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1 Introduction

A large body of literature on the oil-stock price nexus has shown that oil price shocks

are an important driver of stock markets both in the US and around the world.1 Within

this literature, it is common to examine the effects of oil price shocks on stock market

returns and volatility in isolation. This is potentially problematic because a large body of

research in empirical finance has shown strong evidence of mutual causality between these

variables.2 On the one hand, an increase in the volatility of an equity may induce a risk

premium effect that results in a positive correlation between returns and volatility. On the

other hand, the leverage effect associated with negative returns implies that the correlation

is negative. This suggests that quantifying the true effects of oil market shocks on the stock

market requires us to go beyond an individual moment-by-moment assessment, towards a

holistic approach that can account for such distributional effects.

In this paper, we revisit the oil-stock price nexus by investigating the effects of demand

and supply shocks from the global crude oil market on the entire distribution of U.S. stock

returns. To capture the distributional effects of economic shocks, we propose a new type of

functional vector autoregression model that facilitates the joint specification of functional

and aggregate time series. This is done by extending the recently proposed functional VAR

in Chang et al. (2021b) to also have aggregate time series à la Sims (1980). Since the model

utilizes information from both aggregate and functional variables we refer to it as a Mixed

Vector Autoregression (MVAR) model.

A key advantage of the MVAR model over conventional VARs is that it facilitates the

use of functional impulse response functions (FIRFs). FIRFs enable the researcher to assess

how shocks from the aggregate time series impact the distribution of interest, and vice-

versa. In our application, this facilitates a novel investigation into how the entire stock

return distribution responds to fundamental shocks underlying the global market for crude

oil. This feature allows us to move beyond a simple examination of the effects of oil market

shocks on average returns and volatility (which are easily extracted from the stock returns

distribution), towards a complete examination of the oil-stock price nexus.

1A recent survey paper is provided by Degiannakis et al. (2018).
2Seminal contributions include French et al. (1987) and Baillie and DeGennaro (1990).
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To make the link between the MVAR and conventional VARs as simple as possible, we

start our analysis by comparing the MVAR model with the structural VAR (SVAR) model

popularized by Kilian and Park (2009). Building on the seminal work of Kilian (2009),

they posit that the global real oil price is driven by three fundamental shocks: (1) shocks

to the physical availability of crude oil (flow-supply shocks), (2) shocks to the demand

for crude oil driven by unanticipated fluctuations in the global business cycle (flow-demand

shocks), and (3) a residual shock designed to capture all other unanticipated changes in the

demand for oil (oil-specific demand shocks), such as shifts in the demand for above-ground

oil inventories arising from forward-looking behavior, or politically motivated changes in

the Strategic Petroleum Reserve.3 The stock market is represented by a single time series

of stock returns. Specified in this manner, their SVAR model identifies demand and supply

shocks underlying the global market for crude oil and examines their dynamic effects on

stock returns. The model has since been used to study the effects of oil price shocks on

US stock market volatility (Bastianin and Manera, 2018), and stock returns in various

international markets (Güntner, 2014).

For both models, the oil market is represented by three series: world oil production,

international industrial production, and West Texas Intermediate. In the conventional

VAR model, the stock market is represented by a specific moment of the S&P 500 returns

distribution, e.g., mean returns (first-moment), volatility (second-moment), or skewness

(third-moment). In the MVAR model, the stock market is represented by approximating

the entire returns distribution using functional principle components analysis (FPCA).

Using this method, we find that almost 98% of the variation in the returns distribution is

summarized by three leading functional principle components. We also find that FPCA

provides a superior in-sample fit compared to other methods such as quantiles or moments.

This suggests that our approach more effectively extracts information from the returns

distribution that is more relevant for understanding the oil-stock price nexus than a sole

examination of the first few moments of the returns distribution.

After demonstrating the econometric advantages of the MVAR approach, we compare

the associated structural model IRFs and FIRFs following a conventional one standard

3We highlight that the names of these shocks have changed over the past decade and our choice here is
in line with current terminology in the literature (see, e.g. Cross et al. (2022) and references therein).
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deviation oil market demand and supply shocks on the US stock market. The main result

is that the oil market shocks tend to elicit a persistent positive response in the mean of the

stock price distribution while reducing the variance. An important feature of the MVAR

approach is that it jointly determines the dynamic responses of the mean and variance

of the stock returns distribution to the various oil market shocks as opposed to focusing

solely on a given moment. For instance, we also find that the flow-demand shock reduces

the kurtosis of the returns distribution in the first few months after the shock, and also

has an asymmetric effect on the distribution; eliciting a relatively larger positive response

in the returns distribution. Since volatility is a commonly used measure of risk, we also

identify the effects of a volatility-maximizing functional shock (referred to as a Var Max

shock). We find that the Var Max shock significantly decreases returns, while increasing

skewness, and kurtosis. These results highlight the importance of our functional approach

and controlling for distributional dynamics when studying the oil-stock price nexus.

To highlight the potential policy applications of the MVAR approach we also demon-

strate how it can be used to conduct a functional value-at-risk (VaR) analysis. The VaR

is defined as the maximum expected loss on an investment, over a given time period at a

specified degree of confidence. It is therefore a widely used measure of risk within academia

and by private and institutional investors, as well as financial market regulators. Using this

measure, the results show that, with the exception of the Great Recession, the estimated

VaR from the MVAR model closely tracks the VaR implied by the data distribution. This

suggests that the oil market variables contain useful information that may allow portfolio

managers to reduce their risks when holding the S&P 500 index. In line with the previous

result that demand and supply shocks have very different effects on the returns distribu-

tion, we also find that the VaR responds differently to each of the oil market shocks. On

average, flow-demand and oil-specific demand shocks have a short-run impact, while flow-

supply shocks tend to have no effect. However, there is also evidence of significant time

variations in these effects. For instance, the flow supply shock had no impact on the VaR

in 1998:01, but had a significant and long lasting effect in 2018:01. The MVAR model may

therefore also be a useful tool for financial regulators and institutional investors who each

rely on VaR measures when formulating their decisions.
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Our research is related to several strands of literature. From an empirical perspective,

our results build on a long line of research that seeks to quantify the relationship between

shocks to oil prices and stock markets in different countries by focusing on either stock

returns or volatility in isolation (see, e.g., Jones and Kaul (1996), Huang et al. (1996),

Sadorsky (1999), Park and Ratti (2008), Kilian and Park (2009), Bjørnland (2009), Güntner

(2014), Degiannakis et al. (2014), Alsalman and Herrera (2015), Boldanov et al. (2016),

Bastianin and Manera (2018) and Thorbecke (2019), among many others), by detailing

the importance of controlling for distributional dynamics. We also find that the MVAR

model reproduces a well-known result in the empirical oil market literature that oil market

demand and supply shocks have very different effects on the real price of oil (Kilian, 2009).

From a methodological perspective, our MVAR model contributes towards a recently

emerging literature that analyses the distributional effects of macroeconomic shocks (e.g.,

Chang et al., 2021a; Inoue and Rossi, 2021; Meeks and Monti, 2022; Chang et al., 2022).

Much of this literature utilizes existing methods in functional regression analysis (see, e.g.,

Reiss et al., 2017, and references therein). For instance, Meeks and Monti (2022) estimate

a New Keynesian Phillips curve where the inflation expectations distribution is used as

an exogenous covariate using a functional principal component regression. Chang et al.

(2022) take a different approach and consider a functional autoregression where the inflation

expectations distribution can be impacted by aggregate economic shocks. Inoue and Rossi

(2021) consider a VAR in which aggregate series can be impacted by functional shocks.

In contrast to these approaches, our MVAR considers the joint dynamics of functional

variables and aggregate time series in response to both functional and conventional shocks.

In this sense, it is most similar to Chang et al. (2021a), who specify a nonlinear state-

space model to capture the joint dynamics of aggregate macroeconomic time series and

the earnings distribution. The main difference between our approach and theirs is that we

view the functional variables as observable as opposed to unobservable states. This means

that we do not require the use of simulation-based estimation or filtering methods but can

instead estimate the model parameters using Ordinary Least Squares (OLS).

The rest of the paper is structured as follows. In Section 2 we present the data and

econometric methodology. Section 3 contains the results. Finally, we conclude in Section 4.
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2 The Data and Econometric Methodology

In this section, we discuss the data, provide a short recap of VAR models of aggregate

variables currently used in the literature, formally introduce the MVAR model, explain how

to estimate the MVAR using an approximate VAR representation and show how to identify

the underlying structural shocks and construct functional impulse response functions. .

2.1 Data

Our empirical analysis requires data that is representative of the global market for crude

oil and the U.S. stock market. We therefore consider data on oil and stock market variables

from the end of January 1988 to January 2018 (1988:01-2018:01).

The global oil market is represented using time series on global oil production (WOP),

economic activity (IPI), and the real price of oil (WTI). All three series are measured at a

monthly frequency. For global oil production, we use the percentage change of the global

crude oil production data made available from the U.S. Department of Energy. For real

economic activity, we use the OECD+6 industrial production (IP) index as proposed in

Baumeister and Hamilton (2019) and made available from Christiane Baumeister’s personal

website.4 Finally, the real price of oil is given by the West Texas Intermediate deflated

by the U.S. consumer price index. Both series are available from the Federal Reserve

Economic Data (FRED) online database. All series are demeaned prior to estimation. The

transformed time series are shown in Figure 1.

The US stock market is represented using intra-month distributions of stock returns

of the S&P 500 index. For each month, we use capitalization-weighted S&P 500 index

returns at the ten-minute frequency to estimate densities for the intra-month distributions.

The returns data are obtained from Tick Data Inc and are truncated at 0.50% and 99.5%

percentiles prior to estimating the state densities. Figure 2 contains the time series of the

estimated densities for intra-month distributions (left panel), along with the associated

mean (center panel) and variance (right panel).5 It is clear that the moments of the

distribution vary across time. This suggests that it may be necessary to account for the

4Website link: https://sites.google.com/site/cjsbaumeister/research
5When estimating our model we use the demeaned density of the stock return distribution in Figure 2.
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Figure 1: Transformed oil market time series: global oil production (left), global industrial
production (center) and real price of crude oil (left) over the period 1988:02-2018:01.

Figure 2: Stock returns densities and associated mean and variance over the period 1988:02-
2018:01.

entire stock price distribution in order to fully understand the oil-stock price nexus.

2.2 SVAR model

In order to make the links between the MVAR and conventional SVARs as transparent

as possible, we first provide a short recap of the foundational SVAR model currently used

in the literature. Let zt � pxt, rtq1, in which xt � pqt, yt, ptq where qt denotes global oil

production, yt global economic activity, pt the real price of oil and rt an aggregate time

series representation of the stock market such as returns or volatility. The companion form
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of the reduced form VAR model is given by

zt � Azt�1 � εt, (1)

where A is the companion form matrix, zt�1 is a vector of lags, and εt is a white noise error

with mean zero and variance Σ. The VAR model links the oil and stock markets via two

blocks of equations. The first block is a global crude oil market model which consists of the

first three equations. The second block is a single series that represents the stock market.

It is well known that the structural representation of (1) is underidentified. To see this

let et denote the vector of serially and mutually uncorrelated structural innovations. It

then follows that εt � Bet, where B is the structural impact matrix and that Σ � BB1.

It is easily verified that B contains K2 unique elements, while the covariance matrix Σ

only contains KpK � 1q{2 unique elements. Exact identification is therefore achieved by

restricting KpK � 1q{2 elements to be zero.

Following Kilian and Park (2009) the identification problem can be solved by assuming

that the structural impact matrix has the following recursive structure

B �

�������
b11 0 0 0

b21 b22 0 0

b31 b32 b33 0

b41 b42 b43 b44

������. (2)

The exclusion restrictions in the oil market block are consistent with a vertical short-

run supply curve and a downward sloping demand curve, as first introduced in Kilian

(2009).6 These assumptions are motivated as follows: (1) crude oil supply is slow to

adjust due to production costs and uncertainty about the current and future state of the

economy, (2) global real economic activity is sluggish and shocks to the real price of oil will

take time to propagate, (3) shocks to factors other than supply or aggregate demand for

industrial commodities must be demand shocks that are specific to the oil market. This final

6Since the seminal paper of Hamilton (1983), a growing body of literature has used SVAR models to
identify the effects of oil market shocks on aggregate activity in a number of countries, see for instance
Burbidge and Harrison (1984), Ahmed et al. (1988), Bernanke et al. (1997), Bjørnland (2000), Hamilton
(2003), Hamilton (2009) and Kilian (2009) for some early studies.
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shock includes factors such as financial speculation, precautionary demand associated with

uncertainty surrounding the real price of oil, changes to storage technology, or politically

motivated changes in the Strategic Petroleum Reserve. Following the literature, we refer

to these three oil market shocks as flow-supply (FS) shocks, flow-demand (FD) shocks,

and oil-specific demand (OSD) shocks respectively. The final assumption asserts that the

US stock market responds to all three oil market shocks on impact, while only affecting

the oil market variables with a delay of at least one month. This assumption is consistent

with the notion that innovations to the price of oil are predetermined with respect to the

US economy. This set of assumptions has also been used by Bastianin and Manera (2018)

to study the effects of demand and supply shocks from the global oil market on US stock

market volatility, and by Güntner (2014) to examine the effects of the oil market shocks

on returns in various international markets.

2.3 Mixed Autoregression (MVAR) model

Let zt � pxt, ftq in which xt denotes an ℓ-dimensional vector of aggregate variables, and

ft denote a functional variable taking values in a Hilbert space H of square integrable

functions. In our application xt is the same 3-dimensional vector of oil market variables

discussed in the previous section, while ft is the stock returns distribution. Using a similar

notation to the previous section, the Mixed Autoregression (MVAR) model is given by

zt � Azt�1 � εt, (3)

however in this case A is a bounded linear operator (as opposed to a matrix), and εt is a

functional error (as opposed to a real-valued vector), which is assumed to be a functional

white noise with zero mean.

The main difference between the MVAR and VAR is the introduction of the functional

variable ft. This implies that zt in (3) is defined as a time series of random elements in

Rℓ�H, which itself is defined as a Hilbert space endowed with the inner product x�, �y and
the norm } � }.7 This is in contrast to (1) in which zt is defined as a real-valued vector in in

7A more formal definition of the MVAR model is given in Appendix A.
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Rpℓ�1q. This difference creates a key computational challenge in how to estimate the MVAR

model. In what follows we first show that the MVAR model can be approximated using

an appropriately specified finite-dimensional VAR model. We then discuss how to identify

shocks for structural analysis. Finally we present three key practical challenges that users

need to resolve when specifying MVAR models to address their research questions.

2.3.1 Reduced form approximation and estimation

In this section, we show how to approximate the MVAR using a finite dimension VAR

model, and then estimate it using standard ordinary least squares (OLS) methods. Our

approach builds on recent results in Chang et al. (2021b) — who show that functional

VARs (without aggregate time series) can be approximated using finite VAR models — to

a framework that includes both functional variables and aggregate time series. The key

idea is to fix an orthonormal basis of Rℓ �H such that the approximation error term goes

to zero at an appropriate rate.

Approximation The MVAR in (3) can be approximated with a finite-dimensional VAR

by fixing an orthonormal basis pviq of Rℓ�H. Let Rℓ�V be the subspace of Rℓ�H spanned

by a sub-basis pviqni�1 with n ¡ ℓ, and denote by P the Hilbert space projection on the

subspace Rℓ � V so that Pz � °n
i�1xvi, zyvi. The MVAR in (3) can then be approximated

as

zt � APzt�1 � Ap1� P qzt�1 � εt � APzt�1 � εt, (4)

where 1� P is an operator on Rℓ �H defined as p1� P qz � z � Pz � °8
i�n�1xvi, zyvi for

all z P Rℓ �H. Note that the approximation error term
�
Ap1 � P qzt�1

�
is asymptotically

negligible under suitable regularity conditions if we set nÑ 8 as T Ñ 8 at an appropriate

rate.

Next, to represent this approximate MAR as a finite-dimensional VAR model, let

π : z ÞÑ pzq �

�����
xv1, zy

...

xvn, zy

���� (5)
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for z P Rℓ �H, and

π : A ÞÑ pAq �

�����
xv1, Av1y � � � xv1, Avny

...
...

...

xvn, Av1y � � � xvn, Avny

���� (6)

for A P LpRℓ �Hq. Then, using our notation in (5) and (6), we may readily represent the

approximate MVAR in (3) as

pztq � pAqpzt�1q� pεtq, (7)

a conventional n-dimensional VAR. Our empirical analysis and statistical inference in the

paper are all based on the approximate VAR in (7).

Estimation Having approximated the infinite-dimensional MVAR with a finite-dimensional

VAR, we now derive the estimator of the autoregressive operator pA of A and the fitted val-

ues reduced form errors pεt of the reduced form errors εt. Since the restricted versions of

π’s in (5) and (6) are one-to-one, their inverses exist and are well defined and given by8

π�1
�
pzq
� � Pz and π�1

�
pAq
� � PAP.

Let xpAq be the OLS estimator of the autoregressive coefficient matrix pAq and ypεtq be the

fitted values of the residuals pεtq obtained from the approximate VAR in (7). This implies

that the estimate xpAq of the autoregressive coefficient matrix and the fitted residuals ypεtq,
obtained from the approximate VAR in (7), allow us to derive the associated estimate pA
and the fitted functional residuals pεt as

pA � π�1
�xpAq

�
and pεt � π�1

�ypεtq�,
where pA is a linear operator on Rℓ � V and pεt is a functional time series taking values in

Rℓ � V .

8Note that although the π’s in (5) and (6) are defined for any z in Rℓ �H and for any linear operator
in Rℓ �H, we can interpret them as their restricted versions on Rℓ � V whenever necessary.
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2.3.2 Structural analysis

Having shown how to estimate the reduced form MVARmodel, we now show how to identify

the underlying structural shocks and construct functional impulse response functions.

Identifying an aggregate shock Once the functional variable ft in (3) is approximated

using an m-dimensional basis, zt becomes a n�1 vector, where n � ℓ�m, standard identi-

fication strategy from the conventional SVAR literature can be applied to the approximate

VAR in (7).9 To see this, first note that the VAR representation of the MVAR model in (7)

will have a covariance matrix of size n. Identifying the structural shocks therefore involves

recovering the structural impact matrix, B, from the relationship

pεtq � Bet, (8)

where et � pe1t, . . . , entq1 is the n � 1 vector of structural innovations. Each column of B

contains contemporaneous responses of the ℓ-dimensional vector of aggregate variables and

the m-dimensional vector of factor loadings from the m functional principal components.

To remain close to the key literature discussed in Section 2.2, we identify B by positing

a recursive relationship between the variables of interest. Under this assumption, the

structural impact matrix B is obtained uniquely from

BB1 � xpΣq � 1

T

Ţ

t�1

xpεtyqpεtq1, (9)

where ypεtq, t � 1, . . . , T , are the fitted residuals from the reduced form VAR in (7).

Identifying a functional shock The above procedure shows that the ℓ structural shocks

associated with the aggregate time series, i.e., e1t, e2t, . . . , eℓt, can be identified as in the

standard VAR in the literature discussed in Section 2.2. In particular, we will identify

the three shocks related to the oil market (flow-supply (FS) shocks, flow-demand (FD)

shocks, and oil-specific demand (OSD) shocks) as above. However, the functional shocks,

epℓ�1qt, . . . , epℓ�mqt, are not meaningfully identified in any structural sense. We therefore

9In our application the oil market block consists of three aggregate time series implying ℓ � 3.
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refer to these shocks as semi-structural and seek to identify a single economically inter-

pretable functional shock. In principle, we may identify any functional structural shock as

long as it can be defined as a linear combination of these semi-structural shocks

eft � w1epℓ�1qt � � � � � wmepℓ�mqt, (10)

where denoted eft denotes the functional shock of interest, and w1, . . . , wm denote the

weights with normalization restriction
°m

i�1w
2
i � 1 imposed to make eft have unit variance.

To identify any functional shock of interest, we should therefore find the weights that define

it as a linear combination of the semi-structural shocks. We return to this when discussing

practical considerations in the next sub-section.

Functional IRFs Impulse response functions of pztq � px1t, pftq1q1 to any of the structural

and semi-structural shocks eit, k � 1, . . . , ℓ � m, identified by (8) and (9), can be easily

obtained from the approximate VAR in (7) as in the standard SVAR. Computing the

responses of the aggregate variable xt requires no extra work. For the functional variable

ft, however, we need to convert the responses of pftq to those of the original functional

variable ft, since the goal of our analysis is to assess the impact of structural shocks on

ft, not on pftq. It is indeed simple and straightforward to get the responses of ft, once

we obtain the responses of pftq, to these structural and semi-structural shocks. To recover

impulse responses of the original functional variable ft from those of pftq to each structural

and semi-structural shock, we may just reverse the mapping implied by the isometry π in

Section 2.3.1. Since π is a one-to-one mapping from an m-dimensional subspace V of the

function space H to Rm, the response of ft to each of structural and semi-structural shocks

aggregate shock ekt is given by π�1
�
rpektq

�
, where rpektq is the impulse response function

of pftq to the structural or semi-structural shock ekt, k � 1, . . . , ℓ�m.

Note that π�1
�
rpektq

�
is a function in the subspace V of the original function space

H. Visually, this results in a response of the three-dimensional response surface of the

stock return distribution to each aggregate structural shock, as opposed to the usual two-

dimensional lines provided by conventional impulse response functions.10 Since these new

10A graphical presentation of these functional responses is given in our application reported in Figure 6
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responses map the structural shocks to the functional variable of interest, we refer to this

tool as a functional impulse response function (FIRF).

2.4 Practical Considerations

When using the MVAR model the researcher must consider three key practical consid-

erations: (1) how to construct the functional variable? (2) which basis to choose for the

reduced form estimation? (3) which aggregate functional shock to identify? We now discuss

each of these considerations in the context of our application.

Constructing Functional Variables The first challenge that researchers must over-

come when estimating such models is that the functional variable may not be continuously

observed at the same frequency as the aggregate time series of interest. In our application

this is overcome by constructing a series of stock return densities that are observable at

the same monthly frequency as the oil market variables (see Section 2.1).

Selecting a Basis The second challenge pertains to the choice of an appropriate basis

to estimate the VAR in (7). Basis functions can be broadly categorized as either a priori

fixed bases or data-driven bases. As the name suggests, a priori fixed bases are chosen

independently of the data. We instead take the second route and seek an optimal (in the

least squares sense) empirical orthonormal basis that is data-driven. While a fixed (spline)

basis is used in the analysis of Chang et al. (2021a), data-driven bases have been used in

other recent macroeconomic analyses involving the distribution of inflation expectations

(Meeks and Monti, 2022; Chang et al., 2022). In Appendix B we show that the data-driven

functional principal component (FPC) basis possesses a theoretical optimality property

that makes it a natural choice. However, in the spirit of being completely data-driven,

we also compare the in-sample fit of the FPC basis with three alternative basis functions:

the moment basis, the quantile basis, and the histogram basis, in terms of functional R-

squared, integrated variance, and trace statistics. To conserve space, we defer the details

of this procedure to Appendix B.

in the following section. The three panels in the bottom row show the functional responses of the stock
return distribution to the three aggregate shocks at impact and over the next twelve month horizons.
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The main result is that we find the FPC basis to be the best way to summarize the

temporal variation of the returns distribution, and we use this as our basis throughout

the paper. Letting the number of functional principal component series be denoted by m,

then pztq in (3) becomes an pℓ � mq � 1 vector with ℓ � 3 oil market variables. Given

these inputs, the MVAR representation in (7) can then be estimated using standard OLS

methods. Results for optimal selection of m are provided in Section 3.1.

Identifying a Functional Shock The final consideration pertains to the identification

of the function shock. As discussed previously, we may identify any functional structural

shock as a linear combination of the underlying semi-structural shocks. Various functional

shocks are of practical interest. In the context of the oil-stock price nexus, for instance,

a financial portfolio manager may be interested in analyzing the impacts of shocks that

minimize the value-at-risk at a given horizon. An oil market analyst may alternatively

prefer to examine shocks that maximize the cumulative response of one of the aggregate

variables (world economic activities, for example) some years after the impact date.

Since volatility is a commonly used measure of risk, we here identify a volatility-

maximizing functional shock. This is done by finding the linear combination of m semi-

structural functional shocks so that the resulting combined functional shock has the largest

positive effect on stock return volatility at impact. We refer to this shock as a Var Max

shock and defer the details to Appendix C.

3 Results

The results are presented across four subsections. First, we investigate how to best represent

the stock returns density using functional principal component analysis (FPCA). Second,

we examine the dynamic effects of the various oil market demand and supply shocks on

the stock market using functional impulse response functions. Third, we quantifies the

distributional effects of the aggregate and functional shocks on the stock return distribution.

This is illustrated by investigating histograms with responses at deciles to the various

shocks. Fourth, we present a value-at-risk (VaR) analysis to demonstrate the potential

policy applications of the MVAR approach. The VaR is a widely used measure of risk
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within academia and by private and institutional investors, as well as financial market

regulators.

3.1 Functional principal component analysis

To select an appropriate number of components to summarize the S&P 500 returns density

we perform functional principal component analysis (FPCA). The number of components

used for the analysis is selected using the cumulative scree plot in Figure 3. The results

show that the first three factors: vk, k � 1, 2, 3, can explain around 98 percent of the

variance in the S&P 500 returns distribution, with subsequent factors providing marginal

contributions. We therefore set the number of factors equal to three in our analysis.11

Figure 4 presents the results from applying the FPCA to the stock return distributions.

The figure displays the first three functional principle components (center), along with the

time series of their respective loadings (left) and mean distributional dynamics (right).12

The gray shaded areas in the middle column indicate the NBER recession periods.

We note in general that the three FPCs, presented in the middle column, show salient

time-invariant features of the stock return distributions reflecting financial market condi-

tions, while their loadings, presented in the left column, inform the direction and magnitude

of their effects on the distribution over time. Note that FPCs are functions defined over

the range of stock returns while their loadings evolve over time. In particular, we find that

the first FPC, displayed in the top row, places the majority of the mass on the center of the

distribution, and reduces the mass in the tails (see the top left panel). It can therefore be

interpreted as a financial stability factor. As shown in Figure 3, this factor explains about

89% of the total variation in the returns distribution over the sample. Positive values of this

component are associated with a narrower range of stock returns as shown in the red line

in the top right panel in Figure 4, while negative values of the component lead to a density

with larger dispersion as reflected in the yellow line there. We note that positive values of

loadings largely overlap with the stable economic conditions (non-recession times), shown

11We may select m by using the leave-one-out cross-validation (LOOCV) method on minimizing the
one-period ahead forecast error variances.

12The mean distributional dynamics are computed by taking the mean of the principle component and
then multiplying it with the max and min of the associated factor loading time series.
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Figure 3: Cumulative scree plot for S&P 500 returns distribution

as non-shaded areas in the top middle panel, while negative values of loadings coincide

with the recession periods, shown as shaded areas in the same panel.

In contrast to the first FPC, the second FPC, shown in the middle row of Figure 4,

places much more mass in the tails, with lesser mass in the center of the distribution. Since

it highlights tail behavior it can be viewed as a financial instability factor and explains

approximately 7% of the total variation in the returns distribution. We see from the

middle panel that the loading increases during the financial crisis in 2008-09, but also in

the years following the oil price collapse in 2014-16, which is consistent with this being

an instability factor. Finally, the third FPC shown in the bottom row of Figure 4, places

more mass on the positive side of the returns distributions and can therefore be viewed as

an asymmetry factor. This factor explains approximately 2% of the total variation in the

returns distribution, and does not seem to be related to any specific recessionary period.

3.2 Functional impulse response functions

How do oil market shocks impact the US stock market? Using data on aggregate real stock

returns in the US, Kilian and Park (2009) find that unanticipated disruptions in crude

oil production have no statistically significant impact, while flow demand shocks have a

17



Figure 4: Functional Principal Components of S&P 500 returns distribution.

Notes: Functional principal components (center), time series of their loadings (left) and mean distributional

dynamics (right). The top, middle, and bottom figures refer to characteristics for the first, second, and

third functional principal component respectively.

positive effect and oil-specific demand shocks have a negative effect on stock returns. Their

central conclusion is that the stock market may react very differently depending on the

underlying oil market shock. This broad conclusion is also found by Bastianin and Manera

(2018) in the case of returns volatility. Using the Kilian and Park (2009) SVAR model

with realized stock return volatility in place of the returns series, they find that flow-supply

shocks have no impact on volatility, while flow-demand shocks reduce volatility, and oil-

specific demand increase volatility after a delay of about 5 months. Building on this study

we here re-estimate the effects of the three oil market shocks on realized volatility.

The full set of impulse response functions from the conventional SVAR model are shown

in Figure 5. The darker and lighter bands signify 68% and 90% confidence bands, respec-

tively. First focusing on the oil market block, we find that: (1) a positive flow-supply
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Figure 5: Full set of impulse response functions (IRFs) from conventional SVAR model.

Notes: The shocks are flow-supply (FS), flow-demand (FD) and oil-specific demand (OSD).

(FS) shock displayed in the left column, leads to a reduction in the price of oil, resulting

in a global economic expansion; (2) a positive flow-demand (FD) shock displayed in the

middle column, increases the real price of oil which causes producers to increase crude oil

production; (3) a positive oil-specific demand (OSD) shock displayed in the right column,

has a negligible impact of global economic activity and production. Next, turning our

attention to the effects on returns volatility displayed in the bottom row, we find that all

three shocks decrease realized volatility. These results are broadly consistent with earlier

work in Bastianin and Manera (2018).

We can also address the same question with an MVAR approach using functional im-
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Figure 6: Full set of functional impulse response functions (FIRFs) from MVAR model.

Notes: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD) and Var Max (see

section 2.4 for details). The 68% (dark) and 90% (light) confidence bands (colored areas) are calculated

using a bootstrapping method.

pulse response functions (FIRFs). The full set of FIRFs are shown in Figure 6. First, we

note that the responses in the oil market block are broadly consistent with those from the

conventional SVAR model. An important feature of the MVAR approach in this applica-

tion is that it can jointly determine the dynamic responses of the mean and variance of the

(demeaned) stock returns distribution (DSP) to the various oil market shocks as opposed to

focusing solely on a given moment. There we observe that both flow-supply and oil-specific

demand shocks elicit a persistent positive response in the mean of the DSP. In contrast,

the flow-demand shock tends to have an asymmetric effect on the distribution.
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Figure 7: Functional impulse response functions (FIRFs) for the S&P 500 returns distri-
bution at selected horizons.

Notes: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD) and Var Max (see

section 2.4 for details). The 68% (dark) and 90% (light) confidence bands (colored areas) are calculated

using a bootstrapping method. The solid line is the sample response.

To gauge the statistical significance of these results, we present the FIRFs for the returns

distribution in response to the various shocks at selected impulse horizons in Figure 7. We

find that the flow-supply shocks and oil-specific demand shocks are generally statistically

significant in the short-run, while the flow-demand shocks are rarely significant.

To further highlight the dynamic responses of the moments of the stock returns dis-

tribution to the various oil market shocks, Figure 8 shows the FIRFs for the first four
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Figure 8: Functional impulse response functions (FIRFs) for the mean, variance, skewness
and kurtosis of the S&P 500 returns distribution.

Notes: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD) and Var Max (see

section 2.4 for details).

moments of the stock returns distribution: mean, variance, skewness, and kurtosis. Start-

ing from the top row, the response of mean returns shows that unanticipated expansions of

crude oil production (FS shock) have no significant effect on stock returns. In contrast, an

unexpected increase in the global demand for industrial commodities driven by increased

global real economic activity (FD shock) causes a short-term increase in U.S. stock returns.

Both of these results are in line with those presented in Kilian and Park (2009). In con-

trast to their results, however, we find that an oil-specific demand (OSD) shock elicits a

brief positive response in mean returns. This suggests that accounting for distributional
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dynamics is critical when quantifying the impact that oil prices have on average returns.

Moving to the second row we observe that all three shocks tend to elicit a negative response

in stock price volatility: however only the OSD shock is statistically significant in the first

few months after the shock. These results are broadly consistent with the IRFs from the

SVAR in Figure 5 and results in Bastianin and Manera (2018). Combining the mean and

variance results suggest that the oil market shocks tend to elicit a negative correlation be-

tween volatility and returns, thereby reflecting a financial leverage effect within the stock

market.

To the best of our knowledge, responses relating to the third and fourth moments of the

stock return distribution have not been discussed elsewhere in the literature. Focusing on

the third row, we find that skewness increases after all three oil market shocks, and for flow

supply and demand, significantly so. This suggests that oil market shocks lead to a more

asymmetric shape of stock returns. Finally, results in the fourth row show that the FD

shock decreases kurtosis in the short-run, which can be interpreted as an increase in the

tail behavior, while the effects of the FS and OSD shocks are not statistically significant.

Thus, while the latter two moments are less explored in the literature compared to the first

and second moments, the fact that they exhibit statistically significant responses suggests

that accounting for these moments is crucial for accurately quantifying the effects of oil

market shocks on the stock market.

3.3 Quantifying Distributional Effects

Another feature of the MVAR model is that it facilitates the quantification of the distribu-

tional effects of the aggregate and functional shocks. This is given by the contemporaneous

functional response of the stock return distribution. These results are illustrated by the

histograms in Figures 9 and 10. Figure 9 shows the at-impact responses of the stock return

distribution in each decile to the various oil market shocks, while Figure 10 shows similar

at-impact responses following the Var Max shock. In both figures, the blue bars represent

the 10-th percentile of the stock return distribution prior to the shock.

Figure 9 shows that, on impact, all three oil market shocks decrease extreme returns,

while increasing the middle returns. In particular, both the flow supply (FS) and the oil-
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Figure 9: Response of S&P Distribution to oil market shocks (h=0)
Note: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD)

Figure 10: Response of S&P Distribution to Var Max Shock (h=0)

specific demand (OSD) shocks decrease extreme returns, while increasing returns between

the second and eighth deciles. This pattern is most pronounced for the OSD shock. The

effects of the flow demand (FD) shock are more complex. Like the two other oil market

shocks, the FD shock decreases extreme returns at the top and bottom deciles. However,

in contrast to the other shocks, it also decreases the returns between the fourth and sixth

deciles. For the remaining deciles, it increases returns as the two other shocks: for moder-
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ately low and high (second and ninth decline) returns, the FD shock has noticeably larger

effects than the FS and OSD shocks, but for mildly low and high (third and seventh-eights

decile) returns, the FD shock has smaller effect relative to the two other oil market shocks.

In clear contrast to the oil market shocks, Figure 10 shows that the Var Max shock

substantially increases extreme returns (both top and bottom deciles) while decreasing the

returns in the mid-range of the distribution. Hence, at impact, the Var Max shock is clearly

affecting the tails of the stock distribution relative to the middle returns.

In summary, the results suggest that each of the shocks have very different effects on the

range of the stock return distribution at impact. The Var Max shock primarily increases

the extreme returns, while the oil market shocks mostly increase the mid-range returns.

3.4 Value at Risk analysis

Another advantage of the MVAR approach is that it allows us to examine the effects of the

structural shocks on the value-at-risk (VaR). The VaR is defined as the maximum expected

loss on an investment, over a given time period at a specified degree of confidence. It is

therefore a widely used measure of risk within academia and by private and institutional

investors, and financial market regulators.

To first gauge the accuracy of the FPCA approach in approximating the VaR dynamics,

we plot the implied 5% VaR associated with the returns distributions from the data and

first three factors from the FPCA analysis in Figure 11. The vertical axis are in fractional

form. This means that, for instance, a one-month 5% VaR of �2 � 10�3 means that

there is a 5% chance of a 0.2% loss during that month. The most notable feature of the

VaR time series behavior is that the estimated VaR is mostly consistent with that of the

original distribution. This suggests that FPCA approach does a good job of capturing the

distributional dynamics of the stock returns distribution. The notable exception is during

the Great Recession where the VaR associated with the MVAR model is around half the

size of the VaR implied by the returns distribution implied by the data alone.

To investigate which of the oil market shocks are important for determining the VaR we

conduct a counterfactual in which we report the VaR when only one of the structural shocks

is realized. The results are provided in Figure 12. It is immediately clear that the Var Max
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Figure 11: Value at risk (VaR) for the S&P 500 returns distribution over the period 1988:02-
2018:01.

shock closely tracks the VaR total throughout the sample period. Perhaps unsurprisingly,

this suggests that most of the variation in the VaR is driven by forces underlying the US

stock market other than the global market for crude oil. However, this does not imply

that the oil market shocks are unimportant. For instance, oil market shocks are found to

(absolutely) increased the VaR during periods of economic turmoil, such as the crisis of

the early 1990s and 2000s, as well as the 2007-08 Great Recession. Such shocks also had

sizable impacts on the VaR during other periods, such as the Iraqi invasion of Kuwait of

1990, OPEC’s announcement to increase its production ceiling in 1997-98, and the oil price

decline of 2014.

Next, to determine how the VaR responds to the various oil market shocks, Figure 13

provides FIRFs for the VaR to each of the oil market shocks both across the entire sample

(first row) and in selected periods (rows 2-4). First focusing on the top row, it is immedi-

ately obvious that the effects of the oil market demand and supply shocks on the VaR are

extremely short-lived, often disappearing after 1-3 months, and distinct. On average, we

find that flow-supply shocks tend to elicit no response in the VaR over the sample period.

In contrast, flow-demand shocks have no effect on impact, but then increase the VaR for

one month before reverting to zero. Finally, the oil-specific demand shock immediately
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(a) Oil market shocks (b) Stock market shocks

Figure 12: Counterfactual: Value at risk (VaR) for the S&P 500 returns distribution over
the sample 1988:01-2018:01 when only one shock is realized.

Notes: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD) and maximum

variance (Var Max).

increases the VaR and reverts to zero after three months. The fact that the two demand

shocks increase the VaR in the short-run implies that they tend to make the value-at-risk

(absolutely) smaller, thereby reducing tail risk.

To further examine the effects of these shocks over the sample, rows 2-4 present the

VaR responses in selected periods. We observe that the oil market shocks impact the VaR

differently over time. For instance, results in row 2 show that the two demand shocks

increase the VaR at the start of the sample, thereby reducing the tail risk in the returns

distribution. In contrast, we find that the oil market had no impact on the VaR in 2008.

Finally, the bottom row shows that both supply shocks and oil-specific demand shocks

generated persistent increases in the VaR, while the flow demand shock had no effect.

Taken together, the results suggest that the impact of oil market demand and supply

shocks on the VaR is distinct and changes over time. When they do have an impact, the

effects tend to be extremely short-lived, often disappearing after 1-3 months, however there

are episodes where the effects are more persistent. Such information may prove useful for

market participants when formulating the effects of oil price shocks on portfolio risks.
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Figure 13: Functional impulse response functions for the value-at-risk (VaR) for the S&P
500 returns distribution to the oil market demand and supply shocks.

Notes: The shocks are flow-supply (FS), flow-demand (FD), oil-specific demand (OSD) and Var Max

4 Conclusion

We have reexamined the oil-stock price nexus using a novel VAR model that allows for a

mixture of aggregate and functional variables in a multivariate setting. The major inno-

vation of this mixed vector autoregression (MVAR) approach is that it allows us to jointly

examine the dynamic response of aggregate and functional time series to conventional and

distributional shocks. In our application, this facilitated an examination of how oil price

shocks impact the entire stock return distribution, instead of focusing on a single represen-

tative series, such as returns or realized volatility. Using this new framework we yielded
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new insights into the oil-stock price nexus from three perspectives.

First, from an econometric modelling perspective, we showed how the reduced form

MVAR model can be estimated using a combination of functional principle components

analysis and ordinary least squares, how to identify both aggregate and functional shocks,

and how to produce and interpret functional impulse response functions. Theoretical and

quantitative evidence was also provided for the use of the FPC basis over three alternative

data-driven basis functions: the moment basis, the quantile basis, and the histogram basis.

Empirically, we found that the FPC basis clearly outperforms the other bases across three

measures of in-sample fit. The first three leading functional principal components were

found to effectively extract around 98% of the temporal variation of the intra-month S&P

500 returns distribution.

Next, from an economic perspective, we used functional IRFs (FIRFs) to show the

importance of accounting for the changes in the entire stock return distribution when

assessing the effects of oil shocks on the stock market. As a preliminary diagnostic, we

showed that the FIRFs reproduce the general result from IRFs that demand and supply

shocks have very different effects on the real price of oil. We then shifted focus to the

dynamic response of the returns distribution to the oil market shocks and found that both

of the demand shocks elicit a persistent positive response in the mean of the DSP while

also reducing the variance of the distribution. In contrast, the flow-supply shock tends

to have no statistically significant impact on the first two moments. Another intriguing

result was that the flow-demand shock increases the skewness and decreases the kurtosis

of the returns distribution in the first few months after the shock; however, the other two

oil market shocks had no statistically significant impact on these higher-order moments.

Moreover, the Var Max shock significantly decreases returns, while increasing the skewness

and kurtosis of the distribution. These results highlight the importance of controlling for

distributional dynamics when studying the oil-stock price nexus.

Finally, from a policy perspective, we demonstrated how the MVAR approach can be

used to conduct a functional value-at-risk (VaR) analysis. The results showed that our

approach does a good job of reflecting the VaR implied by the returns distribution implied

by the data alone. We also provided the novel result that oil market demand and supply
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shocks may have very different effects on the VaR, and that these effects change over time.

Market participants may benefit from such information when determining how oil price

shocks affect portfolio risk.

While we have concentrated on the oil-stock price nexus in the US, there is clearly

a wide scope of possible avenues for future research with the MVAR approach. Natural

direct extensions of our empirical study include examining the effects of oil price shocks on

individual equity prices, equity prices across sectors, stock markets in other countries, and

problems of optimal portfolio choice. The MVAR approach may also prove to be useful

in other areas at the frontier of research in macroeconomics and finance such as hetero-

geneous agent consumption-savings problems, identifying drivers of income inequality, and

understanding the distributional dynamics of climate change.
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Appendices

Appendix A Basics of Hilbert Space

To define our MVAR more precisely, we need to introduce some basic concepts of Hilbert

space. In (3), zt is formally defined as a time series of random elements in Rℓ �H, which

itself is also defined as another Hilbert space. The new Hilbert space Rℓ �H is endowed

with the inner product

xz, wy � xx, yy � xf, gy

for all z � px, fq and w � py, gq with x, y P Rℓ and f, g P H, where x�, �y is used as a generic

notation for the inner product in Rℓ, H and Rℓ �H.13 The standard inner products in Rℓ

and H are given by

xx, yy � x1y and xf, gy �
»
fprqgprqdr,

respectively, for all x, y P Rℓ and f, g P H. We also use the same notation } � } for the norm
induced by the inner product x�, �y in Rℓ, H and Rℓ � H, and therefore, }z}2 � xz, zy �
xx, xy � xf, fy � }x}2 � }f}2 for all z � px, fq P Rℓ �H.

Note that the autoregressive operator A in (3) is an element of the space LpRℓ �Hq of
linear operators on Rℓ �H and may be written more explicitly as the matrix of operators

A �
�
ARR ARH

AHR AHH

�
,

where ARR : Rℓ Ñ Rℓ, ARH : H Ñ Rℓ, AHR : Rℓ Ñ H and AHH : H Ñ H. If we let

w � Az for z � px, fq1 and w � py, gq1 with x, y P Rℓ and f, g P H, we may represent ARR

as an ℓ� ℓ matrix such that y � ARRx,

ARH �

����
xh1, �y

...

xhℓ, �y

��� with y � ARHf �

����
xh1, fy

...

xhℓ, fy

���,
and AHR � pk1, . . . , kℓq1 with g � AHRx � pk1, . . . , kℓq1x, for some h1, . . . , hℓ P H and

k1, . . . , kℓ P H, and AHH is a bounded linear operator on H for which g � AHHf .

We also need to introduce the notion of tensor product in H and Rℓ�H. For f, g P H,

13This minor abuse of notation is done for notational brevity and to improve the overall readability.
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their tensor product f b g is defined as a linear operator on H satisfying

pf b gqh � xh, gyf

for all h P H. We may define the tensor product z b w of z � px, fq, w � py, gq P Rℓ �H

similarly as a linear operator on Rℓ �H given by

pz b wqv � xw, vyz � �c1y � xh, gy�px, fq
for all v � pc, hq P Rℓ � H. When H � Rm, we have f b g � fg1 and z b w � zw1, and

they become outer products of two vectors, contrastingly with their inner products given

by xf, gy � f 1g and xz, wy � z1w.

The functional error pεtq in (3) is assumed to be white noise. That is, Epεtq � 0, and

Epεt b εsq �
#

Σ

0
for

t � s

t � s
,

where Epεtbεsq is the covariance operator of εt and εs, which is defined as a linear operator

on Rℓ �H such that xz,Epεt b εsqwy � Exz, εtyxw, εsy for all z, w P Rℓ �H. In short, pεtq
is a serially uncorrelated functional time series with mean zero and a common variance

operator, as a white noise vector time series in the finite-dimensional case.

Appendix B Choice of Basis

The VAR representation in (7) may be obtained for any choice of an orthonormal basis pviq
of Rℓ�H. The effectiveness of the resulting approximation, however, depends crucially on

the choice of basis. We here show this from both theoretical and applied perspectives.

Theory We choose a particular basis of Rℓ�H, which will be denoted by pv�i q, and show

that it has an optimality property. To introduce our basis pv�i q explicitly, we formally define

the underlying Hilbert space Rℓ �H as Rℓ `H. Let

v�i � ei

for i � 1, . . . , ℓ, where peiq is the standard basis for Rℓ, so that xt �
�xv�1 , zty, . . . , xv�ℓ , zty�1

for all t. Furthermore, we define

v�i�ℓ � eipΓq
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for i � 1, 2, . . ., where eipΓq denotes the eigenfunction of the sample variance operator of

pftq
Γ � 1

T

Ţ

t�1

pft b ftq (11)

associated with its i-th largest eigenvalue. Note that
�
eipΓq

�
is the (normalized) functional

principal component, which is widely used in the functional data analysis literature includ-

ing Bosq (2000), Ramsay and Silverman (2005), Hall and Horowitz (2007) and Park and

Qian (2012), among others.

Let pv�i�ℓqmi�1 be a sub-basis of pvi�ℓq, which generates the subspace V � of H, so that

pv�i qni�1 with n � ℓ�m spans the subspace Rℓ � V � of Rℓ �H. In contrast, we denote by

pviq a basis of Rℓ � H such that vi � ei for i � 1, . . . , ℓ and pvi�ℓqmi�1 spans an arbitrary

subspace V of H, and therefore, its sub-basis pviqni�1 generates R
ℓ�V . In what follows, we

let Q and Q� be the Hilbert space projections on V and V �, respectively, and P and P � be

the Hilbert space projections on Rℓ � V and Rℓ � V �, respectively. By definition, we have

Ţ

t�1

}Q�ft}2 ¥
Ţ

t�1

}Qft}2,

which implies that pQ�ftq has the maximum temporal variation. It follows that

Ţ

t�1

}P �zt}2 ¥
Ţ

t�1

}Pzt}2,

since

Ţ

t�1

}Pzt}2 �
Ţ

t�1

}xt}2 �
Ţ

t�1

}Qft}2 and
Ţ

t�1

}P �zt}2 �
Ţ

t�1

}xt}2 �
Ţ

t�1

}Q�ft}2.

This shows that the approximation of A given by P �AP � restricts A to the subspace

Rℓ�V � of Rℓ�H, where pztq has the maximum temporal variation and A is most strongly

identified. In this sense, the basis pv�i q provides the most effective approximation of A

among its restrictions on an n-dimensional subspace Rℓ�V of Rℓ�H spanned by pv�i qni�1.

Application To compare the consequences of using pviqni�1 and pv�i qni�1 more explicitly,

we consider the functional R-squared (FR-squared) of an arbitrary sub-basis pvi�ℓqmi�1 given

by

FR2 �
°T

t�1 }Qft}2°T
t�1 }ft}2

,
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which represents the proportion of the total variation of pftq explained by its projection

pQftq on the subspace V spanned by pvi�ℓqmi�1. If we denote by FR2
� the FR-squared of

pv�i�ℓqmi�1, then

FR2
� ¥ FR2,

since by definition pQ�ftq has the maximum temporal variation.

Before moving on, we note that the π’s in (5) and (6) are not just one-to-one mappings.

They are isometries. This is seen from the fact that }z}2 � ��pzq��2 for z P Rℓ � V , and

}A} � ��pAq
�� for A P LpRℓ� V q.14 These isometric properties of π hold for several different

norms in Rℓ � V and LpRℓ � V q with the corresponding norms in the space Rn of n-tuple

of numbers and the space Rn�n of n� n matrices. It follows that

Ţ

t�1

}Qft}2 � trace

�
Ţ

t�1

pftqpftq
1

�
,

since }Qft}2 � }pftq}2 for t � 1, . . . , T .

We may make the FR-squared as large as we want simply by increasing the truncation

number m in any basis pvi�ℓqmi�1. However, this does not come at no cost. As m gets large,

the variance of the estimator pA for the autoregressive operator A is expected to increase.

It increases often very sharply in many practical applications, and therefore, we also need

to examine how fast the variance of pA increases as m gets large. Here, we focus on the

integrated variance of pAHH

trace
�
p pAHH � E pAHHq1p pAHH � E pAHHq

�
conditional on all other components of pA introduced in Section 2.3, which can be consis-

tently estimated by �
traceppΣq�

��trace� Ţ

t�1

pftqpftq

��1
�� .

See Chang et al. (2021b) for more details. We let

IVAR � trace

�
Ţ

t�1

pftqpftq

��1

in what follows.

14Here we use as elsewhere in the paper the same generic notation } � } to denote distinctive norms in
various spaces. This convention is also adopted throughout the paper.
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To show how important it is in practice to choose a basis, we obtain and compare the

FR-squared’s and the IVARs based on our basis pv�i�ℓqmi�1 and other bases. As an alternative

to our basis pv�i�ℓqmi�1, we consider three other bases given by the orthonormalized moments,

histograms, and quantiles, which will be referred to as the moment basis, histogram basis

and quantile basis, respectively. The moment basis pvi�ℓqmi�1 is obtained by the Gram-

Schmidt orthogonalization procedure from the pre-basis defined as uiprq � ri for i ¥ 1 over

the interval rp, qq with p and q representing the minimum and maximum values of stock

returns in the sample. We call puiq the moment basis, since

xui, fty �
»
riftprqdr

and
�xui, fty� represents the i-th moments of the stock return distributions given by the

densities pftq for i ¥ 1.

The histogram basis pvi�ℓqmi�1 is given by

viprq � 1?
qi � pi

1tpi ¤ r   qiu,

where
�rpi, qiq� is a partition of the support rp, qq of the densities pftq. As before, we let

p and q represent the minimum and maximum values of stock returns in the sample, and

obtain the pm � 1q-number of sub-intervals
�rpi, qiq� of equal length, from which we take

only m indicators as a basis ignoring the first sub-interval. This is because the pm � 1q
indicators over the pm � 1q-number of sub-intervals

�rpi, qiq� are linearly dependent. The

quantile basis pvi�ℓqmi�1 is defined similarly as indicators over a different set of partition�rpi, qiq�. The pm�1q-sub-intervals �rpi, qiq� in the partition are obtained with pqiq defined
as the i{pm� 1q-th sample quantiles of entire observations for i � 1, . . . ,m� 1. Similarly,

as for the histogram basis, we only include m indicators in the quantile basis.

Table 1 presents the FR-squared’s relying on four different choices of basis including the

functional principal component (FPC) basis, histogram basis, quantile basis and moment

basis. We may clearly see that the FPC basis effectively represents the temporal variation of

S&P returns distribution even with the truncation numberm as small asm � 1. Form � 2,

it already captures more than 95% of the total temporal variation of the distribution. This

is in sharp contrast with all other bases. For any of these bases, the explained proportion

of the temporal variation in the distribution of S&P 500 is considerably smaller for each

m and increases at a noticeably slower rate as m. Out of the three, the quantile basis

performs relatively better, although it is still not comparable at all with the FPC basis.

The moment basis, which is often used to represent distributional dynamics in practice
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m FPC Basis Histogram Basis Quantile Basis Moment Basis

1 0.8884 0.0021 0.0015 0.0001
2 0.9613 0.0311 0.6476 0.0048
3 0.9758 0.0158 0.7084 0.0052
4 0.9870 0.1783 0.7568 0.0183
5 0.9915 0.0565 0.7919 0.0190
6 0.9942 0.3632 0.8165 0.0380
7 0.9958 0.1281 0.8401 0.0390
8 0.9967 0.5313 0.8573 0.0590
9 0.9975 0.2202 0.8728 0.0602
10 0.9980 0.6445 0.8848 0.0779
11 0.9984 0.3203 0.8965 0.0793
12 0.9987 0.7203 0.9048 0.0933
13 0.9989 0.4163 0.9126 0.0948
14 0.9991 0.7684 0.9195 0.1053
15 0.9993 0.5099 0.9255 0.1068
16 0.9994 0.8010 0.9315 0.1148
17 0.9995 0.5896 0.9359 0.1163
18 0.9996 0.8251 0.9399 0.1228
19 0.9996 0.6476 0.9437 0.1245
20 0.9997 0.8389 0.9471 0.1341

Table 1: FR2 of four different choices of basis including the functional principal component
(FPC) basis, histogram basis, quantile basis and moment basis

is especially ineffective. It captures less than 5% of the total variation of S&P returns

distribution over time even for m � 20. The FR2 is expected to strictly increase as m gets

large. However, this is not the case for the histogram basis, since it is defined differently

for different values of m.

Table 2 provides the IVARs resulting from the choice of the four bases. As explained,

the IVAR is asymptotically proportional to the integrated variances of the autoregressive

operator estimator pAHH conditional on all other components of pA. The IVARs from the

FPC basis are by far smaller than the IVARs from the other three bases. They are simply

not comparable. The IVARs based on the FPC basis increases as m gets large, but only

at a moderate rate. In contrast, the IVARs of all other bases explode as m increases. For

instance, if the moment basis is used, the IVARs increase as large as 1.7 � 108 when we

set m � 20 to explain less than 5% of the temporal variation of S&P 500 distribution. We

may compare these figures with the use of the FPC basis with our choice of m � 3, which

explains approximately 98% with the IVAR given by 2.314. It is clear that using other

bases is not an option. Our demonstration here shows that the choice of basis is critically

important in studying distributional dynamics. It also suggests that researchers should
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m FPC Basis Histogram Basis Quantile Basis Moment Basis

1 0.030 8.279 48.783 2972.226
2 0.407 20546.529 97.532 3567.099
3 2.314 64533.382 136.168 58298.927
4 4.768 104624.287 184.432 63136.865
5 10.756 199842.404 262.499 192798.466
6 21.025 470187.220 321.191 415766.908
7 38.371 771540.927 573.885 556171.467
8 66.274 1059776.323 683.730 762275.109
9 100.808 1372883.503 1506.889 1014200.719
10 155.767 1801998.806 2252.585 1484067.909
11 223.570 2375284.232 11526.641 2083498.294
12 330.760 3305582.818 13066.491 2587962.679
13 448.905 4747248.143 102530.873 3139667.558
14 596.729 6535095.372 97171.602 5811565.107
15 767.026 8027593.697 781137.212 8534069.734
16 991.775 9736105.847 423075.122 15878248.786
17 1248.442 10540587.105 11373474.535 32448718.652
18 1576.804 11474309.474 3068505.013 49585806.513
19 1956.788 11980101.620 225546554.257 84824379.415
20 2472.949 12695040.536 56923577.212 174783112.168

Table 2: IVARs of four different choices of basis including the functional principal compo-
nent (FPC) basis, histogram basis, quantile basis and moment basis

be cautious when interpreting any empirical evidence of distributional dynamics based on

ineffective representations such as moments and indicator functions.
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Number of basis PC Basis Histogram Basis Quantile Basis Moment Basis

1 0.0309 12.9389 18.5492 266.3455

2 0.4072 372.5639 34.7502 313.9543

3 2.3138 765.6190 48.9964 1836.7246

4 4.7670 1793.7837 64.0437 1912.1885

5 10.7594 3425.5253 105.7411 4187.0666

6 21.0604 5021.6921 123.0412 5010.2841

7 38.4103 6172.5796 334.7554 8839.2092

8 66.4541 7369.8165 394.5109 13115.4658

9 101.0445 8719.2907 1365.7257 18943.4063

10 156.5246 10523.1538 1960.5110 27794.6129

11 224.3866 12914.7477 10377.1900 43395.1710

12 333.2454 15558.3464 13910.8308 58669.7040

13 451.5645 18713.6332 65855.4328 77731.8587

14 599.6033 23052.4111 202746.4866 110320.5740

15 772.3732 27374.7554 350429.9574 166160.5353

16 997.5695 31979.2814 1124993.5561 224750.0189

17 1256.5014 37421.7444 3797757.7395 316133.8735

18 1585.2403 43640.6818 12005833.7353 424393.0530

19 1970.1756 51410.0966 47657331.1725 561742.4970

20 2487.9453 61377.5021 233152327.5670 771527.4828

Table 3: tracepΓf �xq for each basis
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Appendix C Identifying a functional shock

To identify the Var Max shock, denoted eDST�
t , we seek to find the set of weights w�

1 , w
�
2 , . . . , w

�
m

that generate the largest increase in stock return volatility at-impact. To that end, let

ψ1, . . . , ψm be the at-impact functional responses to the semi-structural functional shocks

pepℓ�1qtq, . . . , pepℓ�mqtq, respectively, and define

ψpwq � w1ψ1 � � � � � wmψm

with w � pw1, . . . , wmq1. Then w� � pw�
1 , w

�
2 , . . . , w

�
mq1 is defined as the maximizer of

σ2pwq �
» 8

�8

x2
�
ϕ� ψpwq�pxqdx

�
» 8

�8

x2ϕpxqdx�
m̧

k�1

wk

» 8

�8

x2ψkpxqdx

with respect to w subject to
°m

k�1w
2
k � 1, where ϕ is a reference density which could be

the temporal mean density f or the observed density fT at the end of the sample period.

Without loss of generally, suppose that the densities of interest are temporally de-

meaned, i.e., deviations from the temporal mean density. Then, the functions ψ1, . . . , ψm

are not densities on their own, and solving this maximization problem is straightforward.

Let

τk �
» 8

�8

x2pψkqpxqdx

for k � 1, . . . ,m, then w� � pw�
1 , w

�
2 , . . . , w

�
mq1 is given by

w�
k �

τkb
τ 21 � � � � � τ 2m

for k � 1, . . . ,m. The Vol-Max shock may therefore be defined explicitly.

In our empirical study with m � 3 and ϕ � fT , we find that the Var Max shock

described above is identified with the weights w� � pw�
1 , w

�
2 , w

�
3 q � p�0.72, 0.66,�0.20q

normalized by its norm }w�} so that the distributional shock peDST�
t q also has the unit

variance.
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