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A B S T R A C T

We propose a novel approach to measure and analyze the short-run effect of temperature on monthly
sectoral electricity demand. This effect is specified as a function of the density of temperatures observed
at a high frequency with a functional coefficient, in contrast to conventional methods using a function of
monthly heating and cooling degree days. Our approach also allows non-climate variables to influence the
short-run demand response to temperature changes. Our methodology is demonstrated using Korean elec-
tricity demand data for residential and commercial sectors. In the residential sector, we do not find evidence
that the non-climate variables affect the demand response to temperature. In contrast, we show conclusive
evidence that the non-climate variables influence the demand response in the commercial sector. In par-
ticular, commercial consumers are less responsive to cold temperatures when controlling for the electricity
price relative to city gas. They are more responsive to the price when temperatures are cold. The estimated
effect of the time trend suggests that seasonality of commercial demand has increased in the winter but
decreased in the summer.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In households and firms in modern economies, electricity is one
of the most essential goods consumed. It is certainly no surprise that
there is an extensive literature that seeks to explain the variability
of electricity demand across markets or in a given market over time.
There is a long tradition in this literature, going back at least to Engle
et al. (1989), of modeling the long-run and short-run effects of eco-
nomic covariates, such as price and income, using an error-correction
model. See also Silk and Joutz (1997) and Beenstock et al. (1999),
inter alia.

Because of the obvious effects of temperature on the demand
for electricity in heating and cooling, these studies typically
employ some temperature-based metric to control for short-run
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temperature-induced fluctuations in demand, which occur at
seasonal and higher frequencies. Controlling instead for long-run
influences on electricity demand, we focus on modeling these short-
run (SR) demand fluctuations, which we may think of as the SR
component of electricity demand. We may view the response of the
SR demand component to temperature as a temperature response
function (TRF).1

In modeling temperature effects, researchers have long recog-
nized the inadequacy of temporally aggregated measures of temper-
ature, such as a monthly average. A linear TRF based on a monthly
average temperature suffers from at least two major well-known
deficiencies: linearity fails to capture increased demand at both very
high and very low temperatures, and the average over a month may
not adequately reflect usage during periods of temperature extremes
in a given month.

1 Our approach does not explicitly model a demand response from temperature
fluctuations at periodicities longer than seasonal, because we do not differentiate
between the distribution of temperatures in January of one year from that in January
of another year.
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The standard method for handling these deficiencies has been to
employ heating degree days (HDD) and cooling degree days (CDD),
which measure the number of degrees that the daily average
temperatures in a given period – say, a month – fall below (for HDD)
or rise above (for CDD) a threshold value, usually 18◦C or 65◦F (see,
e.g., Gupta and Yamada, 1972; Al-Zayer and Al-Ibrahim, 1996; Sailor
and Muñoz, 1997; Fan and Hyndman, 2011). Using these metrics in
an otherwise linear model replaces a linear TRF with a piecewise
linear TRF with a break point at the threshold temperature, address-
ing the first deficiency, while indirectly employing intra-monthly
data (daily averages), addressing the second deficiency.

Of course, piecewise linearity of the TRF and an arbitrary spec-
ification of the threshold may still be inadequate, and there are a
number of studies aimed at improving the functional form by way
of more sophisticated nonlinear parametric methods or even non-
parametric methods, including Engle et al. (1986), Filippini (1995),
Pagá and Gürer (1996), Henley and Peirson (1998), Valor et al. (2001),
Pardo et al. (2002), and Moral-Carcedo and Vicéns-Otero (2005).

The second deficiency, using a temporal aggregate, seems to have
received less attention. Perhaps the indirect use of daily data by
way of the HDD and CDD (H/CDD) metrics is viewed as adequate to
capture intra-monthly fluctuations, and perhaps the lack of econo-
metric methods to deal with data observed at different sampling
frequencies has been an obstacle to using intra-monthly tempera-
ture data. Nonetheless, the fact that temporal aggregation may have
a deleterious effect on inference is well known.

Two examples illustrate the inadequacy of using H/CDD data.
First, suppose that two months have the same number of CDDs
(20), but that one has 20 days on which the average temperature is
19◦C with the remaining days at or below 18◦C, but the other has one
day on which the average temperature is 38◦C but with the remain-
ing days at or below 18◦C. A deviation from the threshold of a single
degree would not likely increase electricity usage much if at all, while
a deviation of 20◦C would very likely induce a massive increase in
cooling. Introducing piecewise linearity into the TRF by way of CDDs
cannot adequately capture this difference, because the number of
CDDs is the same in both months.

As a second example, suppose that temperature fluctuations
within a day are substantial, as may be the case in continental cli-
mates, such as the Midwestern US. On a given day, the average may
show 18◦C, while the fluctuation over the course of that day may be
±8◦C.2 Monthly measures of HDD and CDD would not count that day,
even though automated thermostats may switch on the heat, the air
conditioning, or even both during the course of that day.

There is a third – perhaps more subtle – deficiency of standard
temperature response functions. A TRF based only on temperature
does not take into account economic or other non-climate covari-
ates, such as the price of electricity. The subtlety lies in the fact that
demand models typically do include these covariates. However, con-
trolling for short-run temperature fluctuations separately from these
covariates means that the impact of cold weather, for example, must
be the same regardless of the price of electricity. Since the price of
electricity relative to an alternate heating source, such as city gas,
may influence an economic agent’s use of electricity at a given cold
temperature, we should not expect the TRF to be stable as relevant
economic covariates evolve.

Further, the effect of price in such models must be the same
regardless of season. Nevertheless, if the electricity price is less
expensive relative to rival fuels, demand for electricity in heating
may increase during the winter time, even though the effect of

2 According to the US National Weather Service, http://www.srh.noaa.gov/ama/?
n=50ranges, accessed October 10, 2014, average fluctuations of 30 ◦ F (16.68 ◦C,
or roughly ±8 ◦C) are common for some parts of the Midwest (High Plains region)
in March.

changes in price may be negligible during the spring and summer
time when there is little demand for heating. Fan and Hyndman
(2011) find differences in price elasticities between winter and
summer.

In related research (Chang et al., 2014) focusing on time-varying
coefficients in an error-correction model, we employ a semiparamet-
ric functional coefficient approach to the temperature response func-
tion that maps hourly and geographically disaggregated temperature
observations onto a monthly measure of the seasonal component
of electricity demand. This mixed sampling frequency functional
coefficient approach easily addresses the first two deficiencies of
the standard H/CDD approach mentioned above: the semiparamet-
ric specification allows for nonlinearity in the spirit of Engle et al.
(1986), inter alia, while the functional coefficient explicitly utilizes
intra-monthly temperature data.

In this paper, we focus only on the SR component of demand,
and our main aim is to address the third deficiency in addition to
the first two. In place of a TRF, we introduce a new concept: the
cross-temperature response function (CTRF). The CTRF employs eco-
nomic covariates directly in the component temperature response
functions, both allowing the seasonal demand component to respond
to non-climate variables and allowing the effects of non-climate
variables to affect the response of the SR component of demand to
temperature.

We decompose the effect of temperature on the SR component
of electricity demand into three different components: a pure tem-
perature effect, a price–temperature effect, and a time–temperature
effect. We investigate the effect of temperature conditional on price
and other factors proxied by time, so that the pure temperature effect
can be identified.

We apply our model to Korean residential and commercial elec-
tricity demand, finding that non-climate variables have particularly
substantial effects on changes in the temperature response function
of the commercial sector.

The rest of the paper is organized as follows. In the next section,
we introduce the TRF and CTRF, novel measures of seasonality using
the entire intra-monthly temperature distribution for each month,
and we show how they generalize extant measures of seasonal-
ity, average temperature and H/CDD data. We discuss data for our
application to Korean electricity demand in Section 3 and our estima-
tion results in Section 4. Section 5 concludes. An appendix contains
some technical details of the derivations of the regression models in
Section 2.

2. Measurement of the temperature effect

2.1. Temperature response function

The temperature response function was used by subsets of the
present authors in previous work (Chang and Martinez-Chombo,
2003, and Chang et al., 2014). Because this concept is critical in devel-
oping our analysis, we provide here all of the details for the reader’s
convenience and in fact a more extensive discussion that super-
sedes the discussions of the temperature response function in those
papers.

Consider a hypothetical measure y of the SR component of elec-
tricity demand. Such a SR measure abstracts from demand changes
directly due to slowly evolving economic covariates, such as long-run
income changes. We will refer to this component of demand simply
as the SR component. Our main purpose is to estimate the mean of y
conditional on temperature and economic covariates that may fluc-
tuate frequently. Setting aside the possibility of economic covariates
for now, we define the temperature response function (TRF) g to be
a possibly nonlinear function that maps the temperature distribu-
tion (a distribution of stock variables observed over some period of

http://www.srh.noaa.gov/ama/?n=50ranges
http://www.srh.noaa.gov/ama/?n=50ranges
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time) to a response of the SR component of demand (a flow variable
measured over the same period of time).

Realistically, the measure of the SR component of electricity
demand from a given economic sector is available only monthly, and
we denote it by yt for t = 1, . . . , T.3 The short run component can be
constructed from monthly billing cycle data as described by Chang et
al. (2014) . It is the observed seasonality of monthly demand, which
we define to be the deviation of standardized monthly demand from
its 12-month moving averages.4 Letting ft denote the density of
temperature observations in month t, an estimator for the condi-
tional mean of yt given ft is given by

tt =
∫

ft(r)g(r)dr, (1)

where r is a dummy of integration, but we may think of r as
representing intra-monthly temperature observations, and we are
integrating over all temperatures in month t.

More formally, we may write g(r0) =
∫
dr0 (r)g(r)dr, where dr0

is the dirac delta function at r0 — i.e., the function that has a spike
at a point r0 and integrates to 1. We may interpret the value of
function g at r0 as the temperature effect on the SR component of
electricity demand when the temperature distribution is hypotheti-
cally concentrated at r0 — i.e., when the temperature density is given
by dr0 .

Note that tt captures both the inherent nonlinearity in the rela-
tionship by way of g and the available intra-monthly data by way of
the functional approach. For a given TRF g, the relationship between
the density f and temperature effect t is linear, i.e., if the tempera-
ture densities f1 and f2 yield temperature effects t1 and t2, then the
temperature effect of c1f1 + c2f2 becomes c1t1 + c2t2 for any con-
stants c1 and c2. In this context, we may simply regard the TRF g as a
functional coefficient of temperature density.

Suppose instead that we aggregate the temperature data into a
single average temperature datum for month t, and then rely on a
nonlinear function h to estimate the temperature effect. The average
temperature in a given month is

∫
rft(r)dr, so that single-frequency

parametric or nonparametric methods discussed in this literature
could be used with h (

∫
rft(r)dr) to estimate h. However, h is not the

TRF — it does not estimate the response to temperature as g does,
unless g and h are both (unrealistically) linear. Rather, h estimates
the aggregate response to the average monthly temperature, and a
temperature measurement of, say, 18◦C means that demand must
respond as if the temperature were constant at 18◦C for the whole
month.

Using H/CDD data in place of a monthly average improves the
situation. These measures may be written as

HDDt =
∫

hH

(∫
rft(r)dr

)
ds and CDDt =

∫
hC

(∫
rft(r)dr

)
ds

(2)

3 Hourly data are available for gross generation. Hourly data are also available for
sectoral sales by automated meter reading, but these data constitute less than 5% of
total sales in Korea. In order to use hourly data, we would either have to pool models
of very different demand responses across sectors by using gross generation or else
rely on a very small subsample to make inferences about the whole market. Not only
does the demand function differ across sectors, but the pricing scheme also differs
across sectors. In Korea, for example, the residential sector has a progressive pricing
rate, whereas the commercial and industrial sectors have fixed rates. Monthly is an
observation frequency that allows differentiation between demand responses in dif-
ferent sectors, is high enough to capture short-run demand fluctuations (especially
seasonality), and is quite commonly used in the literature.

4 Section 3 contains additional details of the available data that we employ. We
construct the standardized monthly demand by considering workday equivalents
to control the calendar effects and 21 different billing cycles of the sectoral elec-
tricity demands in Korea. A detailed explanation of the standardization is given in
Sections 3.2 and 3.3 of Chang et al. (2014).

where hH and hC are functions defined as hH(z) = max(18 − z, 0) and
hC(z) = max(z − 18, 0) with the commonly used threshold tempera-
ture of 18◦C, and where the integral across r denotes a daily average
of intra-daily temperatures, while the integral across s denotes a
monthly sum of daily hH and hC. H/CDD data are often used directly,
or else h(HDDt, CDDt) may be estimated. Because hH and hC are piece-
wise linear functions, it is possible to write tt as b1HDDt +b2CDDt for
constants b1 and b2 (linear h) for a piecewise linear V-shaped g. The
coefficients c1 and c2 allow the desirable asymmetry of the V shape
often discussed in the literature.

Both of the preceding examples, monthly average and H/CDD,
are very special cases. The efforts to move away from linear func-
tions h and/or g in favor of smooth functions – U-shaped instead
of V-shaped – without a fixed threshold temperature clearly under-
mine the use of a monthly average and even undermine the use of a
smooth nonlinear function of H/CDD data.

Using intra-monthly temperature data allows us to estimate
Eq. (1) directly, more precisely estimating the response of monthly
sectoral demand to the actual temperatures observed within a given
month than can be done with a monthly measure of temperature.5

Temporal aggregation tends to smooth variations in the data, so that
high-frequency temperature data preserve variations that we cannot
observe in the monthly or daily averages in the preceding examples.
As a result, we can estimate g at temperatures more extreme than
the minimum and maximum monthly or daily average, and hourly
data provide roughly 24 × 30 = 720 times as many temperature
observations as monthly.

To estimate the TRF g, we set

yt = tt + et =
∫

ft(r)g(r)dr + et , (3)

where et is a mean-zero error term independent of ft for t = 1, . . . , T.
We approximate the TRF g by a flexible Fourier functional (FFF)
form, which decomposes the function g as a linear combination of a
polynomial and pairs of trigonometric functions.6

For our subsequent analysis, we normalize the temperature so
that the temperature densities (ft) (and also the TRF g correspond-
ingly) are defined on the unit interval [0, 1]. Though not absolutely
necessary, the normalization will greatly simplify our presentation
below. If the raw temperature r is observed in an interval given by
[a, b] for some constants a and b, the required normalization may be
done by setting s = (r − a)/(b − a) and making a change of variables
from r to s. For our empirical analysis, we use a = −20 and b = 40
in degrees Celsius, because all of the temperatures in our data lie
between −20◦C and 40◦C.

To be more explicit, we momentarily denote the densities for raw
and normalized temperatures respectively by

(
f R
t

)
and

(
f N
t

)
, and the

corresponding TRFs respectively by gR and gN. If the raw tempera-
ture density f R

t is given, then we may easily obtain the corresponding
density for normalized temperature as f N

t (s) = (b − a)f R
t (a + (b − a)s)

by the change of variables formula for each t = 1, . . . , T. On the other
hand, once we obtain the TRF gN corresponding to

(
f N
t

)
from our sub-

sequent analysis, we may easily find the TRF gR corresponding to(
f R
t

)
by gR(r) = gN((r − a)/(b − a)). Clearly, the temperature effects

(tt) defined in Eq. (1) are not affected by our normalization here. In
what follows, we will simply denote the normalized densities and

5 If intra-monthly sales data for a given market were also available, we could
model high-frequency demand features, such as time-of-day effects, that monthly
data cannot easily explain.

6 The FFF form (Gallant, 1981) is well known in semiparametric economic analysis,
and has been used in the energy literature — e.g., by Serletis and Shahmoradi (2008)
to model interfuel substitution in a full energy demand system for the US, by Park and
Zhao (2010) to model gasoline demand, and more specifically by Chang et al. (2014)
for electricity demand.
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the normalized TRF simply by ft(s) and g(s) instead of ft(r) and g(r) for
t = 1, . . . , T. This notational convention should cause no confusion.

Under our normalization, the TRF g is defined on the unit interval
[0, 1] and therefore it can be approximated as

g(s) �
p∑

i=0

cis
i +

q∑
j=1

[
c1j cos(2pjs) + c2j sin(2pjs)

]
, (4)

where ci, c1j and c2j are unknown coefficients and p and q are
the orders of the polynomial and trigonometric terms in our
approximation.7 By substituting Eq. (4) into Eq. (3) (see the appendix
for additional details), we derive the regression model

yt =
p∑

i=0

cixit +
q∑

j=1

[
c1jx1jt + c2jx2jt

]
+ e

pq
t , (5)

where xit =
∫

sift(s)ds, x1jt =
∫

cos(2pjs)ft(s)ds, x2jt =
∫

sin(2pjs)
ft(s)ds, and e

pq
t differs from et by an approximation error that van-

ishes as p, q → ∞. Practical determination of p and q is discussed
below. We refer to the regression model in Eq. (5) as the TRF model.

We may estimate the regression in Eq. (5) by the conventional
least squares method. Of course, the regressors xit, i = 1, . . . , p,
and x1jt and x2jt, j = 1, . . . , q, are not directly observable. However,
they can easily be computed numerically, once we obtain estimates
f̂t of the temperature densities ft for t = 1, . . . , T, which may be
accomplished by the usual nonparametric kernel method (e.g., Li
and Racine, 2007) using intra-monthly (e.g., hourly) temperature
observations collected in each month t.

The TRF g can then be estimated from the least squares estimates
ĉi, ĉ1j and ĉ2j of the regression coefficients ci, c1j and c2j in Eq. (5) for
i = 0, . . . , p and j = 1, . . . , q as

ĝ(s) =
p∑

i=0

ĉis
i +

q∑
j=1

[
ĉ1j cos(2pjs) + ĉ2j sin(2pjs)

]
(6)

using the approximation of g in Eq. (4).

2.2. Cross-temperature response function

Naturally, we may expect that non-climate variables (economic
covariates), such as energy price, preference, technology, and policy,
affect not only energy demand but also the temperature effect on
demand. These variables change over time.

We can modify the TRF accordingly by letting it vary over time,
more generally modeling it as

gt(s) =
m∑

k=0

wk
t gk(s), (7)

where, by setting w0
t ≡ 1, g0 signifies the time-invariant component

of the TRF,and gk denotes the TRF measuring the temperature-
dependent effect of covariate wk

t on electricity demand for k =
1, . . . , m. We refer to g0 as the base TRF and to gk as the TRF with
respect to wk

t . More specifically, in our application using time and
relative electricity prices, we refer to these as the time TRF and price
TRF respectively. In general, we refer to gt(s) as the cross-temperature
response function (CTRF).

7 We may approximate the raw TRF g using the trigonometric pairs with frequencies
2pj/(b − a) for j = 1, 2, . . ., in place of those with frequencies 2pj for j = 1, 2, . . . used
to approximate the normalized TRF g in Eq. (4).

With the CTRF in Eq. (7), the total temperature effect becomes
∫

ft(s)gt(s)ds =
m∑

k=0

wk
t

∫
ft(s)gk(s)ds. (8)

In particular, if we set ft = ds0 , where as before ds0 denotes
the dirac-delta function at s0, then we have

∫
ds0 (s)gt(s)ds =∑m

k=0 wk
t gk(s0), which shows the effect of a spike at temperature s0

on energy demand. The corresponding temperature effect is there-
fore given by a linear function of the covariates wk

t with coefficients
given by gk(s0) and an intercept of g0(s0). Note that the intercept and
coefficients are functions of temperature.

By approximating the TRF gk similarly to Eq. (4) (see the appendix
for more details), we may construct a regression given by

yt =
m∑

k=0

pk∑
i=0

ck
i xk

it +
m∑

k=0

qk∑
j=1

[
ck

1jx
k
1jt + ck

2jx
k
2jt

]
+ e

pkqk
t , (9)

where xk
it = wk

t

∫
sift(s)ds, xk

1jt = wk
t

∫
ft(s) cos(2pjs)ds, and xk

2jt =
wk

t

∫
ft(s) sin(2pjs)ds, similarly to the TRF model in Eq. (5). We refer to

the regression model in Eq. (9) as the CTRF model.
As with the TRF model in Eq. (5), the CTRF model in Eq. (9) can be

estimated by least squares, given orders pk and qk of the polynomial
and trigonometric terms in the TRF with respect to the k-th covariate
for k = 0, . . . , m and given estimates of the temperature densities ft
for t = 1, . . . , T.

Once we fit the regression in Eq. (9), the TRF with respect to each
covariate is readily estimated. Specifically, if we denote the resulting
least squares estimates by ĉk

i , ĉk
1j and ĉk

2j for k = 0, . . . , m, i = 0, . . . , pk
and j = 1, . . . , qk, then we may use

ĝk(s) =
pk∑

i=0

ĉk
i si +

qk∑
j=1

[
ĉk

1j cos(2pjs) + ĉk
2j sin(2pjs)

]
(10)

for k = 0, . . . , m to estimate the TRF gk with respect to the k-th
covariate in Eq. (6).

We may set the support of some TRF to be a proper subset of the
unit interval [0, 1]. In fact, there is a good reason to restrict the sup-
port of the price TRF. The reason is that gas is used extensively in
heating but not as much in cooling. Therefore, we do not expect the
SR component of electricity demand to respond to the price of elec-
tricity relative to gas at temperatures warmer than some threshold r̄.
This implies that the normalized TRF has support contained in [0, s̄]
with s̄ = (r̄ − a)/(b − a) < 1. With this restriction in place, we may
estimate the price TRF using the terms
(

s
s̄

)i

1
{
0 ≤ s ≤ s̄

}
and

(
cos

(
2pj

s̄
s
)

1
{
0 ≤ s ≤ s̄

}
,

sin
(

2pj
s̄

s
)

1
{
0 ≤ s ≤ s̄

})
, (11)

instead of si and (cos(2pjs), sin(2pjs)), where 1
{
0 ≤ s ≤ s̄

}
denote the

indicator function taking value 1 if 0 ≤ s ≤ s̄ and 0 otherwise.

3. Data

Our temperature distribution and measure of the SR demand
component are identical to those used in our previous work (Chang
et al., 2014). We use distributions of hourly temperatures sampled
from 5 geographically distributed cities in Korea. Because demand
data are available only in 21 overlapping billing cycles, rather than
monthly, the monthly national temperature density is given by
ft(s) =

∑5
a=1

∑21
b=1 watwbfabt (s), where wat and wb are weights

assigned to each city and each billing cycle, and fabt (s) is the density
for each city a in each billing cycle b ending in month t.



210 Y. Chang et al. / Energy Economics 60 (2016) 206–216

There are consequently 105 densities of hourly temperature
observations for each month in the sample. Issues relating to the use
of billing cycle data were discussed by Train et al. (1984), and our
geographic weighting of temperature data is similar to that of Moral–
Carcedo and Vicéns-Otero (2005) for Spain. However, our approach
using temperature distributions is quite a bit different from these
approaches.

We obtain Korean residential and commercial electricity sales
in megawatt hours (MWh) from Korea Electric Power Corporation
(KEPCO). The billing cycle issue naturally pertains to the construction
of our measure of SR component of electricity demand, and the
rather involved construction of this measure takes into account cal-
endar effects from high-frequency cycles in a workday and through-
out a week, but with different numbers of weeks and workdays in
each billing cycle and in each month. The problems of different loads
on such days in constructing demand measures have been addressed
by Pardo et al. (2002) and Moral-Carcedo and Vicéns-Otero (2005),
inter alia.

Once a monthly demand measure is constructed, we take natural
logs and subtract out the 12-month moving average of the series in
logs in order to eliminate any stochastic or deterministic trends and
thus isolate the SR component. Note that detrending the data in this
way accounts for any long-run effects, including those from price,
income, substitution, etc., so that we subsequently focus only on short-
run effects. The interested reader is referred to Chang et al. (2014) for
a more complete discussion of how these series were constructed.

Fig. 1 shows the resulting SR components of electricity demand
for the residential and commercial sectors. If the SR component was
created in such a way to be uncorrelated with the long-run trends
proxied by the 12-month moving average, we could interpret a unit
change in the SR component as an approximation to a percentage
change in monthly demand, because the demand measure is in logs.
Instead, we interpret a unit change to be an approximation to a per-
centage change in the SR component. The range of monthly demand
data in the figure does not exceed 0.3. However, we may predict
short-run changes in demand in excess of 30%, because we are esti-
mating the function g, which in contrast to h defined in the previous
section is invariant with respect to the time scale, and because we
use more volatile hourly temperature data to do so.

In our analysis of Korean electricity demand, we set w1
t ≡ t/T, so

that the first covariate is given by time. We include time as a proxy
for changes in preferences, technology, government energy policy,
among other latent variables, as many previous authors have done,
including Watts and Quiggin (1984), Jones (1994), Hunt et al. (2003),
and Halicioglu (2007).

We consider price to be an extremely important signal to which
consumers may respond, but the price of electricity in Korea is set
by the government and has not changed very much in over two
decades. The lack of variation makes it difficult to distinguish the
effect of price from a constant. Instead, we consider the real price of
electricity relative to a close substitute, city gas. An index of this rel-
ative price, which we denote by RPt, has changed substantially over
the sample period. The relative price is essentially just a measure of
the real price of electricity, but with a numeraire given by city gas
instead of Korean Won. Because the ease of switching to an alterna-
tive fuel source critically depends on the availability of infrastructure
to utilize the fuel source, we also consider the penetration rate PRt

of city gas. Using these series, we consider w2
t = PRt ln RPt in our

empirical application.8

8 We estimated several alternative specifications, but we do not report the results
because they did not increase explicative power over those reported. Specifically, we
estimated a less parsimonious model with w2

t = ln RPt and w3
t = PRt instead of w2

t =
PRt ln RPt . We also estimated models identical to those estimated below but (a) with
income growth as a covariate and (b) with electricity price instead of PRtlnRPt in the
price TRF.

Fig. 1. SR component of electricity demand in the Korean residential and commercial
sectors. Data constructed as deviations from a 12-month moving average of a measure
of monthly national sectoral electricity demand (Chang et al., 2014).

In Korea, city gas is the closest substitute for electricity, so these
variables are expected to play important roles in determining elec-
tricity demand. The functional form implies that if the price of
electricity relative to city gas increases by 1%, for instance, the effect
on electricity demand is given by the fraction of 1% equal to the pen-
etration rate. If penetration rate goes up, then there will be higher
substitutability in gas consumption (instead of electricity), so the
effect of the relative price of electricity on the SR component of
electricity demand should increase. However, because of the sub-
stitutability, the effect of cold temperatures on the SR component
should decrease with both penetration and electricity price.

We obtain electricity and city gas price indices from the Korean
Statistical Information Service (KOSIS) and relative price is con-
structed as the electricity price index divided by the gas price index.
The penetration rate of city gas is from the Korea City Gas Associa-
tion. These series are displayed in Fig. 2. City gas penetration relative
to electricity has increased dramatically over the sample period,
while the relative price of electricity has decreased dramatically.9

9 A referee astutely pointed out that if the increase and decrease were proportional,
the product could have insufficient variation to distinguish it from a constant (the base
TRF) or a linear trend (the time TRF). Fortunately, this is not the case, as evidenced by
the significance of the coefficients of the respective TRFs in the commercial sector.
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Fig. 2. Relative price of electricity (RP) and penetration rate of city gas (PR). RP is
constructed as electricity price index divided by gas price index from the Korean
Statistical Information Service (KOSIS). PR is from the Korea City Gas Association.

Gas cooling equipment is less efficient by 30–40% than electric
cooling equipment, so gas cooling systems are currently used only
for some public buildings to lower the summer peak of electricity
demand in Korea. Therefore, we do not model any substitutional
price effect in cooling demand.

Our final data set includes T = 276 monthly observations running
from 1991:01 to 2013:12, since penetration rate data are available
from 1991.

4. Estimation results

4.1. Residential temperature response function

We first analyze the temperature effect in residential electricity
demand in Korea using the TRF model. To determine the orders p and
q of the polynomial and trigonometric terms in our approximation of
the TRF g in Eq. (4), we use the cross-validation criterion suggested by
Burman et al. (1994) and choose p and q over the ranges of p ∈ {1, 2}
and q ∈ {0, 1}. The results suggest the choice of p = 2 and q = 1, i.e.,
the use of a second order polynomial with one pair of trigonometric
functions.

The least squares estimates for the regression coefficients are
reported in Table 1, and the corresponding estimate of the TRF is
presented in Fig. 3. The estimated TRF has a shape that we normally

Table 1
Estimation results for the residential sector TRF model compared to a linear model
using H/CDD. TRF estimates from least squares with robust standard errors on the
regression in Eq. (5) with temperature densities estimated using a normal kernel with
plug-in bandwidth.

H/CDD model TRF model

Est. t-Value Est. t-Value

Coeff. b1HDDt + b2CDDt g(s)

c0 −0.0701 −20.1 0.699 2.219
b1 0.0002 21.5
b2 0.0004 13.7
c1 −4.695 −2.776
c2 5.404 3.202
c11 −0.272 −2.370
c21 0.225 16.880
R2 0.479 0.825
R̄2 0.475 0.825

expect. It is U-shaped taking values that increase as the temperature
gets below or above a comfortable range. The temperature effects
caused by heating and cooling needs appear to be asymmetric, the
latter generating substantially more demand than the former.

As a comparison, we also show results in Table 1 from fitting a
simple model with just HDD, CDD, and a constant term. This imposes
a V-shape instead of a U-shape. We again observe asymmetry of the
magnitudes for heating and cooling, but the resulting fit of this model
(in terms of R2 and R̄2) is much weaker than that of the TRF model.

The estimate of the TRF can be useful in many different contexts.
First, the TRF itself provides some useful information on the inten-
sities of the heating and cooling energy demands. Because the TRF
measures the demand response to a distribution of temperatures,
we may interpret the value of the TRF at a specific temperature, say
28◦C, as the demand response if the temperature stays constant at
that temperature over some period (e.g., a month).

If we look at 18◦C, 23◦C, and 28◦C, the estimated values of the TRF
are −0.09, −0.05, and 0.10 respectively. A 5◦C increase in tempera-
ture from 18◦C to 23◦C increases (the SR component of) demand by
0.04, or 4%. However, an increase in the same magnitude from 23◦C
to 28◦C drives an increase in the SR component of demand of 15%. If
the temperature instead drops from 13◦C to 8◦C, the increase is only
6%.

These examples show both the asymmetry in the slopes and
the nonlinearity both above and below the threshold temperature.
Clearly, demand responses to otherwise equal temperature changes

Fig. 3. Estimated residential sector TRF model with 95% confidence bands. Con-
structed with the coefficient estimates in Table 1 and the TRF in Eq. (6). Confidence
bands are calculated according to Park (2010).
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depend on the current temperature in a more complicated way than
can be handled using H/CDD data.

The plotted TRF takes a maximum value of 0.59 at 35◦C and a min-
imum of −0.09 at about 18–19◦C, suggesting that the model could
predict a 68% increase. To put the plausibility of such an increase
into perspective, high-frequency demand data available for a sub-
set of Korean residential consumers shows an increase of 69% during
August 2012.

Second, we may identify the temperature effect as in Eq. (1) using
the estimated TRF and temperature densities. Analysis of the tem-
perature effect in energy demand is very critical in forecasting peak
load and deciding how to optimally employ a mix of power plants in
electricity supply.

Third, we may perform some informative counterfactual analy-
sis on temperature-related electricity demand. For instance, we may
forecast the temperature effect assuming the temperature distribu-
tion will be the same as the average of temperature distributions
in past years, or we may predict the effect of an increase in tem-
perature. If the temperature distribution at time t is shifted to the
right by u units of normalized temperature, we would have an
increase in the temperature effect of

∫
ft(s − u)g(s)ds − ∫

ft(s)g(s)ds.
Note that ft( • − u) denotes the temperature distribution with mean
temperature increased by u, compared to the temperature distribu-
tion represented by ft( • ), since

∫
sft(s − u)ds =

∫
(s + u)ft(s)ds =∫

sft(s)ds + u.
We also estimate a CTRF for the residential sector using the

methodology described below for the commercial sector (results not
shown). We find that the confidence bands for the time TRF and
price TRF contained a zero demand response for every temperature,
suggesting that only the base TRF is useful in explaining the SR com-
ponent of electricity demand. In light of the facts that residential
electricity prices are kept artificially low and residential consumers
are too small to warrant demand charges, the insignificance of the
price TRF is not surprising. The residential time TRF exhibits a declin-
ing pattern similar to the commercial time TRF discussed below, but
with much larger uncertainty.

4.2. Commercial cross-temperature response function

4.2.1. Estimation and empirical analysis of the CTRF model
We first estimate the TRF model to find the threshold tempera-

ture r̄ to use in estimating the price TRF. We determine p and q using
cross-validation for the TRF, and then we set r̄ = 14.2 ◦C, where the
estimated TRF is minimized. Note that s̄ = (14.2 + 20)/60 = 0.57
for the price TRF. Next, we choose pk and qk for each TRF. In doing
so, we consider pk ∈ {1, 2} and fix qk = 1, and the cross-validation
criterion selects p0 = 2, p1 = 1, and p2 = 1.

To compare the results of the TRF and CTRF models, we include
a time trend and PRtlnRPt as covariates alongside the TRF in the TRF
model. In other words, to estimate the TRF, we are actually restricting
the CTRF model by setting p1 = p2 = 0 and q1 = q2 = 0, with the
convention that qk = 0 means no trigonometric terms, but letting
p0 and q0 (in the base TRF) exceed zero. Fixing p1 = p2 = 0 means
that only a constant ck

0 is allowed in the TRFs with respect to time
and price, and these constants become coefficients of these covari-
ates in Eq. (9), since

∑r
k=0 ck

0xk
0 =

∑r
k=0 ck

0wk
t . With the addition of

the covariates, we refer to this as the TRF+ model.
The estimated results of TRF+ and CTRF models for commercial

demand are summarized in Table 2, and the TRFs in the TRF+ and
CTRF models are given in Figs. 4 and 5 respectively. A Wald test
allows a formal comparison of the two models. Using the values of
R2 for each model in the table, a Wald test may be constructed as
(0.920 − 0.771)/(1 − 0.920) × (276 − 13) = 489.84, easily beating
the w2

7 critical value of 14.07 for a size-0.05 test. The TRF+ model is
thus rejected in favor of the CTRF model. As an additional compari-
son, we also show results from fitting a simple model with just HDD,

Table 2
Estimation results for the commercial TRF+ and CTRF models compared to a linear
model using H/CDD. TRF+ and CTRF estimates from least squares with robust stan-
dard errors on the regression in Eq. (9) with temperature densities estimated using a
normal kernel with plug-in bandwidth.

H/CDD model TRF+ model CTRF model

Est. t-Value Est. t-Value Est. t-Value

Coeff. b1HDDt +b2CDDt g(s) g0(s)

c0 −0.1106 −16.1 −0.339 −3.184 −2.549 −5.585
b1 0.0003 10.3
b2 0.0009 24.3
c1 0.885 4.607 10.245 5.114
c2 −7.966 −4.416
c11 0.217 11.999 0.686 5.424
c21 0.255 6.667 0.576 7.128

t g1(s)

c0 −0.002 −0.131 0.662 2.912
c1 −1.161 −2.757
c11 0.123 3.115
c21 −0.178 −1.942

PRt log RPt g2(s)

c0 0.027 0.962 0.004 6.689
c1 −0.334 −3.775
c11 0.300 6.795
c21 −0.059 −0.580
R2 0.558 0.771 0.920
R̄2 0.554 0.767 0.917

CDD, and a constant term. As in the case of the residential sector,
the coefficients are statistically significant with meaningful signs and
magnitudes, but the fit of this model is clearly inferior to that of the
TRF+ and CTRF models.

The shapes of the estimated TRF in Fig. 4 and analogous base TRF
in Fig. 5 are both U-shaped in the range of temperatures with the
scale reflecting the fluctuations of the SR component of electricity
demand. The only noticeable difference between the TRF and base
TRF of the CTRF is that the latter appears to flatten out rather than
continue to increase at the lowest temperatures.

As we can see in Table 2, the effect of time in the TRF+ model is
estimated to be insignificant. Keeping in mind that the SR component
of demand is detrended, this finding is not surprising. In the CTRF
model, the effects of time are estimated to be significant. The time
TRF and confidence intervals in Fig. 5 better illustrate the effects.

Fig. 4. Estimated commercial sector TRF with 95% confidence bands. Constructed
from the coefficient estimates from the TRF+ model in Table 2 with the base TRF
defined by g0(r) in Eq. (10). Confidence bands are calculated according to Park (2010).



Y. Chang et al. / Energy Economics 60 (2016) 206–216 213

Fig. 5. Estimated commercial sector CTRF with 95% confidence bands. Constructed
from the coefficient estimates from the CTRF model in Table 2 and TRFs defined by
gk(r) in Eq. (10). Confidence bands are calculated according to Park (2010).

The time TRF takes positive values in the range of 1◦C or less,
close to zero in the range of 1–24◦C, most of the temperature spec-
trum, and negative values in the range exceeding 24◦C. Consider
for example the temperatures of −4◦C and 34◦C, at which ĝ1 is
about 0.16 and −0.18. A change of ten years (a change in t/T of
120/276) increases the response of the SR component at −4◦C by
7.0% but decreases the response at 34◦C by 7.8%. These compare with
base responses (from the base TRF) of 11.7% and 43.5% at −4◦ C and
34◦C respectively.

These results suggest that, over a long span of time, the season-
ality of commercial electricity demand in South Korea has increased
in the winter time, but decreased in the summer. That is, the growth
rate of heating demand has exceeded that of the average load, which
is mainly due to a rapid increase in the supply of electric heating
appliances in recent years so that consumers have switched their

heating systems to electricity. However, the growth rate of the cool-
ing demand is lower than that of the average load, which reflects the
technical progress in electric cooling appliances so that consumers
have replaced their cooling appliances by more energy efficient ones.

We can also see in Table 2 that the (short-run) price elasticity
is estimated to be (insignificantly) positive in the TRF+ model —
certainly the opposite sign of what we should expect. However, the
CTRF model estimates a more sensible range of price elasticities. As
shown in Fig. 5, the price TRF is estimated to be significantly negative
at temperatures under approximately 7.5◦C — that is, 95% confidence
interval does not include zero below approximately 7.5◦C. Above
this temperature, electricity price relative to that of city gas has no
significant impact on commercial consumption of electricity.

A more interesting result is that the magnitude of the price TRF
increases as temperature decreases below 7.5◦C, which means that
the price effect in heating demand becomes clearer as the tempera-
ture becomes lower. Indeed, this result helps to explain the flattening
of the base TRF discussed above: commercial consumers respond
less to cold temperatures when accounting for the price of electricity
relative to that of city gas.

In fact, electricity sales to the commercial sector of January 2012
increased by 39.0% compared with that of January 2006, whereas gas
sales for the commercial sector grew by 0.7% during the same period.
Meanwhile the electricity price index increased by 10.7% and gas
price index grew by 61.5% between January 2006 and January 2012.
The estimated price TRF clearly reflects this shift to electric heating
from gas heating.

We illustrate in more detail how one can interpret the estimated
price TRF in Fig. 5. The relative price elasticity of the SR component
of demand is given by ĝ2PRt . For example, if PRt = 1 and we look
at −4◦C and 10◦C, the estimated values of ĝ2PRt are approximately
−0.46 and −0.03 respectively. Hence, if temperature changes from
10◦C to −4◦C, then the relative price elasticity of the SR component
will change from nearly zero (completely price inelastic) to −0.46.
Moreover, if the electricity price index decreases by 10% and the gas
index is unchanged (a change in PRtlnRPt of 0.10), the SR component
of electricity demand for the commercial sector would increase by
4.6% at −4◦C but only by 0.3% at 10◦C, which shows quite different
substitution patterns at the different temperature levels. These com-
pare with base responses (from the base TRF) of 11.7% and −10.4% at
−4◦C and 10◦C respectively.

Looking at the whole CTRF in the CTRF model as the sum of the
individual TRFs, we can make another comparison with the TRF+
model. For example, at the counterfactual temperature of −4◦C in
January 2002 the sum of the base TRF and time-weighted time TRF is
11.7% + 7.0% × (133/276) = 15.1%. At a penetration rate of PRt = 1,
a relative price decrease of 10% increases the response of the SR
component by an additional 4.6%, so that the total response is 19.7%
more than that of the response at an average temperature with no
price change. In contrast, the TRF+ model suggests a response of
12.8% − 0.2% × (133/276) = 12.7% at −4◦C in January 2002, but
that a relative price decrease of 10% decreasesthe response of the SR
component by 0.3% (but not significantly). The aggregate response is
therefore predicted by the TRF+ model to be only 12.4% above an
average temperature with no price change.

4.2.2. Seasonal and temporal analyses
Fig. 6 shows the mean absolute error (MAE) of estimated residuals

by months, and it shows that the CTRF model outperforms the TRF+
model in all months except April when MAEs for the two models are
very close. The MAEs of January, February, March and August of CTRF
model are 61%, 65%, 55% and 55% smaller than those of TRF+ model
respectively, which shows rather clear price- and time-dependent
temperature effects in the commercial sector in those months. We
can deduce from our above results that time affects the temperature



214 Y. Chang et al. / Energy Economics 60 (2016) 206–216

Fig. 6. Mean absolute error by months.

response in both winter and summer, while relative price also affects
the temperature response in the winter.

The CTRF model enables us to decompose the monthly tem-
perature effects into a price-dependent factor and a time trend-
dependent factor, allowing us to better identify the aggregate
changes in temperature effects due to time and relative price. The
temperature effects in Eq. (8) may be written as

∫
ft(r)gt(r)dr =

∫
ft(r)g0(r)dr +

t
T

∫
ft(r)g1(r)dr + PRt ln RPt

∫
ft(r)g2(r)dr

(12)

using our covariates w0
t = 1, w1

t = t/T and w2
t = PRt ln RPt .

Consider temperature effects for each month M = 1, . . . , 12
constructed from this CTRF using:

1. TEM0: the time index for month M in 1991 and the penetration
rate and relative price for month M in 1991,

2. TEM1: the time index for month M in 1991 and the penetration
rate and relative price for month M in 2013, and

3. TEM2: the time index for month M in 2013 and the penetration
rate and relative price for month M in 2013.

The difference TEM2 − TEM0 indicates the total change between
1991 and 2013. A component of the total change, TEM1 − TEM0 is
the change in the temperature effect due to the change in PRtlogRPt

between 1991 and 2013 while holding constant other temporal
drivers proxied by a time trend. Similarly, TEM2 − TEM1 is the change
caused by these other drivers, while holding the price covariate
constant.

To estimate these effects, we estimate gk and ft as described
above, except we pool observations in month M across all 23 years in
the sample to estimate fM for M = 1, . . . , 12. By using the same tem-
perature density for the same month in all years, the changes that we
identify over time given by TEM2 −TEM1 can be attributed to temporal
drivers other than possible long-run temperature changes.

Table 3 shows the decompositions between 1991 and 2013 and
their differences. The total change in temperature effect over the
sample is positive in the winter months of December, January,
February, and March, but negative in all other months.

The breakdown of the positive changes in the winter months are
66% price and 34% other factors proxied by time for December, 41%
and 59% for January, 42% and 58% for February, and 76% and 24% for
March. We may interpret this to mean that the overall increases in

the SR component of demand in winter months may be attributed to
both increases due to price and penetration changes over the sample
and those due to changes in other temporally varying non-climate,
non-price variables. The increases due to price during these months
given by TEM1−TEM0 have roughly the same magnitudes (4.3%–6.2 %),
but the change from the other factors is less important in the warmer
months of December and March (2.2% and 1.5%) than in January and
February (9.1% and 7.9%).

Looking at the summer months of June, July, August and
September, we see no effect on the SR component from price
changes. This result is an artifact of our modeling strategy, since we
set the price TRF to zero at temperatures above 14.2◦C. Those four
months are unlikely to have enough temperature observations below
this threshold to make any substantial difference. We are essentially
imposing that there will be no long-run effect of relative prices in
summer months, except possibly through the time TRF if the price
covariate has a time trend.

The remaining spring and fall months, April, May, October, and
November show decreases in the temperature effect overall, but
driven primarily by negative effects from non-climate, non-price
factors and countervailed by increases due to price changes. In
other words, relative price changes have led to only small increases
(0.1%–2.1%) in the SR component of electricity demand in those
months – due to decreases in the relative price from increases in gas
prices – while other factors have driven more substantial decreases
(2.3% –2.9 %).

5. Conclusions

In this paper, a general model is proposed in order to estimate
and identify temperature effects in a short-run electricity demand
function. We adopt a new approach using temperature densities to
estimate a cross-temperature response function, which allows non-
climate variables to have different effects on electricity demand at
different temperatures. The CTRF and the TRF, the restricted version
of the CTRF without non-climate variables, both allow us to exploit
high-frequency temperature data in order to explain monthly sec-
toral electricity sales instead of relying on monthly aggregates of
temperature, such as cooling and heating degree days. The avail-
ability of high-frequency temperature measurements can account
for nonlinearity of demand responses to temperature fluctuations
and for intra-monthly temperature fluctuations better than these
monthly aggregates.

We fit our proposed models to Korean residential and commer-
cial electricity demand data over 1991: 01–2013:12. The non-climate
variables that we use appear to have little effect on the response
of residential demand to temperature. The TRF that we estimate
for the residential sector shows the expected asymmetric U-shape.
We observe that a 5◦C increase in temperature from 18◦C to 23◦C
increases demand by 4%, while 5◦C increase 23◦C to 28◦C increases
demand by 15%, for example, illustrating the inadequacy of using
cooling degree days, which would impose demand responses of the
same magnitude for these temperature changes.

In contrast, the non-climate variables have substantial impacts
on the response of commercial demand to temperature. Technical
progress in electric appliances and changes in consumption habits,
proxied by the time trend, have lowered the growth rate of the
cooling demand and increased the growth rate of heating demand.
For example, a change of ten years increases the short-run commer-
cial demand response to a temperature of −4◦C by 7% but decreases
the response at a temperature of 34◦C by 7.8%.

The effect of electricity price relative to its closest substitute
is shown to significantly influence commercial electric heating
demand, and vice versa. Specifically, demand for electric heating
is less sensitive to colder temperatures when controlling for
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Table 3
Decompositions of monthly temperature effects.

Month TEM0 TEM1 TEM2 TEM2 − TEM0 TEM1 − TEM0 TEM2 − TEM1

January −0.018 0.045 0.135 0.153 0.062 0.091
February −0.013 0.044 0.124 0.137 0.058 0.079
March −0.027 0.022 0.037 0.064 0.049 0.015
April −0.085 −0.065 −0.088 −0.002 0.021 −0.023
May −0.109 −0.105 −0.135 −0.026 0.004 −0.029
June −0.046 −0.046 −0.075 −0.028 0.000 −0.028
July 0.044 0.044 0.010 −0.034 0.000 −0.034
August 0.128 0.128 0.080 −0.048 0.000 −0.048
September 0.047 0.047 0.012 −0.035 0.000 −0.035
October −0.085 −0.083 −0.110 −0.025 0.001 −0.027
November −0.102 −0.087 −0.112 −0.009 0.015 −0.024
December −0.036 0.006 0.028 0.064 0.043 0.022

price — as evidenced by the flattening of the base TRF when a
price TRF is estimated. Moreover, this demand is more price elastic
at colder temperatures — as evidenced by a negative price TRF.
Repeating our example above to illustrate the latter point, when
temperature decreases from 10◦C to −4◦C, the relative price elas-
ticity changes from almost completely inelastic to −0.46 (at a 100%
penetration rate of city gas).

Over the whole sample period, increases due to price during the
winter month of December–March have roughly the same magni-
tudes (4.3% –6.2 %), while the change from the other factors proxied
by a linear trend is less important in December and March (2.2% and
1.5%) than in January and February (9.1% and 7.9%). Relative price
changes have led to only small increases (0.1% –2.1 %) in the SR
component of electricity demand in the spring and fall months of
April, May, October, and November – due to decreases in the relative
price from increases in gas prices – while non-climate, non-price
factors have driven more substantial decreases (2.3% –2.9 %).

Appendix A. Derivations of the regression models

A.1. Temperature response function

Substituting Eq. (4) into the integral in Eq. (3), we get

∫
ft(s)g(s)ds =

p∑
i=0

ci

∫
sift(s)ds +

q∑
j=1

[
c1j

∫
ft(s) cos(2pjs)ds

+c2j

∫
ft(s) sin(2pjs)ds

]
, (A.1)

up to an approximation error. The TRF model in Eq. (5) follows
from Eq. (3) with the error term re-defined to accommodate the
approximation error.

A.2. Cross-temperature response function
Similarly to Eq. (4) for the TRF model, we may approximate

gk(s) �
pk∑

i=0

ck
i si +

qk∑
j=1

[
ck

1j cos(2pjs) + ck
2j sin(2pjs)

]
(A.2)

for each TRF k = 0, . . . , m. Substituting this approximation into the
integral on the right-hand side of Eq. (8), we may write

∫
ft(s)gt(s)ds =

m∑
k=0

pk∑
i=0

ck
i wk

t

∫
sift(s)ds +

m∑
k=0

qk∑
j=1

[
ck

1jw
k
t

∫
ft(s) cos(2pjs)ds

+ck
2jw

k
t

∫
ft(s) sin(2pjs)ds

]
(A.3)

up to an approximation error, similarly to Eq. (A.1). The CTRF model
in Eq. (9) follows from Eq. (3) once again, but with the time-varying
TRF gt(s) and a newly redefined error term.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2016.07.013.
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