Inertial Updating

Adam Dominiak¹ Matthew Kovach¹ Gerelt Tserenjigmid²

¹Virginia Tech ²UC Santa Cruz

Indiana University, March 31, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- How agents update their beliefs in light of new information is a foundational problem in economics and game theory.
- **Bayesian Updating:** the benchmark model of Bayesian updating has two major issues:
 - Incomplete: it is not well-defined for zero-probability events.
 - Ex: dynamic games with incomplete information and refinements of PBE.
 - Limited: people systematically deviate from Bayesian updating.
 - Ex: confirmation bias and over- and under-reaction to information.

- Inertial Updating: A theory of belief updating that overcomes the above two issues:
 - **Complete:** A systematic way of modeling updating under zero-probability events.
 - **Rich:** A unifying framework that nests Bayesian and some well-known non-Bayesian updating rules.

Contributions

- Inertial updating is a complete theory of belief updating s.t.
 - DM has a prior μ over S and learns an event $E\subseteq S,$
 - The posterior μ_E is the "closest" element of $\Delta(E)$ from μ :

$$\mu_E = \arg \min_{\pi \in \Delta(E)} d_\mu(\pi).$$

- Inertial updating provides a unified framework that nests
 - Bayes' rule and well-known non-Bayesian updating rules such as Grether's (1980) $\alpha \beta$ rule;
 - Updating rules for zero-probability events such as Myerson's (1986) Conditional Probability System (CPS);
 - Ortoleva's (2012) Hypothesis Testing Model.
- It is characterized by two simple axioms in addition to standard subjective expected utility axioms.

- Basic setup and model.
- Examples:
 - Bayesian updating;
 - Grether's (1980) $\alpha \beta$ rule.
- Updating under zero-probability events and Myerson's CPS.
- Ortoleva's (2012) Hypothesis Testing Model.
- Behavioral foundations of Inertial Updating.
- Related Literature.

Basic Setup

- $S = \{s_1, \ldots, s_n\}$ is the set of all states, and $\Delta(S)$ is the set of all probability distributions over S.
- X is the set of all consequences and $\Delta(X)$ is the set of all finite lotteries over X.
- $\mathcal{F} \equiv \{f: S \to \Delta(X)\}$ is the set of all (Anscombe-Aumann) acts.
- Initial SEU preference $\succeq = \succeq_S \Rightarrow$ prior $\mu \in \Delta(S)$.
- Σ is a collection of non-empty subsets of S.
- Information: $E \in \Sigma$.
- Conditional SEU preference $\succeq_E \Rightarrow$ posterior $\mu_E \in \Delta(S)$.

• Weather has three outcomes; i.e., $S = \{s, r, h\}$.

• Prior:
$$\mu = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

- There will be a storm tomorrow, i.e., $E = \{r, h\} \subset S$.
- Bayesian posterior: $\mu_E = (0, \frac{1}{2}, \frac{1}{2}) \in \Delta(E)$ where

$$\Delta(E) = \{ \pi \in \Delta(S) \mid \pi(E) = 1 \}.$$

(日)

• In other words, DM selects μ_E from $\Delta(E)$.

• Weather has three outcomes; i.e., $S = \{s, r, h\}$.

• Prior:
$$\mu = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

- There will be a storm tomorrow, i.e., $E = \{r, h\} \subset S$.
- Bayesian posterior: $\mu_E = (0, \frac{1}{2}, \frac{1}{2}) \in \Delta(E)$ where

$$\Delta(E) = \{ \pi \in \Delta(S) \mid \pi(E) = 1 \}.$$

• In other words, DM selects μ_E from $\Delta(E)$. In fact,

$$\mu_E = \arg\min_{\pi \in \Delta(E)} d^{KL}_{\mu}(\pi).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ♥

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Definition 1

A family of preferences $\{\succeq_E\}_{E\in\Sigma}$ admits an **Inertial Updating** (IU) representation if there exist $\mu \in \Delta(S)$, $u: X \to \mathbb{R}$, and $d: \Delta(S) \to \mathbb{R}$ such that

(i) \succsim is a SEU preference with $(\mu, u),$ i.e., for any $f,g \in \mathcal{F},$

$$f \succsim g \quad \text{ iff } \quad \mathbb{E}_{\mu} u \big(f \big) \geq \mathbb{E}_{\mu} u \big(g \big);$$

(ii) for each $E \in \Sigma$, \succeq_E is a SEU preference with (μ_E, u) where

$$\mu_E \equiv \arg \min_{\pi \in \Delta(E)} d(\pi);$$

(iii) μ is the unique minimizer of d.

Ex 1. (Bayesian Divergence) Let $d^{\sigma}_{\mu}(\pi) = -\sum_{i=1}^{n} \mu_i \sigma(\frac{\pi_i}{\mu_i})$ for strictly increasing and strictly concave σ .

• The Kullback-Leibler divergence if $\sigma = \ln$.

Proposition 1

For any E with $\mu(E) > 0$,

$$\mu_E = \arg\min_{\pi \in \Delta(E)} - \sum_{i=1}^n \mu_i \,\sigma(\frac{\pi_i}{\mu_i}) = BU(\mu, E).$$

In other words,

$$\mu_E(s) = \frac{\mu(s)}{\mu(E)}$$
 when $s \in E$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Examples: Distorted Bayesian Updating

Ex 2. Let
$$d_{\mu}(\pi) = -\sum_{i=1}^{n} h(\mu_i) \sigma(\frac{\pi_i}{h(\mu_i)})$$
. Then
$$\mu_E(s) = \frac{h(\mu(s))}{\sum_{s' \in E} h(\mu(s'))} \text{ when } s \in E$$

- Bayes' rule when $h(\mu) = \mu$,
- When $h(\mu) = (\mu)^{\alpha}$, Grether's (1980) $\alpha \beta$ rule with $\alpha = \beta$.

• $\alpha < 1$, underreaction to information and base-rate neglect,

• $\alpha > 1$, overreaction to information and confirmation bias.

Examples: Distorted Bayesian Updating

Ex 2. Let
$$d_{\mu}(\pi) = -\sum_{i=1}^{n} h(\mu_i) \sigma(\frac{\pi_i}{h(\mu_i)})$$
. Then
$$\mu_E(s) = \frac{h(\mu(s))}{\sum_{s' \in E} h(\mu(s'))} \text{ when } s \in E$$

• Bayes' rule when $h(\mu) = \mu$,

• When $h(\mu) = (\mu)^{\alpha}$, Grether's (1980) $\alpha - \beta$ rule with $\alpha = \beta$.

• $\alpha < 1$, underreaction to information and base-rate neglect,

- $\alpha > 1$, overreaction to information and confirmation bias.
- When h(μ) = μ + δ 1{μ > ¹/₂}, our model generates confirmation bias, similar to Rabin and Schrag (1999).
- We can incorporate history-dependent (or context-dependent) belief updating through *h*.

Updating on Zero Probability Events

Suppose $\mu(E) = 0$.

Updating on Zero Probability Events

Suppose $\mu(E) = 0$.

Example: Updating on Zero Probability Events

Ex 3: Let

$$d_{\mu}(\pi) = \begin{cases} d_{\mu}^{\sigma}(\pi) & \text{if } \mu(sp(\pi)) > 0, \\ d_{\mu^{*}}^{\sigma}(\pi) + \sigma(1) + |\sigma(0)| & \text{otherwise.} \end{cases}$$

If μ^* has a full-support, then

$$\mu_E = \begin{cases} \mathsf{BU}(\mu, E) & \text{ if } \mu(E) > 0, \\ \mathsf{BU}(\mu^*, E) & \text{ otherwise.} \end{cases}$$

• The above updating rule was used in Galperti (2019) and is a special case of Myerson's CPS and Ortoleva's hypothesis testing model.

Ex 4. (Euclidean distance) Let $d_{\mu}(\pi) = \sum_{i=1}^{n} (\pi_i - \mu_i)^2$. Then

$$\mu_E(s) = \mu(s) + \frac{1 - \mu(E)}{|E|} \text{ when } s \in E.$$

(日)

- Probability is allocated uniformly over states, capturing " $\frac{1}{N}$ -heuristic."
- Extends naturally to zero-probability events.

Myerson's CPS and Zero-Probability Events

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

CPS and Perfect Bayesian Equilibrium (PBE)

- Incompleteness of Bayes' rule: In PBE, agents' beliefs are Bayes-consistent with the prior whenever possible. However, there is no restriction when Bayes' rule is not applicable.
- **Refinements:** Refinements of PBE essentially require a **complete theory** of belief updating.
- Sequential Equilibria of Kreps and Wilson (1982): Any belief should be a limit of full-support beliefs after applying Bayes' rule accordingly.
- **CPS:** The limit requirement of sequential equilibria is equivalent to the following generalization of Bayes' condition:

$$\mu_E(s) = \mu_F(s) \, \mu_E(F)$$
 for all $s \in F \subseteq E$.

Definition 2 (CPS)

A conditional probability system is a collection of $\{\mu_E\}_{E\in\Sigma}$ such that

$$\mu_E(s) = \mu_F(s) \, \mu_E(F)$$
 for all $s \in F \subseteq E$.

• If
$$\mu_E(F) > 0$$
, then $\mu_F(s) = rac{\mu_E(s)}{\mu_E(F)}$ (Bayes' rule).

Proposition 2

Every CPS has an IU representation.

Proposition 3

For any CPS, $\exists \mu^0, \ldots, \mu^K \in \Delta(S)$ such that $sp(\mu^0), \ldots, sp(\mu^K)$ is a partition of S and for any $E \in \Sigma$,

$$\mu_E = BU(\mu^{k^*}, E)$$
 where $k^* = \min\{k \mid \mu^k(E) > 0\}.$

Moreover, it has an IU representation with the distance function:

$$d_{\mu}(\pi) = d^{\sigma}_{\mu^{k^*}}(\pi) + k^* \left(\sigma(1) + |\sigma(0)| \right),$$

イロト 不得 トイヨト イヨト 三日

where $k^* = \min\{k \mid \mu^k(sp(\pi)) > 0\}.$

Ortoleva's (2012) Hypothesis Testing Model

Idea. Apply Bayes' rule if possible. If not, use maximal likelihood.

HTM: DM has a second order prior ρ over $\Delta(\Delta(S))$. For some $\epsilon \in [0, 1]$,

$$\mu_E = \begin{cases} \mathsf{BU}(\mu, E) & \text{ if } \mu(E) > \epsilon, \\ \mathsf{BU}(\pi_E^{\rho}, E) & \text{ otherwise,} \end{cases}$$

(日)

where $\pi_E^{\rho} = \arg \max_{\pi \in \Delta} \rho(\pi) \pi(E)$.

Ortoleva's Hypothesis Testing Model

Theorem 1

IU and HTM are behaviorally equivalent.

Theorem 1

IU and HTM are behaviorally equivalent.

Corollary 1

- HTM generalizes Myerson's CPS.
- HTM generalizes Grether's rule.

Behavioral Foundation of IU

AXIOM 1 (SEU Postulates)

For each $E \in \Sigma$,

- (i) Weak Order: \succeq_E is complete and transitive;
- (*ii*) Archimedean: For any $f, g, h \in \mathcal{F}$, if $f \succ_E g$ and $g \succ_E h$, then there are $\alpha, \beta \in (0, 1)$ such that $\alpha f + (1 \alpha)h \succ_E g$ and $g \succ_E \beta f + (1 \beta)h$;
- (*iii*) **Monotonicity:** For any $f, g \in \mathcal{F}$, if $f(s) \succeq_E g(s)$ for each $s \in S$, then $f \succeq_E g$;
- (*iv*) Nontriviality: There are $f, g \in \mathcal{F}$ such that $f \succ_E g$;
- (v) Independence: For any $f, g, h \in \mathcal{F}$ and $\alpha \in (0, 1]$, $f \succeq_E g$ if and only if $\alpha f + (1 \alpha)h \succeq_E \alpha g + (1 \alpha)h$.
- (vi) Invariant Risk Preference: For any lotteries $p, q \in \Delta(X)$, $p \succeq_E q$ if and only if $p \succeq q$.

AXIOM 2 (CONSEQUENTIALISM)

For any E and $f, g \in \mathcal{F}$,

$$f(s) = g(s)$$
 for all $s \in E \Rightarrow f \sim_E g$.

AXIOM 2 (CONSEQUENTIALISM)

For any E and $f,g \in \mathcal{F}$,

$$f(s) = g(s)$$
 for all $s \in E \Rightarrow f \sim_E g$.

・ロット (四) (日) (日) (日)

Lemma 1. SEU postulates imply that there are μ, u , and $\{\mu_E\}_{E \in \Sigma}$ such that

- \succeq has a SEU representation with (μ, u) ,
- \succeq_E has a SEU representation with (μ_E, u) .

AXIOM 2 (CONSEQUENTIALISM)

For any E and $f, g \in \mathcal{F}$,

$$f(s) = g(s)$$
 for all $s \in E \Rightarrow f \sim_E g$.

Lemma 1. SEU postulates imply that there are μ, u , and $\{\mu_E\}_{E \in \Sigma}$ such that

- \succeq has a SEU representation with (μ, u) ,
- \succeq_E has a SEU representation with (μ_E, u) .

Lemma 2. SEU postulates and Consequentialism imply that $\mu_E \in \Delta(E)$.

Revealed Preference: An event A is **revealed implied** by an event B if $S \setminus A$ is \succeq_B -null; i.e.,

 $(p, A; q, S \setminus A) \sim_B p$ for any $p, q \in \Delta(X)$.

In words, every state that the DM believes is possible after learning B is in A.

AXIOM 3 (Dynamic Coherence)

For any $A_1, \ldots, A_n \subseteq S$, if $S \setminus A_i$ is $\succeq_{A_{i+1}}$ -null for each $i \leq n-1$ and $S \setminus A_n$ is \succeq_{A_1} -null, then $\succeq_{A_1} = \succeq_{A_n}$.

Theorem 2

The following are equivalent.

- (i) A family of preferences $\{\succeq_E\}_{E \in \Sigma}$ satisfies SEU Postulates, Consequentialism, and Dynamic Coherence.
- (ii) It admits an **IU** representation.
- (iii) It admits an **IU** representation with respect to a continuous, strictly convex distance function.

Proof Sketch

- Step 1. SEU axioms imply that \succeq is a SEU preference with some (μ, u) and \succeq_E is a SEU preference with some (μ_E, u) .
- Step 2. Consequentialism implies that $\mu_E \in \Delta(E)$.

Proof Sketch

- Step 1. SEU axioms imply that ≿ is a SEU preference with some (μ, u) and ≿_E is a SEU preference with some (μ_E, u).
- Step 2. Consequentialism implies that $\mu_E \in \Delta(E)$.
- Note that S \ A is ≿_B-null means that μ_B(S \ A) = 0; equivalently, μ_B(A) = 1. In other words, A is revealed implied by B iff μ_B ∈ Δ(A).
- In other words, μ_B is chosen from $\Delta(A)$ in the presence of μ_B . Hence, Dynamic Coherence is equivalent to SARP on this revealed preference.
- **Step 3.** By an extension of Afriat's (1967) theorem for general budget sets due to Matzkin (1991), ∃v s.t

$$\mu_E = \arg \max_{\pi \in \Delta(E)} v(\pi).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ◆ ● ◆ ◆ ●

IU representation:

- Perea (2009) axiomatizes Euclidean distance based updating rules.
 - Always non-Bayesian.
- Basu (2019) characterizes lexicographic (AGM-consistent) updating rules and he shows that a special case of these rules also has an IU representation.
 - Bayesian whenever possible.

Non-Bayesian updating rules: Epstein (2006), Epstein et al. (2008), and Kovach (2020).

• They deviate from Consequentialism.

- We propose and characterize a **complete theory for belief updating** that overcomes two major issues of Bayesian updating.
- In IU, the DM selects the "closest" belief to her prior given information.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- IU nests Bayesian updating and some well-known non-Bayesian updating rules.
 - Grether's (1980) $\alpha \beta$ rule.
 - Myerson's (1986) CPS.
 - Ortoleva's (2012) Hypothesis Testing Model.

- Apply our model to the signal structure.
- Axiomatic Characterization of CPS.
- Apply our model to the Bayesian persuasion game and illustrate the effect of belief distortions on the optimal signal structures.
- e−CPS is a non-Bayesian extension of CPS that is still a special case of IU.
- Relaxing Consequentialism:

$$\mu_E = \delta \,\mu + (1 - \delta) \,\arg\min_{\pi \in \Delta(E)} d_\mu(\pi).$$

Thank you!!

gtserenj@ucsc.edu

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Signal Structure – Bayesian Updating

- Let Ω be the payoff relevant state space and M be the set of all signals. Then let $S = \Omega \times M$.
- Let $P(\omega)$ be the (unconditional) probability that the payoff relevant state ω occurs.
- Let P(m|ω) be the (conditional) probability that the DM receives the signal m when the state is ω.
- Note that receiving signal m is equivalent to learning the event {(ω, m)}_{ω∈Ω} in S.
- Let μ be the prior on S: $\mu_{\omega m} = P(m|\omega) P(\omega)$.
- The Bayesian divergence generates Bayesian updating in the signal structure framework:

$$P(\omega|m) = \frac{\mu_{\omega m}}{\sum_{\omega' \in \Omega} \mu_{\omega' m}} = \frac{P(m|\omega) P(\omega)}{\sum_{\omega' \in \Omega} P(m|\omega') P(\omega')}.$$

Signal Structure – Non-Bayesian Updating

Consider

$$d_{\mu}(\pi) = \sum_{(\omega,m)\in\Omega\times M} \left(\sum_{m'\in M} \mu_{\omega m'}\right)^{\beta-\alpha} \mu_{\omega m}^{\alpha} \sigma\left(\frac{\pi_{\omega m}}{\mu_{\omega m}^{\alpha}}\right).$$

• This distance generates Grether's (1980) $\alpha - \beta$ rule:

$$P(\omega|m) = \frac{\left(\sum_{m'\in M} \mu_{\omega m'}\right)^{\beta-\alpha} \mu_{\omega m}^{\alpha}}{\sum_{\omega'\in\Omega} \left(\sum_{m'\in M} \mu_{\omega'm'}\right)^{\beta-\alpha} \mu_{\omega'm}^{\alpha}}$$
$$= \frac{(P(m|\omega))^{\alpha} (P(\omega))^{\beta}}{\sum_{\omega'\in\Omega} (P(m|\omega'))^{\alpha} (P(\omega'))^{\beta}}.$$