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Motivation

How agents update their beliefs in light of new information is
a foundational problem in economics and game theory.

Bayesian Updating: the benchmark model of Bayesian
updating has two major issues:

Incomplete: it is not well-defined for zero-probability events.

Ex: dynamic games with incomplete information and
refinements of PBE.

Limited: people systematically deviate from Bayesian
updating.

Ex: confirmation bias and over- and under-reaction to
information.



Motivation

Inertial Updating: A theory of belief updating that
overcomes the above two issues:

Complete: A systematic way of modeling updating under
zero-probability events.

Rich: A unifying framework that nests Bayesian and some
well-known non-Bayesian updating rules.



Contributions

Inertial updating is a complete theory of belief updating s.t.

DM has a prior µ over S and learns an event E ⊆ S,

The posterior µE is the “closest” element of ∆(E) from µ:

µE = arg min
π∈∆(E)

dµ(π).

Inertial updating provides a unified framework that nests

Bayes’ rule and well-known non-Bayesian updating rules such
as Grether’s (1980) α− β rule;

Updating rules for zero-probability events such as Myerson’s
(1986) Conditional Probability System (CPS);

Ortoleva’s (2012) Hypothesis Testing Model.

It is characterized by two simple axioms in addition to
standard subjective expected utility axioms.



Plan

Basic setup and model.

Examples:

Bayesian updating;

Grether’s (1980) α− β rule.

Updating under zero-probability events and Myerson’s CPS.

Ortoleva’s (2012) Hypothesis Testing Model.

Behavioral foundations of Inertial Updating.

Related Literature.



Basic Setup

S = {s1, . . . , sn} is the set of all states, and ∆(S) is the set
of all probability distributions over S.

X is the set of all consequences and ∆(X) is the set of all
finite lotteries over X.

F ≡ {f : S → ∆(X)} is the set of all (Anscombe-Aumann)
acts.

Initial SEU preference %=%S ⇒ prior µ ∈ ∆(S).

Σ is a collection of non-empty subsets of S.

Information: E ∈ Σ.

Conditional SEU preference %E ⇒ posterior µE ∈ ∆(S).



Bayesian Updating

Weather has three outcomes; i.e., S = {s, r, h}.

Prior: µ = (1
3 ,

1
3 ,

1
3).

There will be a storm tomorrow, i.e., E = {r, h} ⊂ S.

Bayesian posterior: µE = (0, 1
2 ,

1
2) ∈ ∆(E) where

∆(E) = {π ∈ ∆(S) | π(E) = 1}.

In other words, DM selects µE from ∆(E).

In fact,

µE = arg min
π∈∆(E)

dKLµ (π).
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Representation

Definition 1

A family of preferences {%E}E∈Σ admits an Inertial Updating
(IU) representation if there exist µ ∈ ∆(S), u : X → R, and
d : ∆(S)→ R such that

(i) % is a SEU preference with (µ, u), i.e., for any f, g ∈ F ,

f % g iff Eµu
(
f
)
≥ Eµu

(
g
)
;

(ii) for each E ∈ Σ, %E is a SEU preference with (µE , u) where

µE ≡ arg min
π∈∆(E)

d(π);

(iii) µ is the unique minimizer of d.



Examples: Bayesian Updating

Ex 1. (Bayesian Divergence) Let dσµ(π) = −
∑n

i=1 µi σ(πiµi ) for
strictly increasing and strictly concave σ.

The Kullback-Leibler divergence if σ = ln.

Proposition 1

For any E with µ(E) > 0,

µE = arg min
π∈∆(E)

−
n∑
i=1

µi σ(
πi
µi

) = BU(µ,E).

In other words,

µE(s) =
µ(s)

µ(E)
when s ∈ E.



Examples: Distorted Bayesian Updating

Ex 2. Let dµ(π) = −
∑n

i=1 h(µi)σ( πi
h(µi)

). Then

µE(s) =
h(µ(s))∑

s′∈E h(µ(s′))
when s ∈ E.

Bayes’ rule when h(µ) = µ,

When h(µ) = (µ)α, Grether’s (1980) α−β rule with α = β.

α < 1, underreaction to information and base-rate neglect,

α > 1, overreaction to information and confirmation bias.

When h(µ) = µ+ δ 1{µ > 1
2}, our model generates

confirmation bias, similar to Rabin and Schrag (1999).

We can incorporate history-dependent (or context-dependent)
belief updating through h.
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Updating on Zero Probability Events

Suppose µ(E) = 0.
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Example: Updating on Zero Probability Events

Ex 3: Let

dµ(π)=

{
dσµ(π) if µ(sp(π))>0,

dσµ∗(π) + σ(1) + |σ(0)| otherwise.

If µ∗ has a full-support, then

µE =

{
BU(µ,E) if µ(E) > 0,

BU(µ∗, E) otherwise.

The above updating rule was used in Galperti (2019) and is a
special case of Myerson’s CPS and Ortoleva’s hypothesis
testing model.



Examples: Non-Bayesian Updating

Ex 4. (Euclidean distance) Let dµ(π) =
∑n

i=1(πi − µi)2. Then

µE(s) = µ(s) +
1− µ(E)

|E|
when s ∈ E.

Probability is allocated uniformly over states, capturing
“ 1
N -heuristic.”

Extends naturally to zero-probability events.



Myerson’s CPS and Zero-Probability Events



CPS and Perfect Bayesian Equilibrium (PBE)

Incompleteness of Bayes’ rule: In PBE, agents’ beliefs are
Bayes-consistent with the prior whenever possible. However,
there is no restriction when Bayes’ rule is not applicable.

Refinements: Refinements of PBE essentially require a
complete theory of belief updating.

Sequential Equilibria of Kreps and Wilson (1982): Any
belief should be a limit of full-support beliefs after applying
Bayes’ rule accordingly.

CPS: The limit requirement of sequential equilibria is
equivalent to the following generalization of Bayes’ condition:

µE(s) = µF (s)µE(F ) for all s ∈ F ⊆ E.



Definition 2 (CPS)

A conditional probability system is a collection of {µE}E∈Σ such
that

µE(s) = µF (s)µE(F ) for all s ∈ F ⊆ E.

If µE(F ) > 0, then µF (s) = µE(s)
µE(F ) (Bayes’ rule).

Proposition 2

Every CPS has an IU representation.



Myerson’s CPS

Proposition 3

For any CPS, ∃µ0, . . . , µK ∈ ∆(S) such that sp(µ0), . . . , sp(µK) is
a partition of S and for any E ∈ Σ,

µE = BU(µk
∗
, E) where k∗ = min{k | µk(E) > 0}.

Moreover, it has an IU representation with the distance function:

dµ(π) = dσ
µk∗ (π) + k∗

(
σ(1) + |σ(0)|

)
,

where k∗ = min{k | µk(sp(π)) > 0}.



Ortoleva’s (2012) Hypothesis Testing
Model



Ortoleva’s (2012) Hypothesis Testing Model

Idea. Apply Bayes’ rule if possible. If not, use maximal likelihood.

HTM: DM has a second order prior ρ over ∆(∆(S)). For some
ε ∈ [0, 1],

µE =

{
BU(µ,E) if µ(E) > ε,

BU(πρE , E) otherwise,

where πρE = arg maxπ∈∆ ρ(π)π(E).



Ortoleva’s Hypothesis Testing Model

Theorem 1

IU and HTM are behaviorally equivalent.

Corollary 1

HTM generalizes Myerson’s CPS.

HTM generalizes Grether’s rule.
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ϵ-CPS with ϵ > 0 HT with ϵ = 0

CPS

Conditional Consistency

Dynamic Consistency

Dynamic Coherence

IU=HT



Behavioral Foundation of IU



Standard Axioms

Axiom 1 (SEU Postulates)

For each E ∈ Σ,

(i) Weak Order: %E is complete and transitive;

(ii) Archimedean: For any f, g, h ∈ F , if f �E g and g �E h,
then there are α, β ∈ (0, 1) such that αf + (1− α)h �E g
and g �E βf + (1− β)h;

(iii) Monotonicity: For any f, g ∈ F , if f(s) %E g(s) for each
s ∈ S, then f %E g;

(iv) Nontriviality: There are f, g ∈ F such that f �E g;

(v) Independence: For any f, g, h ∈ F and α ∈ (0, 1], f %E g if
and only if αf + (1− α)h %E αg + (1− α)h.

(vi) Invariant Risk Preference: For any lotteries p, q ∈ ∆(X),
p %E q if and only if p % q.



Standard Axioms

Axiom 2 (Consequentialism)

For any E and f, g ∈ F ,

f(s) = g(s) for all s ∈ E ⇒ f ∼E g.

Lemma 1. SEU postulates imply that there are µ, u, and
{µE}E∈Σ such that

% has a SEU representation with (µ, u),

%E has a SEU representation with (µE , u).

Lemma 2. SEU postulates and Consequentialism imply that
µE ∈ ∆(E).
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Substantive Axiom

Revealed Preference: An event A is revealed implied by an
event B if S\A is %B-null; i.e.,

(p,A; q, S\A) ∼B p for any p, q ∈ ∆(X).

In words, every state that the DM believes is possible after learning
B is in A.

Axiom 3 (Dynamic Coherence)

For any A1, . . . , An ⊆ S, if S \Ai is %Ai+1-null for each i ≤ n− 1
and S \An is %A1-null, then %A1=%An .



Behavioral Foundation of IU

Theorem 2

The following are equivalent.

(i) A family of preferences {%E}E∈Σ satisfies SEU Postulates,
Consequentialism, and Dynamic Coherence.

(ii) It admits an IU representation.

(iii) It admits an IU representation with respect to a continuous,
strictly convex distance function.



Proof Sketch

Step 1. SEU axioms imply that % is a SEU preference with
some (µ, u) and %E is a SEU preference with some (µE , u).

Step 2. Consequentialism implies that µE ∈ ∆(E).

Note that S \A is %B-null means that µB(S \A) = 0;
equivalently, µB(A) = 1. In other words, A is revealed
implied by B iff µB ∈ ∆(A).

In other words, µB is chosen from ∆(A) in the presence of
µB. Hence, Dynamic Coherence is equivalent to SARP on this
revealed preference.

Step 3. By an extension of Afriat’s (1967) theorem for
general budget sets due to Matzkin (1991), ∃v s.t

µE = arg max
π∈∆(E)

v(π).
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Related Literature

IU representation:

Perea (2009) axiomatizes Euclidean distance based updating
rules.

Always non-Bayesian.

Basu (2019) characterizes lexicographic (AGM-consistent)
updating rules and he shows that a special case of these rules
also has an IU representation.

Bayesian whenever possible.

Non-Bayesian updating rules: Epstein (2006), Epstein et al.
(2008), and Kovach (2020).

They deviate from Consequentialism.



Conclusion

We propose and characterize a complete theory for belief
updating that overcomes two major issues of Bayesian
updating.

In IU, the DM selects the “closest” belief to her prior given
information.

IU nests Bayesian updating and some well-known
non-Bayesian updating rules.

Grether’s (1980) α− β rule.

Myerson’s (1986) CPS.

Ortoleva’s (2012) Hypothesis Testing Model.



Additional results

Apply our model to the signal structure.

Axiomatic Characterization of CPS.

Apply our model to the Bayesian persuasion game and
illustrate the effect of belief distortions on the optimal signal
structures.

ε−CPS is a non-Bayesian extension of CPS that is still a
special case of IU.

Relaxing Consequentialism:

µE = δ µ+ (1− δ) arg min
π∈∆(E)

dµ(π).
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Signal Structure – Bayesian Updating

Let Ω be the payoff relevant state space and M be the set of
all signals. Then let S = Ω×M .

Let P (ω) be the (unconditional) probability that the payoff
relevant state ω occurs.

Let P (m|ω) be the (conditional) probability that the DM
receives the signal m when the state is ω.

Note that receiving signal m is equivalent to learning the
event {(ω,m)}ω∈Ω in S.

Let µ be the prior on S: µωm = P (m|ω)P (ω).

The Bayesian divergence generates Bayesian updating in the
signal structure framework:

P (ω|m) =
µωm∑

ω′∈Ω µω′m
=

P (m|ω)P (ω)∑
ω′∈Ω P (m|ω′)P (ω′)

.



Signal Structure – Non-Bayesian Updating

Consider

dµ(π) =
∑

(ω,m)∈Ω×M

( ∑
m′∈M

µωm′

)β−α
µαωm σ

(
πωm
µαωm

)
.

This distance generates Grether’s (1980) α−β rule:

P (ω|m) =

(∑
m′∈M µωm′

)β−α
µαωm∑

ω′∈Ω

(∑
m′∈M µω′m′

)β−α
µαω′m

=
(P (m|ω))α (P (ω))β∑

ω′∈Ω(P (m|ω′))α (P (ω′))β
.


