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a b s t r a c t

This paper introduces a new approach to model regime switching using an autoregressive latent factor,
which determines regimes depending upon whether it takes a value above or below some threshold
level. In our approach, the latent factor is allowed to be correlated with the innovation to the observed
time series. If the latent factor becomes exogenous, our approach reduces to the conventional Markov
switching. We develop a modified Markov switching filter to estimate the mean and volatility models
with Markov switching that are frequently analyzed, and find that the presence of endogeneity in regime
switching is indeed strong and ubiquitous.
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1. Introduction

Regime switching models have been used extensively in
econometric time series analysis. In most of these models, two
regimes are introduced with a state process determining one
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of the regimes to take place in each period. The bivalued state
process is typically modeled as aMarkov chain. The autoregressive
model with this type of Markov switching in the mean was first
considered by Hamilton (1989), and was further analyzed in Kim
(1994). Subsequently, Markov switching has been introduced
in a more general class of models such as regression models
and volatility models by numerous authors. Moreover, various
statistical properties of the model have been studied by Hansen
(1992); Hamilton (1996); Garcia (1998); Timmermann (2000),
and Cho and White (2007), among others. For an introduction and
overview of the related literature, the reader is referred to the
monograph by Kim and Nelson (1999). Markov-switching models
with endogenous explanatory variables have also been considered
recently by Kim (2004, 2009).

Though Markov switching models have been used and proven
to be useful in awide range of contexts, they have somedrawbacks.
Most importantly, with a very few exceptions including Diebold et
al. (1994) and Kim et al. (2008),1 they all assume that the Markov

1 Diebold et al. (1994) considers a Markov-switching driven by a set of observed
variables, while our approach is based on a latent factor. The approach in Kim et al.
(2008) is more closely related to our approach. See also Kalliovirta et al. (2015) for
a related approach.

http://dx.doi.org/10.1016/j.jeconom.2016.09.005
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2016.09.005&domain=pdf
mailto:joon@indiana.edu
http://dx.doi.org/10.1016/j.jeconom.2016.09.005


128 Y. Chang et al. / Journal of Econometrics 196 (2017) 127–143
chain determining regimes is completely independent from all
other parts of the model, which is extremely unrealistic in many
cases.2 Note that exogenous regime switching in particular implies
that future transitions between states are completely determined
by the current state, and does not rely on the realizations of
underlying time series. This is highly unlikely in many practical
applications. Instead, we normally expect that future transitions
depend critically on the realizations of underlying time series as
well as the current and possibly past states. Furthermore, the
Markov chain determining the state of regime in virtually all of the
existing switching models is assumed to be strictly stationary, and
cannot accommodate nonstationarity in the transition probability.
This can be restrictive if the transition is strongly persistent.

In this paper, we propose a novel approach to modeling regime
switching. In our approach, the mean or volatility process is
switching between two regimes, depending upon whether the
underlying autoregressive latent factor takes values above or
below some threshold level. The innovation of the latent factor,
on the other hand, is assumed to be correlated with the previous
innovation in the model. A current shock to the observed time
series therefore affects the regime switching in the next period.
Moreover, we allow the autoregressive latent factor to have a
unit root and accommodate a strongly persistent regime change.
Consequently, our approach provides remedies to both of the
aforementioned shortcomings in conventional Markov switching
models, and yields a broad class of models with endogenous and
possibly nonstationary regime changes.Moreover, the latent factor
involved in our approach can be estimated and used to investigate
the dynamic interactions of the mean or volatility process of a
given time series with the levels of other observed time series. Our
model can be estimated by amodifiedMarkov switching filter that
we develop in the paper.

If the autoregressive latent factor is exogenous and stationary,
the regime switching based on our approach reduces to the
conventional Markov switching. In this case, the conventional two
state Markov switching specified by two transition probabilities
has the exact one-to-one correspondence with our regime
switching specified by the autoregressive coefficient of the latent
factor and the threshold level. Therefore, we may always find our
regime switching model with an exogenous autoregressive latent
factor corresponding to a conventional two stateMarkov switching
model. They are observationally equivalent and have exactly the
same likelihood. Consequently, our model may be regarded as a
natural extension of the conventional Markov switching model,
with the extension made to relax some of its important restrictive
features. In the presence of endogeneity, however, our model
diverges sharply from the conventional Markov switching model.
In particular, we show that the state process in our model is given
by a Markov process jointly with the underlying time series, and
the transition of state systematically interactswith the realizations
of underlying time series.

To evaluate the performance of our model and estimation
procedure, we conduct an extensive set of simulations. Our
simulation results can be summarized as follows. First, the
endogeneity of regime switching, if ignored, has a significantly
deleterious effect on the estimates of model parameters and
transition probabilities. This is more so for the mean model
than for the volatility model, and for the models with stationary
latent factors relative to the models with nonstationary latent

2 This is true only for the Markov switching models analyzed by the frequentist
approach. In the literature on Bayesian regime switching models, Chib (1996), Chib
and Dueker (2004), and Bazzi et al. (2014), among others, allow for endogenous
Markov chains. See also Kang (2014), which extends Kim et al. (2008) to a general
state space model using a Bayesian approach.
factors. Second, the presence of endogeneity, if taken into account
properly, improves the efficiency of parameter estimates and the
precision of estimated transition probabilities. This is because the
presence of endogeneity helps to extract more information from
the data on the latent regimes and their transitions. The efficiency
gain and the precision enhancement are substantial in some cases,
particularly when the latent factor is stationary and endogeneity
is strong. Finally, the likelihood ratio tests for endogeneity work
reasonably well in all cases we consider. Though they tend to
overreject the null hypothesis of no endogeneity for relatively
small samples, they overall appear to be very powerful. In fact, their
power increases sharply up to unity as the degree of endogeneity
increases.

As an empirical illustration of our approach, we analyze the US
GDP growth rates and the NYSE/AMEX index returns, respectively,
for our mean and volatility models. For both models, the
evidence of endogeneity is unambiguously strong. The estimated
correlations between the current shock to the observed time series
and the latent factor determining the state in the next period are
all significantly different from zero. In our volatility model, the
correlation is estimated to be strongly negative with the values
−0.970 and −0.999 for the two sample periods we consider.
Such a large negative correlation implies that a negative shock
to stock returns in the current period is very likely to entail an
increase in volatility in the next period, and provides an evidence
for the presence of strong leverage effects in stock returns. On
the other hand, the correlation in our mean model is estimated
to be strongly negative with the value −0.923 for the earlier
sample period considered in Kim andNelson (1999) and has nearly
perfect positive correlation for the recent subsample. The negative
correlation in our stationary mean model implies that the mean
reversion of the observed time series occurs at two different levels.
Not only does the observed time series revert to its state dependent
mean at the first level, but also the state dependent mean itself
moves to offset the effect of a shock to the observed time series
at the second level. In contrast, the positive correlation entails
an unstabilizing movement of the state dependent mean at the
second level. For both mean and volatility models, the inferred
probabilities appear to be more accurately predicting the true
regimes if we allow for endogeneity in regime switching.

The rest of the paper is organized as follows. In Section 2,
we introduce our model and compare it with the conventional
Markov switching model. In particular, we show that our model
becomes observationally equivalent to the conventional Markov
switching model, if endogeneity is not present. Section 3 explains
how to estimate our model using a modified Markov switching
filter. The Markov property of the state process is also discussed
in detail. Section 4 reports our simulation studies, which evaluate
the performance of our model relative to the conventional Markov
switching model. The empirical illustrations in Section 5 consist
of the analysis of the US GDP growth rates and the NYSE/AMEX
index returns, using our mean and volatility models respectively.
Section 6 concludes the paper, and Appendix collects the proofs of
theorems and additional figures.

A note on notation. We denote respectively by ϕ and Φ

the density and distribution functions of the standard normal
distribution. The equality in distribution is written as =d.
Moreover,weuse p(·) or p(·|·) as the generic notation for density or
conditional density function. Finally,N(a, b) signifies the density of
normal distribution, or normal distribution itself, with mean a and
variance b.

2. Models with endogenous regime switching

In this section, we introduce an approach to model endogenous
regime switching and compare it with the approach used in the
conventional Markov switching model.
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2.1. A new regime switching model

In our model, we let a latent factor (wt) be generated as an
autoregressive process

wt = αwt−1 + vt (1)

for t = 1, 2, . . . , with parameter α ∈ (−1, 1] and i.i.d. standard
normal innovations (vt). We use (πt) as a generic notation to
denote a state dependent parameter taking values πt = π or π̄ ,
π < π̄ , depending upon whether we have wt < τ or wt ≥ τ with
τ being a threshold level, or more compactly,

πt = π(wt) = π1{wt < τ } + π̄1{wt ≥ τ }, (2)

where τ and (π, π̄) are parameters, π : R → {π, π̄}, and 1{·} is
the indicator function. In subsequent discussion of our models, we
interpret the two events {wt < τ } and {wt ≥ τ } as two regimes
that are switching by the realized value of the latent factor (wt)
and the level τ of the threshold.

To compare ourmodelwith the conventionalMarkov switching
model, we may set

st = 1{wt ≥ τ }, (3)

so that we have

πt = π(st) = π(1 − st) + π̄st

exactly as in the conventional Markov switching model.3 The
state process (st) represents the low or high state depending
upon whether it takes value 0 or 1. The conventional Markov
switching model simply assumes that (st) is a Markov chain
taking value either 0 or 1, whereas our approach introduces an
autoregressive latent factor (wt) to define the state process (st).
In the conventional Markov switching model, (st) is assumed to be
completely independent of the observed time series. Contrastingly,
in our approach, it will be allowed to be endogenous, which
appears to be much more realistic in a wide range of models used
in practical applications.

For the identification of parameters π and π̄ in (2), we need
to assume that π < π̄ . To see this, note that (vt) has the same
distribution as (−vt), and that our level function is invariant with
respect to the joint transformation w → −w, τ → −τ and
(π, π̄) → (π̄, π). Recall also that, to achieve identification of our
level function, wemust restrict the variance of the innovations (vt)
to be unity. This is because, for any constant c > 0, (cvt) generates
(cwt) and our level function remains unchanged under the joint
transformation w → cw and τ → cτ in scale. If α = 1 and the
latent factor (wt) becomes a random walk, we have an additional
issue of joint identification for the initial value w0 of (wt) and the
threshold level τ . In this case, we have wt = w0 +

t
i=1 vi for all t

and the transformation w0 → w0 + c for any constant c yields
(wt + c) in place of (wt). However, our level function does not
changeunder the joint transformationw → w+c and τ → τ+c in
location. Therefore, we set w0 = 0 in this case. On the other hand,
the identification problem of the initial value w0 of (wt) does not
arise ifwe assume |α| < 1. Under this assumption, the latent factor
(wt) becomes asymptotically stationary, and we set

w0 =d N

0,

1
1 − α2


to make (wt) a strictly stationary process.

3 Chib and Dueker (2004) consider the model given by (1) and (3) and interpret
(wt ) as representing the strengths of regimes. They contrast this model with the
model given by wt = αst−1 + vt in which the transition is determined entirely by
the previous regime itself, rather than its strength.
We specify our model as

yt = m(xt , yt−1, . . . , yt−k, wt , . . . , wt−k) + σ(xt , wt , . . . , wt−k)ut

= m(xt , yt−1, . . . , yt−k, st , . . . , st−k) + σ(xt , st , . . . , st−k)ut
(4)

with mean and volatility functions m and σ respectively, where
(xt) is exogenous and (ut) and (vt) in (1) are jointly i.i.d. and
distributed as

ut
vt+1


=d N


0
0


,


1 ρ
ρ 1


(5)

with unknown parameter ρ.4 For the brevity of our subsequent
exposition, we write

mt = m(xt , yt−1, . . . , yt−k, wt , . . . , wt−k)

= m(xt , yt−1, . . . , yt−k, st , . . . , st−k) (6)
σt = σ(xt , wt , . . . , wt−k) = σ(xt , st , . . . , st−k). (7)

Note that mt and σt are the conditional mean and volatility of the
state dependent variable (yt) given present and past values of la-
tent factors wt , . . . , wt−k, as well as the current values of exoge-
nous variables xt and lagged endogenous variables yt−1, . . . , yt−k.5

Our model (4) includes as special cases virtually all models
considered in the literature. In our simulations and empirical
illustrations, we mainly consider the model

γ (L)

yt − µt


= σtut , (8)

where γ (z) = 1 − γ1z − · · · − γkzk is a kth order polynomial,
µt = µ(wt) = µ(st) and σt = σ(wt) = σ(st) are the
state dependent mean and volatility of (yt) respectively. We may
easily see that the model introduced in (8) is a special case of our
general model (4). The model describes an autoregressive process
with conditional mean and volatility that are state dependent. It
is exactly the same as the conventional Markov switching model
considered by Hamilton (1989) and many others, except that the
regimes in our model (8) are determined by an endogenous latent
autoregressive factor (wt) specified as in (1). In fact, it turns out
that if we set ρ = 0, together with |α| < 1, our model in (8)
becomes observationally equivalent to the conventional Markov
switching model. This is shown below.

Themodel given in (8)may therefore be viewed as an extension
of the conventional autoregressive Markov switching model,
which allows in particular for endogeneity and nonstationarity
in regime changes. The autoregressive parameter α of the latent
factor (wt) in (1) controls the persistency of regime changes. In
particular, if α = 1, the regime change driven by (wt) becomes
nonstationary, and such a specificationmay be useful in describing
regime changes that are highly persistent. On the other hand, the
parameter ρ in the joint distribution (5) of the current model
innovation ut and the next period shock vt+1 to the latent factor
determines the endogeneity of regime changes. As ρ approaches
to unity in modulus, the endogeneity of regime change driven by
(wt)becomes stronger, i.e., the determination of the regime in time
t + 1 is more strongly influenced by the realization of innovation
(ut) at time t .

The interpretation of the endogeneity parameter ρ, especially
its sign, is quite straightforward in our volatility model. If ρ < 0,
the innovation ut of yt at time t becomes negatively correlatedwith
the volatility σt+1 of yt+1 at time t +1. This implies that a negative

4 We may equivalently define the dynamics of (wt ) as wt = αwt−1 + ρut−1 +
1 − ρ2vt , where (ut ) and (vt ) are independent i.i.d. standard normals.
5 The endogenous latent factor (wt ) may naturally be regarded as an economic

fundamental determining the regimes of an economy.
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shock to (yt) in the current period entails an increase in volatility in
the next period. This is often referred to as the leverage effect if, in
our model, (yt) denotes returns from a financial asset. See, e.g., Yu
(2005) for more discussions on howwe should model the leverage
effect in financial asset returns. Of course, ρ > 0 means that there
is an anti-leverage effect in the model.

For themeanmodel, the sign ofρ has amore subtle effect on the
sample path of the observed time series (yt). If the lag polynomial
γ (z) satisfies the stationarity condition, (yt)becomes stationary. In
this case, (yt) reverts to its state dependent mean (µt), as well as
to its global mean Eyt . This is true for both, the cases of ρ < 0 and
of ρ > 0. The mean reverting behavior of (yt), however, differs
depending upon whether ρ < 0 or ρ > 0. If ρ < 0, a positive
realization of ut at time t increases the probability of having a low
regime in the state dependent mean µt+1 of yt+1 at time t + 1,
and in this sense, the state dependent mean (µt) of the observed
time series (yt) is also reverting. Therefore, the mean reversion of
(yt) takes place at two distinct levels: the reversion of (yt) to its
state dependent mean (µt) at the first level, and the movement
of (µt) to offset the effect of a shock to (yt) at the second level.
This would not be the case if ρ > 0. In this case, the movement
of (µt) at the second level would entail an unstabilizing effect on
(yt). Furthermore, in the cases of ρ > 0 and of ρ < 0, a regime
switching is more likely to happen at time t + 1 if yt takes a value
inside and outside of the two state dependent means at time t ,
respectively. Therefore, in the mean model, regime switching can
be more clearly seen when ρ < 0.

Kim et al. (2008) consider a regression model similar to
our model in (4), yet they set the state dependent regression
coefficients (βt) to be dependent only on the current state
variable (st). Therefore, their model is more restrictive than
our model in (8). Moreover, in their model, the state process
is defined as st = 1{vt ≥ πt−1}, where (vt) is specified
simply as a sequence of i.i.d. latent random variables that is
contemporaneously correlated with innovation (ut) in regression
error (σtut).6 Though their state process (st) is endogenous, it is
strictly restricted to be first order Markovian and stationary as in
the conventional Markov switching model.7 Furthermore, in their
approach, (ut) is jointly determined with (st) for each time t . The
presence of contemporaneous correlation between (ut) and (st)
entails undesirable consequences for theirmodel: State dependent
coefficients of regressors (βt) are contemporaneously correlated
with regression errors (σtut), aswell as regression errors (σtut) are
serially correlated.8 Their regression model is therefore seriously
misspecified from a conventional point of view. Contrastingly, in
our model, innovation (ut) affects the transition of (st) only in the
next period, and therefore, (st) becomes pre-determined in this
sense. Modeling endogeneity as in our model yields a model that
is correctly specified as a conventional regression model. This is
critical to interpret (mt) and (σt) respectively as the conditional
mean and volatility of (yt) in (4).

2.2. Relationship with conventional markov switching models

Our model reduces to the conventional Markov switching
model when the underlying autoregressive latent factor is

6 For an easier comparison,we present theirmodel using our notation introduced
earlier in this section. Their model also includes other predetermined variables,
which we ignore here to more effectively contrast their approach with ours. Our
model may also easily accommodate the presence of other covariates.
7 A referee believes that the required extension is possible and straightforward.
8 Note also that (σt ) does not represent the conditional volatility of their error

process (σtut ), since (σt ) is contemporaneously correlated with (ut ).
stationary and independent of the model innovation. This will be
explored below. In what follows, we assume

ρ = 0

to make our models more directly comparable to the conventional
Markov switching models, and obtain the transition probabilities
of the Markovian state process (st) defined in (3). In our approach,
they are given as functions of the autoregressive coefficient α of
the latent factor and the level τ of threshold. Note that

P

st = 0

wt−1


= P

wt < τ

wt−1


= Φ(τ − αwt−1) (9)

P

st = 1

wt−1


= P

wt ≥ τ

wt−1


= 1 − Φ(τ − αwt−1). (10)

Therefore, if we let |α| < 1 and denote the transition probabilities
of the state process (st) from the low state to the low state and from
the high state to the high state by

a(α, τ ) = P

st = 0

st−1 = 0

,

b(α, τ ) = P

st = 1

st−1 = 1

,

(11)

then it follows that

Lemma 2.1. For |α| < 1, we have

a(α, τ ) =

 τ
√

1−α2

−∞
Φ


τ −

αx√
1−α2


ϕ(x)dx

Φ


τ
√
1 − α2



b(α, τ ) = 1 −


∞

τ
√

1−α2 Φ


τ −

αx√
1−α2


ϕ(x)dx

1 − Φ


τ
√
1 − α2

 ,

where a(α, τ ) and b(α, τ ) are defined in (11).

In particular, the state process (st) defined in (3) is a Markov
chain on {0, 1} with transition density

p(st |st−1) = (1 − st)ω(st−1) + st

1 − ω(st−1)


, (12)

where ω(st−1) is transition probability to the low state given by

ω(st−1)

=


(1 − st−1)

 τ
√

1−α2

−∞
+ st−1


∞

τ
√

1−α2


Φ


τ −

αx√
1−α2


ϕ(x)dx

(1 − st−1)Φ

τ
√
1 − α2


+ st−1


1 − Φ


τ
√
1 − α2


with respect to the counting measure on {0, 1}.

The contours of the transition probabilities a(α, τ ) and b(α, τ )
obtained in Lemma 2.1 are presented in Fig. 1 for various levels of
0 < a(α, τ ) < 1 and 0 < b(α, τ ) < 1. Fig. 1 provides the contours
of a(α, τ ) and b(α, τ ) in the (α, τ )-plane with −1 < α < 1 and
−∞ < τ < ∞ for the levels of a(α, τ ) and b(α, τ ) starting from
0.05 to 0.95 in increment of 0.05. It is quite clear from Fig. 1 that
there exists a uniquepair ofα and τ values yielding any given levels
of a(α, τ ) and b(α, τ ), since any contour of a(α, τ ) intersects with
that of b(α, τ ) once and only once. For instance, the only pair of α
and τ values that yields a(α, τ ) = b(α, τ ) = 1/2 is given by α = 0
and τ = 0, in which case we have entirely random switching from
the high state to the low state and vice versawith equal probability.

To more clearly demonstrate the one-to-one correspon-
dence between the pair (α, τ ) of parameters and the pair
(a(α, τ ), b(α, τ )) of transition probabilities derived in Lemma 2.1,
we show how we may find the corresponding values of α and τ
when the values of a(α, τ ) and b(α, τ ) are given. In Fig. 2, we set
a(α, τ ) = 0.796 and b(α, τ ) = 0.901, the transition probabilities
we obtain from the Hamilton’s model for US GDP growth rates es-
timated over the period 1952–1984, and plot their contours in the
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Fig. 1. Contours of transition probabilities in (α, τ )-plane. Notes: The contours of a(α, τ ) and b(α, τ ) are presented respectively in the left and right panels for the levels
from 0.05 to 0.95 in increment of 0.05, upward for a(α, τ ) and downward for b(α, τ ). Hence the top line in the left panel is the contour of a(α, τ ) = 0.95, and the bottom
line on the right panel represents the contour of b(α, τ ) = 0.95.
Fig. 2. Correspondence between (α, τ ) and

a(α, τ ), b(α, τ )


. Notes: The

increasing and decreasing curves are, respectively, the contours of a(α, τ ) =

0.796 and b(α, τ ) = 0.901 in the (α, τ )-plane. Their intersection at (α, τ ) =

(0.894, −1.001) provides the (α, τ )-pair that yields the transition probabilities
a(α, τ ) = 0.796 and b(α, τ ) = 0.901.

(α, τ )-plane. It is shown that the two contours intersect at one and
only one point, which is given by α = 0.894 and τ = −1.001.

If we set ρ = 0 in our model (4), the transition probabilities
of the state process (st) in (3) alone completely determine the
regime switching without any interaction with other parts of the
model. This implies that by setting ρ = 0 and obtaining the
values of α and τ corresponding to the given values of a(α, τ ) and
b(α, τ ), we may always find a regime switching model with an
autoregressive latent factor that is observationally equivalent to
any given conventional Markov switching model. Our approach,
however, produces an important by-product that is not available
from the conventional approach: an extracted time series of the
autoregressive latent factor driving the regime switching.

Now we let α = 1. In this case, the state process (st) defined
in (3) becomes nonstationary and its transition evolves with time
t . For t ≥ 1, we subsequently define the transition probabilities
explicitly as functions of time as

at(τ ) = P

st = 0

st−1 = 0

, bt(τ ) = P


st = 1

st−1 = 1

, (13)

and show that

Corollary 2.2. Let α = 1, and let at(τ ) and bt(τ ) be defined as
in (13). For t = 1, a1(τ ) = Φ(τ ) with P{s0 = 0} = 1 if τ > 0,
and, b1(τ ) = 1 − Φ(τ ) with P{s0 = 1} = 1 if τ ≤ 0. Moreover, we
have

at(τ ) =

 τ/
√
t−1

−∞
Φ


τ − x

√
t − 1


ϕ(x)dx

Φ

τ/

√
t − 1



bt(τ ) = 1 −


∞

τ/
√
t−1 Φ


τ − x

√
t − 1


ϕ(x)dx

1 − Φ

τ/

√
t − 1


for t ≥ 2.

The state process (st) is a Markov chain with transition
density p(st |st−1) in (12) which is defined now with the transition
probability to the low state ω(st−1) given by

ω(st−1)

=


(1 − st−1)

 τ/
√
t−1

−∞
+ st−1


∞

τ/
√
t−1


Φ


τ − x

√
t − 1


ϕ(x)dx

(1 − st−1)Φ

τ/

√
t − 1


+ st−1


1 − Φ


τ/

√
t − 1


with respect to the counting measure on {0, 1}. We may easily see
that

at(τ ), bt(τ ) ≈ 1 −
1

π
√
t − 1

for large t , where π is a mathematical constant given by
π = 3.14159 . . . , and therefore, the transition becomes more
persistent in this case as t increases. Moreover, the threshold
parameter τ is unidentified asymptotically. For the asymptotic
identifiability of the threshold parameter when α = 1, we must
set τ = τ̄

√
n for some fixed τ̄ . This is obvious because in this case

the latent factor (wt) increases stochastically at the rate
√
n.

3. Estimation

Our endogenous regime switching model (4) can be estimated
by the maximum likelihood method. For the maximum likelihood
estimation of our model, we write the log-likelihood function as

ℓ(y1, . . . , yn) = log p(y1) +

n
t=2

log p(yt |Ft−1) (14)

where Ft = σ

xt , (ys)s≤t


, i.e., the information given by

xt , y1, . . . , yt for each t = 1, . . . , n. Of course, the log-likelihood
function includes a vector of unknown parameters θ ∈ Θ , say,
which specifies the conditional mean and volatility processes (mt)
and (σt) of our model. It is, however, suppressed for the sake of
notational brevity. The maximum likelihood estimator θ̂ of θ is
given by

θ̂ = argmax
θ∈Θ

ℓ(y1, . . . , yn)

as usual. For themodel (8), θ consists of state dependentmean and
volatility parameters, (µ, µ̄) and (σ , σ̄ ), as well as the threshold
τ level, the autoregressive coefficient α of the latent factor,
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the correlation coefficient ρ, and the autoregressive coefficients
(γ1, . . . , γk).

To estimate our general switching model (4) by the maximum
likelihoodmethod, we develop amodifiedMarkov switching filter.
The conventional Markov switching filter is no longer applicable,
since the state process (st) defined in (3) for our model is not a
Markov chain unless ρ = 0. To develop the modified Markov
switching filter that can be used to estimate our model, we let

Φρ(x) = Φ

x/


1 − ρ2


(15)

for |ρ| < 1 and

ut =
yt − mt

σt
.

We have

Theorem 3.1. Let |ρ| < 1. The bivariate process (st , yt) on {0, 1}×R
is a (k + 1)-st order Markov process, whose transition density with
respect to the product of the counting and Lebesgue measure is given
by

p(st , yt |st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= p(yt |st , . . . , st−k, yt−1, . . . , yt−k)

× p(st |st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

where

p(yt |st , . . . , st−k, yt−1, . . . , yt−k) = N

mt , σ

2
t


(16)

and

p(st |st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1 − st)ωρ + st(1 − ωρ) (17)

with the transition probability ωρ = ωρ(st−1, . . . , st−k−1, yt−1, . . . ,
yt−k−1) of (st) to the low state conditional on the previous states and
the past values of observed time series. If |α| < 1,

ωρ

=


(1 − st−1)

 τ
√

1−α2

−∞
+ st−1


∞

τ
√

1−α2


Φρ


τ − ρut−1 −

αx√
1−α2


ϕ(x)dx

(1 − st−1)Φ(τ
√
1 − α2) + st−1


1 − Φ(τ

√
1 − α2)


and, if α = 1, for t = 1, ωρ(s0) = Φ(τ ) with P{s0 = 0} = 1 and
P{s0 = 1} = 1 respectively when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ

=


(1 − st−1)

 τ/
√
t−1

−∞
+ st−1


∞

τ/
√
t−1


Φρ


τ − ρut−1 − x

√
t − 1


ϕ(x)dx

(1 − st−1)Φ(τ/
√
t − 1) + st−1


1 − Φ(τ/

√
t − 1)

 .

Theorem 3.1 fully specifies the joint transition of (st) and (yt)
in case of |ρ| < 1.

If |ρ| = 1, we have perfect endogeneity and Φρ in (15) is not
defined. In this case, the current shock tomodel innovation ut fully
dictates the realization of latent factor wt+1 determining the state
in the next period. Consequently the transition of the state process
(st), which is derived above for |ρ| < 1 in Theorem3.1, is no longer
applicable. When |ρ| = 1, the transition probability ωρ to the
low state conditional on the previous states and the past values
of observed time series behaves differently, which in turn implies
that transition density of the state process needs to be modified
accordingly. In this case, ωρ is given explicitly below for various
values of AR coefficient α of the latent factor (wt).

Corollary 3.2. If |ρ| = 1, the transition probability ωρ = ωρ(st−1,
. . . , st−k−1, yt−1, . . . , yt−k−1) of (st) to the low state conditional on
the previous states and the past values of observed time series is given
as follows: (a) If α = 0,

ωρ = 1

ρut−1 < τ


.

(b) If 0 < α < 1,

ωρ = (1 − st−1)min

1,
Φ


(τ − ρut−1)

√
1−α2

α


Φ


τ
√
1 − α2




+ st−1 max

0,
Φ


(τ − ρut−1)

√
1−α2

α


− Φ


τ
√
1 − α2


1 − Φ


τ
√
1 − α2


 .

(c) If −1 < α < 0,

ωρ = st−1 min

1,
1−Φ


(τ−ρut−1)

√
1−α2
α


1−Φ


τ
√

1−α2



+ (1 − st−1)max

0,
Φ


τ
√

1−α2

−Φ


(τ−ρut−1)

√
1−α2
α


Φ


τ
√

1−α2


 .

(d) If α = 1, for t = 1, ωρ(s0, y0) = Φ (τ − ρu0) with P{s0 =

0} = 1 and P{s0 = 1} = 1 respectively when τ > 0 and τ ≤ 0 and,
for t ≥ 2,

ωρ

=


1 − st−1, if ρut−1 > 0

Φ


(τ − ρut−1)

1
√
t−1


− st−1Φ


τ/

√
t − 1


(1 − st−1)Φ


τ/

√
t − 1


+ st−1


1 − Φ


τ/

√
t − 1

 , otherwise
.

As shown in Theorem 3.1 and Corollary 3.2, the transition
density of the state process (st) at time t from time t − 1 depends
upon yt−1, . . . , yt−k−1 aswell as st−1, . . . , st−k−1. The state process
(st) alone is therefore not Markovian, although the state process
augmented with the observed time series (st , yt) becomes a
(k + 1)-st order Markov process. If ρ = 0, we have ωρ =

ω(st−1). In this case, the state process (st) reduces to a first order
Markov process independent of (yt) as in the conventional Markov
switching model, with the transition probabilities obtained in
Lemma 2.1.

Our modified Markov switching filter consists of the prediction
and updating steps, which are entirely analogous to those in the
usual Kalman filter. To develop the modified Markov switching
filter, we write

p(yt |Ft−1)

=


st

· · ·


st−k

p(yt |st , . . . , st−k, Ft−1)p(st , . . . , st−k|Ft−1). (18)

Since p(yt |st , . . . , st−k, Ft−1) = p(yt |st , . . . , st−k, yt−1, . . . , yt−k)
is given by (16), it suffices to have p(st , . . . , st−k|Ft−1) to compute
the log-likelihood function in (14), which we obtain in the
prediction step. For the prediction step, we note that

p(st , . . . , st−k|Ft−1)

=


st−k−1

p(st |st−1, . . . , st−k−1, Ft−1)p(st−1, . . . , st−k−1|Ft−1), (19)

and that p(st |st−1, . . . , st−k−1, Ft−1) = p(st |st−1, . . . , st−k−1, yt−1,
. . . , yt−k−1), which is given in (17). Consequently, p(st , . . . , st−k|

Ft−1) can be readily computed from (19), once we obtain
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p(st−1, . . . , st−k−1|Ft−1) from the previous updating step. Finally,
for the updating step, we have

p(st , . . . , st−k|Ft) = p(st , . . . , st−k|yt , Ft−1)

=
p(yt |st , . . . , st−k, Ft−1)p(st , . . . , st−k|Ft−1)

p(yt |Ft−1)
,

(20)

where p(yt |st , . . . , st−k, Ft−1) is given by (16), and wemay readily
obtain p(st , . . . , st−k|Ft) from p(st , . . . , st−k|Ft−1) and p(yt |Ft−1)

computed in the prediction step above.
Using our modified Markov switching filter based on the state

process (st), we can also easily extract the latent autoregressive
factor (wt). This can be done through the prediction and updating
steps described above in (19) and (20). In the prediction step, we
note that

p(wt , st−1, . . . , st−k|Ft−1)

=


st−k−1

p(wt |st−1, . . . , st−k−1, Ft−1)p(st−1, . . . , st−k−1|Ft−1).

(21)

Since p(st−1, . . . , st−k−1|Ft−1) is obtained from the previous up-
dating step, we may readily compute p(wt , st−1, . . . , st−k|Ft−1)

from (21) once we find p(wt |st−1, . . . , st−k−1, Ft−1), the condi-
tional density of latent factor (wt) on previous states and past in-
formation on the observed time series, which is derived below for
various values of AR coefficient α of latent factor and endogeneity
parameter ρ.

Corollary 3.3. The transition density of (wt) conditional on the
previous states and the past values of observed time series is given
as follows: (a) When |α| < 1 and |ρ| < 1,

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

=


1 − Φ


1−ρ2+α2ρ2

1−ρ2


τ −

α(wt−ρut−1)
1−ρ2+α2ρ2


1 − Φ


τ
√
1 − α2


× N


ρut−1,

1 − ρ2
+ α2ρ2

1 − α2


,

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

Φ


1−ρ2+α2ρ2

1−ρ2


τ −

α(wt−ρut−1)
1−ρ2+α2ρ2


Φ


τ
√
1 − α2


× N


ρut−1,

1 − ρ2
+ α2ρ2

1 − α2


.

(b) When |α| < 1 and |ρ| = 1,

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

=

√
1−α2

α
φ


wt−ρut−1

α

√
1 − α2


1 − Φ


τ
√
1 − α2

 1

wt ≥ ατ + ρut−1


,

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

√
1−α2

α
φ


wt−ρut−1

α

√
1 − α2


Φ


τ
√
1 − α2

 1

wt ≤ ατ + ρut−1


.

(c) When α = 1 and |ρ| < 1,

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)
=


1 − Φ


t−tρ2+ρ2

1−ρ2


τ −

wt−ρut−1
t−tρ2+ρ2


1 − Φ


τ/

√
t − 1


× N


ρut−1,

t − tρ2
+ ρ2

t − 1


,

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

Φ


t−tρ2+ρ2

1−ρ2


τ −

wt−ρut−1
t−tρ2+ρ2


Φ


τ/

√
t − 1

 N


ρut−1,
t − tρ2

+ ρ2

t − 1


.

(d) When α = 1 and |ρ| = 1,

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

=

1
√
t−1

φ


wt−ρut−1
t−1


1 − Φ


τ/

√
t − 1

1wt ≥ τ + ρut−1

,

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

1
√
t−1

φ


wt−ρut−1
t−1


1 − Φ


τ/

√
t − 1

1wt ≤ τ + ρut−1

.

Wemay then obtain

p(wt , st−1, . . . , st−k|Ft)

=
p(yt |wt , st−1, . . . , st−k, Ft−1)p(wt , st−1, . . . , st−k|Ft−1)

p(yt |Ft−1)
,

(22)

in the updating step. By marginalizing p(wt , st−1, . . . , st−k|Ft) in
(22), we get

p (wt |Ft) =


st−1

· · ·


st−k

p (wt , st−1, . . . , st−k|Ft) ,

which yields the inferred factor,

E (wt |Ft) =


wtp (wt |Ft) dwt

for all t = 1, 2, . . . . Therefore, we may easily extract the inferred
factor, once the maximum likelihood estimates of p(wt |Ft), 1 ≤

t ≤ n, are available.
We may generalize our model and allow for other covariates to

affect the regime switching process. For instance, we may specify
the state dependent parameter πt as

πt = π(wt , xt),

where (xt) is a time series of covariates that are predetermined and
observable, and accordingly the level function π as

π(w, x) = π1

w < τ1 + τ ′

2x


+ π̄1

w ≥ τ1 + τ ′

2x


with parameters (π, π̄) and (τ1, τ2), in place of (2). The threshold
for regime switching is therefore given as a linear function of some
predetermined and observable covariates. This model is more
directly comparable to the one considered in Kim et al. (2008). All
of our previous theories and results can be easily extended to this
model.

We may also easily extend our model to allow for a more
general level function π(w) than the one introduced in (2). One
obvious possibility is to use the level function that allows for
multiple regimes, more than two. In fact, it is not uncommon to
find applications in which three or more regimes are detected.
See, e.g., Garcia and Perron (1996) and Kim et al. (1998) among
many others. The extended models with a more general level
function allowing for multiple regimes can also be estimated using
our modified Markov switching filter similar to that with the



134 Y. Chang et al. / Journal of Econometrics 196 (2017) 127–143
simple two-regime level function that we discussed in detail in the
previous sections. Wemay further extend our model to allow for a
continuum of regimes. In this case, however, our modified Markov
switching filter is no longer applicable.

4. Simulations

To evaluate the performance of our model and estimation
procedure, we conduct an extensive set of simulations. In the
sequel, we will present our simulation models and results.

4.1. Simulation models

In our simulations, we consider both mean and volatility
switching models. Our volatility model is specified as

yt = σ(st)ut , σ (st) = σ(1 − st) + σ st . (23)

The parameters σ and σ are set at σ = 0.04 and σ = 0.12, which
are roughly the same as our estimates for the regime switching
volatilities for the stock returns we analyze in the next section. On
the other hand, our simulations for the mean model rely on

yt = µ(st) + γ (yt−1 − µ(st−1)) + σut ,

µ(st) = µ(1 − st) + µst .
(24)

We set the parameter values at σ = 0.8, γ = 0.5, µ = 0.6 and
µ = 3. They are approximately the same as the estimates that
we obtain using the US real GDP growth rates analyzed in the next
section.

For bothmean and volatilitymodels, (st) and (ut) are generated
as specified in (1), (3) and (5) for the samples of size 500, and
iterated 1000 times. The correlation coefficient ρ between the
current model innovation ut and the next period innovation vt+1
of the latent autoregressive factor is set to be negative for both
mean and volatility models, as in most of our empirical results
reported in the next section. To more thoroughly study the impact
of endogeneity on the estimation of our model parameters, we
allow ρ to vary from 0 to −1 in increment of 0.1. On the other
hand, we consider three pairs of the autoregressive coefficient
α of the latent factor and the threshold τ given by (α, τ ) =

(0.4, 0.5), (0.8, 0.7), (1, 9.63). The first two pairs with |α| < 1
yield a stationary latent factor, while the last pair with α = 1
makes the latent factor a random walk.

As discussed earlier, if ρ = 0, there exists a one-to-one
correspondence between the (α, τ ) pair and the pair (a, b) of
transition probabilities of state process, where a and b denote
respectively the transition probabilities from the low state to the
low state and from the high state to the high state. The first pair
(α, τ ) = (0.4, 0.5) corresponds to (a, b) = (0.75, 0.5), and
the second pair (α, τ ) = (0.8, 0.7) to (a, b) = (0.86, 0.72).
The transitions of these two pairs have the same equilibrium
distribution given by (a∗, b∗) = (2/3, 1/3), which also becomes
the common invariant distribution.9 This, in particular, implies
that the unconditional probabilities of the state being in the low
and high regimes are 2/3 and 1/3 respectively in every period.
For the third pair with α = 1, the state process is nonstationary
and its transition varies over time without having an invariant
distribution. Our choice of τ = 9.63 in the third pair yields
the unconditional probabilities (2/3, 1/3) for the low and high
regimes at the terminal period of our simulation, which makes it
comparable to the first two pairs.10

9 Recall that the invariant distribution of the two-state Markov transition given
by a 2 × 2 transition matrix P is defined by π∗

= (a∗, b∗) such that π∗
= π∗P .

10 Note that w500 =d N(0, 500) when α = 1 and ρ = 0.
4.2. Simulation results

In our simulations, we first examine the endogeneity bias. The
estimators of parameters in our models are expected to be biased
if the presence of endogeneity in regime switching is ignored. To
see themagnitude of bias resulting from theneglected endogeneity
in regime switching, we let ρ = 0 for the exogenous regime
switchingmodels. Our simulation results are summarized in Fig. 3.
On the left panel of Fig. 3, the bias in the maximum likelihood
estimates σ̂ and σ̂ of σ and σ in the volatility model are presented
in the upper and lower parts of the panel for three different levels
of α = 0.4, 0.8, 1 measuring the persistence of the latent factor
in each of the three columns in the panel. Each graph plots the
bias of the estimates from the endogenous (red solid line) and
exogenous (blue dashed line) models across different levels of
endogeneity ρ on the horizontal axis. Similarly, the right panel of
Fig. 3 presents the bias in the maximum likelihood estimates µ̂, µ̂

and γ̂ ofµ, µ and γ in themeanmodel for three persistence levels
α = 0.4, 0.8, 1 of the latent factor.

The endogeneity in regime switching, if ignored, may yield
substantial bias in the estimates of model parameters. This turns
out to be true for both mean and volatility models, though the
deleterious effect of the neglected endogeneity is relatively larger
in the mean model. The magnitude of the bias tends to be larger
when α is away from unity and the latent autoregressive factor is
less persistent. For example, when α = 0.4 and ρ = −0.7, the bias
of the estimates µ̂, µ̂, and γ̂ in the mean model are respectively
38.7%, −10.8%, and −86.7%. If, however, α is close to unity, the
neglected endogeneity does not appear to yield any substantial
bias. In fact, when α = 1 and the latent factor becomes a random
walk, the effect of endogeneity on the parameter estimates in both
mean and volatility models becomes insignificant. In all cases,
however, the magnitude of the bias becomes larger as |ρ| gets
bigger and the degree of endogeneity increases. Though we do
not report any details to save space, our simulations show that
the inferred probabilities of the latent regimes are also seriously
affected if the endogeneity in regime switching is not properly
taken care of.

Not only can the presence of endogeneity create a pitfall
leading to a substantial bias in parameter estimates, but also
an opportunity to improve the precision of parameter estimates
in Markov switching models. In fact, in the endogenous regime
switchingmodel, additional information on the state process (st) is
provided by the observed time series (yt). Note that the transition
of the state process (st) in our models is determined by lags of
(yt) as well as lags of (st), and therefore we have an additional
channel for the information in (yt) to be reflected in the likelihood
function. This is not the case if we let ρ = 0 as in the conventional
Markov switching model that does not allow for the presence
of endogeneity. The simulation results in Fig. 4 show that the
presence of endogeneity in regime switching indeed improves the
efficiency of parameter estimates, if accounted for properly as in
our endogenous models. The standard errors of ML estimates of
the parameters in our volatility and mean models are presented
respectively in the left and right panels of Fig. 4 in exactly the same
manner as in Fig. 3.

As shown in Fig. 4, the efficiency gain from incorporating
endogeneity explicitly in the analysis of regime switching can
be substantial. This is equally true for mean and volatility
models. For instance, if we set α = 0.8, the standard deviations
of the estimators µ̂ and σ̂ from our endogenous mean and
volatility regime switching models with ρ = −0.9 decrease by
approximately 24% and 22%, respectively, if compared with the
exogenous regime switching models with ρ = 0. Of course,
the presence of endogeneity yields efficiency gains only when
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Fig. 3. Endogeneity bias. Notes: On the left panel, the bias in ML estimates σ̂ and σ̂ of low and high volatility levels σ and σ from the volatility model are presented
respectively in the upper and lower parts, for three persistency levels of latent factor α = 0.4, 0.8, 1, in each of its three columns. Each of the six individual graphs plots the
bias from the endogenous (red solid line) and exogenous (blue dashed line) regime switching models across different levels of endogeneity parameter ρ on the horizontal
axis. Presented in the same manner on the right panel are the bias in the ML estimates µ̂, µ̂ and γ̂ of low and high mean levels and AR coefficient of observed time series,
µ, µ and γ , estimated from the mean model. There are 9 individual graphs covering the bias in three estimates for three persistency levels of the latent factor.
Fig. 4. Efficiency gain from endogeneity. Notes: Respectively presented in the left and right panels of Fig. 4 are the standard errors of the ML estimates of the parameters
in our endogenous volatility and mean switching models. The 6 graphs on the left and 9 graphs on the right panels present the standard errors of ML estimates from the
volatility and mean models in the exactly the same manner as in Fig. 3.
it is properly taken into account. If the conventional Markov
switchingmodel is used, the presence of endogeneity inmost cases
has a deleterious effect on the standard deviations of parameter
estimators.

In general, the standard deviations of parameter estimators are
greatly reduced in both mean and volatility models if endogeneity
exists in regime switching, as long as |α| < 1 and the latent factor
is stationary. Naturally, the efficiency gain increases as |ρ| gets
large and the degree of endogeneity increases. On the other hand,
when the latent factor is nonstationary with α = 1, the standard
errors of parameter estimators from the endogenousmodel remain
more or less constant across ρ, showing little or no sign of
efficiency gain. This may be due to the fact that switching occurs
rarely when the latent factor is highly persistent, reducing the
opportunity for additional information contained in the observed
time series on the switching to play a positive role.11

Finally, we consider testing for the presence of endogeneity in
regime switching models on the basis of the likelihood ratio test

11 On the average, the regime change occurs 160, 100, and 15 times out of 500,
respectively, for the three pairs of (α, τ ) = (0.4, 0.5), (0.8, 0.7), and (1, 9.63) we
consider in our simulations. This clearly shows a rapid decline of regime change
frequency as the value of AR coefficient α gets closer to 1 and the latent factor
becomes a random walk.
given by

2(ℓ(θ̂) − ℓ(θ̃)), (25)

where ℓ stands for the log-likelihood function and the parameter
θ with tilde and hat denote their maximum likelihood estimates
with and without the no endogeneity restriction, ρ = 0,
respectively. The likelihood ratio test has a chi-square limit
distribution with one degree of freedom. Presented in the left and
right panels of Fig. 5 are the power functions of the likelihood ratio
test computed from the simulated volatility and mean switching
models for three different levels of persistency in the latent factor
measured by its AR coefficient α = 0.4, 0.8, 1. For the stationary
regime switching model with α = 0.4 or 0.8, the test is very
powerful with the power increasing rapidly as the value of the
endogeneity parameter |ρ| gets large. Under the null hypothesis of
no endogeneity, the test has good size properties in the volatility
model, but it tends to over-reject in the mean model when the
sample size is only moderately large as the latent factor becomes
more persistent. Although we do not report the details, the size
distortion disappears as the sample size increases. In contrast,
the test does not work well when α = 1 and the latent factor
becomes nonstationary. In this case, the power function increases
very slowly as |ρ| gets large, and tends to over-reject in the mean
model. The overall performance of the test in the nonstationary
case is much worse than in the stationary cases.
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Fig. 5. Power function of LR test for endogeneity. Notes: The left and right hand side graphs of Fig. 5 present the power functions of the likelihood ratio test computed
respectively from the volatility and mean switching models for three different levels of persistency in the latent factor (wt ) measured by its AR coefficient α = 0.4, 0.8, 1.
5. Empirical illustrations

To empirically illustrate our approach, we analyze the US GDP
growth rates and US excess stock market returns using the mean
and volatility models with regime switching, respectively.

5.1. Regime switching in stock return volatility

As an illustration, our volatility model in (23) is estimated
using the demeaned US excess stock market returns at monthly
frequency. We define stock market returns as the monthly
observations of value-weighted stock returns including dividends
on the NYSE/AMEX index, and impute monthly risk free rates
from the daily observations of three months T-bill rates.12 Both
NYSE/AMEX index returns and T-bill rates are obtained from the
Center for Research in Security Prices (CRSP) for the period January
1926–December 2012. The monthly excess stock market returns
are obtained by subtracting the monthly risk free rates from
the stock market returns. We analyze two sample periods: the
full sample period (1926–2012) and a recent subsample period
(1990–2012). We choose this subsample to relate the extracted
latent volatility factor obtained from our endogenous switching
model with VIX, one of the most commonly used volatility indices,
which is available only for this subsample period.

To estimate the volatility switching model by the ML method,
we use our modified Markov switching filter implemented with
the numerical optimization method including the commonly
used BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm. Our
estimates are reported in Table 1.13 The estimates for the
endogeneity parameter ρ are quite substantial in both samples,
−0.970 for the full sample and −0.999 for the subsample,14

12 Monthly risk free rates are obtained by continuously compounding daily risk
free rates,whichwe impute using themonthly series of annualized yield tomaturity
(TMYTM) constructed from nominal price of three month T-bill. The annualized
yield to maturity is converted to the daily yield to maturity (TMYLD) by the
conversion formula provided by CRSP, i.e., TMYLDt = (1/365)(1/100)TMYTMt . The
monthly yield is then obtained by continuously compounding this daily yield as
exp(TMYLDt−1 × Nt ) − 1, where Nt is the number of days between the quote dates
for the current and the previous month, MCALDTt−1 . The number of days between
quote dates ranges from 28 to 33.
13 The standard errors are presented in parenthesis.
14 Here our estimate of ρ for the subsample is virtually identical to −1, in which
case the current shock to the stock returns would be directly transmitted to the
latent factor. This, however, does not mean that the regime becomes perfectly
predictable, since (wt ) is never observed even if (st ) is sometimes known. A referee
suspects that it may also be spuriously obtained by fitting a model with regime
switching in volatility for a process generated without any changing regimes. We
found by simulation that this possibility is less than 30% at most.
Table 1
Estimation results for volatility model.

Sample periods 1926–2012 1990–2012
Endogeneity Ignored Allowed Ignored Allowed

σ 0.039 0.038 0.022 0.025
(0.001) (0.001) (0.002) (0.004)

σ 0.115 0.115 0.050 0.055
(0.009) (0.009) (0.003) (0.008)

ρ −0.970 −0.999
(0.086) (0.010)

log-likelihood 1742.536 1748.180 507.700 511.273
p-value (LR test for
ρ = 0)

0.001 0.008

providing ample evidence of the presence of endogeneity in regime
switching in market volatility. The presence of endogeneity in
regime switching is formally tested using the usual likelihood ratio
test given in (25). In both sample periods, we reject the null of no
endogeneity at a 1% significance level, as reported in the bottom
line of Table 1. For the full sample period 1926–2012, the estimates
of α and τ in the exogenous model are 0.994 (0.004) and 11.375
(4.472), from which we obtain 0.991 and 0.928 as the estimates
of the low-to-low and high-to-high transition probabilities. In the
endogenous model, we obtain 0.986 (0.009) and 7.385 (2.567)
for α and τ . On the other hand, for the recent subsample period
1990–2012, we find 0.997 (0.003) and −3.212 (7.055) as the
estimates ofα and τ in the exogenousmodel,which yield 0.973 and
0.981 for the low-to-low and high-to-high transition probabilities.
For the endogenous model, we have 0.979 (0.044) and 0.685
(2.114) for α and τ .

What ismost clearly seen from Fig. 6 is the striking difference in
the time series plots of the transition probabilities estimated from
the exogenous and endogenous volatility regime switching mod-
els. The transition probability estimated by the exogenous model
is constant over the entire sample period, while the corresponding
transition probabilities estimated by the endogenous model vary
over time, and depend upon the lagged value of the excess mar-
ket return yt−1 as well as the realized value of the previous state
st−1. This point is clearly demonstrated in the left hand side graph
of Fig. 6 which presents the transition probability from the low
volatility regime at t − 1 to the high volatility regime at t esti-
mated by the exogenous and endogenous switching models. This
low to high transition probability is estimated to be 2.7% through-
out the entire sample period by the exogenousmodel,while in con-
trast the corresponding transition probabilities estimated by the
endogenous model vary over time with the realized values of the
lagged excess market return. It shows in particular that the transi-
tion probabilities have been changing drastically, and reach a value
as high as 87.1%. The right hand side graph of Fig. 6 similarly il-
lustrates the same point with the transition probability from high
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Fig. 6. Estimated transition probability from volatility model. Notes: Fig. 6 presents the transition probabilities from the volatility model. The left hand side graph shows
the transition probability from low to high volatility state: the blue solid line refers to P(st = 1 | st−1 = 0, yt−1) in our endogenous regime switching model, while the red
dashed line corresponds to P(st = 1 | st−1 = 0) in the exogenous regime switching model. Similarly, the right hand side graph shows the transition probabilities of staying
at high volatility state.
Fig. 7. Transition probabilities for recent financial crisis period. Notes: The high to low transition probabilities during the high volatility regime from September 2008 to
May 2009 are presented on the right hand side graph of Fig. 7, where the green line signifies the time varying transition probability P(st = 0 | st−1 = 1, yt−1) estimated
from our endogenous regime switching model, while the red line corresponds to the constant transition probability P(st = 0 | st−1 = 1) obtained from the exogenous
switching model. The solid line and the dashed line on the left and right hand side graphs respectively present the time series of annualized monthly volatility and the
monthly NYSE/AMEX index returns. The shaded areas on both graphs of Fig. 7 indicate the high volatility regime.
volatility state at t −1 to high volatility state at t by the exogenous
and endogenous switching models.

The endogeneity in regime switching plays a more important
role when the underlying regime is known. Fig. 7 illustrates that
the time varying transition probabilities from the endogenous
model can indeed produce a much more realistic assessment for
the likelihood of moving into a low volatility regime from a known
high volatility regime. The left hand side graph of Fig. 7 presents
the time series of annualized monthly volatility. The time series of
monthly stock returns is also presented in the graph on the right.
The volatility increased dramatically in September 2008 when
Lehman Brothers filed bankruptcy and stayed high until May 2009.
We consider this period as a high volatility regime.15 The shaded
areas on both graphs of Fig. 7 indicate this high volatility regime.

The high to low transition probabilities during the high volatil-
ity regime are presented on the right hand side graph of Fig. 7,
where the green line signifies the time varying transition proba-
bility P(st = 0|st−1 = 1, yt−1) estimated from our endogenous
regime switchingmodel, while the red line corresponds to the con-
stant transition probability P(st = 0|st−1 = 1) obtained from

15 The volatility level in each month during this high volatility regime from
September 2008 to May 2009 is at least twice higher than the average volatility
computed over the 32-month period ending at the start of this high volatility regime
in September 2008.
the exogenous switching model. Indeed the transition probability
estimated by the exogenous model stays constant for the entire
duration of the high volatility regime, which is in sharp contrast
to the substantially time varying transition probabilities obtained
from the endogenous model. Notice that the high to low transition
probability from our endogenous model is smaller than that from
the exogenousmodel at the beginning of the high volatility regime;
however, it goes up drastically toward the end of the high volatility
regime, which coincides, not surprisingly, with the rapid recovery
of the stock market in the early spring of 2009.

To see how well our endogenous volatility switching model
can explain the current state of market volatility, we compare
the sample paths of the extracted latent factor with that of
VIX, a popular measure for implied market volatility, over the
subsample period 1990 to 2012, where VIX is available. See Fig. 10
in the Appendix, which presents the sample path of the extracted
latent factor along with that of the CBOE (Chicago Board Options
Exchange) volatility index VIX for the period 1990–2012. The
VIX stayed relatively high during 1998–2004 and 2008 periods
indicating that the volatility was high during those periods. As
shown in Fig. 10, the extracted latent factor obtained from our
endogenous volatility model also stays relatively high, moving
closely with VIX during those high volatility periods. VIX has been
used as a gauge for ‘‘fear factor’’ or an indicator for the overall
risk level of market. Therefore the extracted latent factor from
our volatility model may be considered as an alternative measure
which can play a similar role played by VIX.
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Table 2
Maximum likelihood estimates for Hamilton (1989) model.

Sample periods 1952–1984 1984–2012
Endogeneity Ignored Allowed Ignored Allowed

µ −0.165 −0.083 −0.854 −0.758
(0.219) (0.161) (0.298) (0.311)

µ 1.144 1.212 0.710 0.705
(0.113) (0.095) (0.092) (0.085)

γ1 0.068 0.147 0.154 0.169
(0.123) (0.104) (0.105) (0.105)

γ2 −0.015 0.044 0.350 0.340
(0.112) (0.096) (0.105) (0.103)

γ3 −0.175 −0.260 −0.036 −0.076
(0.108) (0.090) (0.106) (0.128)

γ4 −0.097 −0.067 0.043 0.049
(0.104) (0.095) (0.103) (0.112)

σ 0.794 0.784 0.455 0.452
(0.065) (0.057) (0.034) (0.032)

ρ −0.923 0.999
(0.151) (0.012)

Log-likelihood −173.420 −169.824 −80.584 −76.447
p-value 0.007 0.004

We also compute for each period the inferred probability of
being in the high volatility regime using our endogenous volatility
switching model as well as the conventional exogenous switching
model. They are presented in Fig. 11 in the Appendix. Overall the
time series of the high volatility probabilities computed from both
endogenous and exogenous switching models are comparable.
However, those obtained from our endogenous model tend to
fluctuate more over time compared to those from its exogenous
counterpart. This is perhaps because the endogenous model more
efficiently extracts the information on regime switching as shown
in our simulation. It is also interesting to note that theprobability of
being in the high volatility regime computed from our endogenous
model is exactly at 1 during the 2008 financial crisis, while that
from the exogenous model does not quite reach 1, albeit close to 1,
which demonstrates the potential of our model to more precisely
estimate theprobability of the financialmarket becomingunstable.

5.2. Regime switching in GDP growth rates

In this section, we investigate the regime switching behavior
of the US real GDP growth rates constructed from the seasonally
adjusted quarterly real GDP series for the period 1952:Q1-
2012:Q4.16 As in Hamilton (1989), we model the real GDP growth
rates (yt) as an AR(4) process with regime switching. Since there
seems to be a structural break in the postwar US real GDP growth
rates in 1984:Q1, as noted in Kim and Nelson (1999), we consider
two sample periods: the earlier sample period covering 1952:Q1-
1984:Q4, and the more recent sample period covering 1984:Q1-
2012:Q4.We use the same data used in Kim andNelson (1999) and
compare our results with theirs.17

We estimate the mean switching model for the GDP growth
rates using our new modified Markov switching filter along with
BFGS method. Table 2 presents the estimation results for the two
sample periods we consider.18 The ML estimates obtained from
the exogenous model with the constraint ρ = 0 imposed and
those from the endogenous model with no constraint on ρ are
largely comparable. However, the difference in the estimates from
two sample periods is remarkable. In particular, the estimates

16 Source: Bureau of Economic Analysis, US Department of Commerce. The growth
rate of real GDP is calculated as the first difference of log real GDP.
17 We use the data set provided at the website for the monograph by Kim and
Nelson (1999).
18 Again, the standard errors are presented in parenthesis.
of µ, µ, and σ from two sample periods are quite different,
which may be used as a supporting evidence for the presence
of a structural break in the US GDP series. It is also interesting
to note that the ML estimate of the correlation coefficient ρ
measuring the degree of endogeneity for the earlier sample period
is large and negative, −0.923, which is in contrast with the
value, 0.999, estimated from the recent sample period.19 For the
earlier sample period 1952–1984, the estimates of α and τ in
the exogenous model are 0.895 (0.077) and −1.009 (0.773), from
which we obtain the estimates 0.796 and 0.901 for the low-to-
low and high-to-high transition probabilities. In the endogenous
model, we have 0.927 (0.041) and −0.758 (0.883) for α and τ .
On the other hand, for the recent sample period 1984–2012, the
estimates for α and ρ in the exogenous model are 0.842 (0.162)
and −3.282 (1.489), which yield 0.526 and 0.981 for the low-to-
low and high-to-high transition probabilities. In the endogenous
model, we have 0.809 (0.145) and −2.782 (1.144) for α and
τ . Moreover, the maximum value of the log-likelihood function
from the unrestricted endogenous model is larger than that from
the restricted exogenous model with ρ = 0 imposed, and
consequently the null of no endogeneity is decisively rejected by
the usual likelihood ratio test given in (25) at 1% significance level
for both sample periods.

The estimated transition probabilities are presented in Fig. 8.
Since (st , yt) is jointly a fifth-order Markov process, the transition
probabilities at time t depend on st−1, . . . , st−5 as well as
yt−1, . . . , yt−5. The left hand side graph of Fig. 8 shows the
transition probabilities from the low mean state at t − 1 to
the low mean state at t . There are 17 lines in the graph. The
16 solid lines represent the sample paths of the 16 transition
probabilities obtained from our endogenous regime switching
model for each of the 16 possible realizations of the four lagged
state variables, st−2, st−3, st−4, and st−5. Note that each of the
four lagged state variables st−2, st−3, st−4, and st−5 takes a value
either 0 or 1, giving 16 possibilities for their joint realizations. We
therefore calculate the transition probability from the low state
at t − 1 to the low state at t , i.e., P(st = 0|st−1 = 0, st−2 =

i, st−3 = j, st−4 = k, st−5 = ℓ, yt−1, yt−2, yt−3, yt−4, yt−5)
for all 16 possible combinations of i, j, k, ℓ = 0, 1. The one
dashed line represents the corresponding probability of staying
at low mean state obtained from the exogenous model. Similarly,
the graph on the right hand side shows the sample paths of
the 17 transition probabilities from the high to low mean state,
16 solid time varying lines from the endogenous model and
one dashed straight line from the exogenous model. The most
salient feature from the two figures presented in Fig. 8 is that the
estimated transition probabilities estimated by our endogenous
regime switching model are drastically different from the one
obtained from its exogenous counterpart.

Fig. 9 presents the transition probabilities from the low mean
regime to the low mean regime plotted along with the US GDP
growth rates. NBER officially announced on December 1, 2008
that a recession began in December 2007 after the December
2007 peak which defined the turning point from expansion to
recession, and it announced on October 21, 2010 that the recession
ended in June 2009. Therefore, we knew that we were in recession
on December 1, 2008. Using this information, we calculate the
transition probability from the low to the low mean regime. The

19 Like one of the estimates for ρ in the volatility model considered earlier, here
we also have an extreme case. The estimated ρ for the recent sample period is
very close to 1, which suggests that the GDP growth rates evolve with the mean
regimes determined almost entirely by the shocks to themselves. As discussed, a
referee suspects that it may be spuriously obtained by fitting a model with regime
switching inmean for a process generatedwithout any changing regimes. However,
we found by simulation that this possibility is low and only around 10%.
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Fig. 8. Estimated transition probabilities for mean model. Notes: Fig. 8 presents the transition probabilities from the mean model for the US GDP growth rates. The left
hand side graph shows the sample paths of the 17 transition probabilities of staying at the low mean state: the 16 solid time varying lines represent transition probabilities
obtained from our endogenous switching model by computing P(st = 0 | st−1 = 0, st−2 = i, st−3 = j, st−4 = k, st−5 = ℓ, yt−1, yt−2, yt−3, yt−4, yt−5) for all 16 possible
combinations of i, j, k, ℓ = 0, 1, while the one red dashed straight line represents the probability of staying at the low mean state P(st = 0 | st−1 = 0) obtained from the
exogenous model. In the same way, the right hand side graph shows the transition probabilities from the high to the low mean state.
Fig. 9. Transition probabilities during recent recession period. Notes: Fig. 9
presents the transition probabilities from the mean switching model for the most
recent US recession period, 2007–2009. The shaded area indicates the recession
period which started on 2007:Q4 and ended on 2009:Q2, and the dashed vertical
line marks December 1, 2008 when NBER announced the recession began on
December 2007. The solid green (red) line signifies the low to low transition
probability estimated by the endogenous (exogenous) switchingmodel. The dashed
blue line plotted on the right vertical axis represents the US real GDP growth rates.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

red solid line is the corresponding transition probability from
exogenous switching model. It is constant over time. However,
the green solid line signifying the transition probability from our
endogenous model drastically changes over time. Note that the
transition probability in our endogenous model is determined
not only by previous states but also by the lagged values of the
GDP growth rates. The endogenous switching model exploits the
information from the past values of the observed time series to
update the transition probability. When the observed GDP growth
rate is low, the transition probability from the low to the low
regime is as high as 100%, but this transition probability sharply
declines to virtually zero when we update our information with
the high realized values of GDP growth rates.

We also extract the latent factor determining the states from
our endogenous mean switching model, and compare it with
the recession periods identified by NBER. See Fig. 13 in the
Appendix, which presents the sample path of the extracted latent
mean switching factor and NBER recession periods during the
two sample periods we consider, 1952–1984 and 1984–2012. In
both sample periods, we can see clearly that the trough dates of
the extracted latent factor coincide with NBER recession periods
indicated by shaded areas in the graphs. It seems that we may use
the extracted latent factor from our endogenous mean switching
model as a potential indicator for business cycle.
Finally, we compute the inferred probability that we were in
the recession regime, which are presented in Figs. 14 and 15 for
both sample periods. Both endogenous and exogenous models
produce high recession probabilities when the levels of growth
rates become negative. However, our endogenous model has an
additional channel via transition probabilities to reflect the changes
in the observed growth rates, which its exogenous counterpart
does not. The ability of our endogenous model to exploit the
information on the changes in the growth rates can indeed result
in strikingly different recession probabilities. Shortly before the
1981 recession formally announced by NBER, the GDP growth
rates sharply went up and peaked in the second quarter of 1978,
and then quickly declined and became negative in the second
quarter of 1980. During the period prior to the 1981 recession, we
see much higher values of the recession probabilities computed
from our endogenous model compared to those obtained from
the exogenous model. Our model could reflect the downward
movements in the growth rates and accordingly increased the
recession probabilities, even before the growth rates become
negative.

6. Conclusions

In the paper, we propose a new approach to model regime
switching based on an autoregressive latent factor. Our approach
has several clear advantages over the conventional regime
switchingmodel. Most importantly, wemay allow for endogeneity
in regime switching, so that a shock to the observed time series
affects the change in regime. In the mean model with regime
switching, the presence of endogeneity implies that the mean
reversion may occur at two different levels: the reversion of the
observed time series to its state dependentmean, and the reversion
of the state dependent mean to offset the effect of a shock. In the
volatility model, on the other hand, the endogeneity in regime
switching implies the presence of leverage effect. Furthermore,
our regime switching model becomes observationally equivalent
to the conventional Markov switching model, if there is no
endogeneity in regime switching. Finally, our approach allows the
transition of the state process to be nonstationary and strongly
persistent.

The empirical evidence for the presence of endogeneity in
regime switching appears to be strong and unambiguous. Our
simulations make it clear that neglecting endogeneity in regime
switching incurs not only a substantial bias, but also a significant
information loss, in estimating model parameters. If endogeneity
in the regime switching is ignored, the variability of parameter
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estimates sharply increases and consequently the inferred proba-
bilities of the latent states become less precise. This is because the
endogeneity in regime switching creates an important additional
link between the latent states and observed time series, and there-
fore, the information that can be reflected through this link cannot
be exploited if the endogeneity is ignored. The additional informa-
tion that wemay extract from this new link is certainly more valu-
able in a Markov switching model, since the state process playing
such a critical role in themodel is latent andmust be inferred from
a single observable time series.

Appendix A. Mathematical proofs

Proof of Lemma 2.1. From (9), we may deduce that
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a(α, τ ) can therefore be easily deduced from (11). Similarly, we
have
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due to (10), from which and (11) the stated result for b(α, τ )
follows readily as above. �

Proof of Corollary 2.2. The stated result for t = 1 is obvious, since
P{s0 = 0} = 1 and P{s0 = 1} = 1 depending upon τ > 0
and τ ≤ 0. Note that we set w0 = 0 for identification when
α = 1. For t ≥ 2, upon noticing that wt−1/

√
t − 1=d N(0, 1), the

proof is entirely analogous to that of Lemma 2.1, and the details are
omitted. �

Proof of Theorem 3.1. We only provide the proof for the case of
|α| < 1. The proof for the case of α = 1 is virtually identical,
except that we havewt−1/

√
t − 1=d N(0, 1) for t ≥ 2 in this case,

in place of wt−1
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1 − α2 =d N(0, 1) for the case of |α| < 1. If we

let

zt =
wt − αwt−1

1 − ρ2
−

ρut−1
1 − ρ2

,

we may easily deduce that

p(zt |wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1) = N(0, 1).

It follows that

P

wt < τ

wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P


zt <

τ − αwt−1
1 − ρ2

−
ρut−1
1 − ρ2


× wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1


= Φρ (τ − ρut−1 − αwt−1) .

Note that

p(wt |wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1) = p(wt |wt−1, ut−1),

and that wt−1 is independent of ut−1. Consequently, we have

P

wt < τ

wt−1 < τ,wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P

wt < τ

wt−1


1 − α2

< τ

1 − α2, wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P


st = 0

st−1 = 0, st−2, . . . , st−k−1, yt−1, . . . , yt−k−1


=

 τ
√

1−α2

−∞
Φρ


τ − ρut−1 −

αx√
1−α2


ϕ(x)dx

Φ


τ
√
1 − α2


and

P

wt < τ

wt−1 ≥ τ , wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P

wt < τ

wt−1


1 − α2

≥ τ

1 − α2, wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P


st = 0

st−1 = 1, st−2, . . . , st−k−1, yt−1, . . . , yt−k−1



=


∞

τ
√

1−α2 Φρ


τ − ρut−1 −

αx√
1−α2


ϕ(x)dx

1 − Φ


τ
√
1 − α2

 ,

since in particularwt−1
√
1 − α2 =d N(0, 1), fromwhich the stated

result for the transition density for (st , yt)may be readily obtained.
Now we write

p(st , yt |st−1, . . . , s1, yt−1, . . . , y1)
= p(yt |st , st−1, . . . , s1, yt−1, . . . , y1)

× p(st |st−1, . . . , s1, yt−1, . . . , y1).

It follows from (16) that

p(yt |st , st−1, . . . , s1, yt−1, . . . , y1)
= p(yt |st , . . . st−k, yt−1, . . . , yt−k).

Moreover, we have

p(st |st−1, . . . , s1, yt−1, . . . , y1)
= p(st |st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

as we have shown above. Therefore, it follows that

p(st , yt |st−1, . . . , s1, yt−1, . . . , y1)
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= p(yt |st , . . . , st−k, yt−1, . . . , yt−k)

× p(st |st−1, . . . , st−(k+1), yt−1, . . . , yt−k−1)

= p(st , yt |st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

and (st , yt) is a (k + 1)-st order Markov process. �

Proof of Corollary 3.2. We only provide the proof for the case of
0 < α < 1. The proof for the case of α = 0 is trivial and
the proof for the case of −1 < α < 0 can be easily done
with a simple modification of the case of 0 < α < 1. The
proof for the case of α = 1 is virtually identical, except that we
have wt−1/

√
t − 1=d N(0, 1) for t ≥ 2 in this case, in place of

wt−1
√
1 − α2 =d N(0, 1) for the case of |α| < 1.

It follows that

P

wt < τ

wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P

αwt−1 + vt < τ

wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1


= P

αwt−1 + ρut−1 < τ

wt−1, ut−1


= 1{αwt−1 + ρut−1 < τ }.

We note that when 0 < α < 1,

ωρ(st−1 = 0, . . . , st−k−1, yt−1, . . . , yt−k−1)

= P {αwt−1 + ρut−1 < τ | wt−1 < τ, ut−1}

= P


1 − α2wt−1 <

√
1 − α2

α
(τ − ρut−1)


×


1 − α2wt−1 < τ


1 − α2, ut−1



=


1, if

1
α

(τ − ρut−1) < τ,

Φ


(τ − ρut−1)

√
1−α2

α


Φ(τ

√
1 − α2)

, otherwise.

Similarly, we have

ωρ(st−1 = 1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= P {αwt−1 + ρut−1 < τ | wt−1 > τ, ut−1}

= P


1 − α2wt−1 <

√
1 − α2

α
(τ − ρut−1)


×


1 − α2wt−1 > τ


1 − α2, ut−1



=

Φ


(τ − ρut−1)

√
1−α2

α


− Φ(τ

√
1 − α2)

1 − Φ(τ
√
1 − α2)

× 1


τ − ρut−1

α
≥ τ


.

Proof of Corollary 3.3. We note that

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

= p (wt |st−1 = 1, st−2, . . . , st−k−1, yt−1, . . . , yt−k−1)

= p (wt |wt−1 > τ, ut−1)

=


∞

τ
p (wt , wt−1, ut−1) dwt−1
∞

τ
p (wt−1, ut−1) dwt−1

=


∞

τ
p (wt |wt−1, ut−1) p (wt−1) dwt−1

∞

τ
p (wt−1) dwt−1

,

Fig. 10. Extracted Latent Factor and VIX. Notes: Fig. 10 presents the sample path
of the latent factor extracted from the endogenous volatility switching model
(dashed red line) alongwith that of the CBOE (The Chicago BoardOptions Exchange)
volatility index VIX (solid blue line) for the period 1990–2012, respectively, on the
left and right vertical axis.

Fig. 11. High volatility probabilities. Notes: Fig. 11 presents the time series of the
probabilities of being in the high volatility regime. Top panel plots the high volatility
probability series obtained from the endogenous volatility switching model with
red line, while the bottom panel plots those from its conventional exogenous
counterpart with blue line.

Fig. 12. US Real GDP Growth Rates. Notes: Fig. 12 presents the US real GDP growth
rates which is calculated as 100 times the change in the log of real GDP. It is
seasonally adjusted, annualized, and collected at the quarterly frequency from1952
to 2012. The vertical dashed red line indicates 1983:Q4.

where the last equality follows from the independence between
(wt) and (ut). We may similarly deduce that

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

 τ

−∞
p (wt |wt−1, ut−1) p (wt−1) dwt−1 τ

−∞
p (wt−1) dwt−1

.

In case |α| < 1 and |ρ| < 1, we have wt |wt−1, ut−1 =d N
αwt−1 + ρut−1, 1 − ρ2


. Since wt =d wt−1 =d N


0, 1/(1 − α2)


,
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Fig. 13. NBER recession periods and extracted latent factor. Notes: Fig. 13 presents the latent factor determining the states extracted from the endogenous mean switching
model, which is compared with the recession periods identified by NBER. The left hand side graph presents extracted latent factor plotted with solid red line and NBER
recession periods displayed as shaded gray areas for the sample period 1952–1984, while the graph on the right presents those for themore recent sample period 1984–2012.
Fig. 14. Recession probabilities during 1952–1984. Notes: Fig. 14 presents the recession probabilities for the earlier sample period, 1952–1984. Top panel plots the recession
probabilities from the endogenous mean switching model with red line, while the bottom panel plots those from its conventional exogenous counterpart with blue line.
Both panels also show the recession periods identified by NBER.
it follows that

p (wt |st−1 = 1, st−2, . . . , st−k−1Ft−1)

=


1 − Φ


1−ρ2+α2ρ2

1−ρ2


τ −

α(wt−ρut−1)
1−ρ2+α2ρ2


1 − Φ


τ
√
1 − α2


× N


ρut−1,

1 − ρ2
+ α2ρ2

1 − α2


p (wt |st−1 = 0, st−2, . . . , st−k−1Ft−1)

=

Φ


1−ρ2+α2ρ2

1−ρ2


τ −

α(wt−ρut−1)
1−ρ2+α2ρ2


Φ


τ
√
1 − α2


× N


ρut−1,

1 − ρ2
+ α2ρ2

1 − α2


.

If |α| < 1 and |ρ| = 1, we have

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

= p (wt |st−1 = 1, st−2, . . . , st−k−1, yt−1, . . . , yt−k−1)
= p (wt |wt−1 > τ, ut−1)

= p (αwt−1 + vt |wt−1 > τ, vt) , (26)

and since

p (wt−1|wt−1 > τ) =

√
1 − α2φ


wt−1

√
1 − α2


1 − Φ


τ
√
1 − α2

 ,

it follows that

p (wt |st−1 = 1, st−2, . . . , st−k−1, Ft−1)

=

√
1−α2

α
φ


wt−ρut−1

α

√
1 − α2


1 − Φ


τ
√
1 − α2

 ,

p (wt |st−1 = 0, st−2, . . . , st−k−1, Ft−1)

=

√
1−α2

α
φ


wt−ρut−1

α

√
1 − α2


Φ


τ
√
1 − α2

 .
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Fig. 15. Recession probabilities during 1984–2012. Notes: Fig. 15 presents the recession probabilities for the recent sample period, 1984–2012. Top panel plots the recession
probabilities from the endogenous mean switching model with red line, while the bottom panel plots those from its conventional exogenous counterpart with blue line.
Both panels also show the recession periods identified by NBER.
The proof for the case of α = 1 is entirely analogous except that
wt =d N (0, t).

Appendix B. Additional Figures

See Figs. 10–15.
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