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A B S T R A C T

We introduce a panel model with a nonparametric functional coefficient of multiple arguments. The coeffi-
cient is a function both of time, allowing temporal changes in an otherwise linear model, and of the regressor
itself, allowing nonlinearity. In contrast to a time series model, the effects of the two arguments can be
identified using a panel model. We apply the model to the relationship between real GDP and electricity
consumption. Our results suggest that the corresponding elasticities have decreased over time in developed
countries, but that this decrease cannot be entirely explained by changes in GDP itself or by sectoral shifts.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A diverse literature addresses methods for handling structural
change in the coefficients of econometric models, usually by allow-
ing the coefficients to vary over time. Many of these approaches
neglect one or both of two important aspects of structural change.
First, such models do not typically allow changes in the specification
of the functional form itself. Such misspecification may invalidate
the economic interpretations of the coefficients when these inter-
pretations are derived from partial derivatives, as is the case with
elasticities. Second, few models of coefficient change aim to identify
the underlying drivers of that change.
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A functional coefficient with multiple arguments, consisting of
the regressor itself and each potential driver of parameter change,
remedies both of these deficiencies. Specifying the coefficient as an
unknown function of the regressor explicitly allows for nonlinearity
in the conditional mean of the regressand. The additional arguments
further elucidate the underlying causes of the coefficient changes.
However, a functional coefficient with more than one argument can-
not be effectively estimated — especially when the arguments are
highly correlated or share trends.

In order to operationalize such a model and remedy the defi-
ciencies mentioned above, the main novelty of this research is to
couple a panel data approach to a nonparametric functional coef-
ficient model. From an econometric point of view, our functional
coefficient approach with a nonstationary panel builds on the func-
tional coefficient models of Cai and Li (2008) for stationary panels
and Cai et al. (2009) for nonstationary time series. This approach
provides several advantages in this context.

First, the addition of the cross-sectional dimension of the data
allows effective estimation of an unknown function of two variables.
We consolidate the additional arguments into a single time trend to
represent structural change. Thus, once the model is estimated, we
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may fix time and examine nonlinearity in the conditional mean. For
a fixed regressor or a constant function of the regressor, on the other
hand, the model reduces to a more standard model of temporal coef-
ficient change. Such flexibility is not possible using only a time series
model.

Second, the allowance of the coefficient to vary over both the
regressor and time enabled by a panel allows dynamic misspecifi-
cation, because the nonlinear function itself may evolve over time.
Third, a panel provides a much larger number of observations to
counter the well-known drawback of the slower rate of convergence
of nonparametric estimators.

Once a temporal pattern in the coefficient is established and any
nonlinearity is identified, further analysis may unlock distinct com-
ponents of that pattern. These components could be of interest in
their own right. For example, a policy maker considering a stimu-
lus package to a particular economic sector might be interested in
the effect on overall electricity consumption — especially in a coun-
try with a limited power grid that cannot import electricity, such
as Korea or Taiwan, or in which the constituents have substantial
concerns about increasing pollution from fossil fuel consumption.

We apply our econometric approach to a panel of observations on
electricity consumption across countries with disparate GDP levels.
A stylized fact of developed economies is change over time of energy
intensity, measured as the ratio of energy consumption to real GDP.
Many of these countries have seen a decrease in energy intensity,
often referred to as an autonomous energy efficiency increase (AEEI).
Such changes have occurred not only with respect to overall energy
consumption, but also with respect to consumption of individual
energy sources, such as electricity. For example, over the period
1995–2010, our data suggest that this ratio (electricity intensity) has
decreased by 14–17 % for the US, UK, and Denmark, and decreased
by 1–4 % for Japan, Germany, and Belgium, but increased by 46% for
Korea.

A common specification for modeling the relationship between
electricity and GDP is a fixed coefficient regression of the log of elec-
tricity consumption per capita on the log of real GDP per capita
and covariates.1,2 Holding the covariates constant, this specification
assumes that the relationship is linear and stable.

Galli (1998), Judson et al. (1999), and Medlock and Soligo (2001)
document an inverted U shape in the relationship between log
GDP and log energy consumption, which they attribute to changing
patterns in electricity consumption as countries develop and espe-
cially to shifts in the compositions of national economies from more
energy-intensive to less energy-intensive sectors. In other words, the
relationship is changing over time.

In similar applications, Galli (1998), Medlock and Soligo (2001),
and Richmond and Kaufmann (2006a,b) use panel data with a
quadratic term for nonlinearity, while Judson et al. (1999), Luzzati
and Orsini (2009), and Nguyen-Van (2010) use more flexible semi-
parametric panel data approaches to allow for nonlinearity.

To the best of our knowledge, ours is the first study of AEEI that
utilizes a panel data model with functional coefficients that allow
both for nonlinearity like the models in the studies just mentioned
and for a coefficient that varies smoothly over time.

Even for a single economic sector, the relationship between log
electricity consumption and log income, proxied by log GDP in
the household sector, or log electricity consumption and log out-
put, proxied by log GDP in the firm sector, may be linear but with
unstable coefficients or may not be linear at all. The often assumed

1 Initiated by Kraft and Kraft (1978), Granger causality is a major focus of the lit-
erature on this relationship. However, Granger causality is not a focus of the present
analysis.

2 For brevity, all further references to electricity consumption or GDP should be
interpreted to mean electricity consumption per capita or real GDP per capita, unless
otherwise specified.

log-linearity of the aggregate household demand function or the
aggregate firm conditional factor demand function results from
multiplicative indirect utility or production functions.3 However,
changes in utility, technology, policy, or other factors may shift or
change these functions over time, inducing time-varying coefficients
and even functional misspecification.

While an ideal specification might allow the coefficient on log
GDP to be a function of GDP itself, utility, technology, energy policy,
sectoral shares, and perhaps other factors, estimating such a model
and identifying each of these components would be very difficult
given the available data. Instead, we use the panel nonparametric
approach to create counterfactuals at fixed levels of development
and time periods.

Our model generates a very clear empirical result and one that
is expected from the discussion of AEEI’s: income elasticities have
been declining over time for developed countries.4 Our counter-
factual analysis with time fixed and varying GDP suggests that
economic development does not fully explain the declining elastic-
ities in developed countries. The right-hand tail of the inverted U
shape is almost flat and has become flatter over time — i.e., there
is a threshold beyond which GDP (per capita and relative to other
countries) barely affects the elasticity, and both the threshold and
the decreasing effect have decreased over time.

Similarly, we construct counterfactuals in which GDP is fixed and
time varies and find that the decreasing temporal pattern remains.
Reliable sectoral data on electricity consumption for a subset of our
panel that includes developed countries over a relatively recent time
period allows further analysis of this decrease. We isolate the com-
ponent of the time-varying elasticities for this subsample that cannot
be explained by sectoral reallocations over time, and we find that
the decreasing trend in elasticities of these developed countries still
remains.

Having accounted for nonlinearity in GDP, as modeled by the
Galli (1998) inter alia, and for sectoral shifts discussed by Medlock
and Soligo (2001) as possible explanations for the evident decreas-
ing pattern in elasticities, we conclude that the salient decrease has
been driven by one or more residual influences: utility, technology,
policy, or something else proxied by time. It would indeed be diffi-
cult to further isolate the effects from these possible drivers given
the inherent difficulty in measuring these influences, and we leave
this task to future research.

The remainder of the paper is organized as follows. Section 2
provides a short and general motivation of the panel nonparamet-
ric approach to modeling economic elasticities. In Section 3, we
detail the construction and sources of our electricity panel. We
present a basic benchmark model of electricity demand, discuss
possible sources of coefficient instability in such a model, and intro-
duce a functional coefficient panel model to better identify these
sources. Our empirical results are collected in Section 4, and we con-
clude with Section 5. Appendix A lists countries used to obtain our
empirical results, Appendix B presents the econometric methodol-
ogy, Appendix C discusses some additional technical details of the
methodology and some ancillary empirical results, and Appendix D
contains our data and code.

3 A large number of studies on household demand, including Halvorsen (1975),
Maddala et al. (1997), and Silk and Joutz (1997), inter alia, have estimated a fixed
coefficient on log income (income elasticity of demand), for which log GDP may be
considered a proxy. In the firm sector, GDP may be a proxy for either output or income.
Halvorsen (1978) included measures of both output and income in his model of com-
mercial demand, while Berndt and Wood (1975) and Halvorsen (1978) used measures
of output in industrial demand.

4 We will refer to the partial derivative as the income elasticity, or simply the
elasticity, even though it reflects both an income elasticity and an output elasticity in
sectorally aggregated data.
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2. An overview of our approach

Before introducing a specific model, we illustrate the basic idea
of using panel data with a nonparametric approach by considering a
single term given by b(r, x)x, perhaps of an otherwise linear model,
where both the regressor x and the regressand y(r, x) are in logs and
r represents time. Because x is an argument of the coefficient b(r, x),
the coefficient is not equal to the partial derivative with respective
to the regressor and therefore cannot be interpreted as an elasticity.
The elasticity 4(r, x) = (∂/∂x)y(r, x), which is given by

4(r, x) = b(r, x) + xbx(r, x), (1)

where bx(r, x) refers to the partial derivative of b(r, x) with respect
to its second argument, clearly contains an additional term xbx(r, x).
This term is zero only if the coefficient does not vary with the
regressor – i.e., if the model is in fact linear in x – or, trivially, if the
coefficient does not vary at all. We may estimate both bx(r, x) and
b(r, x) using our panel approach and compute the income elasticity
4(r, x) at each time r and x from Eq. (1).

In contrast, estimation approaches using individual countries
cannot adequately identify the effects of both time and the regressor.
With a single-country nonparametric approach, we have only one
observation of x at any given time, and therefore, it is impossible to
identify the effect of varying x while holding time fixed. In fact, if x is
log GDP, as in our electricity consumption model below, there is an
almost one-to-one relationship between time and log GDP, since log
GDP has a dominant increasing linear time trend. Consequently, we
may not be able to identify the time effect with the regressor fixed,
either. Our approach encompasses the single-country approach, so
we may relate elasticities estimated using our approach to those
estimated in studies relying on time series data for a single country.

A time series (single-country) approach that allows the coefficient
to vary only over time, such as that of Park and Hahn (1999), actually
sets x as a function of time – i.e., x = x(r) – and looks at the coefficient
b(r, x(r)) as a univariate function of time r. In that case,

d
dr

b(r, x(r)) = br(r, x(r)) + ẋ(r)bx(r, x(r)), (2)

where br(r, x) refers to the partial derivative of b(r, x) with respect to
its first argument, and ẋ(r) = (d/dr)x(r) denotes the instantaneous
change in the regressor. As is evident from Eq. (2), the slope of the
coefficient (d/dr)b(r, x(r)) in such a study does not truly represent the
rate of time change br(r, x(r)) of the coefficient, which is identified in
our approach separately from the secondary temporal effect due to
the growth of x. Unless there is trivially no change in the regressor, so
that ẋ(r) = 0, or unless the coefficient does not depend explicitly on
x and we have bx(r, x(r)) = 0, the temporal effects are not identical.
In our model below, in which x is log GDP, we expect the growth
rate ẋ(r) to be positive. Thus, when bx(r, x(r)) is positive (negative),
we expect the slope of the coefficient in a single-country study to be
larger (smaller) than the rate of time change of our coefficient.

On the other hand, a single-country approach that allows the
coefficient to vary only over the regressor is equivalent to setting
time r as a function r = r(x), say, of log GDP x. In this case, we have

d
dx

b(r(x), x) = ṙ(x)br(r(x), x) + bx(r(x), x), (3)

similarly to Eq. (2), where ṙ(x) = (d/dx)r(x) is the reciprocal of the
regressor’s growth rate. Such an approach allows coefficient changes
only through regressor changes – i.e., nonlinearity – but omits any
temporal changes in the coefficient unrelated to the regressor itself.
However, drivers of coefficient instability, such as technology and

utility in the case of demand functions, do not need to relate specif-
ically to the regressor (log GDP, e.g.), and therefore cannot be iden-
tified by such approaches. If br(r, x) is positive for all r and x, as we
find in our empirical analysis of electricity consumption, and if ṙ(x)
is positive for all x, we would expect the slope of the coefficient
(d/dx)b(r(x), x) estimated using a single-country approach to exceed
the partial effect bx(r(x), x) estimated using our approach.

Neither of these single-country approaches can separately iden-
tify the two arguments of the coefficient. Further, we expect them
to systematically underestimate or overestimate the rates of change
in the coefficient with respect to its arguments. This bias may have
a devastating effect on inferences or predictions from the model. In
contrast, a panel approach allows us to create counterfactuals by
fixing the regressor and allowing time to vary, identifying br(r, x),
or by fixing time and allowing the regressor to vary, identifying
bx(r, x), at each and every combination of time r and regressor x. As
a result, the change in elasticity is more accurately analyzed, the
individual drivers of this change are better identified, and we may
gain a much deeper understanding of the dynamics underlying the
structural change.

3. Electricity data, models, and sources of instability

3.1. Data sources and construction

A model of electricity intensity requires at least two series: elec-
tricity consumption and GDP. Electricity consumption is measured
implicitly by adding net exports to production and subtracting losses
from transmission. Production data are available over a longer and
wider span than consumption,5 so we use production as a proxy for
consumption. Because electricity must be transmitted by wire and
large amounts are not transmitted under water, net exports are a
very small percentage of production for most countries. According to
data from the World Factbook,6 20 of the 89 countries in our sample
import or export more than 5% of production and only 7 import or
export more than 20%. The Republic of Congo imports 84% of its elec-
tricity, but both imports and production are quite small. Paraguay
exports 80% of its production, apparently to neighbors Brazil and
Argentina. In fact, the absolute value of Paraguay’s net trade is nearly
the largest of any country’s, but this is clearly an outlier.

We collect annual electricity production and GDP over the period
1971–2010 for 184 countries, although not all of these data are ulti-
mately used. Electricity production in gigawatt hours (GWh) is used
as a proxy for electricity demand, and almost all of these data orig-
inate from Enerdata,7 except those of a few countries with missing
data for 1971 for which we use data from the World Bank. We calcu-
late electricity production per capita using population in thousands.
We then create an electricity production index with 2000 as the base
year in order to eliminate some of the heterogeneity in per capita
production across countries. GDP per capita is constructed from real
GDP in 2005 million US dollars at constant purchasing power parities
and using population in thousands. GDP per capita is thus expressed
in thousands of 2005 US dollars.

We omit 62 countries with some missing electricity production
or GDP data. Many of these are former Soviet bloc countries, for
which data were missing or unreliable during the beginning of the
sample. We then omit 33 countries that appear to have nonsensi-
cal (negative or statistically insignificant) cointegrating relationships

5 Sectoral consumption data are available from the UN Energy Statistics and
Enerdata. However, missing subsectoral data are treated as zeros in aggregating to the
sectoral level, which generates substantial measurement error, especially as a series
becomes missing or ceases to be missing over time.

6 https://www.cia.gov/library/publications/the-world-factbook/index.html.
7 http://yearbook.enerdata.net/.

https://www.cia.gov/library/publications/the-world-factbook/index.html
http://yearbook.enerdata.net/
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between electricity production and GDP using a conventional fixed
coefficient single-country model similar to the benchmark model
Eq. (4) below. The countries in this group tend to be poorer coun-
tries with less developed markets, and the lack of a cointegrating
relationship may reflect the lack of a long-run market equilibrium.
After omitting these groups, we are left with 89 countries listed in
Appendix A.3.

In order to ameliorate cross-country heterogeneity and generate
more stable parameter estimates, we group countries according to
GDP per capita in each year. The first group (Gr1) includes the US and
any country with a higher GDP per capita. To form the remaining 9
income groups (Gr2–Gr10), we first compute the empirical distribu-
tion of the remaining countries. These countries are then assigned
to 9 income groups according to the grouping rule given by the per-
centiles in Table 1. For each group in each year, we weight each
country’s GDP per capita by its GDP level as a ratio of the group’s total
GDP level, thus deriving an aggregate measure of GDP per capita for
each of the 10 groups in each of the 40 years.

We use a similar procedure to weight the electricity production
data, using exactly the same GDP-based weights. We thus have 400
total observations (40 years of 10 country groups) of electricity con-
sumption (proxied by production) and GDP. In this way, the income
represented by each group is relatively stable, even though the group
members may change each year. The exception is that Gr1 con-
tains the US by definition and is in fact dominated by the US, since
the other members tend to be smaller wealthy countries, such as
Bermuda and Singapore. Fig. 1 shows the sample paths of the logs of
the electricity consumption and GDP series.

Since both demand and supply of any good are functions of its
price, energy prices are often used in models of energy consumption.
Annual household electricity prices per kilowatt hour measured in
2005 US cents at constant purchasing power parities are available
for a range of countries from Enerdata. We create a price index with
2000 as the base year. Using price necessitates a slightly different
modeling strategy, because price data are available for only 25 of the
89 countries and no earlier than 1978 for these countries.

Table A.1 (Appendix A) shows the number of countries in each
group and each year for which we have price data. Gr1–Gr4 con-
tain at least 2 of the 25 countries in each year, so we use the same
groups defined above with the same group members for GDP and
electricity production, but just omit Gr5–Gr10. We construct price
data similarly to GDP and electricity production data for Gr1–Gr4,
except that, because we have fewer group members with price, we
re-weight using each country’s GDP level as a ratio of the group total
excluding those countries with no price data. We therefore have 132
total observations (33 years of 4 country groups) of electricity con-
sumption (production), GDP, and price. The right panel of Fig. 2, to
be discussed in more detail below, shows the sample paths of the log
price series for these groups.

Table 1
Income grouping rules. For each year, Gr1 is defined to be the
US and countries with a higher GDP per capita than the US.
Countries in Gr2–Gr10 are determined by the percentiles of
the annual distribution of GDP per capita of the remaining
countries.

Group Percentiles of GDP per capita

Gr2 [88,100]
Gr3 [77,88)
Gr4 [66,77)
Gr5 [55,66)
Gr6 [44,55)
Gr7 [33,44)
Gr8 [22,33)
Gr9 [11,22)
Gr10 (0,11)

3.2. A benchmark model of total electricity consumption

A general model of the ratio of electricity consumption to GDP is
of course linear when the data are expressed in logs. Assuming fixed
coefficients, such a model for a single country that also includes price
may be written as

yt = a + bxt + cpt + et , (4)

for t = 1, . . . , T years, where yt, xt, and pt represent logs of the
electricity consumption, GDP, and electricity price series discussed
above. This fixed coefficient model may be interpreted as a model of
electricity demand, in which GDP is a proxy for income, and b may
thus be interpreted as the income elasticity of electricity demand.8,9

However, we note several obstacles to this interpretation of b.
On the left-hand side, we use production data as a proxy for a coun-
try’s demand. Recall that actual consumption is measured implicitly
by adding net exports and subtracting transmission losses. As long
as the omitted variables, net exports and transmission losses, do
not have unit roots or deterministic trends, the regression is still
cointegrating so that b is estimated consistently.

Further obstacles to associating b with an income elasticity may
arise on the right-hand side from using GDP (output) as a proxy for
income. By definition, GDP contains electricity sales as a final good
and any net exports of electricity. We do not expect the percentage
of GDP comprised of such sales to be very large for most countries.10

Countries with historically unreliable data may present a more
subtle problem. Forecasters of GDP of centrally planned economies,
for example, have traditionally found electricity consumption to be
a good predictor of GDP. Our estimates could be biased for countries
in which electricity consumption is used – other than as a final good
in the definition of GDP – to construct the publicly available measure
of GDP. However, many of these countries have been excluded from
our sample due to missing data.

Finally, we note again that b itself is not strictly an income elas-
ticity, because electricity is consumed by both households and firms.
As a proxy for income, GDP is an input into an aggregate household
utility function, making the coefficient an income elasticity in the
household sector. However, GDP is an output of an aggregate pro-
duction function, of which energy is a factor of production, making
the coefficient an output elasticity in the firm sector. Even within
the firm sector, different technologies across firms induce different
coefficients, and studies conducted at the sectoral level have uncov-
ered substantial differences in elasticities across economic sectors
within a given country. The coefficient b in a sectorally aggregated
single-country model thus reflects all of these elasticities.

8 Such a model usually includes additional covariates that act as demand shifters.
Going back to Halvorsen ’s ( 1978 ) monograph on energy demand and earlier, demand
shifters have been used with varying degrees of success. Perhaps the most obvious
ones that we omit are a measure of seasonality to account for electricity use in heating
and cooling and the price of a close substitute. Since we examine annual data, such a
seasonal measure is unnecessary. In a fairly homogeneous market, natural gas or fuel
oil may be the predominant substitute for electricity in heating applications. How-
ever, these data may not be as informative globally. With a wide range of countries
and climates, a substantial amount of heating is unnecessary in some countries. Tech-
nological differences across time and across countries may further weaken the impact
of the price of a heating substitute. Moreover, data availability in this panel precludes
the use of such prices.

9 The joint determination of electricity price and consumption means that c cannot
be interpreted as a price elasticity of demand, and that estimates of c will likely be
inconsistent. We do not expect such a problem for estimates of b, since there appears
to be no co-movement between price and GDP in our data, as shown in Fig. 2.
10 The ratio is about 2% for the US, e.g., using data from the Energy Information

Administration (EIA): http://www.eia.gov/electricity/; and the Federal Reserve Bank
of St. Louis: http://research.stlouisfed.org/fred2/.

http://www.eia.gov/electricity/
http://research.stlouisfed.org/fred2/
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Fig. 1. Time series plots of log electricity consumption indices with 2000 as the base year and log real GDP per capita for ten groups Gr1–Gr10.

3.3. Coefficient variation from sectoral shifts and GDP

A cost of using sectorally aggregated data is that, strictly speaking,
the coefficient b is not a single elasticity as just mentioned. Aggre-
gating data across sectors implies some type of aggregation of the
coefficients for those sectors. Even if the coefficients for each sector
are time-invariant, the aggregation weights may change as the focus
of real economic activity shifts from one sector to another over time.

Medlock and Soligo (2001) explicitly tie sectoral shifts to eco-
nomic development and argue for an econometric specification flex-
ible enough to allow for nonlinearity in the relationship between
energy demand and GDP. Denoting log GDP by x, those authors let
b = b(x) = b0 + b1x so that b(x)x is quadratic in x. The left-
hand tail of the inverted U shape of the quadratic allows an increase
in energy intensity at low income levels as countries build their
industrial bases. In line with earlier authors, such as Brookes (1972),
those authors emphasize the process of dematerialization, which
drives sectoral dominance from energy-intensive heavy industry
to light industry, and then eventually to the less energy-intensive
commercial sector. Dematerialization is tied to high income levels,
and the right-hand tail of the inverted U shape allows a decline
in energy intensity as countries prosper. The nonlinearity in b for
countries that have developed rapidly may be quite pronounced, as
Galli (1998) notes for Korea and Taiwan.

Although GDP may be a good proxy for sectoral composition in
some cases, temporal sectoral shifts do not have to be tied to eco-
nomic development. For example, consider the sectoral reallocation
of Eastern European countries in the 1990’s following the demise
of Soviet-style communism. From the starting point of high growth

and an intensive industrial focus with little emphasis on energy effi-
ciency under that system, the process of dematerialization was rapid
in those countries that tried to adapt quickly, while the pace of
economic development lagged behind.

More generally, increased globalization may drive countries to
specialize in certain industries in order to compete. Sectoral shifts
resulting from such specialization may indeed be correlated with
economic development, such as in the case of specialization in man-
ufacturing exports by Japan, Korea, Taiwan, and China. Alternatively,
economic growth due to specialization might not be followed by
dematerialization if a country does not diversify its main economic
driver, as is often the case with exporters of basic resources, such as
oil or minerals.

3.4. Coefficient variation from other sources

Shifts in utility, technology, and energy policy may also drive
coefficient change. In this case, a nonlinear function of GDP may
not adequately capture such instability. Consider a residential con-
sumer’s choice between a cheaper durable that uses more electricity
(lower fixed cost and higher total variable cost) and a more expen-
sive durable that uses less electricity (higher fixed cost and lower
total variable cost). Suppose that the expected total cost of each
durable is equal, so that household income is irrelevant to the choice
between them. For a given increase in household income after which
such a choice becomes possible, the choice between which durable
to consume – and thus the income elasticity of electricity demand –
may be influenced by both technology and utility. Technology deter-
mines whether in fact such a trade-off is possible, while the diffusion

Fig. 2. Time series plots of detrended log real GDP per capita for ten groups Gr1–Gr10 and log real electricity prices for four groups Gr1–Gr4, respectively, in the left and right
panels.
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of knowledge about the negative externalities associated with using
exhaustible resources may influence utility.

In industry, consider the example of the rise of electric arc fur-
naces in steelmaking. While electric arc furnaces do not require the
large amounts of coal needed for basic oxygen furnaces and decrease
overall energy usage, they increase the need for electricity to obtain
the same amount of output.11 A further example is provided by
increased computerization across all firm sectors, increasing produc-
tivity while most likely increasing reliance on electricity for power
even while enabling more efficient usage of it.

Utility and technology are difficult to identify, because these terms
refer to the functional forms and unknown parameters of the respec-
tive functions. In addition, energy policies have certainly affected how
firms and households use electricity, thus influencing the elasticity.
Policy is difficult to quantify beyond simple binary policy changes,
and policies are not necessarily comparable across countries.

Because these additional drivers are difficult to measure,
researchers often allow a function of time to capture residual influ-
ences on coefficient instability. For example, Webster et al. (2008)
use a linear time trend to capture AEEI, although Kaufmann (2004)
argues against such a specification. A more flexible alternative is
offered by Chang and Martinez-Chombo (2003) and Chang et al.
(2014), who model the coefficient b as a flexible function of time,
such that b = b(r) with r denoting time. As noted in Section 2, such
an approach may systematically overestimate or underestimate the
coefficient if it is also a function of GDP.

3.5. Econometric model specification

In order to segregate the influence of GDP from other time-
varying factors and avoid the systematic biases discussed in
Section 2, we consider a model in which b = b(r, x) is a function of
both GDP and time. We refer to b(r, x) as the income coefficient of elec-
tricity demand, or income coefficient for short. Specifically, we extend
the time-series model in Eq. (4) to a panel model given by

yit = a′cit + b(t, xit)xit + cpit + uit , (5)

for i = 1, . . . , N groups of countries, where cit represents an N×1 vec-
tor of group binaries to capture cross-sectional heterogeneity, and a

is an N×1 vector of group fixed effects. Because electricity price data
pose a major constraint on data collection, it will also be useful to
rewrite the model in Eq. (5) as

yit = a′cit + b(t, xit)xit + vit , (6)

where vit = cpit + uit.
A detailed comparison of these specifications is presented in

Appendix B.2. Note that the regressions introduced in Eqs. (5) and
(6) both involve variables having deterministic and stochastic trends
and are interpreted as describing long-run relationships. In fact, tests
for the presence of deterministic and stochastic trends, shown in
Tables C.1 and C.2 (Appendix C), strongly and unambiguously show
that (xit) has both a stochastic trend and a linear time trend, while
(pit) has only a stochastic trend, for a majority of i = 1, . . . , N. Time
series plots of (pit) and linearly detrended (xit) shown in Fig. 2 provide
additional evidence.

On the other hand, as shown in Fig. B.1 (Appendix B), it appears
that the fitted residuals from both regressions Eqs. (5) and (6) have
no time trends, and in particular, the series of fitted residuals from

11 “Energy Trends in Selected Manufacturing Sectors: Opportunities and Challenges
for Environmentally Preferable Energy Outcomes,” U.S. Environmental Protection
Agency (March 2007): http://www.epa.gov/sectors/pdf/energy/report.pdf.

regression Eq. (5) is stationary. Therefore, we interpret regression
Eqs. (5) and (6) as representing semiparametric long-run relation-
ships with stationary and integrated errors respectively.12 Clearly,
regression Eq. (5) may be regarded as a semiparametric cointegrating
regression if (uit) is stationary. Regression Eq. (6) is also meaningful,
since (xit) has a linear trend, providing a stronger signal than the noise
generated by an integrated error (vit). Although it is misspecified,
we may estimate b(r, x) consistently from regression Eq. (6).13

All else equal, we expect regression Eq. (5) to provide a better
estimate of b(r, x) than regression Eq. (6) when c �= 0. In our case,
this is not necessarily true, since the observations we may use to fit
regression Eq. (5) are only a fraction of the entire sample, due to the
severely restricted availability of price data. Using regression Eq. (6)
to estimate b(r, x) incurs some bias. However, at the same time, we
may drastically reduce the sample variance of the estimator of b(r, x)
by using observations on more years and many more countries and
estimating b(r, x) from regression Eq. (6).

Overall, regression Eq. (6) may yield an estimator of b(r, x) with
a smaller mean squared error than regression Eq. (5), if the reduc-
tion in sample variance due to the utilization of observations on
more countries over a longer time span exceeds the magnitude of the
squared bias resulting from the omitted variable problem in regres-
sion Eq. (6). Indeed, we show in Appendix B.2 that regression Eq. (6)
provides an improved estimator of b(r, x) in terms of the bootstrap
mean squared error.

4. Empirical results

We estimate the nonlinear panel data models in Eqs. (5) and
(6) semiparametrically, allowing the most flexible form for the
functional coefficient b(r, x) and allowing us to glean substantial
information about the dynamics of the functional coefficient using
our aggregated but cross-sectionally diverse data. Our estimation
procedure is detailed in Appendix B.1.

4.1. Estimated income coefficients

The first step of the partially linear estimation procedure entails
estimating a and c. Table 2 shows the estimation results for the
parametric parts of the models with and without price, by run-
ning least squares on Eq. (B.4) (with price) for model Eq. (5) and
on Eq. (B.6) (without price) for model Eq. (6). Note that our data
are nonstationary and that standard results for stationary data are
not applicable. We therefore calculate asymptotic variances using a
bootstrap method described in detail in Appendix C.3. The estimated
price elasticity ĉ of electricity demand is negative and significant,
and the estimates of the group effects are in general not negligible.
In regression Eq. (6), the standard errors for the group effects have
mostly larger standard errors and are generally insignificant, which
is expected from the inconsistency of the estimator.

The top two panels of Fig. 3 show the income coefficient esti-
mates from model Eq. (5) with price. The top left panel shows income
coefficient estimates for the exact data points observed (Gr1–Gr4
over 33 years, t = 1978, . . . , 2010) while the top right panel shows
estimates evaluated over a grid of log real GDP per capita ranging
from 9.3 ($10,938) to 10.7 ($44,356). The income coefficient esti-
mates using model Eq. (6) without price are plotted in the bottom
two panels of the figure, using all 10 country groups and t =
1971, . . . , 2010. In this case, the bottom right panel shows estimates

12 Unfortunately, no formal test exists for the stationarity and integratedness of
the error terms in regressions like Eqs. (5) and (6).
13 An integrated time series is of order

√
T, and it is therefore asymptotically

negligible compared with a linear time trend growing at the rate of T. However, the
parameter a cannot be estimated consistently in regression Eq. (6) unless c = 0.

http://www.epa.gov/sectors/pdf/energy/report.pdf
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Table 2
First-step estimation results. Least squares parameter estimates from regressions
given by Eq. (B.4), with prices included but Gr5–Gr10 excluded, and by Eq. (B.6), with
prices excluded but Gr5–Gr10 included. Standard errors calculated using the bootstrap
method described in Appendix C.3.

With price Without price

Estimate s.e. Estimate s.e.

c − 0.114 0.055
a1 −2.232 1.479 1.217 1.745
a2 −2.092 1.460 1.276 1.714
a3 −2.063 1.446 1.284 1.692
a4 −1.781 1.451 1.338 1.652
a5 1.563 1.623
a6 1.669 1.580
a7 1.836 1.557
a8 1.972 1.446
a9 1.961 1.385
a10 2.079 1.324

evaluated over a grid of log real GDP per capita ranging from 6 ($403)
to 11 ($59,874).

The most salient feature of the income coefficient estimates from
either model Eqs. (5) or (6) is that they are not constant functions of
time and GDP, as a traditional fixed coefficient model assumes. The
income coefficient estimates in the models with and without price
appear to be flatter for richer countries than for poorer countries,
emphasizing the importance of a sample with diverse GDP levels to
evaluate the coefficient dynamics over time and GDP. Comparing the
bottom left panel with the top left panel makes clear the increase in
sample size from dropping price. Comparing the smoothness of the
bottom right panel with the top right panel gives some idea of the
efficiency gain from the larger sample.

Though not exactly the same, the topologies of the income coef-
ficient estimates from regressions Eqs. (5) and (6) are qualitatively

very similar. On the other hand, the estimates from regression Eq. (6)
based on a larger data set identify the income coefficient over a wider
range of time and GDP. Furthermore, the estimates we obtain from
regression Eq. (6) show a clearer pattern of variation of the income
coefficient over the time and GDP, compared to the estimates from
regression Eq. (5).

Although a comparison of the vertical axes suggests that a scalar
bias may exist from estimating the model without price, our detailed
comparison in Appendix B.2 conclusively demonstrates, to the con-
trary, that the severe restriction on the sample imposed by using
price data generates a much larger variance. The evident vertical dif-
ference thus results more from variance than from bias, and the small
bias incurred by using model Eq. (6) is therefore more acceptable.
With this comparison in mind, we henceforth restrict our attention
to model Eq. (6) (without price).

In order to examine the temporal patterns in the coefficients more
closely, Fig. 4 shows a two-dimensional representation of the bottom
right panel of Fig. 3 for fixed years and levels of GDP. Specifically, the
left panel of Fig. 4 illustrates b̂(r, x) holding time r fixed, while the
right panel illustrates b̂(r, x) holding log GDP x fixed.

Holding time r constant, b̂(r, • ) appears to be mostly increasing in
GDP during the 1970’s and 1980’s (b̂x(r, • ) > 0), but mostly decreas-
ing in GDP during the 1990’s and 2000’s (b̂x(r, • ) < 0). In 1971, for
example, the estimated coefficient for a hypothetical country with a
log real GDP per capita of 7 ($1097) is 0.18, while it increases 56%
to 0.28 for a country with a log real GDP per capita of 10 ($22,026)
the same year. In 1990, the coefficients of the two countries are
estimated to be the same, 0.30, up to rounding error. The estimate
decreases 21% from 0.43 for the poorer country to 0.34 for the richer
country in 2010. In light of the role played by this term in Eqs. (1) and
(2), the elasticities and temporal change in elasticities could be quite
a bit larger or smaller than those previously estimated using more
restrictive models.
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Fig. 3. Surface plots of estimated income coefficient using Eq. (B.5) with price for model Eq. (5) (top panels) and Eq. (B.7) without price for model Eq. (6) (bottom panels), plotted
at actual data (left panels) and interpolated over a grid (right panels). Actual data are Gr1–Gr4 over 1978–2010 (top left) and Gr1–Gr10 over 1971–2010 (bottom left). Grid points
range from 9.3 ($10,938) to10 .7 ($44,356) using data from Gr1–Gr4 (top right), and from 6 ($403) to 11 ($59,874) using data from Gr1–Gr10 (bottom right).
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Fig. 4. Cross sections of income coefficient estimates at selected years and time series of income coefficient estimates at selected income levels, estimated using Eq. (B.7) without
price.

The coefficients appear to be increasing over time with GDP
held constant: b̂r(r, x) > 0 for each (r, x). The increase over time
may reflect global diffusion of electronic technology in all sectors
over the last four decades. In every country, both households’ and
firms’ reliance on machinery and appliances that require electric-
ity has increased. An increase in the income of a household in 1971
might have induced a large purchase of a durable good that did not
require much electricity, resulting in a relatively small coefficient.
On the other hand, an increase in the income of a household in 2010
might have induced a large electronics purchase, making that house-
hold’s demand for electricity more sensitive to income changes and
resulting in a relatively larger coefficient.

The increase over time appears to be much steeper for poorer
countries than for richer countries. For example, the coefficient of a
hypothetical country with real GDP per capita held constant at $3000
increases 68% from 0.22 in 1971 to 0.37 in 2010, and the change for
a country with constant real GDP per capita of $10,000 is similar: a
54% increase from 0.24 to 0.37. In contrast, for a country of $30,000,
the coefficient estimate increases only 18%, from 0.28 to 0.33.

As relatively cheap electronic technology diffuses to poorer coun-
tries, their households demand more electricity to power these
devices and their firms require more electricity to be globally com-
petitive. Especially in markets in which the electricity price is heavily
regulated and electronics are imported from abroad, we may expect

the ratio of electricity usage relative to GDP per capita of these coun-
tries to grow disproportionately faster than that of richer countries.

4.2. Identifying the effects of GDP and time

Using the formula in Eq. (B.8) based on that in Eq. (1) to cal-
culate elasticities, the left panel of Fig. 5 shows the time paths of
the elasticities of the four groups with the highest GDP’s per capita.
Even though we aggregated individual countries into groups in order
to avoid some heterogeneity in estimation, we can evaluate the
elasticity of an individual country with non-missing GDP data. The
right panel of Fig. 5 shows the time paths of the elasticities of four
countries: China, Korea, Japan, and the US.

The most obvious pattern that emerges suggests that elasticities
of developed countries have been declining over time. Indeed, this
finding reflects that of Brookes (1972), inter alia. From 1971 to 1993,
the estimated elasticities decline from 0.55 to 0.41, 0.74 to 0.46, 0.87
to 0.49, and 0.76 to 0.45 for Gr1, Gr2, Gr3, and Gr4 respectively. From
1993, when the elasticities of these four groups are similar, to the
end of the sample, the elasticities decrease similarly across Gr1, Gr2,
Gr3, and Gr4 to 0.15, 0.13, 0.12, and 0.15 respectively.

Looking at individual countries, Japanese and US elasticities
exhibit declines, 0.88 to 0.12 and 0.56 to 0.15 respectively, similar
to those observed for the richest four groups. Indeed, these two

Fig. 5. Estimated elasticities of four richest income groups: Gr1–Gr4, and four selected countries: China, Japan, Korea, and the US. Elasticities estimated using Eq. (B.8), with b(r, x)
and bx(r, x) estimated using Eq. (B.7) without price.
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countries are members of these groups throughout the sample. Korea
and China both clearly exhibit over time the inverted U shape over
GDP discussed above — not surprising in light of their dramatic
increases in GDP over time.

Korea has been a member of the top five groups only since 1983,
when its estimated elasticity peaks at 0.48 compared to 0.47 for the
US in the same year. At about that time, there is a clear switch from
an increasing to a decreasing pattern similar to that of Japan and
the US and dropping to 0.13 by the end of the sample, suggesting
dematerialization of Korea’s economy.

A similar pattern appears for China. Because it was so poor
prior to 1991, we do not estimate an elasticity in order to avoid
an empty bin problem for the nonparametric estimator. Since then,
China’s elasticity appears to have increased, surpassing those of the
other three countries after 2002, peaking at 0.47 in 2008, and then
declining slightly to 0.39 by the end of the sample.

The Chinese pattern appears similar to the Korean pattern, only
shifted by about two and a half decades, with a peak elasticity com-
parable to Korea’s peak elasticity of 0.48 in 1983. China’s elasticity of
0.39 in 2010, two years after its peak, marks a sharper decline than
that of Korea, 0.45, two years after its peak, suggesting the possibil-
ity that dematerialization in China is moving at a faster pace than in
Korea a quarter of a century earlier.

The panel analysis allows us to construct meaningful counter-
factuals, because for a fixed time period we estimate a range of
coefficients that vary with GDP, and for a fixed country or GDP level
we estimate a range of coefficients that vary over time. Fig. 6 shows
the elasticities over income groups but for fixed years (left panel) and
over time but for fixed incomes (right panel).

Looking at the left panel, we clearly observe prior to the 1990’s
the inverted U shape noted by previous authors, with its peak shift-
ing over time from Gr3, down to Gr4 and below. The inverted U shape
appears to break down by about 1991 and even inverts to an unin-
verted U shape by 2006, when the elasticities appear to decrease from
Gr8 until about Gr6. This inversion may reflect the diffusion of elec-
tronic technology made possible both by the proliferation of such
technology and by the internationalization of trade patterns during
this period.

The elasticities are nearly flat across the four richest groups
Gr1–Gr4 since about 1996. Such a pattern suggests that once a coun-
try attains a threshold level of development, GDP no longer seems
to play an important role in determining the elasticity. Temporal
patterns unrelated to GDP seem to matter much more for countries
in these groups.

Median countries (primarily those in North Africa, Central
America, and poorer countries in Asia and Europe) have less wealthy

households, and firms use a larger share of electricity. As these coun-
tries industrialize, more sensitive industrial demand plays a larger
role until household demand catches up, which seems to happen
at about the income level of Gr4, which includes at different times
Ireland, Israel, Korea, Mexico, and Portugal, among others.

Having effectively ruled out GDP as a major driver of electricity
intensity in developed countries, we now examine the right panel
of Fig. 6. We do not plot years for which we have either no data or
only data for Bermuda in excess of $30,000 and $40,000 in order to
avoid biasing estimates by overweighing a small and atypical country
that relies on only a few economic sectors. Specifically, the begin-
nings of these plots, 1985 and 1997 respectively, correspond to the
real GDP per capita of Norway surpassing these thresholds. (That
of the US surpasses $30,000 in 1988 and $40,000 in 2004.) With
GDP fixed, decreasing temporal patterns clearly remain. The gen-
eral decline suggests the importance of alternative drivers of the
coefficient instability.

It is interesting to compare the elasticities against the backdrop
of the Kyoto Protocol, which was signed in 1997 and went into effect
in 2005, marking a major milestone in awareness of the negative
externalities associated with consuming fossil fuels. We expect such
awareness to reduce the income elasticity, as richer countries may
choose to pollute less, following the downward slope of a hypotheti-
cal environmental Kuznets curve. According to the left panel of Fig. 6,
such a decrease appears prior to 1996, when the downward slope
in the elasticity with respect to income declined over time due to a
decrease in the peak elasticity across income groups. In this light, we
may perhaps interpret the Kyoto Protocol not so much as a binding
agreement to shape future environmental sensitivity, but rather as
the culmination of shifting attitudes up to that time.

Both panels of Fig. 5 and the right panel of Eq. 6 suggest a differ-
ent interpretation, however. The decline in many of the elasticities
presented in these figure steepens during the 1990’s. The fact that
the decrease remains when holding income fixed (right panel of
Fig. 6) suggests that there is more to the story than an environmental
Kuznets curve. Clearly, other temporal factors matter, and the tim-
ing of the evident break around the time of the signing of the Kyoto
Protocol is very suggestive that sensitivity of electricity consump-
tion to increases in GDP could be related to that agreement. Note
that Korea reverses an increase in its elasticity in about 1997 and
its subsequent decrease steepens in about 2005, suggesting that – at
least in the case of Korea – the signing and enforcement of the Kyoto
Protocol may have indeed affected future (as well as reflecting past)
environmental awareness.

The right panel of Fig. 5 contains elasticities of two countries for
which the constraints of the Kyoto Protocol are not binding: China

Fig. 6. Cross sections of elasticity estimates at selected years and time series of elasticity estimates at selected income levels. Elasticities estimated using Eq. (B.8), with b(r, x) and
bx(r, x) estimated using Eq. (B.7) without price.
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Table 3
Share regressions: selected countries. Regression of estimated elasticities on time trend and sectoral shares. Statistical significance shown for one-sided test of H0 : po = 0 and
two-sided tests of H0 : pj = 0 for j = r, c, i, denoted by *** for 1% significance, ** for 5% significance, and * for 10% significance.

France Germany Italy Japan

1990-2010 1990–2010 1990–2010 1971–2010

Estimate s.e. Estimate s.e. Estimate s.e. Estimates s.e.

−0.466*** 0.032 −0.508*** 0.040 −0.373*** 0.063 −0.794*** 0.115
1 .127** 0.484 0.712** 0.320 2.466*** 0.453 0.078 0 .534
0 .532 0.487 0.914** 0.376 −0.249 0.446 1.804*** 0 .644
0 .235** 0.105 0.154 0.175 −0.020 0.077 0.977*** 0 .141

Korea Spain United Kingdom USA

1979–2010 1990–2010 1990–2010 1973–2010

Estimates s.e. Estimates s.e. Estimates s.e. Estimates s.e.

−0.912*** 0 .102 −0.590*** 0.009 −0.574*** 0.013 −0.230* 0.163
0 .554 1.088 1.095*** 0.250 −0.011 0.244 −1.878*** 0.534
2 .924*** 0.637 0 .729*** 0.170 2 .821*** 0.385 1 .795* 0.951
0 .044 0.184 0.312*** 0.043 −0.622*** 0.132 1 .766*** 0.567

is exempt and the US did not ratify the agreement. To the extent
that we can attribute the decline in elasticities to changing atti-
tudes about emissions, there is a huge difference between these two
countries. As a developing country, China continues to increase elec-
tricity intensity of its economy through 2008. Similarly to Korea,
Japan, and Gr2–Gr4, the US shows a substantial change at about the
same time, following a decline almost as steep as Korea and Japan.
The decline in elasticities for Korea, Japan, and Gr2–Gr4 were such
that the elasticities fell below that of the US by 2008, when emissions
targets became binding. Interestingly, the slope of Japan’s elasticity
appears to flatten out shortly before the end of the sample, leading up
to Japan’s announcement shortly thereafter (in 2011) that it would
not engage in additional second-round emissions cuts.

The proliferation of electronic devices (computers, cell phones,
etc.) suggests an alternative explanation for the steepening of the
decline in the elasticities of developed countries in Figs. 5 and 6 that
starts in the 1990’s. Use of such devices has skyrocketed over time.
The increased usage has perhaps rendered demand for electricity to
power these devices less sensitive to income and has perhaps sped
the process of dematerialization in developed countries by decreas-
ing reliance on the industrial sector for economic growth. Of course,
these two explanations, the Kyoto Protocol and proliferation of elec-
tronics, need not be mutually exclusive. Additional research would
be required to further disentangle them.

4.3. Identifying the effects of sectoral shifts

Previous authors tied sectoral shifts to GDP by way of sectoral
dominance at different stages of economic development. However,
sectoral shifts alone may drive changes in the aggregate elasticity,
since different economic sectors do not generally have the same elas-
ticities. For countries with reliable sectoral data, we may test the null
that sectoral shifts explain the apparent decrease in the estimated
elasticities by regressing them onto the sectoral shares and a sim-
ple time trend. The null corresponds to a zero coefficient on the time
trend, while the one-sided alternative on that coefficient is negative.
Although the test may have low power against more complicated
temporal patterns, we expect that the test will distinguish trends as
striking as the negative trends depicted in Figs. 5 and 6.

The regression we run to test this hypothesis is given by

4̂t = po(t/T) + prsr
t + pcsc

t + pnsn
t + et

where 4̂t = 4̂(t, xt) denotes the fitted values of the elasticity 4(t, xt)
from model Eq. (6) for a particular country,14 and sr

t , sc
t , and sn

t denote
shares of electricity consumption by the residential, commercial, and
industrial sectors of that country. Letting p = (po,pr,pc,pn)′, its least
squares estimator p̂ has a limiting distribution given by

√
T

(
p̂ − p

)→dN

(
0, (plimST )−1Y(plimST )−1

)

under general conditions, where ST = T−1 ∑T
t=1 sts′

t , st =
(t/T, sr

t , sc
t , sn

t )′, and Y is the asymptotic variance of T−1/2∑T
t=1stet –

i.e., T−1/2 ∑T
t=1 stet→dN(0,Y). A consistent estimator of Y can be

easily obtained from a consistent estimator of the long-run variance
of (stet).15,16

Table 3 shows the results of the regressions for eight countries
with reliable sectoral consumption data over sub-periods of our main
sample. In order to avoid the measurement error in sectoral data
from our main data source noted in Section 3.1, we collect data from
national statistical agencies for this purpose.17 The table specifically
shows results using data from the US, two large Asian economies,
Japan and Korea, for which sectoral data may be obtained, and the
five largest economies in the European Union: France, Germany,
Italy, Spain, and the UK.

All eight countries show p̂o < 0, and significantly so. Holding
sectors constant, there still appears to be a downward trend in elas-
ticities, and we reject the null of no trend against a downward trend

14 Here and subsequently, we suppress the subscript i for notational simplicity, since
this part of our analysis is based on a single country.
15 We use a standard long-run variance estimator with a triangular window and a

bandwidth chosen by Andrews (1991) automatic bandwidth selection procedure with
a maximum of four lags.
16 A consistent estimator of Y can also be obtained from a consistent estimator of the

long-run variance Y◦ of (st
◦et), st

◦et = (et , sr
tet , sc

t et , sn
t et)′ . Indeed, if we let Y = (yij)

and Y◦= (yij
◦), then we have y11 = y11

◦/3, y1j = yj1 = y1j
◦/2 for all j �= 1,

and yij = yij
◦ for all i, j = 2, 3, 4. However, such an indirect estimator of Y is not

necessarily positive definite, and appears to work significantly worse in finite samples.
17 EuroStat (European Union): http://epp.eurostat.ec.europa.eu/; KEPCO (Korea):

http://cyber.kepco.co.kr/kepco/EN/main.do; FEPC (Japan): http://www5.fepc.or.jp/
tokei-eng/; EIA (US): http://www.eia.gov/electricity/.

http://epp.eurostat.ec.europa.eu/
http://cyber.kepco.co.kr/kepco/EN/main.do
http://www5.fepc.or.jp/tokei-eng/
http://www5.fepc.or.jp/tokei-eng/
http://www.eia.gov/electricity/
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for all eight of these countries.18 We note that |po| for the US is
smaller but with a larger standard error than for the other countries.
Fig. 5 provides a possible explanation. Electricity intensity declined
more slowly in the US than in Japan and in Gr2–Gr4. The 1990’s
marked a substantial change in the decrease in all of these elastic-
ities, but the break seems more pronounced for the US. A smaller
slope to begin with and a larger break at that time may underlie the
smaller point estimate with the larger standard error for the US.

Overall, it is clear that although sectoral shares account for some
of the temporal decrease in elasticities in some of the countries, they
do not entirely account for this pattern in any of these countries.
While this finding does not necessarily contradict the empirical find-
ings of previous authors, it suggests that those findings are incom-
plete. Additional drivers, such as utility, technology, and policy, must
account for the decline in elasticities over time.

5. Summary and conclusion

A general contribution of the paper is to demonstrate how to use
a panel nonparametric approach to identify nonlinearity and spe-
cific drivers of coefficient instability in an econometric model. To the
best of our knowledge, a functional coefficient model that allows for
both of these features has not been applied to a panel consisting of
nonstationary time series previously.

Our functional coefficient nonparametric approach allows us to
study the coefficient under counterfactuals — e.g., as one functional
argument changes and the other stays fixed. Relative to a func-
tional coefficient of time and the regressor itself, as in our model,
we show that more commonly utilized functional coefficients that
take into account only time (to model structural instability) or only
the regressor (to model nonlinearity) systematically overestimate or
underestimate the effect of a change in the argument.

More specifically, when applied to a model of electricity con-
sumption, our model both echoes findings in the extant literature
and uncovers new information. We identify a clear, decreasing pat-
tern in aggregate income/output elasticities of electricity demand
over time for the wealthiest countries, which is broadly consistent
with interpretation of economic dematerialization in the literature.
In particular, we find decreases in the elasticities for Japan (0.88
to 0.12) and the US (0.56 to 0.15) over the whole sample, and in
those of Korea (0.48 to 0.13) and China (0.47 to 0.39) since their
respective peaks in 1983 and 2008. The increases prior to these
peaks show a ramping up of electricity-intensive industrial growth
in these two economies before they diversify into less electricity-
intensive sectors. Our modeling approach allows similar analyses of
other countries or even countries with hypothetical income growth
paths.

Moving beyond the general decline in elasticities already noted in
this literature, our econometric methodology allows the identifica-
tion of some of the sources of this decrease. We detect the inverted
U shape in GDP expected from research by previous authors, but
only until the 1990’s, when this pattern appears to break down, and
only up to an apparent GDP threshold in recent years. We attribute
the breakdown in the 1990’s to increased environmental awareness
and technology diffusion. Beyond the GDP threshold, GDP appears
to have little or no effect on the elasticities of the richest countries

18 Some additional intuition about sectoral shifts may be gleaned from other coef-
ficient estimates. We expect that income elasticities of residential demand are lower
than the output elasticities in the firm sectors (see Chang et al., 2014) . As the res-
idential share increases, we should expect the elasticity to decrease. However, the
coefficient p̂r does not have to be negative for this to hold. First, if the increase in the
elasticity is linear, it is already accounted for by p̂0, which is negative for all eight coun-
tries. Second, an increase in the residential share must be accompanied by a decrease
in one or both of the other shares.

(top third) in recent years. In contrast to the inverted U shape pos-
tulated in the literature, a linear specification may be adequate for
these countries during this period.

Although declining elasticities are often associated with demate-
rialization, further analysis of our estimated elasticities shows that
sectoral shifts alone are insufficient to explain the downward move-
ment in elasticities for a selected number of these countries: France,
Germany, Italy, Japan, Korea, Spain, the UK and the US. In other
words, once we account for changes in GDP and changes in consump-
tion by sector, the downward trend remains. As a result, we find that
dematerialization noted in the literature is insufficient to explain
the downward trend by itself. Such a result suggests, for example,
that policies aimed at de-industrialization or economic diversifica-
tion may not be as effective at increasing overall energy efficiency as
the aggregate data suggest.

We are left with residual explanations, such as consumer utility,
consumer and producer technology, and policy. Because the down-
ward trend in the elasticities is common to developed countries, a
transnational driver such as technology or preferences is more likely
responsible than any national policy. In contrast to a discontinu-
ous jump in autonomous energy efficiency that might result from a
one-time legally-binding policy mandate, the gradual decline is more
consistent with evolving technology and preferences.

On the other hand, an apparent break in the rate of decline in
elasticities during the 1990’s could be interpreted either in light of
the boom in electronics technology, which started in the mid 1990’s,
or the Kyoto Protocol, which was signed in 1997 and required par-
ticipants to implement efficiency measures by 2005. To the extent
that our research informs policy making, it suggests the importance
of transnational policy such as the Kyoto Protocol or the more recent
2015 Paris Agreement to improve autonomous energy efficiency.

Further research is needed for the potentially difficult task of
identifying the effects of these remaining drivers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2016.10.002.
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