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1 Introduction

Long-term forecasts of local/national/international energy consumption are important com-

ponents not only in the domain of energy policy, but also those of policies aimed at economic

growth, economic diversification, and economic inequality, climate change, agriculture, and

other areas. After all, energy is one of the main factors of production of economic output,

and its consumption is an inescapable reality in modern economies.

As does all consumption, energy consumption changes with wealth, and this relationship

is generally considered to be nonlinear. Such nonlinearity may result from the so-called

environmental Kuznets curve, or its origin may be a more subtle shift in the sectoral shares of

an economy, moving from low-intensity agriculture to high-intensity industry to low-intensity

services. Some authors have modeled the implied inverted U-shape parametrically, using a

quadratic function (Galli, 1998; Medlock and Soligo, 2001; and Richmond and Kaufmann;

2006a,b), while others have used more flexible nonparametric or semiparametric methods

(Judson et al., 1999; Luzzati and Orsini, 2009; and Nguyen-Van, 2010).

At the same time, the relationship between income and energy consumption changes

over time even for a fixed income level. For example, the oil price shocks of the 1970’s led a

drive to improve technical efficiency in multiple economic sectors in oil-importing countries.

Such efficiency naturally decreased the impact of income changes on energy consumption.

As another example, consider the proliferation of electricity-hungry electronic devices over

the past few decades. The effect of this proliferation has likely been the reverse: a modern

consumer likely uses more electricity to drive personal computing and telecommunications

than his/her precursor, say, three decades ago.

The present work continues a series of analyses by the authors (Chang et al., 2016a,

2019b) that model energy consumption as a nonparametrically specified and time-varying
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function of income using a panel of countries, effectively addressing both the nonlinearity

and instability over time. The fact that we use data by country results from data avail-

ability, but the methodology is appropriate for any cross-sectional unit: country, state or

province, regional transmission organization or independent system operator for electricity

consumption, etc.

To the best of the authors’ knowledge, ours is the first analysis to address out-of-sample

forecasting of energy consumption using a nonparametrically specified, time-varying panel

model. Forecasting the surface estimated by nonparametric methods is accomplished by

reducing the problem of forecasting along a continuum to the simpler problem of forecasting

the leading principal components identified using functional principal components analysis

(FPCA, see Hörmann and Kokoszka, 2012).

We are certainly not the first authors to use FPCA in forecasting. Pioneering work by

Bosq (2000) and Besse et al. (2000) use functional autoregressive models for out-of-sample

predictions, and others have employed similar methods (Hyndman and Ullah, 2007; Aue

et al., 2014, inter alia). As shown by Chang et al. (2019b), using panel data allows us

to decompose the relationship between income and consumption into heterogeneous and

common components, and it is the latter to which we apply FPCA.

The common components of the wealthier countries show increasing energy efficiency

(declining energy intensity)1 similar to that documented for the US and other developed

countries (Kaufmann, 2004; Webster et al., 2008; US Energy Information Administration,

2013; Csereklyei et al., 2016). Developing countries generally show declining energy efficiency

1We use the term “energy efficiency” in the sense that an increase in energy efficiency (an “autonomous
energy efficiency increase” in the language of Kaufmann, 2004) correlates with a decrease in energy intensity.
Importantly, energy efficiency may have little to do with technical efficiency and more to do with the sectoral
composition of a region. As Bradford (2018) points out, Iceland has among the highest energy intensities
in the world due to its abundant hydroelectric and geothermal resources, but not because its heavy metals
industry is technically inefficient.
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(increasing energy intensity), but a developing country may “graduate” from that group if

sectoral shifts or economic diversification increases energy efficiency.

This research relates to three presentations given at the conferences in Brazil and South

Korea around which the special issue is organized. One of the present authors, Choi, dis-

cussed the grouping and estimation of Chang et al. (2019b) at the venue in Brazil in 2018.

Another, Miller, discussed the forecasting methodology and results at the same conference.

A third, Park, discussed application of the methodology to the electricity demand at the

venue in South Korea in 2019. Indeed, it was the problem of forecasting South Korean

electricity demand that spurred the development of the concepts and methodologies in these

two papers, and for which these models are in fact employed.

The remainder of the paper is structured as follows. In Section 2, we briefly introduce the

forecasting model and methodology, although we defer to previous work to explain details

of estimation. Section 3 contains the empirical results and we conclude with Section 4.

An appendix contains details of the bootstrap methodology we utilize to obtain forecast

intervals.

2 Forecasting Model and Methodology

In forecasting energy demand, we employ a panel model given by

yit = αi + (γi + β(t, xit))xit + εit (1)

for region i = 1, ..., N and year t = 1, ..., T . The data are yit, log real final energy consumption

per capita (log tonne of oil equivalent per capita), and xit, log real GDP per capita (log 2011

dollars per capita in output-side chained PPPs from Penn World Tables 9.0), for 180 countries
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over 1971-2015. For expositional simplicity, we will refer to these variables simply as demand

or consumption and income, respectively. Intercepts αi are heterogeneous, and slopes have

both a heterogeneous component γi and a common component β(r, x), which may change

over time and over income, but is not country-specific.

In a related paper (Chang et al., 2019b), we motivate the model in equation (1) from a

more general panel framework and argue for a structural interpretation of the parameters in

the context of world energy consumption. In the present context of forecasting, the structural

interpretation is not necessary.

Semiparametric estimation of the panel model proceeds as described by Chang et al.

(2019b), which closely relates to that of Chang et al. (2016a) adapted from Fan and Huang

(2005). Readers interested in implementing the estimation procedure are referred to these

papers for details. We denote estimates of these parameters by α̂i, γ̂i, and β̂(r, x), and note

that the latter estimates a surface.

Constructing a conditional forecast using a linear fixed-coefficient forecasting model is

straightforward once the parameters are estimated. However, in the present context, even

if we have xi,T+h for h > 0, it is not obvious what would be β(T + h, xi,T+h), because the

surface β(r, x) is not estimated precisely outside of the support of the historical data.

In order to overcome this obstacle, we view (βt), βt ≡ β(t, ·), as a functional time series –

i.e., a time series of functional observations – and forecast βT+h for any h in the forecasting

horizon. To do this, we use the functional factor model developed in Chang et al. (2019a).

Following them, we consider a functional factor model given by

δt = βt − β̄ =
K∑
k=1

cktfk + ηt,

where β̄ is the temporal average of (βt), f1, . . . , fK are the functional common factors with
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scalar loadings c1t, . . . , cKt, and (ηt) is the idiosyncratic functional component. The loadings

on the common factors are assumed to be regular time series, whereas the idiosyncratic

component is regarded as being irregular and representing a sporadic and transient time

effect.

Under this setup, Chang et al. (2019a) obtain the least squares estimates of the functional

factors and their loadings. The estimates of the functional factors f1, . . . , fK are given by

the orthonormal eigenfunctions v1, . . . , vK of
∑T

t=1(δt ⊗ δt) associated with its K-largest

eigenvalues, and the estimates of their loadings c1t, . . . , cKt are given by 〈v1, δt〉, . . . , 〈vK , δt〉,

where we use the notations “⊗” and “〈·, ·〉” to denote the tensor and inner products in the

Hilbert space of square integrable functions. Therefore, we may readily obtain the estimated

functional factors v1, . . . , vK and their loadings 〈v1, δt〉, . . . , 〈vK , δt〉 from functional principal

component analysis (FPCA). The interested reader is referred to Hörmann and Kokoszka

(2012) for a technical introduction to and survey of FPCA, Hörmann et al. (2015) for some

extant uses of FPCA, and Bosq (2000) for fundamental theory of functional time series on

which FPCA is based.

We assume that the idiosyncratic component (ηt) is dominated by the common factor

component, so that we have

δt = βt − β̄ '
K∑
k=1

〈vk, δt〉vk,

which may simply be regarded as the K-th order Karhunen-Loève expansion of (δt) using an

orthonormal basis (vk). We show later that our assumption here is empirically justifiable.

The number K of factors can be consistently estimated by the eigenvalue ratio test of

Ahn and Horenstein (2013). Note that βt is not directly observable, so we need to use the

estimate β̂t = β̂(t, ·). Using β̂t in place of βt, however, does not affect consistency of the test.
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See Chang et al. (2019a) for more details.

Now we write

δt = βt − β̄ '
K∑
k=1

ĉktf̂k,

and forecast ĉ1t, . . . , ĉKt to obtain their future values. Then we may define

β̂t = β̄ +
K∑
k=1

ĉktf̂k,

from which we have our forecast

β̂(t, x) = β̂t(x)

of β(t, x) up to the forecasting horizon.

By approximating the surface by its K leading factors following Hyndman and Ullah

(2007), we vastly simplify the task of forecasting a surface to that of forecasting a small

number of smoothly varying time series – i.e., the factor loadings, ĉ1t, . . . , ĉKt. The smooth-

ness of the estimated surface naturally depends on two bandwidth parameters, details of

which are explained by Chang et al. (2019b). We use exactly the same bandwidth to esti-

mate the surface for the developed group and a similar bandwidth to estimate the surface

for all countries.2

Our procedure for implementing FPCA draws on that of Chang et al. (2016b, 2019c). We

first temporally demean β̂t(x) at each ordinate x for which we estimate the surface, labeling

the result δ̂t(x) as above. Next, we conduct a wavelet decomposition of δ̂t(x). Specifically, we

use M = 1, 037 Daubechies wavelet basis functions and label the decomposition [δ̂t], which

is an M -dimensional vector for fixed t.

2Specifically, hr = cn−1/6 and hx = cτn−1/6 with c = 0.4 chosen for both surfaces and τ = 0.261, 0.411,
the ratios of the standard deviations of t/T to those of xit/max(xit) for the surfaces for the developed group
and for all countries respectively.
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Using [δ̂t], we calculate the orthonormal eigenvectors ([vk])Mk=1 of the M × M matrix

[QT ] =
∑T

t=1[δ̂t][δ̂t]
′. We then approximate [δ̂t] using

[δ̂t] '
K∑
k=1

[vk][vk]′[δ̂t],

where the eigenfunctions ([vk])Kk=1 are the K leading eigenfunctions (factors) with the asso-

ciated loadings (factor loadings) ([vk]′[δ̂t]). Finally, we add back in the temporal mean β̄ to

approximate the estimated surface β̂t.

3 Empirical Results

We discuss our empirical results in three steps, the methodologies underlying the first two of

which are explained above. In the first step, we estimate the surface β(r, x) for points (r, x)

within the span of historical time t and incomes (xit). In the second step, we decompose

that surface using FPCA and extend the leading components into the future. In the third

step, we forecast yi,T+h conditionally on xi,T+h.

3.1 Estimating the Surfaces

Chang et al. (2019b) identify two sets of countries sharing a common slope β(t, xit). These

groups consist of countries considered to be developed and developing, roughly speaking.

More specifically, they are countries whose energy efficiency patterns resemble each other.

The first group, which we will call the developed group and includes Germany, Italy, and

the US, shows a recent increase in energy efficiency, while the second, which we will call the

developing group and includes Brazil, China, and India, does not.

For the purpose of forecasting, we estimate the surface using only the developed group
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Figure 1: Estimates of the Surface β(x, r). Left panel: estimates using the developed group

only (46 countries, 1867 observations). Right panel: estimates using the full sample (180 counties,

7482 observations). The estimation and bias-correction procedures are described by Chang et al.

(2019).

and that using all of the countries in our sample. Our reason for this approach is that the

energy efficiency of a country already in the developed group is expected to continue to

resemble that of the developed group into the future. Including the developing group in

estimating this surface adds unnecessary noise to the estimation procedure. On the other

hand, a country in the developing group may “graduate” from that group if sectoral shifts or

economic diversification increases energy efficiency to more closely resemble that of countries

in the developed group. It is therefore useful to include all countries in forecasting long-run

demand for a country in the developing group.

Figure 1 shows the two surfaces estimated for the developed group (left panel) and for all

countries in our sample (right panel) with incomes converted out of log scale and back into

2011 US dollars. A caveat for both surfaces is that countries’ incomes tend to increase over

time. As a result, there are relatively more observations for lower incomes near the beginning

of the sample and for higher incomes near the end than for higher incomes near the beginning
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Country α̂u
i α̂c

i s.e. γ̂ui γ̂ci s.e.

Group A:
Germany 3.149 3.005 0.519 −0.417 −0.363 0.048
Italy −1.519 −1.221 0.333 0.006 0.019 0.020
United States 5.413 5.276 0.886 −0.570 −0.516 0.070

Group B:
Brazil 0.445 0.375 0.544 −0.139 −0.144 0.054
China −4.587 −4.225 0.239 0.435 0.383 0.022
India −2.723 −2.602 0.135 0.147 0.118 0.031

Table 1: Coefficient Estimates for Selected Countries. Estimates for countries in the devel-

oped group employ the sample with the developed group only (46 countries, 1867 observations).

Estimates for countries in the developing group employ the full sample (180 counties, 7482 observa-

tions). Superscripts u and c denote uncorrected and bias-corrected estimates, as explained in detail

by Chang et al. (2019). The bootstrap procedure used to construct standard errors is described in

the appendix.

and lower incomes near the end. We therefore expect the left-most and right-most corners

of each figure to be less precisely estimated.

The surface for the developed group shows a non-monotonicity over time at all income

levels, increasing for a few decades and then leveling out or decreasing. Similarly, fixing

time seems to show a similar inverted U-shape over income. Roughly speaking, the least

energy efficiency – or the peak of inefficiency – seems to have been achieved in middle income

countries during the 1990s, when indeed energy prices were quite low providing relatively

little incentive for technically efficient energy use.

In contrast, the surface estimated using all countries in the sample peaks at the highest

income plotted ($50,000) and at the most recent observation is the sample. We observe a

leveling out of the surface as income increases, and it may well decline beyond $50,000.

More telling is the contrast between the surfaces for the developed group and for all

countries over time. Aside from the lowest income levels, the surface for all countries at each

income level increases nearly monotonically over time, while it is clearly not monotonic for
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the developed group, which seems to level out and even decline starting in the 1990s.

Tables 1 shows estimates of αi and γi for selected countries, using the subsample for

countries in the developed group and the full sample for countries in the developing group.

The negative slope coefficients for Germany and the US suggest efficiency gains (being in the

developed group) that increase faster with higher levels of income than those of the average

of the developed group at the same level of income. The positive slope coefficient for Italy,

on the other hand, suggests slower efficiency gains at high income levels. Brazil shows slower

efficiency losses (not being in the developed group) at high income levels relative to the

average of all countries, while booming China and India show faster efficiency losses with

higher income levels relative to the average.

3.2 Extending the Surfaces

Developed Group. Extending the surfaces in Figure 1 proceeds by functional approxi-

mation. Figure 2 plots cross-sections of the surface estimated for the developed group in

Figure 1 (left panel), which provides a heuristic for our approach using functional principal

components. To an approximation, all of the cross-sections show a rise as income increases

up to a certain point, after which the effect of income flattens dramatically. The pattern is

more pronounced later in the sample.

The cumulative contributions of the three leading factors from decomposing the surface

for the developed group using FPCA are 87.0%, 98.4%, and 99.4%, and the eigenvalue ratio

test of Ahn and Horenstein (2013) selects two factors.

Figure 3 shows the first factor and its loading. Notice the shape of the factor: it rises as

income increases up to a certain point, after which it is nearly flat. The factor loading puts

more positive weight on this pattern over time. The first factor and its loading thus show

patterns similar to those of the surface that they estimate.
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Figure 2: Cross-Sections for the Developed Group. Cross-sections of the surface β(r, x)
from fixing r = {1971, 1980, 1990, 2000, 2015}.

Figure 3: First Factor and Its Loading for the Developed Group. Estimated using FPCA.
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Figure 4: Second Factor and Its Loading for the Developed Group. Estimated using

FPCA.

Figure 5: Extending the Factor Loadings for the Developed Group. The first factor

loading (left) is extended along the time dimension as a constant function of time. The second

factor loading (right) is extended using a logistic function of time.
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The second factor and its loading show a suppressing effect (Figure 4). The factor

is negative for most income levels and its loading increases strongly since the late 1990s.

Their product is therefore mostly negative, suppressing the function – i.e., amplifying energy

efficiency – over the last decade. Chang et al. (2016a) document possible explanations for a

change in energy efficiency among richer countries at about this time, including a shift away

from energy-intensive industries and an increasing awareness of environmental externalities

of energy use following the Kyoto Protocol – i.e., from the changing slope of an environmental

Kuznets curve.

The smoothness of the factor loadings allows more straightforward out-of-sample fore-

casting than using functional autoregression. From 2006-2015, the first factor loading is

nearly flat, so we extend this loading in the time dimension by a constant function. Figure 5

(left panel) shows the result. The right panel of the figure shows an extension of the second

factor loading, which is a bit more complicated. Between 1998 and 2015, the function ap-

pears to be approximately sigmoidal, so we extend it using a logistic function. Specifically,

we fit (θ − δ) /(1 + exp(−α(τ − β))) + δ over 1998-2015, where τ = (year − 1998)/17, and

then extend the function up to year = 2035. The parameter estimates (standard errors)

show excellent precision: α̂ = 4.6766 (0.1983), β̂ = 0.5620 (0.0070), γ̂ = 0.6079 (0.0168),

and δ̂ = −0.1771 (0.0052).

Full Sample. Analogously to Figure 2, Figure 6 shows cross-sections of the surface esti-

mated for the full sample in Figure 1 (right panel), used in forecasting energy consumption

of the developing group countries. Aside from the poorest incomes to the left of the figure,

there is a nearly monotonic increase in the coefficient over time. An increasing coefficient

suggests a decrease in energy efficiency with no evidence of suppression as in the case of the

surface for only the developed countries.
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Figure 6: Cross-Sections for the Full Sample. Cross-sections of the surface β(r, x) from fixing

r = {1971, 1980, 1990, 2000, 2015}.

Figure 7: Estimated Factor and Its Loading for the Full Sample. Estimated using FPCA.
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Figure 8: Extending the Factor Loading for the Full Sample. The leading factor is extended

along the time dimension as a linear function of time

The eigenvalue ratio test of Ahn and Horenstein (2013) selects only one factor, which

contributes 98.8% of the variation in the surface estimated for all countries. Figure 7 shows

this factor and its loading. The factor loading looks quite a bit like the first factor loading

for the developed group, increasing until about the turn of the century. In fact, the shape of

the factor also resembles that of the first factor for the developed group, but with the critical

difference that the factor for the developing group crosses zero at a much lower income and

its value levels out at a higher magnitude than does that of the developed group. The

positive factor and nearly monotonically increasing loading explain the near monotonicity of

the cross-sections in Figure 6.

Much like the first factor loading for the developed group, that for the surface estimated

using the full sample is nearly linear over 2007-2015, but declining (Figure 7, right panel).

We extend it to 2035 using a linear function of time with slope estimated over that period

in Figure 8. This recent decline may reverse an otherwise steadily increasing coefficient for

some countries in the developing group.
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3.3 Conditional Forecasting

Forecasts h > 0 periods ahead conditional on a GDP scenario xi,T+h are implemented using

y∗i,T+h = α̂∗i + (γ̂∗i + β̂∗(T + h, xi,T+h))xi,T+h (2)

where α̂∗i , γ̂
∗
i , and β̂∗ are draws from bootstrapped distributions of the respective parameter

estimates, as described in the appendix. In this way, we evaluate only estimation uncertainty

but not uncertainty in future error sequences and their serial correlation. Ignoring serial

correlation is justified when conducting long-term forecasts such as ours.

We conduct forecasts for countries in both the developed and developing groups, looking

specifically at the Germany (developed), Italy (developed), US (developed), Brazil (devel-

oping), China (developing), and India (developing). We condition on per capita real GDP

to 2035 based on OECD real GDP forecasts3 and World Bank population forecasts.4

By using the surface estimated for all countries for Brazil, China, and India, we are

allowing countries in the developing group to “graduate” from this group and consume

more like the developed group once their per capita income is similar to that of the latter.

Otherwise, if countries in the developing group must remain in that group, the coefficient on

income may never level out or decrease with income.

Figures 9 and 10 show the input premises (left panels) and conditional forecasts of log

per capita final energy consumption (right panels). For the most part, incomes (real GDPs)

are projected to increase roughly as they have in the past across all countries. Not so for

populations. While population growth in the US is projected to be steady, likely due to

immigration, as is that for India, growth in China and Brazil is projected to slow noticeably.

3Downloaded from https://data.oecd.org/gdp/gdp-long-term-forecast.htm on February 12, 2018.
4Downloaded from https://databank.worldbank.org/source/population-estimates-and-projections on

February 12, 2018.
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Figure 9: Input Premises and Conditional Forecasts: Germany, Italy, and the US. Input

premises of real GDP and population (left panels) and energy consumption forecasts (right panels)

to 2035 for Germany (top panels), Italy (middle panels), and the US (bottom panels). Vertical line

signifies the begining of the forecast period, 2016.
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Figure 10: Input Premises and Conditional Forecasts: Brazil, China, and India. Input

premises of real GDP and population (left panels) and energy consumption forecasts (right panels)

to 2035 for Brazil (top panels), China (middle panels), and India (bottom panels). Vertical line

signifies the begining of the forecast period, 2016.
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At the extreme, the populations of Germany and Italy are projected to shrink, which is

rather surprising given evident growth in recent years.

The results of our forecasts of per capita energy consumption conditional on these inputs

are not surprising for the US and Germany: declines in per capita energy consumption

are projected to continue at roughly the same pace. Also not surprisingly, but with the

opposite sign, increases in per capita energy consumption for China and India are projected

to continue, albeit at a slower rate than over the last decade.

The result for Italy is unexpected. Italy sharply reversed an increasing trend in con-

sumption at around the turn of the century. This reversal roughly corresponds to a spike in

population over that period. Population is projected to decline to 2035 – another reversal –

which suggests an increasing energy consumption per capita.

We speculate that these patterns in Italy are due to immigration and an aging popula-

tion. A decade of substantial increase started in roughly 2004, when ten Eastern European

countries formally joined the European Union, easing restrictions on emigration to Italy.

The decline starting in 2014 is likely due to both an aging population, as in many devel-

oped countries, and a tightening of restrictions on non-EU immigration following the influx

of immigrants from Syria and other Middle Eastern and North African countries that has

recently affected much of Europe and Southern Europe in particular.

The result for Brazil is also unexpected, in the sense that we project a reversal of the

recent increase. However, the reversal makes sense in the context of our groups. As Brazil’s

population growth slows but GDP growth is maintained or accelerates, the consumption pat-

tern of Brazil, a country in the developing group, is projected to decline similarly to countries

in the developed group. Brazil nicely illustrates the advantage of our semiparametric panel

approach, without which such a forecast would be difficult.
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4 Conclusion

We introduce a nonparametrically specified, time-varying approach to forecasting regional

energy consumption by way of a functional coefficient panel data model. As noted extensively

in the extant literature, nonlinearity and time instability are key features of the relationship

between income and energy consumption. Allowing for these features leads to effective

forecasting of the latter conditional on the former.

By using a semiparametrically estimated panel model, we disentangle heterogeneous re-

gional slopes from trending components in the relationship between income and energy con-

sumption common to all countries or just to developed countries. As a group, developed

countries have tended towards increasing energy efficiency (decreasing energy intensity) since

the late 1990’s, while developing countries continue to decrease energy efficiency (increase

energy intensity). Estimating a common surface for all countries allows a developing country

to switch from a decrease to an increase in energy efficiency as its per capita income increases,

perhaps correlated with economic diversification and sectoral shifts to less energy-intensive

industries.

Forecasts conditional on the input premises to 2035 from OECD and World Bank projec-

tions suggest continuing decreases in per capita energy consumption for Germany and the

US and continuing increase for China and India. Forecasts of per capita energy consumption

in Italy and Brazil show reversals: from decreasing to increasing in Italy and from increasing

to decreasing in Brazil.

Although we focus on total per capita energy consumption at the national level in the

present analysis, the methodology is quite general. The methodology is currently in use to

produce official conditional forecasts of electricity consumption for South Korea. It would

be straightforward to adapt to ISOs in North America, for example, using international or
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state-level data to estimate the surface β(r, x). We leave this for future research.
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A Bootstrapping the Fitted Residuals

To implement the bootstrap procedure, we allow the fitted residuals from equation (1) to have
both a common component and an idiosyncratic component. We use a low-dimensional VAR
to model the common factors and an AR for the idiosyncratic component. For countries in
the developed group, this procedure is identical to that employed in our earlier work (Chang
et al., 2019b). However, the procedure differs slightly for the group of all countries. For the
sake of completeness, we describe the general procedure.

A.1 General Procedure

For each group – i.e., for the developed group or for the full sample – let N denote the
number of countries for which we observe data over the whole time span, 1971 to 2015, so
that T = 45. For these countries, bootstrapped residuals and response variables are obtained
using the following steps.

1. Obtain the residuals ε̂it from the model in equation (1) and demean ε̃it = ε̂it − ε̂i·
across years. Because we employ a non-standard semiparametric estimation method,
the residuals do not have a mean of zero.

2. Perform principal component analysis based on the covariance matrix of ε̃·t = (ε̃1t, ε̃2t, ..., ε̃Nt)
′.

The number of factors r is chosen by both eigenvalue ratio and growth ratio tests of
Ahn and Horenstein (2013). Decompose ε̃·t as ε̃·t = Λ̂ĝt + η̂·t, where ĝt is a r× 1 vector
of factors, Λ̂ = (λ̂1, ..., λ̂N)′ with λ̂i defined to be r × 1 vector of factor loadings for
variable (ε̃i·), and η̂·t = (η̂1t, ..., η̂Nt)

′ is a vector of idiosyncratic components of ε̃·t.

3. To bootstrap the common component of residuals, model ĝt as a VAR,

ĝt = B1ĝt−1 + · · ·Bkĝt−k + εt (A.1)

with the VAR order k determined by BIC. Fit the VAR model to get B̂1, ..., B̂k, ε̂t.
Resample from (ε̂t− ε̂·) to obtain bootstrap samples (ε∗t ), from which bootstrap samples
(g∗t ) are obtained using

g∗t = B̂1g
∗
t−1 + · · · B̂kg

∗
t−k + ε∗t , (A.2)

where g∗t = ĝt for t = 1, ...k.
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4. To bootstrap the idiosyncratic components of residuals, model η̂it as an AR,

η̂it = αi1η̂it−1 + · · ·αipi η̂it−pi + eit. (A.3)

with the VAR order pi determined by BIC. Fit the AR model to get α̂i1, ..., α̂ipi , êit.
Resample (êit − êi·) to obtain bootstrap samples (e∗it),

5 from which bootstrap samples
(η∗it) are obtained using

η∗it = α̂i
1η
∗
i,t−1 + · · · α̂i

kη
∗
i,t−pi + e∗it, (A.4)

where η∗it = η̂it for t = 1, ..., pi.

5. From equations (A.2) and (A.4), the bootstrapped response variables are given by
y∗it = ŷit + λ̂′ig

∗
t + η∗it respectively.

6. Parameters are re-estimated for each of 1,000 bootstrap replications of y∗it holding xit
fixed and the distributions of these parameter estimates are used to construct standard
errors and are fed into equation (2).

A.2 Group-Specific Data Irregularities

There are 37 countries with a data span from 1971 to 2015 (N = 37, T = 45) in the
developed group. These are as follows: Australia, Austria, Bahrain, Belgium, Bermuda,
Bulgaria, Canada, Chile, Cuba, Cyprus, Denmark, Finland, France, Germany, Greece, Hong
Kong, Hungary, Iceland, Ireland, Israel, Italy, Japan, (Republic of) Korea, Luxembourg,
Mexico, Netherlands, New Zealand, Norway, Panama, Poland, Portugal, Romania, Spain,
Sweden, Switzerland, UK, and US. For these countries the procedure above is implemented
with r = 4 factors chosen, k = 1 lags chosen for the common component, and pi ∈ {1, ..., 5}
lags chosen for each country.

Nine countries in the developed group have data deficiencies. Kuwait is missing data
following the Gulf War, over 1992-1994, which we linearly interpolate. The former Soviet,
Czechoslovakian, and Yugoslavian countries in the developed group, Belarus, the Czech
Republic, Estonia, Latvia, Lithuania, Russian, Slovakia, and Slovenia, are missing data
prior to 1996, which we ignore. We project the fitted residuals from these nine countries
onto the common factor obtained from the residuals of the other 37 countries, and we use the
residuals of these projections as the idiosyncratic component η̂it in step 4 of the bootstrap
procedure for these countries.

There are 21 countries with data deficiencies in the developing group. Cambodia, Tonga,
and Samoa, and Yemen are missing data until 1980, 1981, 1982, and 1989. Macedonia and
Uzbekistan are missing data until 1990, and Namibia is missing data until 1991. Armenia,

5For both the developed group and the full sample, we omit outliers exceeding (−0.06345, 0.054107)
following Chang et al. (2019).
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Azerbaijan, Bosnia and Herzegovina, Georgia, Croatia, Kyrgyzstan, Kazakhstan, Moldova,
Serbia, Tajikistan, Turkmenistan, and Ukraine are missing data until 1996. Niger is missing
data only in 1979, which we interpolate.

This leaves 150 countries in the full sample spanning the full span (N = 37 + 113 = 150,
see Chang et al., 2019b, for the full list). We conduct the procedure as above, with r = 4
factors chosen, k = 1 lags chosen for the common component, and pi ∈ {1, ..., 5} lags chosen
for each country. Similarly to the developed group, we project the fitted residuals from the
21 + 9 = 30 countries with missing data onto the common factors estimated for the other N
countries and use the residuals of these projections as the idiosyncratic component for each
country.


