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1 Introduction

In any electoral decision, citizens are presented with a variety of options to
which they may lend their support. While at first it may seem a simple decision
to give support to one’s favorite option, this is not always a Pareto optimal
strategy. The winning choice is not decided solely by one citizen, so each citizen
must take into account their own preferences over all outcomes as well as how
the conglomerate of other citizens will vote, in order to maximize their personal
utility.

The 2016 presidential election in the United States has caused this dilemma
to become especially interesting, as many citizens claim to have aversion pref-
erences, where all candidates give equal utility except for one, which gives less
utility. Traditionally, ordered preferences are assumed to exist, where all can-
didates can be ordered by their utility, none of which is equal. Furthermore,
many previous elections have centered on the two major party candidates, the
Democrats and Republicans, but due to the lack of popularity with both par-
ties, it now seems prudent to introduce the Libertarian candidate as a potential
choice.

This paper first sets out to construct a theoretical analysis of strategic voting
from the individual’s perspective. We will begin with the simplest case, two
citizens voting on two options, and build upon our findings until we have a
model for n citizens choosing from three options. Next we will introduce the
concept of campaigning, or citizens incurring costs for the sake of promoting a
certain option. Campaigning significantly complicates the models, and forces
us to consider mixed strategies in certain contexts. Throughout, dominant
strategies are found when possible, and when not possible, conditions are set
for the minimal additional assumptions needed to unearth a dominant strategy.
After satisfactorily constructing models for voting and campaigning behavior,
we will apply these models to hypothetical real-world examples concerning the
2016 election, to demonstrate the strength of our results.

2 Two Options

In order to properly model how a citizen within a population should vote, it is
logical to begin with the simplest nontrivial example of a two citizen population
with two options. A one citizen population is too trivial, as she will always pick
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her first choice and win. After analyzing the two citizen, two option model,
the cases of three and n citizens populations will be explored, each with two
options.

2.1 Two Citizens

Two options are given, X and Y . Since there are an even number of citizens,
there is the possibility of a tie, which is problematic. For the models presented
in this paper, it will be assumed that the two tied options each get half of a
win. This can best be understood by saying that a fair coin toss decides the
winner of the tie, and the election is repeated an infinite number of times, thus
each tied option will be declared the winner half of the time. Now, the outcome
matrix is:

Other Citizen
X Y

Citizen
X X .5X, .5Y
Y .5X, .5Y Y

In order to assign payoffs for Citizen, preferences must be assigned. Citizen
either prefers X to Y , prefers Y to X, or is indifferent between X and Y . The
indifference case will clearly give the same utility regardless of outcome, so we
turn to X preferred to Y . Again, we note that in the event of a tie, Citizen only
gets half of the utility she would achieve if X has won outright. Furthermore,
only relative preferences matter, so we assign utilities of 1 and 0 to X and Y
respectively:

Other Citizen
X Y

Citizen
X 1 .5
Y .5 0

It is clearly a dominant strategy for Citizen to always pick X, and the
symmetry of this model allows us to say that if Citizen preferred Y to X, it
would be a dominant strategy to always pick Y .

2.2 Three Citizens

We now turn to the three citizen model, where two options are given: X and
Y . Thus each citizen is faced with a choice of X or Y , and his fellow citizens
will also create one of three situations for him to be faced with, though he will
not know which he is receiving at the time of the vote:

(1) Both of his fellow citizens picked X.

(2) One picked X, one picked Y .

(3) Both of his fellow citizens picked Y .
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Furthermore, it is assumed that a simple majority is needed for a choice to
prevail, thus the outcome matrix for each citizen is as follows:

Two Citizens
1 2 3

Citizen
X X X Y
Y X Y Y

Now preferences can determine payoffs assigned to the outcomes. Since there
are only two options under consideration, the preference assigned to the single
citizen under analysis will be X is preferred to Y , though Y is preferred to
X would have an analogously reversed payoff matrix. Again, the indifference
preference is not worth examining in detail because it will yield the same payoffs
regardless of outcome. Assuming Citizen prefers X over Y , relative payoffs are:

Two Citizens
1 2 3

Citizen
X 1 1 0
Y 1 0 0

It becomes quite clear that Citizen should always choose X, as it is a weakly
dominant choice.

2.3 n Citizens

The two option game can be extended to a population of n, and the outcome
and payoff matrices will depend on whether n is even or odd. We begin with
the case where n is odd.

The first striking observation we make is that we need not analyze every
distinct outcome of n− 1 citizens’ choices, which will be the possible scenarios
presented to Citizen. Instead, the outcomes can be grouped into three bins:

(1) Enough fellow citizens pick X that X will prevail, regardless of Citizen’s
choice.

(2) Half pick X, half pick Y .

(3) Enough fellow citizens pick Y that Y will prevail, regardless of Citizen’s
choice.

The realization that there are really only three outcomes dealt to Citizen
allows for drastic simplification of the outcome and payoff matrices:

n− 1 Citizens
1 2 3

Citizen
X X X Y
Y X Y Y

4



n− 1 Citizens
1 2 3

Citizen
X 1 1 0
Y 1 0 0

We now turn to the case where n is even. In this case, ties must be incor-
porated into the model, so there are four scenarios that may be presented to
Citizen:

(1) Enough fellow citizens pick X that X will prevail, regardless of Citizen’s
choice.

(2) n
2 citizens pick X.

(3) n
2 citizens pick Y .

(4) Enough fellow citizens pick Y that Y will prevail, regardless of Citizen’s
choice.

The outcome matrix is then:

n− 1 Citizens
1 2 3 4

Citizen
X X X .5X, .5Y Y
Y X .5X, .5Y Y Y

The corresponding payoff matrix:

n− 1 Citizens
1 2 3 4

Citizen
X 1 1 .5 0
Y 1 .5 0 0

Perhaps unsurprisingly, choosing X is a weakly dominant choice for a citizen
with preference X > Y , regardless of size of the population.

3 Three Options

The above analysis proves that it is always a weakly dominant strategy for a
citizen to pick their favorite if there are only two options. This bit of insight
is not particularly interesting or surprising, so our focus now turns to the pos-
sibility of three options under consideration. Again, we build our analysis of a
three option ballot by starting with a two citizen population, moving to three
citizens, and finishing with n citizens.
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3.1 Citizen Support Preferences for Three Options

Citizens in this model are assumed to have preferences independent of the choice
of the remainder of the population. In other words, this approach does not
account for fair weather fans (voting for the popular choice) or counterculture
(voting against the popular choice). Rather, it is assumed that for any given two
of the three options, a citizen always either prefers one of them or is indifferent
between them. For example, A = B > C means Citizen is indifferent between A
and B, but prefers either to C. B > A = C means Citizen is indifferent between
A and C, but would prefer B over either. Therefore, with three options, there
are 13 possible preferences:

(1) A > B > C (A affinity, C aversion)

(2) A > C > B(A affinity, B aversion)

(3) B > A > C (B affinity, C aversion)

(4) B > C > A (B affinity, A aversion)

(5) C > A > B (C affinity, B aversion)

(6) C > B > A (C affinity, A aversion)

(7) A = B > C (C aversion)

(8) A = C > B (B aversion)

(9) B = C > A (A aversion)

(10) A > B = C (A affinity)

(11) B > A = C (B affinity)

(12) C > A = B (C affinity)

(13) A = B = C (Indifference)

Each unique preference will have a unique payout matrix.

3.2 Two Citizens

With three options, the outcome matrix becomes more complicated:

Other Citizen
A B C

A A .5A, .5B .5A, .5C
Citizen B .5A, .5B B .5B, .5C

C .5A, .5C .5B, .5C C
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Now the preferences of Citizen have also become more complicated, but we
can categorize the preference types into sets. Ordered preferences is the set
containing all preferences that distinctly order the three options. Aversion pref-
erences is the set containing all preferences where Citizen is indifferent between
two options, but prefers either to the third option. Affinity preferences is the
set of all preferences where Citizen is indifferent between options, but prefers
the third option to either. The indifference preference is its own set. We again
care about relative payoffs, so simply assign utilities of −1, 0, and 1 to the three
options in an ordered preference. For an aversion preference, we assign utilities
0 and −1. Finally, for affinity preferences we assign utilities 1 and 0.

Let us first look at the payoff matrix for ordered preference A > B > C:

Other Citizen
A B C

A 1 .5 0
Citizen B .5 0 −.5

C 0 −.5 −1

It remains a dominant strategy for Citizen to choose their favorite, A. Now
we look at the aversion preference A = B > C:

Other Citizen
A B C

A 0 0 −.5
Citizen B 0 0 −.5

C −.5 −.5 −1

In this case, the dominant strategy is to choose either option that is not the
averse option (the averse option is C, in this case). Finally, we look at affinity
preference A > B = C:

Other Citizen
A B C

A 1 .5 .5
Citizen B .5 0 0

C .5 0 0

We see that choosing the preferred option is always a dominant strategy.

3.3 Three Citizens

For the two citizen population, there were only three scenarios that could have
been presented to Citizen, namely the other citizen picking A, B, or C. Now
we must explicitly list all of the outcomes that could be presented to Citizen
when two other citizens are voting as well:

(1) Both pick A.
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(2) One picks A, one picks B.

(3) One picks A, one picks C.

(4) Both pick B.

(5) One picks B, one picks C.

(6) Both pick C.

Let us now examine the outcome and payoff matrices for three citizens with
three choices:

Two Other Citizens
1 2 3 4 5 6

A A A A B .33A, .33B, .33C C
Citizen B A B .33A, .33B, .33C B B C

C A .33A, .33B, .33C C B C C

We are again interested in a sample from each type of preference: ordered,
aversion, and affinity. First, ordered:

Two Other Citizens
1 2 3 4 5 6

A 1 1 1 0 0 −1
Citizen B 1 0 0 0 0 −1

C 1 0 −1 0 −1 −1

Aversion:

Two Other Citizens
1 2 3 4 5 6

A 0 0 0 0 −.33 −1
Citizen B 0 0 −.33 0 0 −1

C 0 −.33 −1 0 −1 −1

Affinity:

Two Other Citizens
1 2 3 4 5 6

A 1 1 1 0 .33 0
Citizen B 1 0 .33 0 0 0

C 1 .33 0 0 0 0

We are once again unsurprised to find that picking the favorite is a weakly
dominant strategy for both ordered and affinity preferences, and not picking the
averse option is a weakly dominant strategy for an aversion preference.
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3.4 n Citizens

We are finally able to extend our analysis to model a single citizen’s choice in a
population of n, faced with three options.

The outcomes that could possibly be presented to Citizen are categorized
into bins:

(1) Enough fellow citizens pick A that A will prevail, regardless of Citizen’s
choice.

(2) Enough fellow citizens pick B that B will prevail, regardless of Citizen’s
choice.

(3) Enough fellow citizens pick C that C will prevail, regardless of Citizen’s
choice.

(4) A and B are tied for the lead, C is greater than one vote behind.

(5) A and C are tied for the lead, B is greater than one vote behind.

(6) B and C are tied for the lead, A is greater than one vote behind.

(7) A and B are tied for the lead, C is one vote behind.

(8) A and C are tied for the lead, B is one vote behind.

(9) B and C are tied for the lead, A is one vote behind.

(10) A leads B and C by one vote.

(11) B leads A and C by one vote.

(12) C leads A and B by one vote.

(13) A leads B by one vote, C is behind.

(14) A leads C by one vote, B is behind.

(15) B leads A by one vote, C is behind.

(16) B leads C by one vote, A is behind.

(17) C leads A by one vote, B is behind.

(18) C leads B by one vote, A is behind.

The outcome matrix yielded will be unwieldy, so we deviate from above notation,
and simply write 1

3 for boxes where vote is a three way split, and .5AB, if the
vote is split between two options, in this case A and B:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A A B C A A .5BC A A 1
3 A .5AB .5AC A A .5AB B .5AC C

B A B C B .5AC B B 1
3 B .5AB B .5BC .5AB A B B C .5BC

C A B C .5AB C C 1
3 C C .5AC .5BC C A .5AC B .5BC C C
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We analyze the payoffs for each type of preference, beginning with ordered:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 0 −1 1 1 −.5 1 1 0 1 .5 0 1 1 .5 0 0 −1
B 1 0 −1 0 0 0 0 0 0 .5 0 −.5 .5 1 0 0 −1 −.5
C 1 0 −1 .5 −1 −1 0 −1 −1 0 −.5 −1 1 0 0 −.5 −1 −1

Aversion:
n− 1 Other Citizens

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A 0 0 −1 0 0 −.5 0 0 − 1

3 0 0 −.5 0 0 0 0 −.5 −1
B 0 0 −1 0 −.5 0 0 − 1

3 0 0 0 −.5 0 0 0 0 −1 −.5
C 0 0 −1 0 −1 −1 − 1

3 −1 −1 −.5 −.5 −1 0 −.5 0 −.5 −1 −1

Affinity:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 0 0 1 1 0 1 1 1
3 1 .5 .5 1 1 .5 0 .5 0

B 1 0 0 0 .5 0 0 1
3 0 .5 0 0 .5 1 0 0 0 0

C 1 0 0 .5 0 0 1
3 0 0 .5 0 0 1 .5 0 0 0 0

These payoff matrices are perhaps more interesting. In looking at ordered
preferences, it can be noted that simply choosing A, B, or C is not a dominant
strategy, but picking C is a weakly dominated strategy, so C should never be
chosen.

Unsurprisingly, choosing C is also a weakly dominated strategy if Citizen
has an aversion preference for C.

Finally, for an affinity preference, it is always a weakly dominant strategy
to choose the option for which Citizen has an affinity.

4 Incorporating Campaigning

Thus far, this analysis has considered only a citizen’s ability to vote as a means of
affecting the outcome of the electoral decisions. This simplification has allowed
us to view each citizen as equally represented and pivotal in the outcome, and
has limited the outcome space to the simple combinations of aggregate voting
behavior. While the previous analysis will be useful in moving forward, it fails
to provide any interesting insight, and furthermore fails to properly represent
the real world, even as a theoretical model.

In reality, individuals can influence the outcome of an election through cam-
paigning. In this context, campaigning is defined as any action through which
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an individual incurs a cost in an effort to promote their preferences in any way
other than merely voting. These costs may be pecuniary, non-pecuniary, or
most likely any combination of the two. A pecuniary campaign includes using
money to pay for furthering their preferred option, and non-pecuniary cam-
paigning includes any expense of time or even damage to personal reputation or
relationship. For example, attending a gala fundraiser to support an option is
pecuniary, because the gala will require payment from attendees, but it is also
non-pecuniary, as it will take time out of a citizen’s day, and may strain familial
or professional relationships.

A final important point to make is that this new modeling perspective will
inherently mean unequal representation in the election. This disparity can easily
be demonstrated by noting that distribution of resources is usually not equal,
and therefore those with more resources will have more say in the outcome of the
electoral decision. These resources are not merely financial however, and human
capital can often be what gives individuals the most resources for campaigning.
This principle applies to celebrities and any citizen whose choices are in the
public eye, and can affect the aggregate decision. If a key leader in a society
supports a particular option, many may be swayed to support her, and therefore
the option. This effect strengthens with the popularity or perceived wisdom of
the leader.

4.1 Remainder of the Population’s Choice

It would not be pragmatic to try and assign preferences and payouts to the
aggregate population, as this analysis would force us to say one choice is better
or worse for the population than another, which is not what this analysis sets
out to do. Instead, the remaining populace is seen as a player which will not
alter its behavior based on Citizen’s choice, but will move simultaneously. Thus,
Citizen is playing a strategic game where they cannot predict the move of the
population, but the population is merely making the move, without considering
Citizen’s choice.

In actuality, Citizen may have a good idea of how their fellow populace
will vote, but we wish to consider all possibilities, so we begin by assuming
Citizen has no prior knowledge of how the rest of the population will behave
(other than of course knowing that they will certainly be presented with one of
the ten options below, since the ten options are exhaustive). We defer a more
discriminatory breakdown of outcomes until Section 6, as we wish to derive as
general a result as possible, and only include restrictions if necessary to reach
conclusions.

The population has ten possible options to give to Citizen. These options
will appear quite similar to the options given to Citizen above in the pure voting
model. However, the introduction of the concept of campaigning allows broader
definitions of options 1 and 6− 10 below:

Notation: A = B = C means that all the options are in a dead heat, and
whichever one Citizen campaigns for will win. A ≥ B means that A is marginally
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winning, and if Citizen campaigns for A or C, A will win, but if Citizen cam-
paigns for B, B will win. C ≈ 0 does not mean C has no votes, but rather that
C is so far behind that Citizen’s campaigning will not help.

(1) A = B = C (Dead heat)

(2) B = C ≈ 0 (A triumphant)

(3) A = C ≈ 0 (B triumphant)

(4) A = B ≈ 0 (C triumphant)

(5) A ≥ B,C ≈ 0 (A ahead, C hopeless)

(6) A ≥ C,B ≈ 0 (A ahead, B hopeless)

(7) B ≥ A,C ≈ 0 (B ahead, C hopeless)

(8) B ≥ C,A ≈ 0 (B ahead, A hopeless)

(9) C ≥ A,B ≈ 0 (C ahead, B hopeless)

(10) C ≥ B,A ≈ 0 (C ahead, A hopeless)

4.2 The Matrix for Candidate Victory

The 3 × 10 outcome matrix will always yield the same results, and the popula-
tion and Citizen will always have the same choices, regardless of preference, so
the possible election outcomes will be universal across all preferences, and only
utility of outcomes will change:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

A A A B C A A A B A C
Citizen B B A B C B A B B C B

C C A B C A C B C C C

4.3 Split Campaigning

It is not immediately apparent why a citizen would choose to only campaign for a
single option, especially when she may have an aversion preference. However, we
are able to see that it would indeed be unwise for a citizen to ever split campaign
support between two candidates, given they know the scenario presented to them
by the remainder of the populace.

We first consider the canonical ordered preference A > B > C. For scenario
1, supporting any two of the options may not ensure a victory for A, the most
preferred option, and thus campaigning should not be split between two options.
In any of scenarios 2 − 4, campaigning is irrelevant to the outcome, so there
is no reason a citizen would choose to campaign at all, let alone split their
campaigning. In scenarios 5 and 6, campaigning for any option other than A will

12



only increase the chances of B or C prevailing, so only A should be campaigned
for. Again in scenario 7, campaigning for anything other than A, will only
increase the chances of B winning, whereas campaigning for A only increases
the chances of A winning. Analogously in 8, campaigning for A will have no
effect, and therefore should be abandoned, and splitting between B and C will
only increase the chances of C winning over B, whereas as campaigning solely
for B will ensure a B victory. Lastly in 9 and 10, supporting C will increase
the chances of the worst possible outcome, and campaigning for the option at
approximately zero will have no effect, thus only the option marginally behind
should be be allocated campaigning. We conclude that for ordered preferences
split campaigning is never a dominant strategy.

Now we turn to aversion preference A = B > C, and again analyze each
scenario. For scenario 1, of course Citizen should not campaign for C, but
splitting campaigning between A and B will only increase the chances that C
will surpass either of them, and therefore only one of A or B should be arbitrarily
chosen and campaigned for. Campaigning is irrelevant for scenarios 2, 3, 4, 5,
and 7. In scenario 6, campaigning for B is pointless, and therefore only A should
be supported. This same logic applies to 8, 9, and 10, thus split campaigning is
never a dominant strategy for an aversion preference.

Finally, we consider affinity preference A > B = C. For scenario 1, diverting
any campaigning away from A will only decrease the chances of A winning. In
scenarios 2, 3, and 4, campaigning is irrelevant. For scenarios 5, 6, 7, and 9,
diverting campaigning away from A only decreases the chances of A winning,
and for scenarios 8 and 10, campaigning will be irrelevant to the utility of the
outcome. Therefore splitting campaigning is never a dominant strategy for an
affinity preference.

Now we have (somewhat tediously) proven that if a citizen were able to
perfectly predict what scenario they would be given by the aggregate populace,
not only would they have a complete strategy, but furthermore that strategy
would not include split campaigning. Unfortunately, this result is rather weak,
as we wish to generalize Citizen’s strategic behavior as generally as possible, and
most likely she will not have perfect information about what scenario she will
be dealt, so we analyze her potential strategies as generally as possible, adding
additional assumptions only when absolutely necessary to obtain results.

5 Preferences and Payoffs

Again, it becomes pertinent to clarify the reasoning in only analyzing the pref-
erences of Citizen. Any individual citizen may campaign for A, B, or C, for any
variety of ideological or ethical reasons. The preference of the remainder of the
population, however, may favor one candidate over another in any of the ten
scenarios listed above, but it is assumed that the population will make its choice
without regard to what any specific citizen chooses. Thus, the population is es-
sentially revealing and maximizing its utility through the option chosen, and
the Citizen is left to campaign for options in such a way as to maximize their
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own personal utility.
Due to the symmetry of the situation, there need not be analysis of all 13

preferences, but rather one analysis of each set of preferences, which will then
hold for each unique preference. The first set will be preferences 1 − 6, which
are ordered preferences:

5.1 Ordered Preferences: Pref. 1 (A affinity, C aversion)

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

A 1 1 0 −1 1 1 1 0 1 −1
Citizen B 0 1 0 −1 0 1 0 0 −1 0

C −1 1 0 −1 1 −1 0 −1 −1 −1

Regardless of the choice by the remainder of the population, choosing C will be
a weakly dominated strategy. So the payoff table can be simplified by removing
C:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

Citizen
A 1 1 0 −1 1 1 1 0 1 −1
B 0 1 0 −1 0 1 0 0 −1 0

From this matrix, neither strategy is dominant for Citizen, and the game can
only be further analyzed through extending assumptions about the remainder
of population behavior, which is done in Section 6.

5.2 Aversion Preferences: Pref. 7 (C aversion)

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

A 0 0 0 −1 0 0 0 0 0 −1
Citizen B 0 0 0 −1 0 0 0 0 −1 0

C −1 0 0 −1 0 −1 0 −1 −1 −1

Unsurprisingly, C is again a weakly dominated strategy, so it can be removed:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

Citizen
A 0 0 0 −1 0 0 0 0 0 −1
B 0 0 0 −1 0 0 0 0 −1 0

Again, neither strategy is dominant for Citizen, and the game can only be
further analyzed through extending assumptions, as done in Section 6.
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5.3 Affinity Preferences: Pref. 10 (A affinity)

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

A 1 1 0 0 1 1 1 0 1 0
Citizen B 0 1 0 0 0 1 0 0 0 0

C 0 1 0 0 1 0 0 0 0 0

Choosing A is a weakly dominant strategy.

5.4 Indifference Preference: Pref. 13 (Indifference)

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

A 0 0 0 0 0 0 0 0 0 0
Citizen B 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0

All strategies yield the same payoff, so strategy choice is irrelevant. The in-
difference preference is wholly uninteresting, and will not receive much attention
in this analysis.

6 Extending Assumptions

Previously, this analysis has sought to remove weakly dominated strategies, and
ascertain dominant strategies. For affinity preferences (Pref. 10 - 12) a weakly
dominant strategy was found, and for the indifference preference (Pref. 13)
strategy is irrelevant to payoff. However, for ordered preferences (Pref. 1 - 6)
and aversion preferences (Pref. 7 - 9) a strategy cannot be determined without
additional assumptions about the remainder of the population’s choice.

A mixed strategy is unappealing for a few reasons. First, the game is only
strategic from Citizen’s perspective. If payoffs for the population were intro-
duced, a mixed strategy might exist, but this would contradict the heretofore
parameters of this analysis, and without a probabilistic knowledge of the popu-
lation’s choice, it is simply not possible to solve for a mixed strategy for Citizen.
If, however, Citizen were able to ascertain the probabilities of each scenario be-
ing dealt, a mixed strategy might be a viable candidate. We will complete this
analysis when relevant, but this concession will only further abstract our conclu-
sions from reality, making them more academically interesting, but less useful
in application.

Our purpose now becomes deriving the simplest assumptions that can be
added so that a strategy will exist for ordered or aversion preferences.
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6.1 Ordered Preferences

Below is the simplified matrix from above ordered preferences analysis:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

Citizen
A 1 1 0 −1 1 1 1 0 1 −1
B 0 1 0 −1 0 1 0 0 −1 0

The aggregate population choices for which Citizen is indifferent between A
and B can also be ignored, as they will not affect the strategy outcome. Here
is the further simplified matrix:

n− 1 Other Citizens
1 5 7 9 10

Citizen
A 1 1 1 1 −1
B 0 0 0 −1 0

The matrix above gives powerful insight which can be generalized due to
the symmetry of the model. Additionally, we try to find a mixed strategy. We
assign probabilities p, q, r, and t, to scenarios 1, 5, 7, and 9 respectively, and
assign probability 1 − p − q − r − t to scenario 10. Thus the expected utility
of purely campaigning for A is 2p + 2q + 2r + 2t − 1, and the expected utility
of purely campaigning for B is −t. In a mixed strategy, Citizen will choose
proportions of campaigning for each option such that the expected utility is
constant. If we assign probability a to A and 1− a to B, we are left with

a(2p+ 2q + 2r + 2t− 1) = (1− a)(−t)

Lemma 6.1. Let I = [0, 1) ∈ R, and let p, q, r, and t each be in I such that
p + q + r + t is also in I. Then ∃a ∈ I such that M = a(2p + 2q + 2r + 2t −
1) = (1 − a)(−t), M > 2p + 2q + 2r + 2t − 1, and M > −t if and only if
(p+ q + r + t) ∈ [0, 12 ).

Proof. Start with the assumption (p+ q + r + t) ∈ [0, 12 ).
Solving for a in the equality expression shows: a = −t

2p+2q+2r+t−1 = −t
2(p+q+r)+t−1 .

Since p, q, and r are symmetric in this expression, we group them together and
make the change of variables x = p + q + r, so that a = −t

2x+t−1 . Optimizing a

with an unconstrained first order condition yields t = 0, x = 1
2 , which is unde-

fined and on the boundary of the open side of the interval in the assumption,
but by L’Hopital’s rule:

lim
x→ 1

2

−t
2x+ t− 1

∣∣∣∣
t=0

= 0
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So a will be zero anywhere in the interval where t = 0. Now, constraining
along the same boundary, x+ t = 1

2 ,

L(t, x, λ) =
−t

2x+ t− 1
+ λ(x+ t− 1

2
)

it is again found that t = 0, x = 1
2 is the only critical point. Lastly, we check

the limit of t approaching the boundary:

lim
t→ 1

2

−t
2x+ t− 1

=
−t
t− 1

∣∣∣∣
t= 1

2

= 1

Thus a ∈ [0, 1), and a satisfies the equality containing M . Finally, we note
2p + 2q + 2r + 2t − 1 = 2(p + q + r + t) − 1 < 2(.5) − 1 = 0, and −t < 0, thus
multiplying either of these expressions by a scalar between 0 and 1 will increase
their value, proving the inequalities containing M .

Now, begin with the assumptions that ∃a ∈ I such that M = a(2p + 2q +
2r + 2t − 1) = (1 − a)(−t), M > 2p + 2q + 2r + 2t − 1, and M > −t. Then
directly we show:

a(2p+ 2q + 2r + 2t− 1) > 2p+ 2q + 2r + 2t− 1

⇒ 2p+ 2q + 2r + 2t− 1 < 0

⇒ p+ q + r + t ∈ [0,
1

2
)

Thus a mixed strategy will yield the highest expected utility if and only if
the probability of p + q + r + t is less than one-half, in which case the best
strategy would be to pick A with probability a, and B with probability (1− a).
Again, this would be hard to ever apply in practice, unless Citizen were fairly
confident about predicting probability t, and the sum of probabilities p, q, and
r.

The final results for ordered preferences can be summarized as follows:

For a Citizen with ordered preference A > B > C:

(1) With no information or belief about how the n−1 other citizens will vote,
the strategy of C is weakly dominated, and should never be chosen.

(2) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ B,A ≈ 0 (C ahead, A hopeless), then A is a weakly dominant
strategy.

(3) If there is information or belief that the n − 1 other citizens will NOT
choose ANY of A = B = C (Dead heat), A ≥ B,C ≈ 0 (A ahead, C
hopeless), B ≥ A,C ≈ 0 (B ahead, C hopeless), C ≥ A,B ≈ 0 (C ahead,
B hopeless), then B is a weakly dominant strategy.
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(4) A mixed strategy is only sometimes defined, and when defined it would be
difficult to apply unless Citizen were fairly certain about the probabilities
of rest of the population’s choices.

6.2 Aversion Preferences

Below is the simplified matrix from above aversion preferences analysis:

n− 1 Other Citizens
1 2 3 4 5 6 7 8 9 10

Citizen
A 0 0 0 −1 0 0 0 0 0 −1
B 0 0 0 −1 0 0 0 0 −1 0

The aggregate population choices for which the Citizen is indifferent between
A and B can also be ignored, as they will not affect the strategy outcome. Here
is the further simplified matrix:

n− 1 Other Citizens
9 10

Citizen
A 0 −1
B −1 0

Again, the matrix above gives powerful insight which can generalized due
to the symmetry of the model. A mixed strategy leads to a more interesting
result here. We assign relative probabilities p and 1 − p to scenarios 9 and 10
respectively. Purely campaigning for A yields expected utility of p− 1, and for
B yields −p. A mixed strategy will imply

a(p− 1) = (1− a)(−p)

⇒ a = p, (1− a) = (1− p)
We also can note that because 0 ≤ p ≤ 1, we have p(p − 1) ≥ p − 1 and

p(p − 1) ≥ −p, thus the expected utility of this mixed strategy is greater than
or equal to the expected value of each pure strategy, for all p!

The final results for aversion preferences can be summarized as follows:

For a Citizen with aversion preference A = B > C:

(1) With no information or belief about how the n−1 other citizens will vote,
the strategy of C is weakly dominated, and should never be chosen.

(2) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ B,A ≈ 0 (C ahead, A hopeless), then A is a weakly dominant
strategy.
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(3) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ A,B ≈ 0 (C ahead, B hopeless), then B is a weakly dominant
strategy.

(4) If the relative probabilities of scenarios 9 and 10 occurring were known,
with probability of 9 occurring p, it would be a weakly dominant strategy
to choose A with probability p.

7 Summary of Strategic Results

For any given preference and amount of information, the analysis presented
above has proven the definitive existence or nonexistence of a strategy, depend-
ing on the combination. These results can be summarized:

For a Citizen with ordered preference A > B > C:

(1) With no information or belief about how the n−1 other citizens will vote,
the strategy of C is weakly dominated, and should never be chosen.

(2) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ B,A ≈ 0 (C ahead, A hopeless), then A is a weakly dominant
strategy.

(3) If there is information or belief that the n − 1 other citizens will NOT
choose ANY of A = B = C (Dead heat), A ≥ B,C ≈ 0 (A ahead, C
hopeless), B ≥ A,C ≈ 0 (B ahead, C hopeless), C ≥ A,B ≈ 0 (C ahead,
B hopeless), then B is a weakly dominant strategy.

(4) If we assign relative probabilities p, q, r, and t, to scenarios 1, 5, 7, and
9 respectively, assign relative probability 1− p− q − r − t to scenario 10,
and Citizen estimates p+ q+r+ t < 1

2 , then Citizen should choose A with
probability −t

2p+2q+2r+t−1 .

For a Citizen with aversion preference A = B > C:

(1) With no information or belief about how the n−1 other citizens will vote,
the strategy of C is weakly dominated, and should never be chosen.

(2) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ B,A ≈ 0 (C ahead, A hopeless), then A is a weakly dominant
strategy.

(3) If there is information or belief that the n − 1 other citizens will NOT
choose C ≥ A,B ≈ 0 (C ahead, B hopeless), then B is a weakly dominant
strategy.
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(4) If the relative probabilities of scenarios 9 and 10 occurring were known,
with probability of 9 occurring p, it would be a weakly dominant strategy
to choose A with probability p.

For a Citizen with affinity preference A > B = C:

(1) Choosing A is always a weakly dominant strategy.

For a Citizen with the indifference preference A = B = C:

(1) Choice of strategy is irrelevant to payoff.

8 Applications

This section seeks to demonstrate the strength of these results in practical appli-
cation to the United States 2016 Presidential Election. Three theoretical citizen
situations are examined: current President Barack Obama, Louise Mensch, and
Penn Jillette.

8.1 President Barack Obama

President Obama has vocally endorsed Democratic nominee Hillary Clinton
(Bradner, 2016), opposed Republican nominee Donald Trump (Liptak and Collinson,
2016), and thus far remained silent on libertarian candidate Gary Johnson.
Therefore, his preferences may reasonably be assumed to be A > B > C, where
A is Clinton, B is Johnson, and C is Trump. Since his preference is ordered, he
should not vote for Trump under any circumstances.

Obama may also make some additional assumptions about U.S. voting be-
havior. For the sake of this analysis, the president has little faith in Johnson’s
chances, so rules out options 1 (Dead heat), 3 (Johnson triumphant), 5 (Clinton
ahead, Trump hopeless), 7 (Johnson ahead, Trump hopeless), 8 (Johnson ahead,
Clinton hopeless), and 10 (Trump ahead, Clinton hopeless). President Obama’s
simplified matrix is then:

United States
9

Citizen
A 1
B −1

Thus Obama should always support Clinton under these preferences and as-
sumptions.
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8.2 Louise Mensch

Louise Mensch is a social media user and member of the #NeverTrump move-
ment (MSNBC, 2016), which aims to prevent Donald Trump from attaining the
presidency. While Mensch may also have a preference between Johnson and
Clinton, the argument presented here will make the assumption that she is in-
different between the two, and therefore has aversion preference A = B > C,
where A is Clinton, B is Johnson, and C is Trump. Immediately, the strategy
of supporting Trump can be eliminated.

Perhaps Mensch has a slightly different set of assumptions about United
States behavior than Obama, and she rules out options 3 (Johnson triumphant),
5 (Clinton ahead, Trump hopeless), 7 (Johnson ahead, Trump hopeless), and 10
(Trump ahead, Clinton hopeless). Louise Mensch then has a simpified matrix:

United States
9

Citizen
A 0
B −1

Although the preferences and assumptions of Mensch differed from President
Obama, she too should support Clinton.

8.3 Penn Jillette

Renowned magician Penn Jillette is also known for his political beliefs, strongly
emphasizing the importance of personal liberties. Additionally, he has publicly
stated that he supports Gary Johnson, and strongly dislikes both Clinton and
Trump (Burningham, 2016). Although he has said he would support Clinton
over Trump, for the sake of example this analysis assumes he is indifferent be-
tween the two, and therefore has preference A > B = C, where A is Johnson,
B is Clinton, and C is Trump. Without any further analysis, it can be deduced
from above reasoning that this version of Jillette should vote for Johnson, re-
gardless of his assumptions about the United States’ choice.

9 Conclusion

The analysis presented above achieves the goal of constructing an algorithmic
and logical approach to supporting a candidate in an election where three viable
candidates are considered. The two parameters that must be considered are
preferences of the Citizen, and choice of the United States, or simply the option
that is ultimately given to the Citizen.

If a Citizen were able to perfectly deduce what the United States’ choice
would be, the Citizen would always simply pick the candidate which yields the
highest payoff to the Citizen. However, in most real applications, a Citizen will
never know for sure what decision they will be presented with, and must thereby
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determine what set of decisions they believe will plausibly be given to them.
This analysis proves that there need not be perfect information for a Citizen
to eliminate supporting one candidate as a weakly dominated strategy, and in
some cases enough eliminations can be made so that supporting a particular
candidate is a weakly dominant strategy, with at least some probability.

As is always the case, the ideas presented here could be expanded further.
Our key goal was to introduce and construct, in the most logically elegant
way, a groundwork theoretical model for both voting and campaigning from an
individual strategic perspective. We chose to expand our model to the case with
n citizens and three options, but of course further analysis could seek models
for 4, 5, or potentially even n options.

Additionally, we have not fully explored the range of the individual citizen’s
support possibilities. We here assumed that citizens could only campaign in
support of options, and we thus neglected the opportunity for campaigning
against options. Furthermore, the possibility of collusion was not discussed
and therefore assumed irrelevant, which may be a fair assumption for a ”large”
population, such as the aggregate United States, but may break down with
smaller populations.
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