factor. When A is diagonal, larger values of amm and avv , respectively, would indi-

cate higher persistence in the mean and volatility regime factors. The correlation parameters

ρu,vm and ρu,vv capture feedback from past oil price change innovations, ut−1, to the mean and

volatility factors. Endogenous feedback may occur through two different channels. Shocks

to crude oil price changes at time t would affect the regime switching in the mean at time

t + 1 if ρu,vm 6= 0. Furthermore, shocks to rate of growth of oil prices at time t could also

affect the regime switching in the volatility at t + 1 if ρu,vv 6= 0. Contemporaneous correla-

tion between the factor innovations vm,t and vv,t net of the contribution of ut−1 is given by

ρvmvv ·u = ρvm,vv−ρvm,uρvv ,u. Thus, we may examine a null hypothesis of no contemporaneous

or dynamic interaction between the mean and volatility regime factors by testing whether

ρvmvv ·u = 0 or avm = amv = 0. Clearly, these feedback channels are absent in the conventional

Markov switching model.

The endogenous Markov switching model estimated in this paper is similar to those pro-

posed by Diebold et al. (1994) and Filardo (1994) in that it allows the transition probabilities

to be time varying. Both papers model the transition probabilities as functions of strictly ex-

ogenous explanatory variables and lagged values of the dependent variable. We also assume

9Given the assumption that |α| < 1, the latent regime factor wt is stationary.
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the probabilities are time varying and may depend on lagged values of the shocks to the

dependent variable. However, we do not take a stand on the functional form or exogenous

and predetermined variables that derive the dynamics of the transition probabilities. Here,

the transition probabilities are a function of unexpected shocks to oil prices; yet we do not

explicitly specify variables or events that drive these shocks. Moreover, large shock-inducing

events (e.g., the Persian Gulf war) may be understood as innovations to changes in the oil

price that are not captured by the time-varying mean and volatility, but that are captured

by the oil price surprises, ut.

2.2 Data and Empirical Methodology

To study the behavior of crude oil prices we use the monthly spot price of the West Texas

Intermediate (WTI) spanning the period between January 1986 and January 2021 obtained

from the Energy Information Agency.10 We compute oil price changes (i.e., the rate of

growth) as the first difference of the natural log of the spot price. We focus on the WTI

price as it is the reference price for buyers and sellers of crude oil in the U.S., it is produced

in the U.S. and – until late 2015 when the export ban on U.S. crude oil was lifted – was only

sold in the U.S. Nevertheless, we note that estimation results for the endogenous Markov

switching models are robust to using Brent crude oil price changes.11

Crude oil prices, as other financial assets, often experience abrupt changes in behavior.

As Figure 1 illustrates, the price of the WTI, denoted by the blue line, exhibited an upward

trend during the 1990s and most of the 2000s, reaching a peak of $139.96 per barrel in

June 2008. Then, it plunged during the Great Recession to a trough of $41.96 per barrel in

January 2009, slowly recovering during the first half of the 2010s until it collapsed in July

of 2014. A striking decline was also observed in the wake of the global shutdown induced by

the Covid-19 pandemic.12

Percentage changes in the WTI (Figure 1) suggest periods of political and economic

turmoil might be associated with higher volatility. See, for instance, the period surrounding

the Persian Gulf War (August 1990 to February 1991), the global financial crisis in the late

2000s, and at the onset of the Covid-19 pandemic. Yet, periods of high volatility do not

always coincide with periods of high mean. For instance, both oil prices and their volatility

10Oil prices were controlled in the U.S. prior to 1973. Studies that use prices for the 1970s –or earlier
periods– rely on splicing data for the WTI and the producer price index or the refiners acquisition cost.
Moreover, the WTI was not adopted as a benchmark price until the 1980s.

11For the sake of brevity, we relegate the results for Brent oil price to the online appendix.
12Figure A.1 of the online appendix reveals a similar behavior for Brent.
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Figure 1: Evolution of WTI Price

(a) Monthly WTI price and its rate of growth (b) Monthly WTI volatility

Notes: Panel (a) plots monthly West Texas Intermediate (WTI) prices (blue line) and its rate of growth
(black line). Panel (b) plots the monthly volatility of the percentage change in the WTI price.

were high during the period following the outbreak of the Persian Gulf war; however, the

2008 financial crisis was characterized by low mean and high volatility.13

Regime switching models can be estimated via maximum likelihood. We refer the reader

to CCP for a detailed description of the estimation procedure for regime switching models

with a single latent factor such as (3) and (4). For the estimation of our general unsynchro-

nized mean and volatility switching model (1), we use the algorithm and filter developed for

regime-switching models with multiple latent regime factors by Chang, Kwak, Park and Qiu

(2021). As discussed in CCP, when the state is correlated with the observed process, namely

the percentage change in crude oil prices, a modified filter is needed to explicitly account

for this endogenous feedback channel that results in time-varying transition probabilities.

To estimate our model (1) with two regime factors, we use the Chang-Kwak-Park-Qiu filter,

which extends the CCP filter to a multivariate setup. As in the standard Kalman filter, our

modified filter involves the usual prediction and updating steps, but they are carried out

with time-varying transition probabilities.

To illustrate how the endogenous feedback gives rise to time-varying transition probabil-

ities, first we net out the effect of the past oil price change innovation ut−1 from the regime

factor innovations to obtain the orthogonal regime factor shock vt - ρvuut−1 ∼ N(0,Pvv·u).

Then, we use the conditional distribution of vt given ut−1 to compute the transition proba-

13The same periods of high volatility are observable for Brent. See Figure A.1 of the online appendix.
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bility. For example, the transition probability from the low mean-high volatility regime to

the low mean-high volatility regime (LH-to-LH), or staying in the LH regime, is

P {st = (0, 1)′|st−1 = (0, 1)′,Ft−1} = Φ(τ )−1
∫ τ

−∞
Φv|u (τ − ρvuut−1 −Awt−1)φ(wt−1)dwt−1

where st = (sm,t, sv,t)
′, Φv|u is the conditional distribution the regime factor innovation vt

given the past innovation to oil price changes ut−1, τ=(τm, τv)
′ and Ft−1 is the information

set available at time t− 1 given by the past oil price changes, yt−1, yt−2, . . . , y1. The vector

ρvuut−1 = (ρvm,uut−1, ρvv ,uut−1)
′ contains the feedback effects from ut−1 to the mean regime

factor wm,t (ρvm,uut−1), and to the volatility regime factor wv,t (ρvv ,uut−1). These feedback

channels make the otherwise constant transition probabilities time-varying. The final impact

of a one-unit realized oil price change innovation ut−1 therefore depends on the sign and

magnitude of its correlation with the mean and volatility regime factor innovations vv,t and

vv,t. Together they influence the regime determination process by effectively lowering or

raising the threshold. When the feedback channels are shut down, ρvu = 0, then the model

reduces to the conventional Markov switching model with constant transition probabilities.

3 Regime Switching in the Volatility and Mean of Crude

Oil Prices

While our estimates clearly identify two separate latent factors for the mean and volatility of

crude oil price changes, we first build some intuition on why the behavior of crude oil price

changes may be better captured by an endogenous regime switching model, by looking at

the results of the volatility switching model (4). Parameter estimates with 68% confidence

intervals14 from the simple model with volatility switching only are reported in the first and

second columns of Table 1. Two regimes, low and high volatility, are clearly identified: the

volatility during periods of turmoil (σ1 = 0.222) is more than thrice the volatility in periods

of calm (σ0 = 0.069) and the latent factor is very persistent (α = 0.971). The negative and

significant coefficient on ρv,u is evidence of a strong leverage effect: the estimate of ρv,u < 0

(−0.974) indicates that a negative shock to the mean in period t implies an increase in

volatility in period t+ 1.15

14Confidence intervals are obtained using the stationary block bootstrap procedure by Politis and Romano
(1994). We obtain percentile bootstrap confidence intervals by estimating 500 block bootstrapped samples
of length 420 (404 for the Brent oil price change). The average block size is 17 for the stationary block
bootstrap, which is selected by averaging the optimal block size for each vector of time series.

15Estimation results for Brent can be found in Table A.1 of the online appendix.
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Table 1: Estimation Results: Regime Switching Models

Volatility Unsynchronized
Parameters switching 68% CI switching 68% CI

τ 5.691 [2.909, 5.933]
τ1 -1.033 [-1.165, -0.983]
τ2 9.873 [8.339, 10.945]
ρu,v -0.974 [-0.993, -0.334]
ρu,vm 0.529 [0.335, 0.540]
ρu,vv -0.917 [-0.956, -0.340]
ρvm,vv -0.824 [-0.825, -0.414]
ρvmvv ·u -0.339 [-0.609, -0.191]
α 0.971 [0.913, 0.978]
amm 0.133 [0.060, 0.242]
avm -2.177 [-2.278, -1.868]
amv -0.024 [-0.024, -0.024]
avv 0.847 [0.843, 0.848]
σ0 0.069 [0.064, 0.072] 0.059 [0.056, 0.059]
σ1 0.222 [0.159, 0.277] 0.219 [0.151, 0.257]
µ0 -0.085 [-0.093, -0.085]
µ1 0.018 [0.015, 0.022]
γ1 0.084 [0.084, 0.185]

log-likelihood 455.624 [434.614, 501.331] 469.240 [428.357, 493.959]
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Figure 2: Extracted Latent Factor: Volatility Switching Model

Notes: This figure depicts the extracted latent factor from the volatility switching model (solid black line)
and the estimated threshold τ (dashed red line).

As Figure 2 illustrates, several periods of high volatility (shaded in gray) are identified

over the sample. These periods correspond to the times when the extracted latent factor

exceeds the threshold, τ (red line). Three features stand out. First, regimes with high

volatility are recurrent, but short-lived. We observe 29 months (out of 419 observations)

in the high volatility regime, which appear to be concentrated in five different periods.

Second, not surprisingly, periods of political unrest in key oil producer countries (e.g., the

invasion of Kuwait) and economic contractions (e.g., the 2008 Great Recession and the

2020 Great Shutdown) constitute periods of heightened risk in the oil market. Finally, of

special interest are two other episodes related to recent developments in the oil market: the

increased financialization of the oil market in the early 2000s16 and the 2014 collapse. The

latent factor increases only slightly and for a brief period of time around the financialization

of the oil market (but does not approach the threshold for a high volatility regime); yet it

raises significantly and for a prolonged period of time after the 2014 oil price collapse. The

latter clearly reflects a period of heightened volatility and increased risk.17

16The presence of financial investors has increased considerably since the early 2000s. Financial players
without an interest in holding physical crude oil (e.g, pension funds, hedge funds, insurance companies) have
since held larger positions in derivatives and futures markets. These developments have led to a heated
debate regarding the role of financial speculation in driving oil price volatility.

17Estimation results lead us to identify almost identical periods of high volatility for Brent. See Figure
A.2 of the online appendix.
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Figure 3 evidences the difference between the transition probabilities estimated from the

endogenous and exogenous regime switching models. The left panel reports the probability

of staying in the high volatility state and the right panel illustrates the transition probability

from the low to the high volatility state. The black solid line represents the time-varying

transition probability estimated from the endogenous switching model, and the red dashed

line corresponds to the constant transition probability from the exogenous regime switching

model. Note that, in the exogenous model, the probability to stay in the high regime remains

constant at 0.86. In contrast, in the endogenous model the probability varies over time with

the realized values of the oil price change, and differs significantly across various periods

of high volatility. For instance, on the one hand, the probability of remaining in the high

volatility regime drops to 0.39 and 0.27 during the Persian Gulf War and the Covid-19

Pandemic, respectively, suggesting both events would lead only to a temporary increase in

volatility. On the other hand, the endogenous time-varying transition probabilities remained

high during the Great Recession and the 2014 oil price collapse. Perhaps more striking is

the difference between the transition probability from the low to the high-volatility regime

in the exogenous and endogenous model. Whereas in the exogenous switching model the low

to high transition probability would have remained constant at 0.021, the endogenous model

reveals low to high transition probabilities that vary significantly over time and exceed 0.15

around the invasion of Kuwait, during the Great Recession, and when oil prices plunged

after the second half of 2014.

Of particular interest are the transition probabilities during the Covid-19 pandemic: the

low-to-high transition probability increased to about 70% at the onset of the global shutdown

while the high-to-high probability declined below 30%. This behaviour suggests a period of

very high uncertainty in oil markets. As we will see later, this impression is corroborated

by the behavior of the oil market volatility index produced by the Chicago Board Options

Exchange (the CBOE OVX).

The first panel of Figure 3 illustrates how, once the oil price change entered a period

of high volatility (denoted by the gray shaded area), the probability of remaining in the

high-volatility state quickly declined for all episodes, but the Great Recession. In fact, only

for the period corresponding to the Covid-19 pandemic did the endogenous switching model

estimate a high-to-high probability that temporarily exceeded the estimate obtained from

the exogenous model. This coincides with a period in which the WTI declined for several

months (see Figure 1).18

18Similar results are found when using the Brent crude oil price. See Figure A.3 of the online appendix.
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Figure 3: Transition Probabilities: Volatility Switching Model

(a) High to High (b) Low to High

Notes: This figure presents the transition probabilities from the volatility switching model. Panel (a) depicts
the transition probability from high to high volatility state: the black solid line corresponds to the time-
varying transition probabilities from the endogenous volatility switching model, while the red dashed line
represents the constant transition probability from the exogenous model. Similarly, panel (b) depicts the
transition probabilities of switching from the low to the high volatility regime.

To summarize, the information contained in the time-varying transition probabilities

could be useful for policy analysts and investors. For instance, during periods of turmoil

when volatility is high, an endogenous regime switching model could aid in assessing the risk

of remaining in the high volatility state. Regardless of whether we use the WTI or Brent, the

endogenous switching model provides useful information regarding oil market risks possibly

associated with political unrest and economic downturns reflected already in the oil price.

We will turn back to this issue in Section 4.2.

3.1 Unsynchronized Switching in the Mean and Volatility of Crude
Oil Prices

Is the behavior of oil prices better captured by model (4) or by a model that also allows the

mean to switch as in (3) or (1)? To answer this question, we first estimate the endogenous

regime switching model in (1) where the switches in mean and volatility are driven by two

different – yet correlated – latent factors, and then proceed to test a series of hypotheses

that speak to the fit of the general model.

The third column of Table 1 reports the estimates (with 68% confidence intervals in the

fourth column) from the unsynchronized model.19

19Results for a model where the mean and the volatility switch in a synchronized manner are available
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Figure 4: Extracted Factors - Unsynchronized Mean and Volatility Switching

(a) Mean Factor (b) Volatility Factor

Notes: This figure depicts the extracted latent factors from the unsynchronized mean-volatility switching
model. The solid black line in panel (a) corresponds to the mean regime factor and the red dashed line
represents the estimated threshold τm. Similarly, the solid black line in panel (b) represents to the volatility
regime factor and the red dashed line depicts the corresponding threshold τv.

The estimates for σ0 and σ1 are similar to those obtained in the simpler model with

volatility switching only and also indicate that the volatility in oil price changes is more

than three times as large in the high-volatility regime (σ1 = 0.219) compared to that in the

low-volatility regime (σ0 = 0.059). The fact that the estimates of σ0 and σ1 do not change

much from model (4) indicates that the difference in the volatility states is not driven by

the mean.

We find evidence of endogeneity both for the volatility and the mean regimes. The

estimate of ρu,vv , which measures the degree of endogenous feedback to the volatility regime

switching, is negative and significant (−0.917), that of ρu,vm , which accounts for endogeneity

in the mean regime, is positive and significant (0.529).

Figure 4 depicts the extracted latent factors for the mean (left panel) and volatility

(right panel). The mean regime factor is not very persistent. Yet, it remains below the

threshold for a few months after the end of the Persian Gulf war and then again during the

Great Recession, the 2014 oil price collapse, and the Great Shutdown. About 91% of the

observations in the sample belong in the high-mean regime. The volatility regime factor is

roughly consistent with the factor extracted from the simpler volatility switching model (see

Figure 2), although the high volatility regime appears to be slightly less prevalent here (5%

from the authors upon request
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of the observations are in the high-volatility regime versus 7% in the model with volatility

switching only).20

A comparison of Figure 2 and Figure 4 suggest their informational content is very similar.

Given this similarity, the reader may wonder how the mean and volatility latent regime

factors are related. To explore this issue, we report the 24-month rolling window correlations

among the latent factors as well as the coherence (see Figure 11).21 Three features are

noticeable in this figure. First, the correlation is negative throughout the sample but exhibits

a large degree of time variation. Second, although the correlation between the latent factors

drops significantly during the Gulf War, it remains high throughout the Great Recession,

during the 2014 oil price collapse and the Great Shutdown. Third, the coherence plot

indicates that the co-movement among the two factors is accounted for, slightly more, by

lower than higher frequencies, especially the frequencies corresponding to periods longer than

three months. Very similar patterns emerge when we redo the analysis using Brent oil prices

(see Figure A.6 of the online appendix). The key takeaway from these figures is that the

relation between the mean and volatility factors is time-varying. While the correlation is

negative across all rolling windows, the correlation drops to about half during the above-

mentioned episodes. In addition, as the coherence illustrates, the correlation is larger for

higher frequencies (periods of less than 3 months) thank for the higher frequencies.

3.2 Endogenous Feedback, Dynamic Interactions, and Exogenous
Regime Switching

To evaluate the in-sample fit of the unsynchronized mean-volatility regime switching model,

we first test the null hypothesis of no endogenous feedback from the shock to oil price

changes at time t to the regime switching in mean and volatility regime factors at time t+ 1

(i.e., we test the null ρu,vm = ρu,vv = 0). We allow the mean and volatility regime factors

to be contemporaneously correlated and interact dynamically through the autoregressive

parameters in the matrix A and the correlation parameter ρvv ,vm . The likelihood ratio test

for this hypothesis equals 80.46, thus allowing us to reject the null at a 1% significance level

20Figure A.5 of the online appendix illustrates the results for the Brent.
21The coherence between the mean and volatility regime factors, wm,t and wv,t, is computed as

ρ2mv(λ) = |fmv(λ)|2
fmm(λ)fvv(λ)

, where fmm(λ) and fvv(λ) are the spectral densities of wm,t and wv,t, and fmv(λ)

the cross-spectral density between wm,t and wv,t. These spectral and cross-spectral densities are the
components of the spectral density matrix of the bivariate regime factor wt = (wm,t, wv,t)

′ given by

Fw(λ) = A−1(eiλ)Fv(λ)A−1(eiλ)
∗
, λ ∈ [−π, π] where Fv(λ) is the (2 × 2) spectral density matrix of

the regime factor innovations vt, and ∗ denotes the adjoint operator. Due to the iid assumption on
vt = (vm,t, vv,t)

′, we have Fv(λ) = Pvv for all λ ∈ [−π, π].
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and providing strong evidence that endogenous feedback plays an important role in modeling

the dynamics of crude oil prices.

The estimated autoregressive parameters –the off-diagonal elements of the matrix A–

, reveal a significant dynamic interaction between the mean and volatility regime factors.

Estimation results reported in the second panel of Table 1 lead us to reject the null that

the previous volatility factor does not influence the current mean factor (amv = −0.024, and

statistically significant) as well as the null of no dynamic interaction from the mean factor

to the volatility factor (avm = −2.177, and statistically significant). Our estimate of the

contemporaneous correlation between the innovations vm and vv net of the contribution of

the past oil price change innovation ut−1 (ρvv·u = ρvv ,vm − ρvm,uρvv ,u) equals −0.339. This

indicates a negative contemporaneous comovement between the mean and volatility factors,

even after netting out the effect of past innovations in crude oil prices. Estimation results

not reported herein, but available from the authors upon request indicate that: (a) the

model where mean and volatility switching occurs in a synchronized manner as in (3), is

rejected in favor of the unsynchronized model (1); (b) our results are robust to estimating

the model after excluding the three largest outliers (March, April and May of 2020); and (c)

our conclusions are unchanged when we estimate the model using Brent instead of WTI.

3.3 Forecasting Evaluation

In this section we compare the forecasting ability of the one- and two-factor models with

two alternative models widely used in the empirical regime switching (RS) literature: the

standard RS model driven by an exogenous Markov chain (hereafter MKCH) and the RS

model with time-varying transition probabilities (hereafter TVTP). As suggested in Diebold

et al. (1994), the transition probabilities in the TVTP model evolve as logistic functions

of a predetermined variable zt with parameters that depend upon the regime st−1 at time

t − 1, i.e., 1/
(

1 + e−(αst+βstzt)
)

. Regarding the predetermined variables, we consider three

alternative TVTP models. One where zt is given by lagged money supply (M1), another

where zt is the lagged inflation (CPI),22, and a last one where the lagged dependent variable

(WTI) drives the transition probability.

Recall that our one-factor model is given by

yt = σ(st)ut (5)

22The choice of these two predetermined variables is driven by related work (not reported here but available
from the authors upon requests), which suggests that the latent factors in our unsynchronized model are
most highly correlated with money supply and prices among a large set of macro, financial and oil market
variables.
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In this simple model the volatility process σ(st) switches over time between high and low

levels so that st = 1 corresponds to the high volatility regime and st = 0 to the low volatility

regime. We will denote this volatility regime switching model by VOL.

The volatility in the next period, σ(st+1), is regime-dependent, and therefore we forecast

its expectation over two possible regimes as

E [σ (st+1) | Ft, zt] = σ(1)p (st+1 = 1 | Ft, zt) + σ(0)p (st+1 = 0 | Ft, zt) (6)

Similarly, for the two-factor model (see equation 1), we forecast the conditional volatility

as a weighted average of the high and low volatility with weights given by the probabilities of

each of the four states (i.e., low mean-high volatility, low mean-low volatility, high mean-high

volatility, high mean-low volatility). That is,

E [σ (sv,t+1) | Ft, zt] = σ(1)p (sv,t+1 = 1 | Ft, zt) + σ(0)p (sv,t+1 = 0 | Ft, zt) (7)

where
p (sv,t+1 = 1 | Ft, zt) =

∑
sm,t+1

p (sv,t+1 = 1, sm,t+1 | Ft)

p (sv,t+1 = 0 | Ft, zt) =
∑
sm,t+1

p (sv,t+1 = 0, sm,t+1 | Ft)

We will denote this unsynchronized regime switching model by UNSYNCH.

To estimate the expected volatility given in (6) and (7), for the VOL and UNSYNCH

models respectively, we compute the regime probabilities from the prediction step of the

CCP filter. For the TVTP models the transition probabilities, p(st+1 = 1|Ft, zt) and

p(st+1 = 0|Ft, zt) are computed using the logistic function specified above. Estimates of

the high and low volatility levels, σ(1) and σ(0), are also computed from the respective mod-

els. We use five-, ten-, and thirty-year rolling-window samples to construct the forecasts,

compute the root-mean-square-error (RMSE) for each model, and compare the out-of-sample

performance.

Results reported in Table 2 indicate that our volatility (VOL) model outperforms all

alternatives –the conventional Markov switching model with constant transition probabilities

(MKCH), and the three regime switching models with time-varying transition probabilities

(TVTP-M1, TVTP-CPI, TVTP-WTI)– in terms of RMSE. For ease of interpretation the

table also reports the ratio of, the RMSE for the alternative models to the VOL model. As

the table reports, for all rolling window schemes the relative performance of the volatility

switching model with endogenous feedback, VOL, is superior.
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The last column of Table 2 reports the RMSE for the UNSYNCH model for the ten-

and thirty-year rolling window schemes. The out-of-sample performance of the UNSYNCH

model is worse than that of the VOL model. This result is perhaps not surprising. First,

the model with unsynchronized switching in the mean and volatility is more difficult to

estimate and will require a longer sample than the simple endogenous volatility switching

model to allow for better in-sample fit (Hence, our choice of using larger window sizes).

Indeed, the relative performance of the UNSYNCH model improves when we increase the

window size from ten to thirty years with the UNSYNCH model going from being the least

accurate to being slightly more accurate than all TVTP models but TVTP-WTI. Yet, the

larger the estimation window, the greater the probability to incur into misspecification due

to nonlinearities, structural changes, etc. Thus, if the object is forecasting out-of-sample, the

research might be better served by using the simpler VOL model. All in all, while the more

complicated UNSYNCH model has a better in-sample fit, the simpler VOL model produces,

on average, more accurate forecasts.

3.4 Lessons from Four Episodes of High Volatility and Low Mean

What lessons can oil investors and policy makers derive from a model that allows the regime

to evolve in an endogenous manner? At a first glance, gauging the policy implications or

empirical relevance of our estimates might seem cumbersome, especially given the multiplicity

of states and transition probabilities. We focus on four historical episodes that an analyst or

policy maker may have considered as particularly risky for oil markets given the change in

the WTI exhibited a low mean and high volatility: the Persian Gulf war, the 2008 financial

crisis, the oil price collapse of 2014 and the Covid-19 pandemic. Doing so allows us to distill a

clear message: during periods of turmoil, the transition probabilities provide a more realistic

assessment of the likelihood of remaining in a known low mean-high-volatility regime than

the constant transition probability derived from an exogenous model.

More specifically, we classify a month as exhibiting a low mean if the monthly change in

the oil price is negative and lower than ten times the average of the rate of growth in the

WTI over the previous 32 months from the start of the particular low-mean-high-volatility

regime. Similarly, we classify a month as exhibiting high volatility if the volatility is more

than twice the average volatility computed over the 32-month period ending at the start of

the given low-mean-high-volatility regime. Months that fall in both categories are classified

as low-mean-high-volatility. Note that the source of the disruptions that led to heightened

volatility and low mean was distinct and varied across the four episodes, thus providing a
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good way to illustrate the empirical relevance of our results. Of particular interest is the

sample covering the Covid-19 pandemic, which resulted in the oil market experiencing an

“all-time high volatility” according to U.S. Energy Information Administration, 2020.

Figure 5 plots the time-varying transition probabilities from a low mean-high volatility

to a low-mean-high volatility (hereafter LH-to-LH) regime and the WTI. The top left panel

depicts the evolution during the Persian Gulf War. Recall from Figure 1 that the WTI and

its volatility increased dramatically when Iraq invaded Kuwait in August 1990; yet it later

decreased reaching a trough in March 1991. In turn, the volatility increased with the onset of

the war and remained high until Iraq accepted the terms of the cease-fire agreement (March

3, 1991). As illustrated by the black solid line, the LH-to-LH transition probability increased

with Iraq’s invasion of Kuwait and remained relatively high until the U.S. and allied forces

entered Kuwait at the end of February 1991. Contrast the time-varying transition probability

with the transition probability obtained from the exogenous switching model denoted by the

red dashed line. In the exogenous model, the transition probability remains constant at

0.524. Our time-varying transition probabilities are considerably lower, although they rise

throughout the war.

Three additional episodes of low-mean and high-volatility are depicted in Figure 5. The

top right panel illustrates the financial crisis of 2008, the bottom left panel corresponds to

the oil price collapse of 2014, and the right bottom panel depicts the Great Shutdown re-

sulting from the Covid-19 pandemic. In all cases, the time-varying nature of the transition

probability estimated from the endogenous model stands in sharp contrast with the constant

transition probability obtained from the exogenous model. The LH-to-LH transition proba-

bility increases with the decline in crude oil price growth and stays high until the monthly

oil price starts to increase. However, whereas the time-varying probability from our endoge-

nous model remained below the constant probability from the exogenous model for most of

the sample, it did not for two episodes. First, during the financial crisis the time-varying

transition probability was very close to the probability from the exogenous model. Second,

and more notably, in March and April of 2020 when shutdowns and border closures were

implemented in the wake of the Covid-19 pandemic, the time-varying transition probability

from the endogenous model surpassed the constant transition probability from its exogenous

counterpart and then quickly declined in May 2020. The latter coincided with expectations

of improved global demand for crude oil and an agreement between OPEC and its allies to

cut production. Clearly, transition probabilities derived from an endogenous regime switch-

ing model provide a more realistic assessment of the likelihood to remain in the known low

mean-high volatility regime. In other words, a lesson to be learned from these four episodes
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Figure 5: LH-to-LH Transition Probabilities and WTI Price Changes

(a) Persian Gulf War (b) Great Recession

(c) Oil Price Collapse (d) Covid-19 Pandemic

Notes: This figure illustrates the probability to remain in low mean-high volatility state for four episodes
of turbulence in oil markets. The black solid line represents the transition probability P(sm,t = 0, sv,t =
1|sm,t−1 = 0, sv,t−1 = 1, yt−1) estimated from the endogenous unsynchronized switching model; the dashed
red line corresponds to the constant transition probability P(sm,t = 0, sv,t = 1|sm,t−1 = 0, sv,t−1 = 1)
estimated from the exogenous switching model; the solid blue line corresponds to the percentage change in
the WTI price. The shaded areas denote periods of low mean and high volatility.

21



is that not all periods of low mean and high volatility should convey the same degree of

“fear” to economic agents.23

4 Oil Market Uncertainty, Inflation and Inflation Ex-

pectations

On the one hand, recent empirical literature on the impact of uncertainty shocks on infla-

tion suggests heightened economic uncertainty acts as a negative demand shock dampening

inflation and economic activity. Caggiano et al. (2014), Fernández-Villaverde et al. (2015),

Leduc and Liu (2016), Basu and Bundick (2017) and Oh (2020) find a negative effect of

uncertainty on inflation. On the contrary, Mumtaz and Theodoridis (2015) find uncertainty

has an inflationary effect and Carriero et al. (2018), Katayama and Kim (2018) do not

find a significant response of inflation. Work by Oh (2020) indicates the divergence among

empirical estimates stems from the use of different sample periods and uncertainty measures

(e.g., financial and macroeconomic uncertainty). On the other hand, fluctuations in oil prices

have often been a concern for central bankers as unexpected increases in oil prices have been

shown to trigger higher inflation. For instance, in the Press Conference given by the Fed’s

Chairman Jerome Powell on June 15, 2022 he stated: ”[t]he surge in prices of crude oil

and other commodities that resulted from Russia’s invasion of Ukraine is boosting prices for

gasoline and food and is creating additional upward pressure on inflation.” Does heightened

uncertainty in oil markets result in higher inflation? This section addresses that question.

4.1 A Measure of Oil Market Uncertainty

Figure 12 plots the extracted latent volatility factor from our mean-volatility switching model

and the Chicago Board Options Exchange (CBOE) Crude Oil ETF Volatility Index (OVX),

retrieved from FRED at the Federal Reserve Bank of St. Louis. The OVX measures the 30-

day implied volatility of crude oil prices and is computed using fluctuations of the prices of

financial options for the WTI. The OVX inception dates from May 10, 2007 and thus covers

only part of our sample, but is increasingly cited as a measure of expected volatility in oil

markets (see e.g., Energy Information Agency 2020). Note that the extracted volatility factor

evolves in a manner similar to the OVX, with both series increasing during the financial crisis,

the 2014 oil price collapse and the Great Shutdown. Fluctuations in the OVX somewhat

23See Figure A.4 of the online appendix for time-varying probabilities and rate of growth in Brent for
these four low mean-high volatility periods.
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leads fluctuations in the extracted volatility factor as one would expect given that the OVX

is a measure of near-term price changes in the WTI. The extracted latent factor dropped

faster than the OVX in 2020, suggesting that the increase in oil market volatility was shorter

lived than the markets had originally expected. This comparison suggests that the extracted

latent volatility factor could be employed as an alternative measure of the overall risk or

stress in the oil market.24

4.2 Comparison with Existing Uncertainty Measures

How does our measure of oil market uncertainty compare to other measures of uncertainty?

Table 3 reports the correlations among various measures of uncertainty and the volatility

regime factor, wv. The former comprises: (a) the one- and three-month ahead financial

and economic uncertainty measures proposed by Jurado, Ludvigson, and Ng (2015), JLNF1,

JLNE1, JLNF3, JLNE3 respectively; (b) the Chicago Board Options Exchange (CBOE) S&P

100 Volatility Index, VXO; and (c) Baker et al. (2016) U.S. Economic Policy Uncertainty,

EPU, index constructed using newspaper coverage of policy related issues. Not surprisingly,

as the table shows, the JLN financial uncertainty indices are very highly correlated with the

JLN economic uncertainty indices (0.99 in all cases) as they only differ for the later years in

the sample. Their correlation with the VXO is high (around 0.8), but smaller with wv (less

than 0.27). The correlation of the EPU with wv equal 0.22 and ranges between 0.26 and

0.42 for the JLN indices.

Figure 6 plots the volatility regime factor, wv , against four measures of uncertainty.

In panels (a) and (b), respectively, we compare wv to the one- and three-month ahead

financial uncertainty measures proposed by Jurado, Ludvigson, and Ng (2015).25 As the

figure illustrates, periods of heightened financial uncertainty such as the Great Recession

and the Covid-19 pandemic coincided with periods of higher uncertainty in oil markets. Yet,

uncertainty in oil markets was markedly higher during the Persian Gulf war and the mid-

2010s. A similar pattern is observed in panel (c) when comparing the latent factor with

the CBOE S&P 100 Volatility Index, VXO. Finally, panel (d) contrast the volatility regime

factor and the Economic Policy Uncertainty (EPU) index computed by Baker et al. (2015).

Again, in this case, while some of the peaks coincide, the volatility regime factor reflects

‘risk’ factors not captured by the EPU. To summarize, as Table 3 and Figure 6 illustrate,

24Similar results have been found by Chang et al. (2017) for the VIX and the volatility latent regime
factor extracted from the U.S. excess market returns.

25Given that the correlation between the JLN financial and economic uncertainty indices is 0.99 we restrict
the plots to the financial indices.
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Figure 6: Uncertainty Measures and Regime Factors

Notes: Each panel show the volatility factor estimated from the asynchronized two factor model (blue) and
various measures of uncertainty (red).
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Table 2: One Step-Ahead Forecast Comparison

VOL MKCH TVTP-M1 TVTP-CPI TVTP-WTI UNSYNCH
Five-year window
RSME 0.0376 0.0389 0.0403 0.0398 0.0396
Relative RMSE 100.00 103.41 106.95 105.74 105.18
Ten-year window
RSME 0.0418 0.0425 0.0430 0.0433 0.0432 0.0429
Relative RMSE 100.00 101.62 102.88 103.67 103.47 102.74
Thirty-year window
RSME 0.0895 0.0911 0.0928 0.0927 0.0925 0.0927
Relative RMSE 100.00 101.83 103.77 103.64 103.66 103.58

Notes: VOL indicates our one-factor endogenous volatility switching model, MKCH indicate the

conventional Markov switching model with constant transition probabilities, TVTP-M1, TVTP-CPI and

TVP-WTI indicate the regime switching models with time-varying transition probabilities based on M1,

CPI and WTI, respectively, and UNSYNCH denotes our benchmark model with endogenous switching in

the mean and variance.

while the volatility regime factor commoves with other uncertainty indices, it captures a

different type of uncertainty: oil market risk.

4.3 The Effect of Oil Market Uncertainty on Inflation, Inflation
Expectations, and Disagreement

To assess the impact of oil market uncertainty, as measured by our mean and volatility

regime factors, on inflation, inflation expectations and disagreement we estimate a five-

variable vector autoregressive (VAR) model given by

B0yt = c+B1yt−1 +B2yt−2 + ...+Bpyt−p + εt (8)

where c is an intercept, yt is a 5 × 1 vector that includes the volatility regime factor

(wv), the mean regime factor (wm), the CPI inflation rate (πt), the median expected inflation

(πi,expt ), and the inflation expectations inter-quartile range as a measure of disagreement(πi,dist ).

We use a conservative lag order p = 4 (see Kilian and Lütkepohl 2017) leads to similar re-

sults. Bi, i = 0, ..., p denote 5 × 5 coefficient matrices and εt represent a vector of mutually

uncorrelated i.i.d. structural shocks. The model is partially identified in that only the first

two structural shocks are identified by zero-restrictions on the B0 matrix. The impulse re-
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sponse estimates of interest are invariant to the identification of the remaining structural

shocks (see Christiano, Eichenbaum and Evans 1999) and the responses of the last three

variables are robust to changing the order of the latent factors.

We first estimate a VAR for the short-run (one-year), i = 1yr, inflation expectations

obtained from the Survey of Professional Forecasters (SPF) and show that the results are

robust if we measure expectations using the University of Michigan (UofM) Consumer Sur-

vey. We then re-estimate the VAR by replacing the short-run inflation expectations and

disagreement with their medium (five-year), i = 5yr, and long-run (ten-year), i = 10yr,

counterparts from the SPF.26 The volatility and mean regime factors are those extracted

from our benchmark model. Given that data from the SPF are quarterly, we aggregate the

monthly factors and the UofM data by taking the average over the quarter.

Figure 7 depicts the effect of shocks to the volatility and mean regime factors when

we use the SPF to measure short-run inflation expectations. The solid line represents the

impulse response and the light and dark shaded areas represent 68 and 90 percent confidence

bands, respectively, computed by bootstrap. An increase in oil market volatility factor has a

negative effect on inflation on impact that vanishes quickly, a negative but short-lived effect

on short-run inflation expectations, and a positive non persistent effect on disagreement. As

for the mean factor, an increase in the mean of oil price changes leads to an increase in

inflation, only a marginal but persistent increase in short-run inflation expectations and an

increase in disagreement.

Figure 8 reports impulse response functions obtained when we use the UofM consumer

survey. Qualitatively, the results for the response of inflation, inflation expectations and

disagreement are similar to those obtained using the SPF. However, two differences stand

out. First, the impact of increased oil market uncertainty results in disagreement among

households about inflation expectations that is an order of magnitude higher than estimated

for the SPF. Second, an increase in the mean regime factor leads to a significant increase in

household’s short-run inflation expectations that is somewhat more persistent than estimated

for the SPF. While estimation results using monthly data for the UofM survey suggests the

deflationary effect of oil uncertainty shocks might be insignificant, the finding of a positive

(and persistent) impact on households’ inflation expectations and disagreement is robust to

using higher frequency data.

How do medium and long-run inflation expectations respond to changes in the mean

26Estimation results are robust to using the 5-10 year inflation expectations from the University of Michigan
survey.
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Figure 7: Response to Latent Factor Shocks - SPF Short-Run Inflation Expectations

Notes: The top panels illustrate the response to a volatility factor shock. The bottom panels depict the
response to a mean factor shock. 68% and 90% confidence bands, denoted by dark and blue shaded areas
respectively, are computed by bootstrap.

Figure 8: Response to Latent Factor Shocks - UofM Short-Run Inflation Expectations

Notes: The top panels illustrate the response to a volatility factor shock. The bottom panels depict the
response to a mean factor shock. 68% and 90% confidence bands, denoted by dark and blue shaded areas
respectively, are computed by bootstrap.
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Figure 9: Response to Latent Factor Shocks - SPF Medium-Run Inflation Expectations

Notes: The top panels illustrate the response to a volatility factor shock. The bottom panels depict the
response to a mean factor shock. 68% and 90% confidence bands, denoted by dark and blue shaded areas
respectively, are computed by bootstrap.

and volatility factors? Could shocks to oil price changes pose a challenge to central banks

by causing the inflation anchor to drift? To answer these questions we now focus on the

responses of medium (5-year) and long-run (10-year) inflation expectations and disagreement

among professional forecasters (SPF) to innovations in the volatility and mean regime factors.

For the sake of brevity, we restrict our discussion to these expectation responses, but do plot

the inflation responses in the figures.

The top panels of Figures 9 and 10 show that an increase in oil market volatility regime

factor leads to a significant decline in medium inflation expectations and no significant

impact in long-run inflation expectations. As mentioned earlier, this response is consistent

with increases in oil market volatility working as a negative demand shock. Furthermore,

higher volatility factor results in increased disagreement in the medium-run and a smaller,

albeit only marginally significant, increase in the long-run.

Regarding shocks to the mean factor, the bottom panels of Figures 9 and 10 illustrate

how increases in the mean of oil price changes result in raises in the 5- and 10-year inflation

expectations. We note that whereas the effect of shocks to the volatility latent factor on

inflation expectations and disagreement appear to dissipate in the long-run, the effect of

shocks to the mean factor do not. Note that the magnitude of the increase in inflation
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Figure 10: Response to Latent Factor Shocks - SPF Long-Run Inflation Expectations

Notes: The top panels illustrate the response to a volatility factor shock. The bottom panels depict the
response to a mean factor shock. 68% and 90% confidence bands, denoted by dark and blue shaded areas
respectively, are computed by bootstrap.

expectations in the short, medium and long-run is similar (about a tenth of the unexpected

increase in the mean factor) and it retains statistical significance at 10 years. Similarly, on

impact, disagreement at 5 and 10-years increases and remains significant for a few quarters

after the shock.

All in all, estimation results presented in this section illustrate how the extracted latent

factors may be used by policy makers and analysts as a way to measure uncertainty in oil

markets.27 Moreover, we show that oil market uncertainty results in increased disagreement

about future inflation among professional forecasters and, especially, among households.

While the effect on disagreement is statistically significant at all horizon, its magnitude falls

as the horizon expands.

Why does the increase in disagreement matter? As Reis (2021) posits, disagreement

about future inflation could be an early signal of a shift in the inflation anchor and “[if]

expectations persistently change, then the anchor is adrift; if they differ from the central

27While we opt for a smaller scale VAR, we note that the results are robust to rotating in variables
commonly used in the study of inflation: the unemployment rate, the effective federal funds rate, and two
measures of economic activity (i.e., the rate of growth in the industrial production index or the Chicago Fed
National Activity Index) in the SVAR.
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bank’s target, the anchor is lost”. Now, could oil price fluctuations contribute to movements

in the inflation anchor? Our estimation results suggest that because increases in the volatility

regime factor are associated with a decrease in the mean regime factor of oil price changes,

they do not appear to pose a risk for inflation anchoring in the medium and long run.

Similarly, increases in the mean factor of oil price changes could result in higher short-run

inflation expectations and disagreement, thus only posing a risk to inflation anchoring in the

short-run.

5 Conclusions

We employed an endogenous regime switching model to study the behavior of the crude oil

prices. To gain some intuition regarding the importance of allowing for endogenous switching,

we started our investigation using a volatility switching model. We built on the model by

allowing for unsynchronized switching in the mean and volatility of crude oil prices.

Forecasting comparison exercises show that our regime switching models with endogenous

feedback compare well with other regime switching models with time varying transition

probabilities driven by exogenous or past endogenous variables. We note that our endogenous

regime switching models do not require specifying the specific form of endogeneity, which

is a convenient advantage in practical implementation. Using this model we constructed

two new measures of oil market uncertainty (the volatility and mean regime factors). We

subsequently estimate a SVAR to investigate the effect of these novel uncertainty shocks on

actual inflation, expected inflation, and disagreement.

Four key results are derived from our paper. First, we demonstrated that a model that

allows the processes that govern the switching between volatility and mean regimes to evolve

in an endogenous manner produces a better in-sample fit than an exogenous regime switching

model. Moreover, conditional on knowing the regime, an endogenous regime switching model

provides useful information regarding the time-varying nature of the volatility and, hence,

could be useful in assessing risk.

Second, we showed that the volatility regime switching model with endogenous feedback

does a good job in out-of-sample forecasts. Indeed, based on the RMSE, it can outperform

two alternative regime switching models commonly used in the literature.

Third, we showed that the extracted latent volatility factor from the unsynchronized

mean-volatility switching model can be used to gauge risk in crude oil markets. In fact,

while it commoves with measures of economic policy uncertainty, it appears to capture a
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different type of uncertainty than that embedded in existing macroeconomic and financial

uncertainty measures.

Finally, using a VAR model we illustrated how the extracted latent regime factors can

provide useful information to policy makers as unexpected increases in the volatility factor

lead to declines in CPI inflation and inflation expectations, but also results in increased

disagreement among professional forecasters and, especially, households regarding short-run

expectations of future inflation. We note that increases in the volatility and the mean factors

could be used by central bankers as an early warning sign that the inflation anchor might

drift, especially in the short run.

To summarize, estimation results presented in this paper suggest the use of endogenous

regime switching models could be useful for policy analysts and economic agents interested in

understanding fluctuations in crude oil prices. In particular, the extracted volatility regime

factor may be used as a measure of risk or stress in oil markets. Tracking the evolution of

this latent factor can not only serve as an early warning signal of oil market risk, but also aid

in understanding the evolution of inflation, inflation expectations and disagreement during

periods of high oil market uncertainty.
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Figure 11: Correlation and Coherence between Extracted Latent Factors

(a) Correlation (b) Coherence

Notes: Panel (a) depicts the correlation between the mean and volatility regime factors computed using a
24-month rolling window. Panel (b) depicts the coherence between the two latent factors computed using
the full sample.

Figure 12: Extracted Volatility Regime Factor from Mean-Volatility Switching Model and
CBOE Crude Oil Volatility Index (OVX)

Notes: This figure plots the volatility regime factor extracted from the unsynchronized mean-volatility
switching model (solid blue line) and the Chicago Board Options Exchange (CBOE) Crude Oile Volatility
Index OVX (dashed red line).
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