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1 Introduction

This paper proposes and implements a trajectories-based approach to the empirical analysis

of intergenerational mobility. We measure how the complete trajectories of family incomes

experienced through childhood and adolescence predict adult outcomes and demonstrate that

there is important information in these trajectories that is missed when parental permanent

income is used as a summary statistic for income influenced. We show how interactions be-

tween incomes at different ages can be incorporated into mobility analyses and find patterns

of both complementarity and substitutability between parental incomes at different offspring

ages.

The study of how income trajectories matter for mobility, as opposed to permanent

income, may be justified on numerous grounds. First, credit constraints can imply that the

timing of parental income matters for investments in children Lochner and Monge-Narano

(2012) for a survey and Caucutt and Lochner (2020) for an important recent contribution.

Second, the modern skills literature (cf., Cunha and Heckman (2008), Heckman and Mosso

(2014)) has emphasized the dynamic influences that produce adult cognitive and noncognitive

abilities, so that the investments at one age affect the marginal value of investments at others.

Third, the nature of the investments made by parents qualitatively changes across the life

course. Wodtke et al. (2011), for example, show the relative influences of family versus

neighborhood characteristics change across the life course with neighborhoods becoming

more influential in adolescence. Such dynamics imply a special role of adolescent incomes in

terms of the ability of parents to locate their families in higher quality neighborhoods. While

our work involves reduced form relationships and so does not directly speak to mechanisms,

it provides empirical contours that claim about mechanisms, and more structural analyses

should produce.

By characterizing intergenerational mobility and persistence as properties of trajecto-

ries, we provide an intergenerational elasticity of income (IGE) or mobility curve that links

parental income at each offspring age to their future permanent income. The IGE curve is a

generalization of the standard regression of offspring permanent income against parental per-

manent income, as the latter imposes that the IGE curve is a constant function. We further

explore a quadratic trajectories model that interacts between income values of trajectories

at different times that way of measuring dynamic complementarities and substitutes in in-

come effects. Our analysis employed methods from Functional Data Analysis (FDA), The

FDA approach we employ is based on functional principal components, which fulfills certain

optimality properties relative to other methods of measuring age-specific income effects such

as linear regressions of offspring permanent income on parental age-specific incomes. We
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will argue that conventional approaches to measuring age-specific parental income effects

produce, in comparison, unstable and imprecise results.

We apply this approach to US data taken from the Panel Study of Income Dynamics.

Our results fall into four main categories.

First, we find clear evidence a child’s permanent income is sensitive to the timing of

parental income. The standard permanent income to permanent income model thus loses

information about the mobility process. This timing sensitivity follows a robust pattern:

parental incomes in middle and late adolescence are associated with larger marginal effects

on predicted offspring income than earlier parental income years. In fact, until 18, a standard

milestone in parent child relations, the marginal effects of income appear to be monotonically

increasing. Our upward sloping IGE curve has the important implication that children from

families with rising income trajectories have higher expected permanent incomes than others

whose parents have the same permanent incomes but whose trajectories exhibit lower growth.

Our IGE curve estimates are robust to trend-cycle decompositions of parental income to

isolate parental permanent income and to the use of instrumental variables methods to

isolate shocks to parental income associated with unpredicted changes in employment.

Second, we identify some evidence that the mobility process has changed across cohorts

defined as births in 1967-1970, 1971-1973, and 1974-1977. We find evidence that the effects

of a permanent parental income starting at birth are larger for the earliest cohort compared

to the two later ones. This is due to the fact that sensitivity of offspring to income in later

childhood and adolescence seems to have declined relative to the first cohort. Each curve

preserves the upward shape identified for the sample as a whole.

Third, when expanding the analysis to a quadratic trajectory model of mobility, we find

evidence that interactions between incomes at different child ages matter. The interactions

exhibit both substitutability and complementarity. If one focuses on early years (ages 0-

5) or later adolescence (15-19) in isolation, substitutability between incomes at different

ages occurs within these intervals. In contrast, complementarities exist between incomes

across earlier and later years. This pattern suggests a need to think about complements and

substitutes as functioning at different time scales. This result is surprising given claims of

uniform complementarity between investments in the formation of skills during childhood

and adolescence and demonstrates, at a minimum, that one cannot extrapolate from claims

of dynamic skills complementarities to claims about the optimal timing of income transfers

to the disadvantaged.

Fourth, we study the relationship between family income trajectories to two of the es-

sential proximate causes of offspring income: education and occupation. Here we find very

similar results for education to our income regressions. The evidence on occupations in con-
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trast is weak at best; while there is some very slight upward slope in the coefficient curve

linking incomes to the probability of a child having a skilled job versus an unskilled one, the

confidence bands around the curve are quite wide. Further, the slope of the estimated IGE

curve influencing probability of having a semi-skilled job versus unskilled job is negative,

although with little precision to the estimates.

We are not the only ones to apply FDA to mobility analysis. Durlauf et al. (2021) apply

functional data analysis to the PSID, independently from ours. They find similar results on

the effects of later income on children.1 Our work differs from theirs in significant respects.

First, our focus on the joint income determinants of education and occupation provides a

substantial generalization to income-based studies. Second, our expansion of FDA methods

allows for interactions between incomes at different ages and produces new substantive find-

ings. Third, our use of the functional principal component approach developed in Chang

et al. (2021) means our estimates possess various optimality properties and that confidence

bands may be generated via bootstrap methods. This all said, our paper should be regarded

as complementary to these others, as the functional regression approach to mobility is in its

infancy.

Important predecessors to our work exist in terms of the general substantive questions

addressed. In terms of timing effects of parental income, Duncan et al. (2010) also use

the PSID. This paper divides family income into three periods: prenatal to age 5, ages 6-

10, and ages 11-15. Unlike us, the analysis concludes that early childhood income plays a

dominant role in future offspring income. The analysis includes very different controls from

ours, such as parental expectations, so their analysis is more about identifying differences

in marginal effects of income at different ages than in the construction of intergenerational

income mobility statistics per se. Carneiro et al. (2021) engage in a similar analysis using

Norwegian data with discounted family incomes calculated for 0-5, 6-11, and 12-17. These

authors find that early and later periods of income has stronger effects than middle years for

both offspring income and offspring years of schooling. An important feature of this work

is the use of nonparametric methods to estimate income effects, which allows for flexible

interactions between age intervals, and concludes there is complementarity between them.2

Like us, they also consider offspring education and have corroborative results. We note

both these papers impose common sensitivities to incomes with the time intervals studied

while our approach places no restrictions on the implied IGE curve that is estimated. The

nonparametric approach in Carneiro et al. (2021) allows for interactions between incomes in

1Chaussé et al. (2021) also use FDA to relate parental and offspring incomes over five periods. However,
they include the age profiles of parents and their children as controls and do not report age effects.

2Their approach may be more accurately described as being partially nonparametric since they assume
linearity for the effects of control variables.
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all three periods, while our quadratic model imposes interactions between pairs of incomes

at different ages and does not impose homogeneity with respect to age intervals.3

Cheng and Song (2019) is closest in spirit to our work, using the PSID to link character-

istics of parental income trajectories to characteristics of offspring income trajectories. This

paper takes a fundamentally different approach to ours in that it treats offspring income

as a quadratic function of time, with family-specific heterogeneity in coefficients. These

coefficients are then allowed to measure intergenerational mobility through the dependence

structure of the coefficients across generations. A unique feature of this approach is that they

compare parental and offspring trajectories while we map parental trajectories to offspring

permanent income.

The paper is organized as follows. Section 2 describes our approach to functional regres-

sion analysis and compares it with conventional econometric methods used in the intergen-

erational mobility literature. Section 3 describes the data. Section 4 presents a functional

model of intergenerational mobility and provides estimates of a mobility curve that relates

parental incomes at each age of childhood and adolescence to future adult permanent income,

while Section 5 extends our basic model to study the interaction effect between parental in-

come at different ages on offspring. Section 6 studies educational mobility and occupational

mobility as mechanisms underlying intergenerational mobility. Section 7 concludes. The

Appendix describes the econometric methods used for our empirical analyses and various

robustness checks.

2 Econometric Models and Methodologies

This section presents the econometric models and methodologies used in the paper. Our

econometric models involve functional variables, and here we provide some technical details

of how to set up and estimate such models.

2.1 Functional Models

The basic functional regression model that underlies this paper is

yi “ α `

ż q

p

βprqfiprqdr ` εi, (1)

3Our approach can, in principle, allow for fully general interactions at all different ages and as such
would be far more flexible than Carneiro et al. (2021). However, for the data we study, any nonparametric
approach to estimate multi-dimensional covariates would not produce reliable results due to the curse of
dimensionality.
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where pyiq is the variable to be explained, pfiq is a functional covariate, i.e., fi ” fip¨q,

and pεiq is the regression error for i “ 1, . . . , n. The functional parameter β ” βp¨q, where

βprq signifies the marginal response of yi on fiprq at each r P rp, qq for i “ 1, . . . , n. In

the integral, r denotes child age, and p and q are the beginning and end ages for which we

measure parental influence. Throughout we assume that pεiq satisfies the standard conditions

for regression errors. For clarity, β and pfiq are assumed to be defined continuously for all

r P rp, qq although this is not required for our methods.4

When pyiq denotes offspring permanent income and fiprq denotes family incomes across

childhood and adolescence ages rp, qq, this formulation generalizes the standard intergener-

ational mobility regression as this specification allows for family income at different ages to

have different effects on children: the effect of the functional covariate pfiq around the age

r, rr ´ δ{2, r ` δ{2q, is approximately
şr`δ{2

r´δ{2
βpuqdu « δβprq for small δ ą 0.

We assume that the functions βp¨q and fip¨q, i “ 1, . . . , n, are all square integrable, and

regard them as elements in some Hilbert space H with inner product defined as5

xβ, fiy “

ż q

p

βprqfiprqdr.

The Hilbert space H possesses a countable basis. Our model represents a general linear

relationship between a scalar variable pyiq and a functional covariate pfiq. By the Riesz

representation theorem, any continuous linear functional from H can be represented as a

functional given by an inner product. This implies that, for any continuous linear functional

` : H Ñ R given, we can find β P H such that

`pfq “ xβ, fy

for all f P H. The regression function in (1) therefore accommodates any continuous linear

effect of the functional covariate pfiq on pyiq. We may therefore interpret our functional

regression model (1) as representing a functional regression model Epyi|fiq “ `pfiq with the

conditional mean of yi given as a general continuous linear functional of fi for i “ 1, . . . , n.

This linear functional regression model may be generalized to allow for nonlinear effects.

In this paper, we work with a quadratic extension of our original model based on the inner

4 They are applicable also for β and pfiq defined at discrete values of r, in which case we may just
interpret dr in all integrals (representing integrals with respect to the Lebesgue measure) appearing in the
paper as representing integrals with respect to the counting measure assigning unit measure only to every
integer point in rp, qq. None of our analysis qualitatively changes if β and pfiq are only defined on discrete
values of r and the counting measure is used to evaluate integrals with dr.

5More precisely, pfiq are defined as random elements taking values in H. For brevity, however, we use the
same notation pfiq to denote our functional covariate given as either random functions or their realizations.
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product between fip¨q at a given age and linear combinations of fip¨q at other ages, i.e.

xfi,Γfiy “

ż q

p

ż q

p

Γpr, sqfiprqfipsqdsdr,

where Γ : H Ñ H is a linear operator defined by

pΓfqprq “

ż q

p

Γpr, sqfpsqds (2)

for all f P H, where Γp¨, ¨q is a bivariate function on rp, qq2.6 This allows us to extend our

functional regression model (1) to

yi “ α `

ż q

p

βprqfiprqdr `

ż q

p

ż q

p

Γpr, sqfiprqfipsqdsdr ` εi, (3)

so that interactions between parental incomes at different ages can affect future child income.7

The effect on a child’s income pyiq of parental income defined as a functional covariate pfiq

over an interval rr ´ δ{2, r ` δ{2q around child age r is now given by the sum of the linear

effect and quadratic effect, viz.,

ż r`δ{2

r´δ{2

βpuqdu`

ż r`δ{2

r´δ{2

ż r`δ{2

r´δ{2

Γpu, vqdvdu « δβprq ` δ2Γpr, rq. (4)

Further, the interactive effect on a child’s income pyiq of a functional covariate pfiq, parental

income, over intervals rr ´ δ{2, r ` δ{2q and rs´ δ{2, s` δ{2q around child ages r and s for

s ‰ r is given by

2

ż r`δ{2

r´δ{2

ż s`δ{2

s´δ{2

Γpu, vqdvdu « 2δ2Γpr, sq. (5)

Therefore, the total effect of a change in fprq consists of a linear effect, a quadratic effect,

and an interaction effect.

The existing literature of intergenerational mobility mostly relies on the standard regres-

sions when attention is focused on the timing of parental income. To compare standard

regressions directly with our approach, we let

rp, qq “
m
ď

j“1

rpj, qjq

6Here we use Γ to denote both an operator (on the left hand side) and a kernel (on the right hand side)
to simply notation.

7For the identification of operator parameter Γ “ Γp¨, ¨q, we let Γpr, sq “ Γps, rq for all r, s P rp, qq in (3).
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where
`

rpj, qjq
˘

is a partition of rp, qq for j “ 1, . . . ,m, and define

fij “
1

qj ´ pj

ż qj

pj

fiprqdr (6)

for i “ 1, . . . , n and j “ 1, . . . ,m. From this vantage point, conventional approaches are a

special case of the functional approach in which regressions (1), and (3) reduce to

yi « α `
m
ÿ

j“1

βjfij ` εi, (7)

and

yi « α `
m
ÿ

j“1

βjfij `
m
ÿ

j“1

γjf
2
ij `

ÿ

kąj

γjkfijfik ` εi, (8)

where

βj “

ż qj

pj

βprqdr, γj “

ż qj

pj

ż qj

pj

Γpr, sqdsdr, γjk “ 2

ż qj

pj

ż qk

pk

Γpr, sqdsdr

for i “ 1, . . . , n and j, k “ 1, . . . ,m.8 Under these assumptions, (1) becomes the conventional

regression to study the intergenerational mobility with age varying income effects.9 Eq. (3)

becomes a quadratic analog to our quadratic model below.

The regressions (7) and (8) might seem the natural extension of mobility analysis to tra-

jectories, but this approach suffers from important weaknesses. The trajectories of parents’

income reduce infinite-dimensional functions, which implies that any regression employing

them as covariates implicitly relies on taking a stance on how one can represent the infinite-

dimensional functions by finite-dimensional regressors. The regressions (7) and (8) associated

with this approximation turn out to produce imprecise and unstable estimates, which we will

demonstrate for the data under study. The recognition that regressions such as (7) and (8)

do a poor job of revealing the underlying process (1) and (3) helps explain why results from

functional regressions are qualitatively different from conventional regressions (7) and (8).

In the paper, we also use some functional qualitative response models, where the variable

pyiq to be explained is categorical and the corresponding latent variable py˚i q is assumed to

be given by the functional regression model in (1) with pyiq replaced by py˚i q. Functional

qualitative response models may be understood in direct analogy to the functional regression

model, where a continuous latent variable that produces discrete behaviors.

Functional regression analysis has been an active area of research in statistics and econo-

8If pfiq is observed discretely at r “ 0, . . . , 19, one sets dr to be the counting measure, and replaces
qj ´ pj by the number of integers in rpj , qjq for j “ 1, . . . ,m.

9An important exception is Carneiro et al. (2021), which essentially sets m “ 3 and uses a nonparametric
regression to allow for general nonlinear effects of parental incomes in early, middle, and late childhood.
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metrics for over two decades. Tools to estimate (1) and (3) have been developed by many

authors including Bosq (2000), Ramsay and Silverman (2005), Hall and Horowitz (2007), Yao

and Müller (2010), Park and Qian (2012) and Chang et al. (2021), among others. We will

use the approach developed in Chang et al. (2021) for several reasons. First, the framework

allows one to compare functional regressions with conventional regression and demonstrates

the value-added of the functional regression approach taken here. Second, Chang et al. (2021)

provides a bootstrap method to obtain the confidence bands for estimates of various func-

tional parameters, while other approaches only provide consistency and convergence rates.

Third, the approach naturally extended to the functional regressions with quadratic terms

and the functional qualitative response models which we employ here.10 Finally, the ap-

proach adopted in the paper provides a framework for non-asymptotic analysis which makes

it possible to evaluate differences in finite sample behavior for asymptotically equivalent

methods. This will be discussed in more detail later.

2.2 Finite-Dimensional Representation

To estimate the functional regressions (1) and (3), we need to represent the functional

covariate pfiq by finite-dimensional vectors. This representation is implemented by choosing

an orthonormal basis pvjq for H and approximating pfiq as

fi «
m
ÿ

j“1

xvj, fiyvj

for i “ 1, . . . , n with an appropriately chosen m. Any f P H can be written as

f “
8
ÿ

j“1

xvj, fyvj (9)

using any orthonormal basis pvjq. The choice of the basis pvjq and the number m of terms

in the approximation controls the efficiency of functional coefficient estimates.11

Once the orthonormal basis pvjq and the number m of terms in the approximation are

chosen, we may represent a function f in H as an m-dimensional vector in Rm. Formally,

10Although asymptotic theory for the functional qualitative response models has not been formally de-
veloped in the literature, we are sure that consistency and asymptotic normality established in Chang et al.
(2021) hold also for general nonlinear models under suitable regularity conditions.

11Orthonormality of the basis pvjq is not necessary. Our analysis also applies non-orthonormal basis
functions such as a spline basis if one orthogonalizes and normalizes the basis sequentially by the Gram-
Schmidt process.
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we work with a mapping π on H defined as πpfq “ pf q, where

pf q “

¨

˚

˚

˝

xv1, fy
...

xvm, fy

˛

‹

‹

‚

for any f P H. Denote Hm as the subspace of H spanned by the sub-basis pvjq
m
j“1. For any

f P Hm, there exists a unique m-dimensional vector pf q. Moreover, for any f P Hm written

as f “
řm
j“1 cjvj, we have pf q “ pc1, . . . , cmq

1 and

}f}2 “
m
ÿ

j“1

c2
j “ }pf q}2,

where we use the notation } ¨ } to denote the Hilbert space norm in H for f , }f}2 “ xf, fy,

on the left-hand side and the usual Euclidean norm in Rm for pf q, }pf q}2 “ }pc1, . . . , cmq
1}2,

on the right-hand side. Therefore, the mapping π defines an isometry between Hm and Rm.

Since any f P Hm can be written as f “
řm
j“1xvj, fyvj, we may easily find f “ π´1

`

pf q
˘

in

Hm for any pf q given in Rm.

Our representation of a function by a finite-dimensional vector is straightforward. For any

f P H, we approximate f by Πmf , where Πm is the projection on Hm, and represent Πmf as

an m-dimensional vector pf q in Rm using an isometry π. The error incurred in approximating

f by Πmf is given by p1´Πmqf , where 1´Πm is the projection on the orthogonal complement

of Hm, i.e., the subspace of H spanned by pvjq
8
j“m`1. See Chang et al. (2021) for formal

development of this argument. Note that our approach makes explicit the approximation

error incurred in representing infinite-dimensional functions by finite-dimensional vectors.

For our subsequent analysis, we assume pyiq and pfiq are already demeaned and redefine

yi and fi as yi´ p1{nq
řn
i“1 yi and fi´ p1{nq

řn
i“1 fi for i “ 1, . . . , n, respectively, so that we

may let α “ 0 without loss of generality in our functional regression (1). This is to focus on

the estimation of the functional regression coefficient βp¨q. Under this convention, it follows

that

yi “ xβ, fiy ` εi “ xβ,Πmfiy `
@

β, p1´ Πmqfi
D

` εi, (10)

which can be approximated as

yi « xβ,Πmfiy ` εi. (11)
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However, we have

xβ,Πmfiy “

C

β,
m
ÿ

j“1

xvj, fiyvj

G

“

m
ÿ

j“1

xvj, βyxvj, fiy “ pβq1pfiq,

so the approximate functional regression (11) reduces to a standard regression

yi « pβq1pfiq` εi, (12)

which has the m-dimensional regressor ppfiqq with m-dimensional coefficient pβq. Using the

least squares estimator ˆpβq of pβq, we immediately obtain an estimate for the functional

coefficient βp¨q by β̂p¨q “ π´1
`

ˆpβq
˘

. Therefore, our estimation procedure is simple, once an

orthonormal basis pvjq and truncation number m are chosen.12

The same approach can be used to estimate the quadratic functional regression in (3).

To see this, define

pΓq “

¨

˚

˚

˝

xv1,Γv1y ¨ ¨ ¨ xv1,Γvmy
...

...
...

xvm,Γv1y ¨ ¨ ¨ xvm,Γvmy

˛

‹

‹

‚

for the linear operator Γ on H introduced in (2). Similarly as before, the mapping π from a

linear operator Γ on Hm to an mˆm matrix pΓq is a one-to-one correspondence. Therefore,

we may easily obtain Γ “ π´1
`

pΓq
˘

for any mˆm matrix pΓq given, since any linear operator

Γ on Hm is uniquely defined once Γvj “
řm
i“1xvi,Γvjyvi is specified for all j “ 1, . . . ,m.

We have

xfi,Γfiy «
@

Πmfi,ΓΠmfi
D

,

ignoring the approximation error involved in finite dimensional representation of pfiq. It

follows that

@

Πmfi,ΓΠmfi
D

“

C

m
ÿ

j“1

xvj, fiyvj,Γ
m
ÿ

j“1

xvj, fiyvj

G

“ pfiq
1pΓqpfiq,

and therefore, the functional regression with quadratic term (3) yields

yi « pβq1pfiq` pfiq
1pΓqpfiq` εi (13)

approximately if we set α “ 0 as before. The regression (13) is a standard regression on the

12Discrete choice models with functional covariates can be estimated by approximating the regression for
the underlying latent variable py˚i q as y˚i « pβq1pfiq` εi.
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covariate ppfiqq with its additional quadratic terms. Note that

pfiq
1pΓqpfiq “ trace

`

pΓq1ppfiqpfiq
1
q
˘

“
`

vec pΓq
˘1`

vec ppfiqpfiq
1
q
˘

.

Therefore, we may easily obtain the least squares estimator pΓ̂q of pΓq together with the

least squares estimator pβ̂q of pβq. We may recover the corresponding estimators β̂ and Γ̂ as

π´1
`

pβ̂q
˘

and π´1
`

pΓ̂q
˘

, respectively.

What we have called the conventional regression implements our general approach with

a particular choice of basis. To see this, consider the basis pvjq defined as

vj “
1

?
qj ´ pj

1tpj ď r ă qju, (14)

where 1t¨u denotes the indicator function. This basis produces

xvj, fiy “
1

?
qj ´ pj

ż qj

pj

fiprqdr,

and the regressors pfijq in the conventional regression (7) are therefore given by

fij “
1

?
qj ´ pj

xvj, fiy

for i “ 1, . . . , n and j “ 1, . . . ,m. We will show that this choice of basis is not optimal and

can lead to uninterpretable results.13

We do not impose any continuity or smoothness condition for the parameters β and Γ,

which are a function and an operator, respectively, in our functional regressions (1) and

(3). The continuity or smoothness of our estimates for β and Γ is entirely determined

by that of the basis pvjq we use to represent our functional regressions in (1) and (3) as

the standard regressions in (12) and (13), respectively. This is because our estimator β̂ “

π´1
`

pβ̂q
˘

for β is obtained as a linear combination of pvjq
m
j“1 with coefficients given by an m-

dimensional vector pβ̂q, and our estimator Γ̂ “ π´1
`

pΓ̂q
˘

for Γ is obtained similarly as a linear

combination of pvj b vkq
m
j,k“1 with coefficients given by an mˆm matrix pΓ̂q. For instance, if

the basis consisting of indicators pvjq defined in (14) is used, our estimates for β and Γ are

discontinuous with jumps at the boundaries of supports for those indicators. However, they

13Carneiro et al. (2021) use this basis with m “ 3. As will be shown subsequently, however, the choice
of this basis is clearly sub-optimal, and we may measure the effect of parental income trajectory pfiq on
intergenerational mobility more efficiently by more carefully choosing a basis. Although not explicitly shown,
Chang et al. (2021) makes it clear that we may also use

`

pfiq
˘

to nonparametrically estimate the effect of
pfiq on pyiq.
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become continuous and smooth if we use a basis with elements that are functions defined

continuously or smoothly over their domain.14

2.3 Optimal Basis: Non-Asymptotic Analysis

For empirical analysis, we employ the functional principal component basis, following Bosq

(2000), Ramsay and Silverman (2005), Hall and Horowitz (2007), Yao and Müller (2010),

Park and Qian (2012) and Chang et al. (2021), among others.15 Let

Q “
n
ÿ

i“1

pfi b fiq, (15)

where “b” signifies the tensor product defined in the Hilbert space H which reduces to

the outer product when H is finite-dimensional.16 In empirical work, we may consider the

functions f and g as long vectors consisting of their values in the ordinate corresponding to

a sufficiently fine grid of values in the abscissa, and interpret the tensor product f b g of

two functions f and g as their outer product fg1, analogously as we may interpret the inner

product xf, gy “
ş

fprqgprqdr as f 1g if we scale r so that dr “ 1. We let pλ˚j , v
˚
j q
n
i“1 be the

set of pairs of eigenvalue and eigenfunction of Q, which are ordered so that λ˚1 ą ¨ ¨ ¨ ą λ˚n.

By construction, (i) pv˚j q are orthonormal, (ii)
řn
i“1xv

˚
j , fiyxv

˚
k , fiy “ 0 for all j ‰ k, and (iii)

řn
i“1xv, fiy

2 is maximized at v “ v˚j under the constraints xv˚k , vy “ 0 for all k ă j with
řn
i“1xv

˚
j , fiy

2 “ λ˚j for j “ 1, . . . , n.

The eigenfunctions pv˚j q thus defined are indeed normalized functional principal com-

ponents. The functional principal component analysis (FPCA) extends the principal com-

ponent analysis (PCA) to analyze variations in functional observations. If pfiq are finite-

dimensional, Q reduces to
řn
i“1 fif

1
i . The leading principal component of pfiq, in this case,

is given by the eigenvector of Q associated with the largest eigenvalue, and it represents the

linear combination of pfiq,
řn
i“1 cifi with

řn
i“1 c

2
i “ 1, whose Euclidean norm is maximized.

For functional pfiq, the leading functional principal component is defined analogously as the

14As discussed subsequently, we use the functional principal component basis obtained from the actual
parents’ income trajectories, which are given as functions defined continuously over rp, qq.

15This section introduces some technical non-asymptotics that allow a formal comparison of our approach
with existing alternatives. Readers who are only interested in our empirical findings and their interpretations
may skip this section.

16If pfi b fiq has a common expectation for i “ 1, 2, . . ., we would expect n´1Q Ñp Epfi b fiq under
suitable regularity conditions, where the limit becomes the variance operator of pfiq when pfiq is of mean
zero. Therefore, Q may be viewed as the (unnormalized) sample variance. If the variance operator of pfiq is
known, we may use as a basis its eigenfunctions pvjq associated with eigenvalues pλjq, λ1 ě λ2 ě ¨ ¨ ¨ , in which
case our representation in (9) is commonly referred to as the Karhunen-Loève expansion used in the analysis
of functional data observed from stochastic processes. Note that Exvj , fiyxvk, fiy “

@

vj , rEpfi b fiqsvk
D

“ 0

for all j ‰ k, and therefore,
`

xvj , fiy
˘

is an uncorrelated sequence of random variables with variances pλjq.
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eigenfunction of Q in (15) associated with the largest eigenvalue, and it represents the linear

combination of pfiq,
řn
i“1 cifi with

řn
i“1 c

2
i “ 1, whose Hilbert space norm is maximized.

Although we use Hilbert space notions and languages to formally present the FPCA, it be-

comes identical to the PCA if we identify functions as long vectors as mentioned above. The

PCA is used widely to identify and estimate factors in factor models. See, e.g., Bai and

Ng (2002). Similarly, the FPCA may be used to identify and estimate functional factors in

functional factor models, as shown in Chang et al. (2021).

Asymptotically, the choice of a basis is largely nonconsequential. It is, however, crucially

important in finite samples as clearly demonstrated in Appendix A. Using the functional

principal component basis pv˚j q has some non-asymptotic optimal properties, which can be

readily shown in our framework relying on the approach by Chang et al. (2021). Let Π˚m be

the projection on the subspace H˚
m spanned by the m-leading principal components pv˚j q

m
j“1.

Then, as shown in Chang et al. (2021), we have

Π˚m “ argmin
Πm

n
ÿ

i“1

›

›p1´ Πmqfi
›

›

2
“ argmin

Πm

trace p1´ ΠmqQp1´ Πmq, (16)

where Πm signifies a projection on the m-dimensional subspace Hm of H spanned by any

m-number of functions pvjq
m
j“1. This means that the functional principal component basis

best approximates pfiq by pΠ˚mfiq in the squared error sense. The squared error is larger

when any other m-number of functions are used. Second, when the functional principal

component basis is used, we have

n
ÿ

i“1

`

Π˚mfi b p1´ Π˚mqfi
˘

“ Π˚mQp1´ Π˚mq “ 0. (17)

Note that xv˚j , Qv
˚
ky “ 0 for all j ‰ k. This implies that the two functional regressors

`

Π˚mfi
˘

and
`

p1 ´ Π˚mqfi
˘

in (10) with Πm “ Π˚m are orthogonal. Therefore, the estimation of β

in regression (11) on functional covariate
`

Πmfi
˘

with Πm “ Π˚m in place of pfiq, ignoring

the approximation error given by
`

p1 ´ Π˚mqfi
˘

, does not create any omitted variable bias

problem. No other basis provides this property, since
řn
i“1

`

Πmfi b p1´Πmqfi
˘

‰ 0 for the

projection Πm defined by any other basis.17

The properties we discussed above can be used to establish the optimality of the functional

principal component basis pv˚j q in estimating the functional parameter β in the functional

regression (1). We assume that the standard assumptions on the classical regression hold

for our functional regression with Epε2
i q “ σ2. Here and in our subsequent discussions, we

17The property holds only for linear functional regression models and does not apply to more general
nonlinear functional models in the paper.
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denote by E the conditional expectation given pfiq. We let β̄ “ Πmβ and β̂ be the estimator

of β̄ obtained by the approach we introduced in Section 2.2, and consider the integrated

mean squared error (IMSE) defined by

E
›

›β̂ ´ β̄
›

›

2
“ E

ż q

p

`

β̂prq ´ β̄prq
˘2
dr

for β̂ as an estimator of β̄, which relies on an arbitrary choice of m-number of functions

pvjq
m
j“1. Note that not β itself, but only β̄, a finite-dimensional approximation of β, is

estimable. For comparison, we denote by β̄˚ and β̂˚ the approximated β and its estimate

based on the functional principal component basis pv˚j q
m
j“1, which correspond to β̄ and β̂,

respectively, and consider the IMSE E
›

›β̂˚ ´ β̄˚
›

›

2
for β̂˚ as an estimator of β̄˚.

For the estimator β̂˚ based on the functional principal component basis pv˚j q, we may

readily deduce that Eβ̂˚ “ β̄˚ and

E
›

›β̂˚ ´ β̄˚
›

›

2
“ E

›

›β̂˚ ´ Eβ̂˚
›

›

2
“ σ2 trace

`

Π˚mQΠ˚m
˘`
,

where
`

Π˚mQΠ˚m
˘`

is the inverse of the operator Π˚mQΠ˚m restricted on the subspace H˚
m of

H spanned by pv˚j q
m
j“1. For any other estimator β̂, we have

E
›

›β̂ ´ β̄
›

›

2
“ E

›

›β̂ ´ Eβ̂
›

›

2
`
›

›Eβ̂ ´ β̄
›

›

2
“ σ2 trace

`

ΠmQΠm

˘`
`
›

›bias pβ̂q
›

›

2

with

bias pβ̂q “ pΠmQΠmq
`ΠmQp1´ Πmqβ,

where pΠmQΠmq
` is the inverse of the operator ΠmQΠm restricted on the subspace Hm of H

spanned by pvjq
m
j“1. The IMSE of β̂ is therefore defined as the sum of the integrated variance

(IVAR) and the integrated bias squared (IBS) of β̂. The technical details of the econometric

results here are provided in Appendix C.

Although it follows immediately from (16) that trace
`

Π˚mQΠ˚m
˘

ě trace
`

ΠmQΠm

˘

, we

cannot compare the IVAR E
›

›β̂˚´ β̄˚
›

›

2
of β̂˚ with the IVAR E

›

›β̂ ´ β̄
›

›

2
of β̂ unambiguously.

The comparison depends roughly upon how evenly distributed their eigenvalues are. To see

this, let the nonzero eigenvalues of Π˚mQΠ˚m and ΠmQΠm be given by pλ˚j q
m
j“1 and pλjq

m
j“1,

where
řm
j“1 λ

˚
j ě

řm
j“1 λj. The IVARs of β̂˚ and β̂ are given by

řm
j“1p1{λ

˚
j q and

řm
j“1p1{λjq,

respectively. If both of pλ˚j q
m
j“1 and pλjq

m
j“1 are evenly distributed, then the IVAR of β̂˚

would obviously be smaller than that of β̂. In all cases we consider in this paper and our

other related work, we have λ˚j ě λj for all j “ 1, . . . ,m, if both of them are defined in

descending order, and the IVAR of β̂˚ is always smaller than that of β̂.
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Finally, note that we did not consider the approximation errors β̄˚ ´ β and β̄ ´ β in

comparing the estimators β̂˚ and β̂. The magnitudes of these errors are not generally an-

alyzable, since they are entirely dependent upon the unknown functional coefficient β. A

specific functional basis pvjq may be used if we know, although rarely, that it is particularly

well fit to approximate β efficiently with a small number of functions. Even in this case,

however, β cannot be reliably estimated unless pfiq has enough variation over the space

spanned by these functions. The use of the functional principal component basis pv˚j q means

that we approximate β by projecting it onto the space where pfiq has the largest variation

and β is most strongly identified for any given m.

Appendix B demonstrates the superior performance of functional principal components

as a choice of basis over two standard alternatives, the B-spline basis and the flexible Fourier

basis, when we estimate our FDA model on the Panel Study of Income Dynamics data

used in this paper. These alternative bases produce positive levels of integrated bias (IBS)

while the principal component basis has zero bias. The optimal choice of B-Spline compo-

nents also produces a substantially higher integrated variance (IVAR). Hence the theoretical

justifications for the principal component approach are verified for the data under study.

3 Data

We investigate the association between a parental income trajectory pfiq and an approxi-

mation of child’s permanent income pyiq using the functional regression model (1). To be

able to estimate the model, we need functional observations on pfiq for each child i, which

requires the parental income to be observed at each age over some period, say from birth to

age 19, for each child i. Our empirical analysis, therefore, requires longitudinal data.

We use the Panel Study of Income Dynamics (PSID) for our analysis. The PSID data are

available at an annual frequency from 1968 to 1997, but only biennially after 1997. We define

pfiq as the parental log income trajectory from their children’s age 0 to 19.18 The reason we

choose these 20 years is mainly to cover parental income for all childhood years and when

the children enter college.19 We denote by pyiq the offspring’s permanent log income, and

approximate it by the time average of a child’s log income between ages 30 and 35 since

most adults are economically active and stable in their early 30s.

To construct our data from PSID, we classify children by birth cohort. In our empirical

18Throughout, we use the Daubechies 3 tap wavelet to represent functional variables pfiq observed dis-
cretely as functions defined continuously. As a robustness check, we also used pfiq defined only at discrete
points r “ 0, . . . , 19 and found that all our empirical results do not change in any significant manner, as
mentioned in Footnote 4.

19Most common age range of college freshmen is between 17 and 19.
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analysis, we consider 11 birth cohorts starting from 1967 to 1977.20 Since PSID is available

since 1968, it is possible to include more birth cohorts in the analysis. However, for the

birth cohorts 1979 and later, it is not feasible to track parental incomes annually, since the

PSID data is available only biennially after 1997. Therefore, to avoid potential problems

from using mixed frequency data, we limit our analysis to the birth cohorts from 1967 to

1978 whose parental income is available at every age from birth to age 19. Specifically, we

construct our data for each year from 1967 to 1977 as follows:

1. Construct a birth cohort: collect families who have a newborn baby in that year.

2. Define pfiq: track parental income for twenty years (from child’s birth to age 19).

3. Define pyiq: track a child’s adult income for six years (from child’s age 30 to 35).21 22

We define parental income as the sum of father and mother’s income and offspring’s

income as the sum of the child’s income and that of any partner.23 We do not adjust family

income by family size (or consider the number of siblings as a control variable). Parental

income reflects factors such as parents’ education, capability, quality of the neighborhood,

etc. as noted by Heckman and Mosso (2014), which do not naturally scale with family size.

Our final data set includes 11 birth cohorts, consisting of the birth cohorts from 1967 to

1977, and 817 families in total. All income is adjusted in 2010 dollars using the Consumer

Price Index for all Urban Consumers (CPI-U).

Following the broader mobility literature, we include a range of control variables in our

analysis. These are reported in Table 1.

4 Functional Regressions for Intergenerational Mobil-

ity: Linear Models

In this section, we present and analyze the functional regression characterization of intergen-

erational mobility. We follow the mobility literature by using a time average of child’s log

income pyiq as our measure of permanent income and evaluate how the trajectory of parental

20PSID reports the income in the previous year, therefore, the time when the survey is taken. For this
reason, it is possible to track parental income for 20 years from the birth cohort of 1967.

21This approach is taken by Haider and Solon (2006) for example.
22Note that the main PSID family and individual data sets are available annually until 1997 and biennially

thereafter. Therefore, children’s income in their early 30s is available only every two years. For example, for
those in the 1967 birth cohort, we observe their adult incomes at ages 30, 32, and 34. We take the average
of these incomes as a proxy for their permanent income, and use it as the regressand pyiq.

23Our definition of family income is total pre-tax income, which is defined as a sum of labor, asset, and
transfer income.
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Table 1: Summary Statistics of Control Variables

Mean Stdev

A. Age at Birth

Average Age of Parents at Birth 27.43 6.00

B. Race of Head

Caucasian 0.93 0.26
African American 0.05 0.23
Others 0.02 0.14

C. Region

East 0.18 0.38
Midwest 0.35 0.48
South 0.30 0.46
West 0.17 0.37

D. Education Level

College Educated Head 0.26 0.44

E. Family Structure

Single-Parent 0.36 0.48
Working Mother 0.48 0.50

F. Occupation Type

White Collar 0.45 0.50
Skilled/Semiskilled 0.49 0.50
Unskilled 0.05 0.22
Farmer 0.01 0.08

Notes: Panel A presents average age of parents at child’s birth. In the case of a single-parent family, the age
of single-parent is used in place of average age. Panels B, C, D, E, and F report summary statistics for the
variables related to family characteristics at child’s birth. All variables in these panels are dummy variables.
For example, ‘Caucasian’ in Panel B is 1 if the race of the household head is Caucasian and 0 otherwise.
Education dummy variables in Panel D are defined similarly.

log income over the first 20 years of child’s life, from birth, age 0, to age 19 predict its value,

i.e., we estimate the functional regression

yi “ α `

ż 20

0

βprqfiprqdr ` εi,

which is (1) with p “ 0 and q “ 20, where yi is average log income of child i and fiprq

is a trajectory of parental log income across child’s age r P r0, 20q, covering ages 0 to 19.

The functional coefficient βprq is an intergenerational elasticity of income i.e mobility curve
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Figure 1: Cross-Validation Errors and Cumulative Screeplot
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Notes: The left panel presents the leave-one-out cross-validation (LOOCV) errors as a function of the
number m of functional principal components used to approximate parental income trajectory. In the right
panel is the cumulative scree plot, which presents the total percentage of variation explained by the leading
m-functional principal components also as a function of m.

that measures the age-specific association between parental income trajectory and offspring’s

permanent income. This is the key objective of our analysis.

The choice of m, the number of functional principal components, is critical in estimating

β. We choose m “ 3 based on minimizing the leave-one-out cross-validation error of the

approximating regression (12) and captures 76.5% of the total variation of parental income

trajectories. Figure 1 illustrates the leave-one-out cross-validation error computed across m

values for the data under analysis. Our estimates of the IGE curve are qualitatively robust

with respect to the choice of m when set between 2 and 6. Appendix A and Appendix B

discuss this in more detail and provide comparisons of our IGE curve estimates with estimates

from conventional regression and functional regressions using other basis functions.

4.1 The Intergenerational Elasticity Curve

Figure 2 presents our estimated β̂ along with a set of bootstrap confidence intervals. The

overall message of the figure is that there is strong evidence that the intergenerational elastic-

ity of income differs across childhood and adolescence. Interestingly, the curve is essentially

monotonically increasing, with a dip after age 18. Thus, the marginal sensitivities of offspring

permanent income to adolescent age parental incomes are higher than for earlier years.

The most striking feature of the shape of this estimated mobility curve is its nearly

uniform monotonicity, which means that the children of parents with increasing income

trajectories have higher expected permanent incomes than others. These differences are

large. For example, the average sensitivity of income in ages 0 to 3 is 0.002 while the average

sensitivity to income in ages 16 to 18 is an order of magnitude larger, 0.03. Age 18 is of course
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Figure 2: Age-Varying IGE of Income
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Notes: This figure plots the estimated functional coefficient curve in our benchmark functional regression
(1). The estimated function β̂prq measures the percentage change of a child’s income in response to parental
income at child’s age r, covering child’s ages 0 to 19. Darker (lighter) shaded areas indicate the 68%
(90%) confidence intervals obtained by the wild bootstrap applied to the fitted errors in the approximating
regression (12).

a benchmark makes intuitive sense for changes in parent child relationships due to such as

college attendance or labor force entry. So the change in parental income sensitivity relative

to other teenage years is presumably due to this. Overall, our estimated mobility curve leads

to two broad conclusions. First, parental incomes in later childhood and adolescence have

qualitatively much stronger marginal effects on predictive income than parental incomes in

earlier years. Second, for families with equal permanent incomes, children whose parents

exhibit increasing income trajectories have higher expected permanent incomes than those

whose parents exhibit stable or declining trajectories.24

A pair of standard statistics help summarize the substantial age-specific heterogeneity in

income effects. The first measure is β̂range, the studentized range of β̂p¨q. This measure is

defined as

β̂range “
max

0ďră20
β̂prq ´ min

0ďră20
β̂prq

d

1

20

ż 20

0

`

β̂prq ´ β̄
˘2
dr

,

where β̄ “ p1{20q
ş20

0
β̂prqdr “ 0.0209. The value of studentized range is given by 3.52, which

implies that support of the age-specific heterogeneity in IGE’s is more than three times larger

24These results are qualitatively similar to Cheng and Song (2019) who find, using parameter heterogeneity
in quadratic functions of time for parental and offspring income trajectories, that the growth rate of parental
income predicts offspring coefficients.
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than the overall variation across ages, as measured by the standard deviation. The second

measure is pβdev, the scale adjusted average area between two curves, which is defined as

pβdev “

1

20

ż 20

0

ˇ

ˇβ̂prq ´ β̄
ˇ

ˇdr

β̄
.

The value is given by 0.45, which means the estimated IGE at each child’s age is deviated

from its mean value by 45% of its mean value on average. Together, these measures reinforce

the visual message of first order age heterogeneity in income effects.

How does our regression curve relate to the standard intergenerational elasticity of income

coefficient produced by a linear regression? For the overall sample, if one were to estimate the

conventional bivariate regression of permanent income onto permanent income, the estimated

IGE is 0.57, similar to the estimate in Mazumder (2016). The natural comparison to our

function model involves the calculation of the effect of a unit increase in yprq for all r. The

effect of such a change on expected future income change is the integral of βp¨q over the 20

years we analyze. Using our estimated β̂p¨q one has
ş20

0
β̂prqdr “ 0.42. This leads to the

interesting result that, from the perspective of permanent income changes, the conventional

linear regression overstates persistence across generations. Put differently, our results show

how the conventional regression produces misleading results when the underlying mobility

process relies on features of parental income trajectories beyond the mean.

The relationship between βprq when compared to the conventional β can be further un-

derstood by considering the functional principal components and associated loadings that

are produced by the FDA analysis. Figure 3 presents the loadings for the first 3 principal

components, the shapes of the components, and the effects of the components on the parental

income trajectory. Following Figure 1, the first component, which exhibits little variation

across childhood and adolescence, explains 60.9 percent while the second component, which

increases dramatically in later adolescence, explains about 9.3 percent, and a third compo-

nent that increases dramatically in the earlier years explains 6.3 percent. The first principal

component, which exhibits little variation over time, is analogous to the standard object

used in mobility analyses. Components 2 and 3, in contrast, demonstrate two separate types

of variation, one that involves growth in earlier years, and the second in later years. These

dimensions of trajectories are lost by the use of parental permanent income as a sufficient

statistic to characterize how parental incomes matter.

How might one interpret these findings? Heterogeneity in the effects of parental incomes

at different ages can be produced when parents face borrowing constraints of various types,

so that permanent income is not a sufficient statistic for investments in children, but as
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Figure 3: Functional Principal Components and Their Loadings
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(c) 2nd Functional Principal Component
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(e) 3rd Functional Principal Component
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Notes: The top, middle, and bottom panel in the first column of the figure presents, respectively, the first,
second, and third functional principal components which are extracted from cross-sectional observations on
log parental income trajectories, while each row in the second column presents their loadings which vary
across households. The loadings associated with the first, second, and third principal components are sorted
by the average parental income, parental income at child’s age 19, and parental income at child’s age at 15,
respectively. The red lines indicate the moving average, which is calculated by averaging loadings across 20
households.
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far as we know, there is no model of borrowing constraints that produce this particular

pattern; Grawe (2004) in fact indicates the difficulties in mapping credit constraints to clean

predictions about income sensitivities. We conjecture that our findings speak to issues of

the qualitative differences in the inputs to children versus those of adolescents; more on this

below.

4.2 Robustness to Permanent/Transitory Income Distinctions

One natural concern with our findings on the IGE curve is that the curve does not distinguish

between the effects of permanent versus transitory income on children, which is a primary

idea in the empirical mobility literature. This distinction is a justification for using averages

of parental income, as emphasized in Solon (1992). Further, when yearly family income is the

sum of a time invariant permanent component and a time-varying transitory one, the more

years over which averaging occurs, the smaller the effect of measurement error in creating

downward bias in the IGE; the relationship between number of years used to construct

parental permanent income and the magnitude of the IGE is well documented in Mazumder

(2005). Hence a possible response to our findings is that the IGE curve variation reflects

biases induced by the transitory components of parental incomes experienced by children

and that the conventional IGE regression is in fact correct. One response to this objection

is to observe that our first principal component, as discussed above, exhibits very little

temporal variation across incomes at different childhood ages and so essentially captures the

measure of permanent income in other studies. The second and third components, which

are constructed as orthogonal to the first component, demonstrate the marginal information

in the levels of incomes in predicting offspring permanent income.

To further buttress the evidence that year by year income fluctuations have informa-

tional content about offspring permanent income, we investigate the robustness of our esti-

mate against different specifications of permanent income. First, extract permanent income

estimates from family income series using time series filtering methods and use these for

functional IGE estimation Second, we employ an instrumental variables strategy to extract

In both cases, we find qualitatively similar mobility curves to those we estimate using the

income levels series. Taken together, these two exercises lead us to conclude that the time-

varying IGE curve is not an artifice of failing to distinguish permanent and transitory income.

4.2.1 Modelling Permanent Income as a Random Walk

Following a longstanding in the income dynamics literature, MaCurdy (1982), Blundell and

Preston (1998), we construct estimates of family permanent income via the time series struc-
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Figure 4: Re-estimated IGE Using Permanent Parental Income
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Notes: The figure presents the functional coefficient β, intergenerational income elasticity curve, re-estimated
with the permanent parental income trajectory. The permanent income/transitory income distinction is made
by applying the Beveridge-Nelson (BN) decomposition, and the permanent parental income is obtained as
the long term forecast, a trend of the series given its history. We redefine the log parental income trajectory
pfiq to be this trend for each i, and re-estimate the functional coefficient β using the redefined log parental
income trajectory in our benchmark functional regression in (1). The darker (lighter) shaded areas indicate
68% (90%) confidence bands obtained by the usual wild bootstrap applied to the fitted residuals from the
approximate standard regression (12).

ture of income trajectories and model permanent income as a random walk. Letting pwitq be

the observed parental income in log for family i “ 1, . . . , n at time t “ 1, . . . , τ ,25 and define

it as

wit “ wPit ` w
T
it ,

where the superscripts P and T signify the permanent and transitory components of pwitq,

respectively. This specification is different from Solon (1992) which assumes pwPit q is time

invariant, but is the natural formulation of permanent income as a stochastic process. To

operationalize this specification, we apply the Morley (2002) form of the Beveridge-Nelson

(BN) decomposition and set

∆wit ´ µi “ φip∆wi,t´1 ´ µiq ` εit,

25Here pwitq denote the raw panel observations, from which we construct our functional observation fiprq
defined for each i using a Wavelet basis as a function taking values continuously in r.
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from which it follows that

wPit “ wit `
φi

1´ φi
p∆wit ´ µiq

wTit “ wit ´ w
P
it “ ´

φi
1´ φi

p∆wit ´ µiq.

The parameters µi and φi are estimated for each i using pwitq for t “ 0, . . . , 19. To do this,

we redefine the log parental income trajectory pfiq to be the function given by pwPit q in place

of the one given by pwitq for each i, and re-estimate the functional coefficient β using the

redefined log parental income trajectory.

Our estimates of family-specific permanent income allow us to estimate our functional

regression using parental permanent income trajectories. The re-estimated IGE curve is

presented in Figure 4 with the confidence band obtained, as before, by the wild bootstrap

applied to the fitted errors in the approximate standard regression. The basic message of

the figure is simple: accounting for the permanent/transitory income distinction using the

BN filter has little effect on our results.

Observe that these time series decompositions of observed parental incomes also speak

to the concern that an age-varying mobility curve reflects differences in the signal to noise

ratio between permanent and transitory income, which is the key variable in the downward

bias studied by Solon (1992) and others. There is an intuition that permanent income is

more accurately measured after age 30 versus before. If so, then the variance of transitory

income is higher than permanent income in early years. This can be evaluated by exploring

how permanent and transitory incomes evolve across childhood and adolescence. Figure 17

presents the observed parental incomes, extracted permanent incomes and extracted tran-

sitory incomes across different ages for families at the 10th, 50th, and 90th percentiles.26

These figures provide little evidence, based on these time series decompositions that the

role of transitory versus permanent income in explaining income levels is higher in early

childhood than later.27

26The 10th, 50th, and 90th percentiles reported for each age are obtained from the cross-sectional distri-
butions of parental incomes at the corresponding age.

27Further, if the increasing IGE curve is an artifice of lower variances for transitory income in older ages
than younger one, then parental income after age 18 should contain high information content on permanent
income, rendering it as useful in proxying for permanent income in a similar way to incomes in the other
late adolescent years; in contrast, we find a qualitative decline in the age-specific IGE after age 18.
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4.2.2 IV Estimates and Interpretations of the Intergenerational Income Rela-

tionship

We next consider an instrumental variables estimation of the mobility curve where instru-

ments are designed to capture shocks to the income process. Here we take a different strategy

compared to the time series decompositions, one that extracts transitory income estimates

by considering mechanisms that underlie permanent income. While a full analysis of the de-

terminants of permanent income is beyond the scope of this paper, we employ a strategy due

to Lefgren et al. (2012) that isolate income shocks. In this approach, shocks to employment

status are modeled as the residuals to employment after controlling for years of schooling

and educational attainment. For our model, this means constructing 20 year residual em-

ployment status trajectories and using these as a functional instrumental variable, where

this vector is treated as a finite-dimensional approximation of an underlying function in the

same way we treated the observed income vector.28

Figure 5 presents our IV estimates of the mobility curve. The IV curve has the same

qualitative shape as the least squares curve: monotonic increases in the curve until age 18.

Interestingly, the coefficient magnitudes are larger for the IV case than the original functional

regression, which is the opposite of what is predicted by permanent income theories. Note

that the IV estimation produces confidence bands that are significantly larger than the least

squares estimation. This is expected since the IV estimator is generally less efficient than

the least squares estimator.

4.3 Temporal Changes in Mobility Curves

We next consider changes in mobility across cohorts within our overall sample to explore

changes in intergenerational mobility over time. Davis and Mazumder (2022) is the most

important predecessor to our exercise. This paper argues, using the National Longitudinal

Survey of Youth data that mobility was higher for individuals born in the 1950s versus the

1960s. Here we compare the β curve, in our benchmark functional regression (1) for three

distinct birth cohorts in our sample; 1967-1970, 1971-1973, and 1974-1977 cohorts to uncover

higher frequency differences in the mobility process. The use of 3 year cohorts is similar to

Chetty et al. (2014). This complements Davis and Mazumder (2022) by comparing a late

time period. The IGE curve approach also opens different perspectives on mobility changes

by asking about changes in the shapes of the curves. The estimated IGE curves for these

three cohorts are presented in Figure 6.

28For the functional IV, we represent it as a 12 dimensional vector, which explains about 90% of total
variation. We use a larger value of m for the functional IV, since the ill-posed inverse problem appears to
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Figure 5: IV Estimates of IGE
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Notes: This figure plots the functional-IV estimate of the mobility curve. Following Lefgren et al. (2012),
we consider, for each child’s age, shocks to parental employment status, which are estimated as the residuals
to the parental employment status trajectory after projecting out the effect of human capital such as years
or schooling and educational attainment. We use the trajectory of these age-varying shocks to parental
employment status as a functional instrumental variable to compute the functional-IV estimate reported in
this figure. The darker (lighter) shaded areas indicate the 68% (90%) bootstrap confidence intervals.

Each of these cohort-specific curves is generally upward sloping, and so confirms the

major conclusion from Section 4.1 that for the sample as a whole, incomes in later years have

larger coefficients than earlier ones. At the same time, the curves reveal some interesting

differences.

First, there is evidence that the effects of parental income on offspring permanent income

are greater for the 1967-1970 cohort compared to later ones. The IGE curve for the 1967-

1970 cohort exhibits larger values than the others. The sum of the coefficients for these three

cohorts are 0.5369, 0.3426, and 0.3719, respectively.29 In this sense, one can say the standard

measure of mobility, how a permanent change in parental income starting at birth affects

predictions of offspring’s permanent income, has declined as have sensitivities to adolescent

incomes.

What interpretations might be associated with changes across cohorts? One notable

distinction between the cohorts is that those born in 1967-1970 were adolescents during

the 1981-1982 recession and as such may be influenced by this experience in terms of labor

market behavior, see Shigeoka (2019) for the impact of adolescence recession experiences on

subsequent risk aversion.30

Second, there is a change in the dynamics of the IGE around age 18 across cohorts. The

be less problematic in this context.
29The estimated constant term for the cohorts are 10.41, 10.22, and 12.33, respectively.
30We thank Neil Cholli for this observation.
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Figure 6: Age-Varying IGE of Income - Cohorts Groups

(a) Earliest Cohorts (1967-1970)
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(b) Middle Cohorts (1971-1973)
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(c) Latest Cohorts (1974-1977)
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Notes: These figures compare the estimated functional coefficient curve in our benchmark functional re-
gression (1) for each of the three birth cohorts groups; (a) earliest cohorts (1967-1970 cohorts), (b) middle
cohorts (1971-1973 cohorts), and (c) latest cohorts (1974-1977 cohorts). Darker (lighter) shaded areas indi-
cate the 68% (90%) confidence intervals obtained by the wild bootstrap applied to the fitted errors in the
approximating regression (12).
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IGE curve for the 1974-1977 cohort does not exhibit any decline in the mobility curve around

age 18, as occurs for the other cohorts and for the sample as a whole. While this finding

is obviously not dispositive, it hints at the possibility that norms with respect to parental

support for children may have been evolving over our sample period.

We will generally work with the full sample in our subsequent analyses, but believe

that these results illustrate that functional regressions methods can augment conventional

evaluations of changes in mobility.

4.4 Relative Mobility

A distinct way to understand the implications of trajectories for mobility is to consider

relative mobility. Figure 7 characterizes sets of parental trajectories that lead to children

having expected permanent incomes in the top 10 percent and bottom 10 percent of the

expected offspring income distribution. As before, we first divide our sample into three

cohorts: children born between 1967 and 1970, those born between 1971 and 1973, and

those born between 1974 and 1977. In this case, the cohorts are studied separately to

respect the fact that relative locations of parents and children in the overall sample will

be affected by trends in per capita income growth. For each cohort, the expected income

level of each child was computed based on our estimated mobility curve, which revealed the

sets of parental trajectories in our sample that produced children in each of the two deciles.

The 68 percent and 90 percent subsets are those that capture these respective fractions

of the trajectories that placed children in each decile. Properties of these trajectories are

summarized in Table 2.

As illustrated by Figure 7, the set of trajectories that place children in the top 10 percent

and the set of trajectories that placed children bottom 10 percent of expected permanent

incomes exhibit quite different income levels; Table 2 indicates top 10 percent families ex-

hibiting average incomes consistently around 4 times larger than bottom 10 percent families.

This means that the average incomes of parents contain much information to distinguish the

trajectory sets. However, the sets are not disjoint, especially for the 1967-1970 and 1974-1977

cohorts. The reason for this is the large difference in growth rates that occurs between the

deciles after age 12, which interact with the increasing values of the mobility curves for the

subsamples.

4.5 A Life Cycle Great Gatsby Curve

As a final exercise, we consider how our IGE curve speaks to analysis provides to the Great

Gatsby Curve (Corak (2006), Corak (2013), Durlauf et al. (2022)), which refers to the findings
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Figure 7: Parental Income Trajectories of Predicted Top and Bottom 10% of Expected
Offspring Income - Cohorts Groups

(a) Earliest Cohorts (1967-1970)
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(b) Middle Cohorts (1971-1973)
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(c) Latest Cohorts (1974-1977)
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Notes: These figures compare the two sets of parental income trajectories of the families which are associated
with the predicted top and bottom 10% of expected offspring income for each birth cohorts group; (a)
earliest cohorts (1967-1970 cohorts), (b) middle cohorts (1971-1973 cohorts), and (c) latest cohorts (1974-
1977 cohorts). For each family, the expected offspring income is obtained by fitting a functional regression
model. The red (blue) line plots the median parental income associated with the top and bottom 10% of
expected offspring income. The darker (lighter) shaded areas indicate the 68% (90%) interval.



Table 2: Statistics for Trajectories Producing Top and Bottom 10% of Expected Offspring
Income - Cohorts Groups

(a) Earliest Cohorts (1967-1970)

Parents Income Group

Top Bottom

Average ($) 152,056 35,882
Variance (ˆ108) 74.61 2.70

Growth Rate (%) 6.72 -3.97

(b) Middle Cohorts (1971-1973)

Parents Income Group

Top Bottom

Average ($) 147,951 35,233
Variance (ˆ108) 252.53 2.20

Growth Rate (%) 3.10 -2.50

(c) Latest Cohorts (1974-1977)

Parents Income Group

Top Bottom

Average ($) 158,503 36,696
Variance (ˆ108) 89.57 2.86

Growth Rate (%) 3.51 -1.11

Notes: These tables compare key statistics – average, variance, and average growth rate – of the real incomes
associated with each of the sets of parental income trajectories producing top and bottom 10% of expected
offspring income for each birth cohorts group; (a) earliest cohorts (1967-1970 cohorts), (b) middle cohorts
(1971-1973 cohorts), and (c) latest cohorts (1974-1977 cohorts) in Figure 7. To obtain these statistics, we
first calculate them for each parent, and take cross-sectional average of these statistics. Average is computed
as

řN
i“1

`
ř19

t“0 fi,t{20
˘

{N , where fi,t is parents i’s income at their child’s age t, and N indicates the number

of families in the set of interest. Similarly, we calculate variance as
řN

i“1

`
ř19

t“0pfi,t ´ f iq
2{19

˘

{N where f i
is time-average parental income of parents i. Average growth rate is computed as

řN
i“1

`

ppfi,19{fi,0q
1{19 ´

1q ˆ 100
˘

{N .

in a range of contexts, that there is a positive association between measures of inequality and

measures of intergenerational mobility. Our analysis permits the calculation of a variant of

the Curve within the intergenerational transmission process by comparing age-specific values

of the IGE against the cross-sectional differences in the incomes of parents at those ages,

measured as age-specific IGE’s with the Gini coefficients of parents in our sample, where

incomes are measured at the associated ages. Figure 8 plots this relationship.

As revealed by the scatter plot and associated trend line, there is a clear Gatsby curve
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Figure 8: The Great Gatsby Curve across Child’s Ages
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Notes: This scatter plot illustrates the relationship between inequality and intergenerational income mobility
from child’s birth to age 20. Each number on the point presents the child’s age. A horizontal axis shows the
Gini coefficient, which is calculated using parental income at each child’s age. A vertical axis displays the
IGE of income trajectory, which is the value of pβprq from model (1), at each child’s age, r “ 0.5, ¨ ¨ ¨ , 19.5.
The black dashed line presents the trend line of the scatter plot.

present. Periods of greater parental income volatility are associated with greater sensitivity

of future offspring income to parental levels. We leave exploration of the interpretation of this

relationship to future work. Here we conclude by noting that, as discussed in Durlauf et al.

(2022), nonlinearities in the parent/offspring transmission process are needed to provide a

pathway by which increased inequality produces lower mobility.

5 Quadratic Mobility Models

In this section, we extend our functional regression framework to allow for interactions

between parental incomes at different ages based on the specification

yi “ α `

ż 20

0

βprqfiprqdr `

ż 20

0

ż 20

0

Γpr, sqfiprqfipsqdsdr ` εi. (18)

The quadratic coefficient function, Γpr, sq in (18), is a symmetric bivariate function. This

model may be thought of as a second order Taylor series expansion of a general nonlinear

functional regression model. A useful feature of the quadratic model is that the parameters

of the interaction terms are interpretable as exhibiting complementarity or substitutability

effects between incomes at different ages. That said, it should be observed that quadratic

models do not well equipped to uncover phenomena such as affluence or poverty traps.

The introduction of the interactions between incomes at different ages means that the
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Figure 9: Quadratic Effect on Offspring’s Income - Surface
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Notes: This figure depicts the estimated bivariate coefficient function Γ̂pr, sq for r, s P r0, 20q. The red-
colored area indicates the positive values of the estimated coefficient function (complementarity), while the
blue-colored area denotes negative value (substitutability).

total effect of a change in income at one age on expected permanent income of a child is much

more complicated than the linear functional case. The total effect of a change in income at

a given age r may be decomposed as

∆yi
∆fiprq

« βprq ` 2

ż 20

0

Γpr, sqfipsqds (19)

One can rewrite this expression as

∆yi
∆fiprq

« βprq ` 2Γpr, rq∆fiprq ` 2

ż

r0,20qzrr´1{2,r`1{2q

Γpr, sq∆fipsqds, (20)

which reveals that the total effect of a change in parental income at a given time involves

three distinct channels: a linear component (βprq) that corresponds to the age-specific IGE

in the linear functional regression, a nonlinear own income component (2Γpr, rq∆fiprq)] and

an interaction (2
ş

r0,20qzrr´1{2,r`1{2q
Γpr, sq∆fipsqds) which captures how a change at r affects
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Figure 10: Quadratic Effect on Offspring’s Income - Heatmap

(a) Estimate
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(b) Significant at 68%
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Notes: The left panel of this figure illustrates the estimated bivariate coefficient function Γ̂pr, sq for r, s P
r0, 20q. This heatmap presents estimated coefficients at each child’s age r and s. The red-colored cells
indicate the estimated coefficient is positive for specific r and s (complementarity), while the blue-colored
ones are negative estimates (substitutability). The right panel of this figure presents the estimated effects
that are statistically significant at the 68% confidence level.

the marginal product of incomes at other ages as well as the effect of incomes at other ages

on the effects of income at r.

We again use functional principal component analysis for the model estimation. Using

the same cross-validation procedure as before, we set the number of functional principal

components m to 3.

Figure 9 presents the 3D surface for the bivariate Γ̂pr, sq for r, s P r0, 20q function while

Figure 10 presents heat maps of the function with and without a 68 percent significance

level. Red denotes a positive value for Γ̂pr, sq, i.e. complementarity, while blue denotes a

negative value, i.e. substitutability.

Together, Figure 9 and Figure 10 illustrate two important qualitative regularities. First,

there appears to be local substitutability between incomes within early childhood and within

the adolescent years. Second, there is evidence of complementarities between parental income

in early childhood and later adolescence.

These results are interesting from the perspective of the early childhood investment lit-

erature, cf. Cunha and Heckman (2008) and Cunha et al. (2010). This literature empha-

sizes the importance of complementarities in skills-producing investments in offspring across

childhood and adolescence. At first glance, our results suggest a more subtle pattern of lo-

cal substitutability and global complementarity. There is no logical contradiction, since the

uniform complementarities assumed in the early childhood literature concern a property of
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the skills production function while our results involve complementarity and substitutability

in the determinants of the resource constraints for those investments. Further, estimates of

uniform complementarities, e.g. Cunha et al. (2010) only evaluate complementarities be-

tween t and t` 1, which are extrapolated to make claims about t and t` k, while our work

explicitly allows for much richer patterns.

That said, if one wishes to combine uniform complementarity in investment productivity

with our local substitutes/global complementarity distinction for incomes, it is necessary

to develop a more complex modeling of parental investments and their consequences than

is conventional. One possibility is that, within early childhood and later adolescence, par-

ents are able to smooth investments across adjacent years, producing local substitutability.

Further, suppose that the primary investments in children during later childhood and ado-

lescence are indirect in the sense that the investments are in memberships in a neighborhood

and school district and that these types of investments are sensitive to income in those years

in ways that differ from the direct investments made at earlier ages. Under these circum-

stances, the income and investment results are consistent. Wodtke et al. (2011) find that the

exposure to disadvantaged neighborhoods in adolescence has particularly deleterious effects

on the likelihood of high school graduation, which combined with our conjectures links our

explanation with high marginal effects of parental incomes in later years.

The decomposition of the income effect given in (20) means that the marginal effect of a

change in parental income at a given time involves both the effect from the linear term as well

as the nonlinear effects at a single time-point (r “ s) and the interaction effects at two-time

points (r ‰ s). Figure 12 illustrates how the overall age-varying IGE is changed by parental

income profile by these additional effects. We divide the sample into 1967-1970, 1971-1973,

and 1974-1977 cohorts in order to avoid mixing age 0 percentiles from families starting too

far apart in time; secular economic growth, for example, would render such a comparison

problematic. Since the total effect of a change in income at one age depends on the income

trajectory of the family, we consider three examples of family trajectories. We consider sets

of families distinguished by whether they are located when their children are age 0, in sets

centered at the (a) 10th percentile, (b) 50th percentile, and (c) 90th percentile respectively

among parents for all age 0 children in their cohort. We then average the trajectories in

each of these sets to produce representative trajectories for each set. Figure 11 describes

these three counterfactual family income trajectories and Figure 12 provides a visualization

of levels of the IGE as determined by linear, nonlinear, and interaction factors.

Figure 12 reveals a similar story for each of the sets of cohorts. For families in the

vicinity of the 10th percentile, accounting for nonlinearities and cross-age interactions leads

to lower age-specific income sensitivities, relative to the direct income effects for all years up
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to age 17. In contrast, nonlinearities and interactions produce, relative to the direct effect

a slightly larger age-specific income sensitivity at age 18 and a substantially larger income

sensitivity for age 19. Families with incomes around the median exhibit negligible differences

between the overall age-specific income effects and the direct income effects. For families

around the 90th percentile in age 0 incomes, each cohort group exhibits the opposite effects of

nonlinearities and interactions than occurred for 10th percentile families: age-specific income

sensitivities of children are higher through age 17, slightly lower at 18 and much lower at 19.

The summary of these patterns is simple: the quadratic generalization of functional mobility

regressions reduces the sensitivity of the children of poorer families and increases the income

sensitivities of children in high income families before age 18 and has the opposite effect for

ages 18 and especially 19.

One can additionally calculate an approximate overall IGE measure as
ş20

0
p∆yi{∆fiprqqdr

for families at different percentiles. The overall IGE measure for poorer families in the

earliest, middle, and latest cohorts group equal 0.3776, 0.3792, and 0.3783, respectively. The

same measure for families in the middle class of each cohort group is 0.3917, 0.3971, and

0.3984 while the one for richer families is 0.4104, 0.4092, and 0.4118, respectively. Families

at different percentiles thus exhibit similar IGEs across cohorts, with slightly larger values

for 10th percentile families than 90th percentile ones. This means that the augmentation of

income effects for more affluent families in earlier years more than offsets the lower income

effects at ages 17 and 18. Together, our results indicate how new information emerges from

explicitly looking at trajectories.

6 Proximate Mechanisms

In this section, we explore how education and occupation are influenced by family income

trajectories. Education and occupation are of course primary proximate determinants of

income.

6.1 Education

We first evaluate the relationship between parental income trajectories and the probability

of college attendance by the beginning of age 20.31 To do this, we estimate a functional logit

31We leave to future work more systematic evaluation of the relationship between parental income and
offspring higher education dynamics on future income, as doing so would require an assessment of incomes
after reaching age 20, as well as a dynamic discrete choice of the type pioneered by Cameron and Heckman
(2001) for education levels. Such an analysis would also need to address years of schooling versus graduation
effects; Ashworth et al. (2021) is a recent sophisticated evaluation of their distinct roles.
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Figure 11: Counterfactural Family Income Trajectories

(a) Earliest Cohorts (1967-1970)
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(b) Middle Cohorts (1971-1973)
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(c) Latest Cohorts (1974-1977)
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Notes: These figures present three counterfactual parental income trajectories for each birth cohorts group;
(a) earliest cohorts (1967-1970 cohorts), (b) middle cohorts (1971-1973 cohorts), and (c) latest cohorts (1974-
1977 cohorts). The line with pink-circles/orange-squares/red-triangles signifies average parental income
trajectory of (a) bottom 10%, (b) middle 10%, and (c) top 10% at child’s birth.
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Figure 12: Age-Varying IGE Decomposition with Counterfactual Family Income Trajectories
- Earliest Cohorts (1967-1970)

(a) Age-Varying IGE with Parental Income Profile of Bottom 10%
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(b) Age-Varying IGE with Parental Income Profile of Middle 10%
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(c) Age-Varying IGE with Parental Income Profile of Top 10%
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Notes: This figure presents age-varying IGE decomposition for the average parental income trajectory of
the earliest cohorts (1967-1970) at (a) bottom 10%, (b) middle 10%, and (c) top 10% at child’s birth.
The line labeled ‘total’ indicates the time-varying IGE of income from the model (18). Specifically, the
time-varying IGE at a child’s age r is the sum of linear (βprq), nonlinear (2Γpr, rq∆fiprq), and interaction
(2

ş

r0,20qzrr´1{2,r`1{2q
Γpr, sq∆fipsqds) effects.
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Figure 12: Age-Varying IGE Decomposition with Counterfactual Family Income Trajectories
- Middle Cohorts (1971-1973)

(d) Age-Varying IGE with Parental Income Profile of Bottom 10%
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(e) Age-Varying IGE with Parental Income Profile of Middle 10%
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(f) Age-Varying IGE with Parental Income Profile if Top 10%
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Notes: This figure presents age-varying IGE decomposition for the average parental income trajectory of
the middle cohorts (1971-1973) at (d) bottom 10%, (e) middle 10%, and (f) top 10% at child’s birth.
The line labeled ‘total’ indicates the time-varying IGE of income from the model (18). Specifically, the
time-varying IGE at a child’s age r is the sum of linear (βprq), nonlinear (2Γpr, rq∆fiprq), and interaction
(2

ş

r0,20qzrr´1{2,r`1{2q
Γpr, sq∆fipsqds) effects.
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Figure 12: Age-Varying IGE Decomposition with Counterfactual Family Income Trajectories
- Latest Cohorts (1974-1977)

(g) Age-Varying IGE with Parental Income Profile at Bottom 10%
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(h) Age-Varying IGE with Parental Income Profile at Middle 10%
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(i) Age-Varying IGE with Parental Income Profile at Top 10%
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Notes: This figure presents age-varying IGE decomposition for the average parental income trajectory
of the latest cohorts (1974-1977) at (g) bottom 10%, (h) middle 10%, and (i) top 10% at child’s birth.
The line labeled ‘total’ indicates the time-varying IGE of income from the model (18). Specifically, the
time-varying IGE at a child’s age r is the sum of linear (βprq), nonlinear (2Γpr, rq∆fiprq), and interaction
(2

ş

r0,20qzrr´1{2,r`1{2q
Γpr, sq∆fipsqds) effects.



Figure 13: Effect of Parental Income Trajectory on Offspring’s College Attendance
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Notes: This figure plots the estimate of functional logit model, µ̂p¨q in (21) and the marginal effect of parental
income at each child’s age on the probability of offspring’s college attendance in (23). This estimate measures
the change of log-odds ratio in response to the change of parental income trajectory, and the marginal effect
is a constant multiple of the estimate. The darker (lighter) shaded areas indicate 68% (90%) bootstrap
confidence intervals.

generalization of our income model:

log
pi

1´ pi
“ ω `

ż 20

0

µprqfiprqdr, (21)

where pi “ Ptzi “ 1u, pfiq is a trajectory of parental log income from birth to age 20 and

zi “

$

&

%

1 if the child i attends college

0 otherwise
.

We estimate the response function µp¨q in (21) using the same functional principal component

approach developed in Section 2.2. For this model, we set the number of functional principal

components m chosen at 5 as this number of components minimizes the leave-one-out cross-

validation error.

We also compute the marginal effect of parental income at each child’s age on the prob-

ability of offspring’s college attendance. To do this, we first calculate pi from (21),

pi “

exp

ˆ

ω `

ż 20

0

µprqfiprqdr

˙

1` exp

ˆ

ω `

ż 20

0

µprqfiprqdr

˙ . (22)
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Table 3: Occupation Types

White Collar (Type 1)
Professional, technical and kindred workers;
Managers, officials and proprietors;
Clerical and sales workers

Skilled/Semiskilled (Type 2)
Craftsmen, foremen, and kindred workers;
Operatives and kindred workers

Unskilled (Type 3) Laborers and service workers; Farm laborers

Notes: The definition of occupation types are based on Long and Ferrie (2013). Long and Ferrie (2013)
considers four occupational types: White Collar, Skilled/Semiskilled, Unskilled, and Farmer. However, due
to the lack of observations, the ‘Farmer’ category is excluded, and the other three occupation categories are
considered in this paper.

Given (21), we first evaluate pi at the mean level of parental income trajectory, and use this

to obtain the marginal effect on pi of the parental income at child’s age r:

∆pi
∆fiprq

« pip1´ piqµprq. (23)

Note that the marginal effects are given as a function of r, more specifically by a constant

multiple pip1´ piq of curve µ̂prq.

Figure 13 plots the estimated response function µ̂p¨q and the marginal effect of parental

income on the probability of offspring’s college attendance, with the left and right axes

scale differentiating the two. The estimated coefficient µ̂ is relatively flat until age 15,

which exhibits a sharp increase for the ages 15-18, with a decline at after 18. While overall

qualitatively consistent with our income IGE curve, the differences between earlier and later

ages are much stronger. The average value of the curve for ages 0-15 is 0.02 while the average

for ages 16-18 is 0.09. The impact of these differences on college enrollment is indicated by

the very high value of a 4 percent change in the probability of college attendance generated

by a 1 percent change in age 18 income.

6.2 Occupation

We next consider how family trajectories predict offspring occupation status. Following a

long tradition of occupational mobility studies in sociology, see Song et al. (2020) for an

important recent example, we partition occupations into white collar, skilled/semiskilled,

and unskilled.32

Table 3 lists the three occupation categories defined as in Long and Ferrie (2013). We

32Due to a lack of observations, we do not consider agricultural workers.
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denote the occupational categories white collar, skilled/semiskilled, and unskilled as Type

1, 2, and 3 respectively. We limit our analysis to transitions between father’s occupation to

son’s occupation. We do this as, in the sample, a majority of mothers were housewives (52%),

but acknowledge that this is a significant limitation even though it is a common procedure

for studying occupational mobility, cf, Guest et al. (1989), Long and Ferrie (2013), and

Mazumder and Acosta (2015). For these transitions, we employ a functional multinomial

logit model that generalizes the functional logit model used for college attendance. The

number of functional principal components m is chosen at 3 by the leave-one-out cross-

validation. Denoting ‘k’for and son occupation type, we estimate

log

ˆ

Ptzi “ ku

Ptzi “ 3u

˙

“ ωk `

ż 20

0

µkprqfiprqdr for k “ 1, 2, (24)

where k is the occupation type for son and pziq is the indicator variable

zi “

$

’

’

’

&

’

’

’

%

1 if child i’s job belongs to Type 1 (White Collar)

2 if child i’s job belongs to Type 2 (Skilled/Semiskilled)

3 if child i’s job belongs to Type 3 (Unskilled)

.

The probabilities of transition between categories 1 and 2 are implicitly determined by (24)

and the requirement that probabilities of transitions sum to 1, so (24) fully characterizes the

occupational income trajectories between parents and offspring.

Eq. (24) may be used to compute marginal effects we compute of parental income at

different ages on offspring job choice probabilities. For each offspring job type k,

Ptzi “ ku “
φk

φ1 ` φ2 ` φ3

for k “ 1, 2, 3,

where

φk “

$

’

&

’

%

exp

ˆ

ωk `

ż 20

0

µkprqfiprqdr

˙

for k “ 1, 2

1 for k “ 3

.

Therefore the marginal effect of the parental income at child’s age s on the probability of

their son having a Type k job is obtained by taking derivatives of Ptzi “ ku with respect to
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Figure 14: Effect of Parental Income Trajectory on Log-Odds of Occupational Choices

(a) Type 1 vs. Type 3
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(b) Type 2 vs. Type 3
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Notes: These figures plot the estimate of the multinomial functional logit model, µ̂1p¨q, µ̂2p¨q in (24). These
estimates measure the change of log-odds of the probability of offspring having (a) Type 1 job, (b) Type
2 job relative to having Type 3 job in response to the change in parental income trajectory. The darker
(lighter) shaded areas indicate 68% (90%) bootstrap confidence intervals.

fiprq as follows

∆Ptzi “ ku

∆frprq
« Ptzi “ ku

ˆ

µkprq ´
3
ÿ

j“1

Ptzi “ juµjprq

˙

for k “ 1, 2, 3, (25)

where µ3 “ 0.

Figure 14 presents the estimated response function µ̂1p¨q and µ̂2p¨q, respectively. Fig-
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Figure 15: Age-Varying Marginal Effect of Parental Income on Occupational Choices
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Notes: This figure presents the marginal effect of parental income at each child’s age on the probability of
offspring’s occupational choices (25). The red-circle line presents the marginal effect of parental income on
the probability of offspring having a job in Type 1. The blue-square line and the green-triangle line indicate
the marginal effect on the probability of offspring having a job in Type 2 and 3, respectively. The shades
areas indicate 68% bootstrap confidence intervals.

ure 15 plots the marginal effects of parental income at each child’s age on the probability

of offspring’s occupation choices.33 Together, these figures tell a somewhat different story

for our other IGE curves. While our point estimates are positive for the income effects at

each age, we find little evidence of an upward shape to the occupation-specific IGE curve

in Figure 14 for the likelihood of white collar versus unskilled job. The marginal effects on

probabilities are fairly similar for all ages, although the marginal effect at the teens is very

slightly larger than the effect during early childhood, until age 17 (which differs from other

findings where downturns occur at 18). As for the probability of a skilled or semiskilled job

versus unskilled job, we find little evidence of income effects as the confidence intervals are

quite large. Further, the estimated mobility curve, is if anything, downward sloping, which

differs from our findings elsewhere.

The marginal income effects in Figure 15 reflect the IGE curve findings. We find a

gently increasing effect of parental income with age for white collar jobs, negative effects

for skilled/semiskilled jobs, and no effect for unskilled jobs. This is not paradoxical in the

sense that, for the income trajectory we employ as a baseline, higher probabilities of white

collar jobs need to be offset and in this case are matched by reductions in skilled-semiskilled

probabilities. These results are not obvious from the effects in Figure 14, and are not easily

33The marginal effects are evaluated at the mean of cross-sectional parental income distribution at each
age from birth to 19. At the mean of the parental income distribution, the probabilities of offspring having
a job in Type 1, 2, and 3 equal 61.74%, 29.49%, and 8.77%, respectively.
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interpreted, although there is no logical contradiction.

7 Conclusion

This paper makes a sustained argument that measurement of intergenerational mobility can

be enhanced by an explicit consideration of how the dynamics of family income over child-

hood and adolescence predict adult outcomes. Our approach develops mobility curves, that

measure the marginal sensitivity of offspring outcomes to family income at each age. These

constitute a strict generalization of the conventional mobility measure, the intergenerational

elasticity of income. To implement this perspective, we proposed the use of Functional Data

Analysis methods, which explicitly treat outcomes as functions of trajectories. We argue that

a functional principal component approach to FDA provides a way to accurately estimate

the effects of family income period by period, despite the slow moving nature of such series.

We further show how this approach can be generalized to a quadratic trajectories model

that allows for interactions between income trajectory values at different ages of children.

As such, the quadratic model provides a way of measuring how values of family incomes

exhibit complementarity or substitutability between different ages.

Applying this functional data analysis strategy to map parental trajectories to child per-

manent income, using the Panel Study of Income Dynamics, we draw four broad conclusions

about the intergenerational mobility process.

First, income at different stages of childhood and adolescence produces different marginal

sensitivities of offspring’s permanent income to parental income at different ages. The mag-

nitudes of these sensitivities are nearly monotonically increasing with age, with a decrease

after age 18. Therefore, incomes in adolescence have larger marginal predictive effects on

children’s income than do incomes in early childhood. This upward slope also implies that

the likelihood of offspring’s upward mobility depends on the growth rate of parental income,

not just its level.

Second, we find confirmation of these basic patterns when our sample is divided into

1967-1970, 1971-1973, and 1974-1977 cohorts. However, we find that the mobility curves

exhibit some differences. The integral of the mobility curve is larger for the first cohort than

later ones, implying the sensitivity of children to a permanent increase in parental income

starting at birth is smaller. We also find less growth in the later mobility curves in later

childhood and adolescence.

Third, using a quadratic income trajectory model, we are able to uncover interactions

between incomes at different ages as a distinct determinant of offspring’s permanent income

on parental income trajectories. We find evidence of interactions between parental incomes at
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different ages in terms of their effects on children. These interactions exhibit substitutability

between parental incomes within the early childhood and within parental incomes during

adolescence. On the other hand, complementarities are present for incomes between these

two periods. Hence we say that there the intergenerational transmission process exhibits local

substitutability and global complementarity with respect to parental incomes at different

ages.

Fourth, we apply these same techniques to study the effects of family income trajectories

on two basic proximate causes of offspring’s permanent income: education and occupational

status. We find that family income trajectories exhibit similar influences on education as

they do for income. This represents an important confirmation of our income results. Our

results for occupations are mixed and imprecise, and suggest that a more complicated model

for income effects on occupation is needed.

Relative to other studies that have tried to map the timing of parental income to offspring

outcomes, perhaps the most striking major difference between our results and previous work

is the finding of a monotonic income mobility curve, one which suggests an especially im-

portant role for incomes in adolescence. In our judgment, these results suggest the need to

consider the different roles parental income plays across the life course in affecting children.

By this, we mean that there is an important difference between direct parental investments

and investments that determine a child’s neighborhoods and schools that are elided when

one studies income to income mobility. Our evidence of increasing income sensitivity may be

due to the increasing the importance of social influences on adolescents. This conjecture is

consistent with work such as Wodtke et al. (2011) and Wodtke et al. (2016), who show that

the relative importance of family versus neighborhood factors decreases between childhood

and adolescence. A natural sequel to this paper is the exploration of the role of social tra-

jectories, specifically characteristics of residential neighborhoods and schools which children

attend, as well as family income trajectories as is done here.
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Appendix

A Functional vs. Conventional Regression Estimates

In this section, we will use our main model for intergenerational mobility, which defines the

children’s income as pyiq and parents’ income profiles as pxiq, and empirically evaluate and

compare our novel functional regression (1) and the conventional regression (7). We consider

various choices of m, which denotes the number of functional principal components used to

approximate parents’ income profiles for our functional regression, and also the number of age

sub-intervals made in the partition of the total range of ages in the parents’ income profiles

for the conventional regression. Note that m denotes the number of regressors in both of our

functional regression and the conventional regression, although they are generally set to be

different in our subsequent discussions. In our data set, we have 20 years of parents’ income

profiles, and therefore, we consider the conventional regression with m “ 1, 2, 4, 5, 10 and 20,

which correspond to the partitions of the interval covering entire 20 years by sub-intervals

of lengths 20, 10, 5, 4, 2 and 1, respectively. For our functional regression, we consider m “

1, . . . , 20.

Throughout this section, we let pvjq
m
j“1 be the functional basis defined in (14) used in

the conventional regression for intergenerational mobility, in contrast with the functional

principal component basis pv˚j q
m
j“1 used in our novel functional approach. The conventional

regression and our functional regression approximate the functional coefficient β by β̄ “ Πmβ

and β̄˚ “ Π˚mβ, which are estimated by β̂ and β̂˚ from the regression in (12) with covariate
`

pfiq
˘

obtained from
`

Πmfi
˘

and
`

Π˚mfi
˘

, respectively. The estimator β̂ may also be defined

equivalently as

β̂prq “
m
ÿ

j“1

β̂j
qj ´ pj

1tpj ď r ă qju, (26)

where pβ̂jq are the least squares estimators of the regression coefficients pβjq in the conven-

tional regression. Subsequently, we compare β̂ and β̂˚ as the estimators of β̄ and β̄˚ in terms

of their precision and stability.34

This would be very informative, since their actual estimates are hugely different and

not comparable in any meaningful sense. The actual estimates of the functional coefficients

β̂ and β̂˚ are presented in Figure 16, where we present β̂˚ from our functional regression

with m “ 3, which was set by a cross-validation method as explained in the next section,

34In our subsequent comparisons, we let pfiq be discretely observed at r “ 0, . . . , 19 and dr be the counting
measure. This is to avoid the effect of errors involved in approximating discrete observations by continuous
functions for a more direct comparison.
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Figure 16: Estimates of β̂˚p¨q and β̂p¨q
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Notes: This figure compares functional regression coefficient β̂˚p¨q (orange-circle line) and β̂p¨q (navy solid

line) in (26). β̂˚p¨q is estimated using three leading functional principal components (m “ 3), while β̂p¨q is

obtained with various choice of m. Each panel of this figure compares β̂˚ with m “ 3 and β̂ with a choice
of m “ 1 pupper-leftq, 2, 4, 5, 10 and 20 plower-rightq.

and β̂ from the conventional regression with various choices of m. We also compute the

value of δpβ̂, β̂˚q “ }β̂ ´ β̂˚}{}β̂˚} to measure how distinct β̂ is from β̂˚, which is given by

δpβ̂, β̂˚q “ 0.56, 0.39, 0.75, 1.00, 1.54 and 2.72 for m “ 1, 2, 4, 5, 10 and 20, respectively. The

distance between β̂ and β̂˚ is already more than half of the magnitude of β̂˚ for m “ 1,

and increases more than one-and-half and two times of the magnitude of β̂˚ respectively for

m “ 10 and 20. In fact, β̂ looks nonsensical for m “ 10 and 20.35 The diagnostic results for

our functional regression and the conventional regression are summarized and compared in

Table 4.

The comparisons between β̂ and β̂˚ are made explicitly in exploring three different aspects

35Our functional regression can yield unstable and uninterpretable estimates as m becomes large, although
these estimates are not as erratic as as those from the conventional regression.
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Table 4: Comparisons of β̂˚ and β̂

m 1 2 3 4 5 10 20

β̂˚ FR2 0.61 0.70 0.77 0.80 0.83 0.93 1
IVAR (ˆ10´4) 1.06 7.59 17.21 33.82 53.25 229.53 1133.88

β̂ FR2 0.59 0.67 0.76 0.79 0.88 1
IVAR (ˆ10´4) 1.01 9.73 49.60 75.70 337.49 1133.88
IBS (ˆ10´5) 7.29 10.42 2.00 0.82 0.31 0

Notes: Presented are the FR2 and IVAR of β̂˚ based on our functional regression, and the FR2, IVR and
IBS of β̂ obtained from the conventional regression, both with various choices of the number m of regressors.

of the two estimators. First, we define

ρ2
“

řn
i“1

›

›Πmfi
›

›

2

řn
i“1 }fi}

2
“

trace
`

ΠmQΠm

˘

traceQ
, (27)

and denote by ρ2
˚ the corresponding value obtained with Π˚m in place of Πm. For each m, ρ2

and ρ2
˚ represent the proportions of the total variation of pfiq explained by

`

Πmfi
˘

and
`

Π˚mfi
˘

in the conventional regression and our functional regression, respectively, which will be re-

ferred to as the functional R-square (FR2) of β̂ and β̂˚. Note that trace pΠ˚mQΠ˚mq “
řm
j“1 λ

˚
j

and trace pQq “
řn
j“1 λ

˚
j , where pλ˚j q

n
j“1 are the eigenvalues of Q defined in descending order.

As a result, ρ2
˚ in our functional regression increases monotonically and approaches unity as

m gets large. This is not necessarily true for ρ2 in the conventional regression, although we

expect that it also normally increases with m and approaches one.36

As shown in Table 4, the FR2 of β̂, as well as the FR2 of β̂˚, increases up to unity as m

approaches 20, although the latter has a slightly faster rate of convergence. It is worth noting

that the leading basis, which yields the temporal means of parental incomes over the entire

range of children’s age not only in the conventional regression but also in our functional

regression, alone has already contributed around 60% to FR2. The marginal increase in FR2

is relatively much smaller for m ě 2. This means that we need to increase m as much as we

can to get information on the differing effects of parental income at different ages of their

children. Of course, we may increase the FR2s of both β̂ and β̂˚ simply by setting m large

both in our functional regression and in the conventional regression. However, this comes at

a cost. As m gets large, the IVAR of an estimator for the functional regression coefficient

β increases, due to the so-called ill-posed inverse problem in functional regressions. The

36The basis pvjq
m
j“1 for the conventional regression are defined differently for different m’s and should be

denoted as pvmjq
m
j“1 to be more precise, although throughout we have suppressed their dependence on m for

notational brevity.
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problem can be fatal if the total variation of pfiq is explained by only a few dominant factors

and we set m larger than the number of those dominant factors.

For the data we analyze, this problem can be seen. The IVARs of β̂ and β̂˚ increase each

sharply as m gets large. The marginal cost of increasing FR2 by setting m large is therefore

high. This is the reason why the choice of basis is critical. As mentioned earlier, we set m “ 3

as selected by the cross-validation in our empirical study reported in the next section, and

with this choice of m “ 3, the FR2 of our functional regression is 77%. To achieve the same

level of FR2 in the conventional regression, we need to set m “ 4 or larger. Our functional

regression with m “ 3 is therefore largely comparable with the conventional regression with

m “ 4 in the FR2 sense. However, as shown in Table 4, β̂ in the conventional regression has

IVAR which is about three times larger than that of β̂˚ in our functional regression. Our

functional regression is therefore by far more efficient than the conventional regression.

Last, we also consider the integrated bias squared (IBS) of β̂ to see how large the bias

could be. As noted, β̂˚ is unbiased and it has no bias term. The IBS of β̂ depends on the

unknown functional parameter β and we use as a proxy our functional regression estimator

β̂˚ with m “ 3. The magnitude of the IBS of β̂ appears to be substantial when m is set to

be too small. The IBS is substantially bigger than the IVAR for m “ 1, and the IBS is still

much larger than the half of the IVAR for m “ 2. It becomes, however, unimportant and

negligible for m bigger than 4, at least relative to the IVAR.
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B Comparisons with Approaches Using Trigonometric

or B-Spline Basis Functions

In our empirical analyses, we either regard functions observed only at discrete set of points

simply as functions defined only at those discrete points or use Daubechies 3 tap wavelets

to convert them as functions defined continuously, and then use the functional principal

component basis to approximate and represent them as finite-dimensional vectors. This is

to minimize the potential distortions made by arbitrarily choosing a basis to define, approx-

imate and represent functional variables, which has a critical impact on the finite sample

performance of the estimators of parameters in functional models.

In this section, we consider using trigonometric and B-spline functions as basis to de-

fine, approximate, and represent functional variables, which are most commonly used in the

functional data analysis. We mainly consider the use of these functions as a basis for the

representation of our functional covariate as a finite-dimensional vector. In particular, we

compare their effectiveness in representing cross-sectional variations of the functional covari-

ate, and MSEs of the resulting estimators of the functional coefficient. These basis functions

are also used to define functions continuously from observations made at discrete points,

for which we use Daubechies 3 tap wavelets. However, the choice of functions used in this

smoothing context is not important and yields only marginal effects. Their comparison is

therefore not reported in the paper. See Ramsay and Silverman (2005).

For the trigonometric basis, we add constant and linear functions to more effectively

represent our functional data, some of which exhibit strong trends over age. The basis will

be referred to as the flexible Fourier basis. The first and second basis functions are given by

constant and linear functions, respectively, which are followed by cosine and sine functions.

The B-spline basis is defined specifically by an order k and a knot sequence pr0, . . . , r`q. We

set k “ m and choose no interior point for 1 ď m ď 4, and set k “ 4 and choose m ´ k

interior points for m ě 5. For our comparison, we consider the estimators of functional

coefficient β in our benchmark functional regression model (1) relying on the flexible Fourier

basis and B-spline basis, and compare them with our estimate relying in particular on the

functional principal component basis.

Our results are summarized in Table 5, where we present the FR2, IVAR, IBS, and

LOOCV errors for each choice of basis, as well as the number m of basis functions used. Here

we report the results obtained from the functional regression with observed parental income

trajectories. For each m, all the results are largely comparable, and there are no meaningful

differences among three approaches although the approach used in the paper yields slightly

better results generally in all aspects. What makes our approach distinguishable from the
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Table 5: Comparisons of Functional Coefficient Estimators with Observed Parental Income
Trajectories

FPCA 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.61 0.70 0.77 0.80 0.83 0.86 0.88 0.90 0.92 0.93
IVAR (ˆ10´3) 0.10 0.76 1.72 3.38 5.32 7.56 10.33 13.64 17.87 22.95

LOOCV 0.4515 0.4479 0.4444 0.4452 0.4459 0.4468 0.4464 0.4461 0.4460 0.4471

B-Spline 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.59 0.70 0.76 0.79 0.82 0.85 0.87 0.88 0.90 0.91
IVAR (ˆ10´3) 0.10 0.80 1.82 3.73 5.90 8.78 11.64 15.72 20.03 25.58
IBS (ˆ10´6) 53.90 1.64 0.13 0.26 0.71 0.79 0.19 0.12 0.11 0.13

LOOCV 0.4445 0.4449 0.4459 0.4461 0.4465 0.4469 0.4438 0.4449 0.4460 0.4468

Flexible Fourier 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.59 0.70 0.75 0.79 0.82 0.84 0.86 0.88 0.89 0.90
IVAR (ˆ10´3) 0.10 0.80 1.89 3.79 6.12 8.93 12.51 16.97 21.88 27.19
IBS (ˆ10´6) 53.90 1.64 0.89 2.11 1.31 3.92 3.28 3.69 3.14 2.44

LOOCV 0.4445 0.4449 0.4460 0.4460 0.4472 0.4483 0.4471 0.4482 0.4484 0.4492

Notes: Presented are the FR2, IVAR and IBS of the functional coefficient estimators and the LOOCV errors
obtained from employing the flexible Fourier basis and B-spline basis, which are compared with those of our
estimator, for various choices of m. The observed parental income trajectories are used.

other two is the leave-one-out cross-validation result it provides. As discussed, our approach

yields a very well defined LOOCV error function, which is minimized uniquely at m “ 3.

On the other hand, the use of the flexible Fourier or B-spline basis does not produce such

a nicely defined LOOCV error function. The former finds m “ 1, which completely ignores

age heterogeneity with unacceptably large bias. The latter finds m “ 7, which yields a

functional coefficient estimator having about seven times larger variance than our estimator

with no meaningful age heterogeneity pattern.

The same comparison is made for the functional regression run by the extracted per-

manent parental income trajectories, in place of the observed parental income trajectories,

and the results are summarized in Table 6. As in the functional regression estimated using

the observed parental income trajectories, the differences in the FR2, IVAR and IBS of the

functional coefficient estimators are small and do not appear to be important for each m,

although the use of the functional principal component basis generally provides a better

estimator. However, the leave-one-out cross-validation procedure finds quite different values

of m if the flexible Fourier or B-spline basis is used in this case, while our approach selects

the same value of m, i.e., m “ 3 as in the previous case. Our approach seems rather robust

in this regard. The flexible Fourier basis and B-spline basis yield m “ 5 and m “ 4, respec-

tively, which seem more appropriate than before and the estimated functional coefficients

with these values of m produce more sensible functional coefficient estimators. However, the

estimators are neither stable nor reliable, given their large variances.
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Table 6: Comparisons of Functional Coefficient Estimators with Extracted Permanent
Parental Income Trajectories

FPCA 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.65 0.76 0.83 0.87 0.90 0.92 0.93 0.95 0.96 0.97
IVAR (ˆ10´3) 0.10 0.68 1.71 3.37 5.79 8.75 12.94 18.20 24.51 31.18

LOOCV 0.4492 0.4487 0.4432 0.4438 0.4433 0.4435 0.4446 0.4438 0.4451 0.4460

B-Spline 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.63 0.74 0.81 0.85 0.88 0.91 0.93 0.94 0.95 0.96
IVAR (ˆ10´3) 0.11 0.82 1.96 4.22 6.94 10.34 14.51 20.17 27.13 35.39
IBS (ˆ10´6) 59.80 27.22 6.90 0.97 4.82 0.25 0.13 0.22 0.17 0.10

LOOCV 0.4449 0.4443 0.4454 0.4419 0.4431 0.4442 0.4428 0.4442 0.4454 0.4469

Flexible Fourier 1 basis 2 basis 3 basis 4 basis 5 basis 6 basis 7 basis 8 basis 9 basis 10 basis

FR2 0.63 0.74 0.80 0.84 0.87 0.90 0.91 0.93 0.94 0.96
IVAR (ˆ10´3) 0.11 0.82 2.21 4.10 7.19 9.80 15.55 20.15 28.12 34.60
IBS (ˆ10´6) 59.80 27.22 23.56 14.13 12.99 7.50 7.63 1.92 1.78 0.15

LOOCV 0.4449 0.4443 0.4456 0.4423 0.4420 0.4431 0.4445 0.4451 0.4465 0.4463

Notes: Presented are the FR2, IVAR and IBS of the functional coefficient estimators and the LOOCV errors
obtained from employing the flexible Fourier basis and B-spline basis, which are compared with those of our
estimator, for various choices of m. The permanent parental income trajectories are extracted and used.

C Derivations of Econometric Results in Section 2.3

Let p¨q and p¨q˚ be defined as in Section 2.2 by the isometries π : Hm Ñ Rm and π˚ :

H˚
m Ñ Rm, respectively, where Hm is the subspace of H spanned by pvjq

m
j“1 and H˚

m is

the subspace of H spanned by pv˚j q
m
j“1. It follows that πpfq “ pf q and π˚pfq “ pf q˚ for

f P Hm and f P H˚
m, respectively, and conversely, for c “ pc1, . . . , cmq

1 P Rm, we have

π´1pcq “
řm
j“1 cjvj and π˚´1pcq “

řm
j“1 cjv

˚
j . Moreover, we also use π and π˚ to denote

one-to-one correspondences in the vector space of linear operators on Hm and H˚
m with the

vector space of m ˆm matrices, respectively. They also become isometries if we introduce

suitable norms in these spaces. For linear operators A on Hm and A˚ on H˚
m, we define

πpAq “ pAq and π˚pA˚q “ pAq˚ to be mˆm matrices such that

pAf q “ pAqpf q and pAf q˚ “ pAq˚pf q˚

for all f P Hm or f P H˚
m, respectively. It is easy to show that, for an m-dimensional square

matrix C “ pcjkq, we have

π´1
pCq “

m
ÿ

j,k“1

cjkpvj b vkq and π˚´1
pCq “

m
ÿ

j,k“1

cjkpv
˚
j b v

˚
kq.

The reader is referred to Chang et al. (2021) for more details.
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Note that

pβ̂q “

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqyi

¸

“ pβq`

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqxβ, p1´ Πmqfiy

¸

`

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqεi

¸

and

pβ̂q˚ “

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1˜ n
ÿ

i“1

pfiq
˚yi

¸

“ pβq˚ `

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1˜ n
ÿ

i“1

pfiq
˚εi

¸

,

and that

β̂ “ π´1
`

pβ̂q
˘

and β̂˚ “ π˚´1
`

pβ̂q˚
˘

.

Therefore, we have

›

›β̂ ´ Eβ̂
›

› “
›

›pβ̂q´ Epβ̂q
›

› “

›

›

›

›

›

›

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqεi

¸

›

›

›

›

›

›

›

›Eβ̂ ´ β̄
›

› “
›

›Epβ̂q´ pβq
›

› “

›

›

›

›

›

›

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqxβ, p1´ Πmqfiy

¸

›

›

›

›

›

›

,

and

›

›β̂˚ ´ β̄˚
›

› “
›

›pβ̂q˚ ´ pβq˚
›

› “

›

›

›

›

›

›

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1˜ n
ÿ

i“1

pfiq
˚εi

¸

›

›

›

›

›

›

,

since π is an isometry.

However, we have

E

›

›

›

›

›

›

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqεi

¸

›

›

›

›

›

›

2

“ σ2 trace

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1

E

›

›

›

›

›

›

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1˜ n
ÿ

i“1

pfiq
˚εi

¸

›

›

›

›

›

›

2

“ σ2 trace

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1
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and

π´1

¨

˝

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1
˛

‚“

˜

n
ÿ

i“1

`

Πmfi b Πmfi
˘

¸`

“ pΠmQΠmq
`

π˚´1

¨

˝

˜

n
ÿ

i“1

pfiq
˚pfiq

˚1

¸´1
˛

‚“

˜

n
ÿ

i“1

`

Π˚mfi b Π˚mfi
˘

¸`

“ pΠ˚mQΠ˚mq
`.

Moreover, we have

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqxβ, p1´ Πmqfiy

¸

“

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqxβ, fiy

¸

´ pβq

and

π1

¨

˝

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1˜ n
ÿ

i“1

pfiqxβ, fiy

¸

˛

‚“ π´1

¨

˝

˜

n
ÿ

i“1

pfiqpfiq
1

¸´1
˛

‚π´1

˜

n
ÿ

i“1

pfiqxβ, fiy

¸

with

π´1

˜

n
ÿ

i“1

pfiqxβ, fiy

¸

“

m
ÿ

j“1

˜

n
ÿ

i“1

xvj, fiyxβ, fiy

¸

vj “
m
ÿ

j“1

@

vj, Qβ
D

vj “ ΠmQβ

and π´1
`

pβq
˘

“ Πmβ, from which it follows that

Eβ̂ ´ β̄ “ pΠmQΠmq
`ΠmQp1´ Πmqβ,

as was to be shown.
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D Additional Figure

Figure 17: Parental Income Trajectories and Permanent/Transitory Component

(a) Parental Income Trajectories
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(b) Permanent Component of Parental Income Trajectories
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(c) Transitory Component of Parental Income Trajectories
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Notes: This figure presents parental income trajectories (top panel) and the extracted permanent component
(middle panel) and transitory component (bottom) of trajectories. The solid line in each panel presents the
mean of parental income (or its component) at each child’s age. The dashed lines above and below the solid
line indicate the 90th and the 10th percentiles, respectively.
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