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Abstract

Diagnostic expectations constitute a realistic behavioral model of inference. This pa-

per shows that this approach to expectation formation can be productively integrated into

the New Keynesian framework. To this end, we start by offering a technical treatment of

diagnostic expectations in linear macroeconomic models. Diagnostic expectations generate

endogenous extrapolation in general equilibrium. We show that diagnostic expectations gen-

erate extra amplification in the presence of nominal frictions; a fall in aggregate supply gen-

erates a Keynesian recession; fiscal policy is more effective at stimulating the economy; with

imperfect information, diagnostic expectations generate delayed overreaction of aggregate

variables. We perform Bayesian estimation of a rich medium-scale model that incorporates

consensus forecast data. Our estimate of the diagnosticity parameter is in line with previous

studies. Moreover, we find empirical evidence in favor of the diagnostic model. Diagnostic

expectations offer new propagation mechanisms to explain fluctuations.
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1 Introduction

Diagnostic expectations (DE) have emerged as an important departure from rational

expectations in macroeconomics and finance. Among the host of possible deviations

from rational expectations, there are three broad reasons that make diagnostic expec-

tations a leading alternative to consider for macroeconomic modeling. First, diagnostic

expectations constitute a microfounded deviation immune to the Lucas critique. Sec-

ond, this approach lends itself to a great deal of tractability, as a number of recent

efforts in macroeconomics and finance have demonstrated (see Bordalo, Gennaioli, and

Shleifer 2018; Bordalo, Gennaioli, Ma, and Shleifer 2020; Bordalo, Gennaioli, Shleifer,

and Terry 2021, among others). Third, based on the pathbreaking and influential work

on the “representativeness heuristic” by Kahneman and Tversky (1972), one ought to

consider this behavioral model as fundamentally realistic, and thereby portable across

fields of economics.1

In this paper, we argue that diagnostic expectations can be productively incorpo-

rated into the New Keynesian (NK) framework. We demonstrate this claim in two

parts, analytical and empirical. Analytically, using a three-equation NK model, we

show how diagnostic expectations bring rich insights on four issues raised by the lit-

erature. Empirically, by integrating diagnostic expectations into a rich medium-scale

DSGE model, we find that diagnostic expectations provide a superior fit of business

cycle and consensus forecast data. Our analysis brings novel implications for the in-

terpretation of fluctuations.

The first analytical issue we tackle is that of amplification and propagation in

general equilibrium. As shown in previous work (Bordalo, Gennaioli, and Shleifer

2018, henceforth BGS), diagnostic expectations (DE) imply an extrapolation of current

shocks into the future. Intuitively, this could generate extra volatility for endogenous

variables. We show that this intuition is in fact not guaranteed. In the presence of

nominal frictions (as in the NK model) DE generate extra volatility; in a frictionless

representative agent real business cycle (RBC) model, general equilibrium channels

shut down the effect of DE, and output is less volatile under DE than under rational

expectations (RE).2

The second issue considered is whether a fall in aggregate supply can cause a de-

mand shortage. Since the onset of the COVID-19 pandemic, there is a renewed interest

1Simply put, the representativeness heuristic is the general human tendency to over-estimate how representative
a small sample is, a pattern documented in a large body of literature in psychology and behavioral economics. For
a survey and more detailed discussion, see Kahneman, Slovic, and Tversky (1982).

2Bordalo, Gennaioli, Shleifer, and Terry (2021) consider financial frictions and how DE generate realistic credit
cycles in a real economy. See Section 4 for a broader discussion.
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on whether supply-side disruptions can ultimately generate shortfalls in aggregate de-

mand (see Guerrieri, Lorenzoni, Straub, and Werning 2022; Fornaro and Wolf 2021;

Caballero and Simsek 2021; Bilbiie and Melitz 2020, among others.) Whereas the

rational expectations NK (RE-NK) model generates the opposite prediction, we show

that adding DE into the NK framework (DE-NK) allows for the possibility of “Keyne-

sian supply shocks”: Following a negative supply shock, diagnostic agents extrapolate

the shock into the future, and hence become excessively pessimistic. This pushes them

to reduce consumption drastically, generating a Keynesian recession. Later, beliefs

systematically revert, and the economy features a boom, as in the RE-NK model.

The third issue we tackle concerns government policy. We show how endogenous

extrapolation arising from the evaluation of the inflation process by diagnostic agents

can significantly raise the government spending multiplier. Current surprise inflation

causes the diagnostic agent to expect future inflation thereby reducing the subjective

real interest rate. When the diagnosticity parameter is higher than the coefficient

governing the reaction of the monetary authority to inflation, the DE-NK model is

able to generate a multiplier greater than 1 even with i.i.d. government spending

shocks. We show how this analytical conclusion can be challenged by the degree of

extrapolation of the exogenous shock process, which depends on the persistence of this

shock. If the shock is persistent enough, the DE of future spending can completely

crowd out current consumption and lead to a multiplier that is equal to 0, or even

negative. Hence, the degree of diagnosticity allows the model to span a wide range of

multipliers, highlighting the importance of the behavioral friction in this context.

With an eye to the large macroeconomics literature on information frictions, the

fourth question we consider concerns under- and overreaction of expectations (Coibion

and Gorodnichenko 2015a; Bordalo, Gennaioli, Ma, and Shleifer 2020). Based on pre-

vious work (Lorenzoni 2009; Blanchard, L’Huillier, and Lorenzoni 2013), we extend

DE-NK model to a setting where the consumers receive noisy signals about the future

path of their income. Beliefs about their long-run income determine aggregate con-

sumption and output due to nominal rigidities. We show that a plausible calibration

of the imperfect information DE-NK model can generate both short-run underreac-

tion, and an overreaction over the medium-term. Combining diagnostic expectations

with information frictions can deliver rich implications for the path of agents’ beliefs

in general equilibrium models.

On the empirical front, we let DE and RE compete within a standard medium-

scale DSGE model. Using Bayesian methods, we evaluate the relative fitness of both

approaches when applied to post-war U.S. data. We include both business cycle and
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forecast data in the estimation. In order to submit the behavioral expectational friction

to a stringent empirical test, the model we consider contains a large number of bench-

mark frictions and shocks drawn from the seminal works by Christiano, Eichenbaum,

and Evans (2005) and Smets and Wouters (2007). For the same reason, we include

news shocks and information frictions in the form of noise shocks to expectations. We

find empirical evidence in favor of DE. In comparison with the RE model, variance

decomposition and parameter estimates indicate that the DE model relies significantly

less on noise shocks when explaining expectations errors. Moreover, the DE model

relies more on internal propagation mechanisms than on exogenous shocks to account

for the dynamics of price and wage inflation in the data.

An organizing theme across applications is that diagnosticity generates extra volatil-

ity and systematic reversals in beliefs. In dynamic settings, diagnostic expectations

(DE) introduce an extrapolative mechanism. Upon impact of a shock, beliefs over-

react. Subsequently, beliefs systematically revert, which the diagnostic agents fail to

anticipate. Our work shows that those two insights from BGS have implications for

NK models.

A recurrent theme in our paper is that when agents have diagnostic beliefs about

endogenous variables, instead of exogenous processes, new behavioral insights emerge.

Endogenous extrapolation, as highlighted in our fiscal policy exercise, has remarkable

economic implications. We provide two examples of models with endogenous extrap-

olation at the end of Section 3.

The paper provides a substantial technical contribution: We develop a solution

method for a general class of linear DSGE models with diagnostic expectations. The

key to our method is to formally establish the existence and uniqueness of a rational

expectations representation of the diagnostic expectations model, a challenging task

in the presence of endogenous states. This result allows us to compute the equilib-

rium diagnostic expectation of endogenous variables. We briefly make a few technical

remarks about our solution method. First, we show that incorporating DE requires

researchers to loglinearize the model from scratch rather than simply replacing the ra-

tional expectations operator with the corresponding diagnostic expectations operator

in linear economies. For a given set of equilibrium conditions obtained from first prin-

ciples, the presence of DE actually changes the loglinear equilibrium conditions that

constitute a correct approximation.3 We explain, in detail, how to obtain the correct

approximation and provide a few examples. Loglinearization under DE brings forward

3This is different from many other departures from the full-information rational expectations case, as for exam-
ple the introduction of imperfect information (Woodford 2002) or other behavioral models (Garcia-Schmidt and
Woodford 2019), where the structure of equilibrium conditions of the loglinear model does not change.
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novel economic insights in forward looking models. For instance, the Euler equation

for the diagnostic consumer features a real rate that contains a new term pertaining

to surprise in current inflation from previous forecasts (see Section 3.4.2). Second, we

provide sharp results on the stability and the existence of a bounded solution with

DE. While the stability conditions are same as in the corresponding RE model, we

note that the solution under DE can be explosive for certain limiting values of the

diagnosticity parameter. Researchers may need to exercise caution when applying DE

to endogenous variables.

Related Literature. The paper is primarily related to the emerging literature on

DE. See Gennaioli and Shleifer (2018) for a review. Most closely related are papers by

Maxted (2022) and Bordalo, Gennaioli, Shleifer, and Terry (2021), who incorporate

DE in macro-finance frameworks.4 Maxted (2022) shows that incorporating DE into

a macro-finance framework can reproduce several facts surrounding financial crises

(see also Krishnamurthy and Li 2020). Bordalo, Gennaioli, Shleifer, and Terry (2021)

show that DE can quantitatively generate countercyclical credit spreads in a heteroge-

neous firms business-cycle model. We complement these efforts by providing a general

treatment of DE in linear macroeconomic models. In particular, we show how incor-

porating DE into NK models (Woodford 2003; Gaĺı 2015) delivers rich new insights

and significantly improves the fit to the data.

In parallel and complementary work, Bianchi, Ilut, and Saijo (2022) also investigate

applications of DE in linear models. Although their work, like ours, is comprehensive,

the main focus of their paper is distant memory, the notion that agents’ reference

distribution looks back more than one period. In such settings, the law of iterated

expectations fails, and therefore the model with distant memory is time inconsistent.

Our paper focuses exclusively on linear settings with time consistency, and shows

that this baseline setup offers a number of insights useful for the NK literature. We

outline, in detail, the steps from the exact equilibrium conditions to the loglinear

approximation of medium-scale models. Our main empirical focus is evaluating the role

of diagnosticity in a rich medium-scale DSGE model with news shocks and information

frictions.

Our paper also speaks to the literature proposing deviations from the full-information

rational expectations (FIRE) hypothesis. See, for example, Mankiw and Reis (2002),

Coibion and Gorodnichenko (2015a), Angeletos, Huo, and Sastry (2020), Bordalo,

4D’Arienzo (2020) investigates the ability of DE to reconcile the overreaction of expectations of long rates relative
to the expectations of short rates to news in bond markets. Ma, Ropele, Sraer, and Thesmar (2020) quantify the
costs of managerial biases.
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Gennaioli, Ma, and Shleifer (2020), Kohlhas and Walther (2021), among others.

Angeletos, Huo, and Sastry (2020) document delayed overreaction of beliefs in re-

sponse to business cycle shocks. Bordalo, Gennaioli, Ma, and Shleifer (2020) propose

a model of DE with dispersed information to study underreaction and overreaction in

survey forecasts. See also Ma, Ropele, Sraer, and Thesmar (2020) and Afrouzi, Kwon,

Landier, Ma, and Thesmar (2020). We complement these analyses by showing that

one can obtain delayed overreaction in an imperfect information DE-NK model. With

respect to earlier work, there are two innovations in our procedure. First, we use a mi-

crofounded behavioral friction. Second, we generate these patterns with expectations

in general equilibrium models. In a related vein, our estimated DSGE model builds on

work exploring business cycle models where agents receive advance information about

future productivity that is subject to an information friction (Blanchard, L’Huillier,

and Lorenzoni 2013; Chahrour and Jurado 2018).

Our paper fits into the macroeconomics literature that models departures from

rational expectations with various behavioral assumptions. Some of the recent ap-

plications have focused on resolving puzzles in New Keynesian models by introducing

behavioral assumptions. Angeletos and Lian (2018), Farhi and Werning (2019), Gabaix

(2020), and Garcia-Schmidt and Woodford (2019) are some of the papers that propose

departures from rational expectations to attenuate the strength of forward guidance.

Iovino and Sergeyev (2020) study the effectiveness of central bank balance sheet policies

with level-k thinking. Bianchi-Vimercati, Eichenbaum, and Guerreiro (2022) study the

effectiveness of fiscal policy at the zero lower bound in a model with level-k thinking.

Angeletos, Huo, and Sastry (2020, Sec. 6.4) argue that these leading departures from

rational expectations exhibit a form of under-extrapolation. In contrast, DE allow

beliefs to generate overreaction and systematic reversals as we demonstrate. Farhi and

Werning (2020) study the role of monetary policy as a macro-prudential tool when

agents form extrapolative expectations.

Paper Organization. The paper is organized as follows. Section 2 starts with an

example based on the classic demand and supply model by Muth (1961) to demonstrate

the two key insights we get from diagnostic expectations: extra volatility and system-

atic reversals in beliefs. Section 3 presents our solution method, discusses stability,

and provides examples illustrating endogenous propagation of diagnostic beliefs. Sec-

tion 4 presents the analytical results from a 3-equation NK model. Section 5 presents

the empirical evaluation of diagnostic expectations in a medium-scale DSGE model.

Section 6 concludes. The Appendix provides supplementary materials and collects all
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the proofs.

2 Diagnostic Expectations on Endogenous Variables:

A Demand and Supply Example

We begin by presenting the economic implications of diagnostic expectations on en-

dogenous objects in a simple setting. To this end, we consider the classic model by

Muth (1961), which we augment with the inference biases generated by diagnosticity

(Kahneman and Tversky 1972). The benchmark for comparison is the case of rational

expectations. The model by Muth is simple and transparent, allowing us to distill

the behavioral insights offered by diagnostic expectations in the context of more com-

plex models of forward-looking agents. This discussion will concentrate on two main

features of diagnostic expectations: the excess volatility implied by belief overreac-

tion, together with the systematic reversals that occur when uncertainty is realized.

Appendix A provides details and proofs.

The model is as follows.5 There is an isolated market for a commodity. The

commodity demand at time t, Qd
t , is a downward-sloping function of the price Pt

(model variables are denoted in deviation from steady state):

Qd
t = −βPt, β > 0 (1)

The supply side is modeled with a time-to-build assumption. Suppliers invest, one

period in advance, as a function of their expectations of the price next period:

It = γẼt[Pt+1], γ > 0 (2)

where It is the quantity invested and Ẽt is an expectation operator (rational or diag-

nostic). Supply at time t, Qs
t , is equal to the quantity invested at time t − 1 plus a

persistent disturbance ut:

Qs
t = It−1 + ut (3)

where ut = ρuut−1 + ϵt, and ϵt is i.i.d. N(0, σ2
ϵ ). An absence of storage opportunities

implies the market clearing condition: Qs
t = Qd

t .

We are interested in solving for the equilibrium behavior of suppliers, which depends

on expectation formation, and on the implied equilibrium price dynamics. Under

RE (Ẽt = Et), suppliers’ expectations are, on average, correct, with the exogenous

5See Muth (1961), Section 3, pp. 317-22.

7



disturbance as the only source of discrepancy between expectations of the price and

actual realizations. In other words, deviations of the realized price from expectations

are unpredictable. To see this, combine the equations above to get the equilibrium

condition

Pt = −γ
β
Ẽt−1[Pt]−

1

β
ut (4)

Conjecture that the solution takes the form

It = A1ut + A2ϵt (5)

Pt = B1ut−1 +B2ϵt +B3ϵt−1 (6)

where A1, A2, B1, B2 and B3 are parameters to solve for. The RE solution is given by

A1 = −γρu/(β + γ), B1 = A1/γ, and B2 = −1/β (with A2 = B3 = 0).

Taking the RE expectation on both sides of (4) shows that, in equilibrium, the

expected price needs to satisfy Et−1[Pt] = −(1/(β + γ))Et−1[ut], which is guaranteed

by the RE solution. Moreover, the only ex-post deviation from this forecast is B2ϵt,

which is unpredictable.

Under DE (denoted as Ẽt = Eθt , where θ > 0 is a diagnosticity parameter), suppliers’

expectations are, on average, excessively volatile. The BGS formula for the DE of an

endogenous object, say the price, is Eθt [Pt+1] = Et[Pt+1] + θ (Et[Pt+1]− Et−1[Pt+1]).
6

This formula says that the DE is equal to the RE plus a distortion term capturing

the extrapolative behavior of the agent. The solution under DE is given by A2 =

−βγθρu/[(β+γ)(β+γ(1+ θ))], B3 = −A2/β (with A1, B1 and B2 identical to the RE

case).

The implications of DE for the Muth model are as follows. First, investment is

excessively volatile. By way of example, suppose that the economy is in steady state

at t − 1 and that a negative shock ϵt < 0 hits. As under RE, suppliers anticipate a

higher price to prevail at time t + 1 due to the exogenous supply contraction at time

t. Consequently, they increase their investment at time t (A1 < 0). However, under

DE, suppliers extrapolate the shock into the future. Their expectations about prices

overreact. Thus, they increase investment by more than under rational expectations

(A2 < 0). Ex-post, at time t + 1, there is a reversal. The market is glutted with

an excessively high quantity of the commodity. The rosy expectations of diagnostic

suppliers are disappointed, with the price rising by less than in the RE economy (B3 >

0). Moreover, this discrepancy from expectations is systematic and predictable, since

6Section 3 will show that the same formula, obtained in BGS for exogenous objects, can indeed be applied to
endogenous objects.
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it depends purely on the past shock. These dynamics are neglected by agents. In sum,

DE deliver excess investment volatility and a subsequent reversal. We will return to

these two features in various applications of the New Keynesian model.

In his seminal article, Muth also was interested in the possibility of ad-hoc devi-

ations from rational behavior. For a general MA(∞) specification for the exogenous

process, Muth explored expected price dynamics that “over- or under-discount” the

recent price history. A fascinating lesson that emerges is that the DE specification by

BGS turns out to microfound this early idea. The diagnostic supplier over-reacts to

the shock at t, resulting in an excessive discounting of information contained in prices

up to time t− 1.7

In variant of this simple model that includes inventory dynamics, a novel extrapola-

tion mechanism emerges when DE is taken over endogenous variables. Muth introduced

inventory speculation that gives rise to an inventory demand equation. Inventory de-

mand, St, depends on the difference between the expected future price and the current

price. The market clearing condition is now replaced with Qd
t+St = Qs

t+St−1, allowing

for storage without depreciation.8 Because now inventory stock holdings constitute an

endogenous state variable, the DE and the RE solutions of the model do not coincide

even when the shock is i.i.d. (ρu = 0). This is in contrast to the baseline case without

inventory accumulation, where the two solutions coincide when shocks are i.i.d. This

particular feature is attractive since endogenous state variables (such as capital, con-

sumption habits, etc.) are ubiquitous in DSGE models. In the next section, we zoom

into this point in the context of a tractable, univariate endogenous-state model. But

first, we present a general solution method for linear DSGE models when diagnostic

expectations are computed on endogenous variables.

3 Solution Method

We present a solution method for a general class of linear models. Agents use diag-

nostic expectations to form beliefs about the evolution of all variables, exogenous and

endogenous. Our strategy consists in obtaining a rational expectations (RE) represen-

tation of the diagnostic expectations (DE) model. Based on this step, the model can

be solved using standard techniques. We also establish results for the existence and

stability of the solution under DE.

7Specifically, as the appendix shows, solving the Muth model under the general process (3.6) (p. 319) and DE,
microfounds the Muth factor f1 = 1+ θ (where, following the author’s terminology, the case f1 > 1 corresponds to
over-discounting).

8See Muth (1961), Section 4, pp. 322-330.
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3.1 General Formulation and Rational Expectations Repre-

sentation

3.1.1 Exogenous Processes

We start by specifying the exogenous drivers of the economy. Exogenous variables

are stacked in a (n × 1) vector xt that is assumed to follow the multivariate AR(1)

stochastic process

xt = Axt−1 + vt (7)

where vt is a (k×1) vector of Normal and orthogonal exogenous shocks, vt ∼ N(0,Σv),

and A is a diagonal matrix of persistence parameters. Since vector xt+1 follows

a multivariate normal distribution, we can write its true (or non-distorted) pdf as

f(xt+1|xt) ∝ φ((xt+1−Axt)
′Σ−1

v (xt+1−Axt)), where φ(x) is the density of a standard

normal distribution, φ(x) = 1√
2π
e−

1
2
x2 .

3.1.2 Diagnostic Expectations

Extending the approach by Bordalo, Gennaioli, and Shleifer (2018) (henceforth BGS),

the multivariate diagnostic distribution of xt+1 is defined as

f θt (xt+1) = f(xt+1|Gt) ·
[
f(xt+1|Gt)

f(xt+1| −Gt)

]θ
· C (8)

where Gt and −Gt are conditioning events. Gt encodes current conditions: Gt ≡ {xt =
x̌t}, where x̌t denotes the realization of xt.

9 −Gt encodes a reference group (i.e. a

reference event), that is used to compute the reference distribution f(xt+1|−Gt). Due

to the representativeness heuristic, agents overweight the last realization of xt (relative

to the reference group) when forming beliefs about the future realization of xt+1. The

likelihood ratio f(xt+1|Gt)/f(xt+1| − Gt) distorts beliefs to a degree governed by the

diagnosticity parameter θ ≥ 0. C is a constant ensuring that f θt (xt+1) integrates to 1.

Following BGS, we impose that, in the presence of uncertainty about xt+1, the

reference event −Gt carries “no news” at time t (henceforth no-news assumption or

NNA).

Assumption 1 (Multivariate No-News Assumption)

f(xt+1| −Gt) = f(xt+1|xt = Ax̌t−1) (9)

9We do not use the same notation x̂t for realizations as BGS, since we have reserved hats over variables for
loglinear deviations below.
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We make Assumption 1 throughout the paper. To understand the meaning of this

assumption, consider an agent forming beliefs about future xt+1. Under the NNA, these

beliefs are formed conditional on the event that the random variable xt, conditional

on the past realization x̌t−1, is what it was expected to be, so vt = E[vt] = 0, which is

equivalent to xt = Ax̌t−1. The diagnostic distribution is thus written as

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = Ax̌t−1)

]θ
· C (10)

Notice that the distribution (10) is conditional on two elements: first, it is conditional

on the current realization of xt, written x̌t, because this enters the true distribution

of xt+1; second, it is conditional on the reference event −Gt ≡ {xt = Ax̌t−1}, which
depends on the realization at t− 1, x̌t−1.

Extending the definition of BGS to the multivariate normal vector xt+1, the DE is

the expectation, element by element, under the density (10). We write this expectation

as Eθt [xt+1].
10 Using a multivariate version of Proposition 1 in BGS, we obtain the

formula11

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (11)

3.1.3 Stochastic Difference Equation

The class of forward-looking models we analyze is written as a stochastic difference

equation. Uncertainty is modeled under the diagnostic distribution (10). Let yt denote

a (m× 1) vector of endogenous variables (including jump variables and states) and xt,

as above, denote the (n× 1) vector of exogenous states. The model is:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] +G2yt +Hyt−1 +N2xt = 0 (12)

where F, G1, G2, M, N1, N2, and H, are matrices of parameters. F, G1, G2, and H

are (m×m) matrices, N1 and N2 are (m× n) matrices. This diagnostic expectation

is taken over the diagnostic density of Fyt+1 +G1yt +Mxt+1 +N1xt. For generality,

in equation (12), we specify current variables both inside the diagnostic expectations

operator in linear combination with future variables (e.g. N1xt) as well as outside the

10The diagnostic distribution depends on two separate information sets, Gt and G−t, drawing information avail-
able at dates t and t− 1. So, one could denote it by Eθt,t−1. However, to avoid confusion, we prefer to stick to the
notation used in BGS and the surrounding literature. Similarly, when denoting the RE operator Et, the subindex
indicates the date at which the expectation is taken (in which case it coincides with the information set’s date.)

11See Lemma 2 in the appendix.
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expectations operator (e.g. N2xt).
12

3.1.4 Solution Procedure

The remaining steps are the following. First, postulate a form for the solution. Second,

determine how to handle the diagnostic expectation Eθt [Fyt+1+G1yt+Mxt+1+N1xt],

which is a linear combination of endogenous and exogenous variables, some of which

are future, and some of which are current (known at time t). Third, obtain a rational

expectations representation of the model. Fourth, solve for the model expressed in

terms of rational expectations using standard tools (as the method of undetermined

coefficients, for instance).

Form of the Solution. We look for a solution of the form

yt = Pyt−1 +Qxt +Rvt (13)

We make this guess based on the behavioral properties afforded by DE. In the context

of RE models, the correct conjecture is of the form yt = Pyt−1 +Qxt. As shown by

BGS, DE generate overreaction in the context of exogenous processes. We allow for

this possibility in the context of the endogenous dynamics of yt using the extra term

Rvt.

Diagnostic Expectation of Linear Combinations of Endogenous and Exoge-

nous Variables. Under (13), yt+1 follows a multivariate normal distribution. Since

the vector of exogenous drivers xt+1 also follows a multivariate normal distribution, we

know that the linear combination Fyt+1 + G1yt + Mxt+1 + N1xt is also distributed

following a multivariate normal density. This Gaussian property is the key to the

solution to the model. Using (11), it allows us to express the diagnostic expecta-

tion Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] in terms of the RE operator Et. Indeed, the

expression for the DE present in model (12) can be expressed as:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

+θ
(
Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

−Et−1[Fyt+1 +G1yt +Mxt+1 +N1xt]
)

(14)

12After loglinearization we will encounter expressions of this form. Throughout the paper we present a few
examples to make this point concrete.
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Notice that even the current vectors xt and yt undergo a diagnostic transformation in

equation (14), since expectations are taken over a linear combination involving future

variables. This does not however mean that if an agent were to be asked about their

expectation of xt in the absence of uncertainty, they would respond something different

than xt. We return to this discussion in Section 3.3.

We are now in a position to obtain the representation of the model in terms of

rational expectations.

Proposition 1 (Multivariate Rational Expectations Representation) Under the

multivariate NNA, model (12) admits the following RE representation:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)

+Mθ
(
Et[xt+1]− Et−1[xt+1]

)

+G1θ
(
yt − Et−1[yt]

)

+N1θ
(
xt − Et−1[xt]

)
= 0 (15)

where G = G1 +G2 and N = N1 +N2. Moreover, this representation is unique.

The proof of this result is based on equality (14), together with the additivity

property of the RE expectations operator.

Solution. Armed with this representation, we verify that equation (13) indeed con-

stitutes a solution. Appendix C presents the detailed steps to solve for the relevant

matrices following Uhlig (1995).

3.2 Stability

It turns out that the model under DE is subject to the same stability conditions as the

model under RE. More precisely, consider the same model above, but under rational

expectations (θ = 0):

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt = 0 (16)

where the matrices F, G, H, M and N are defined above. The following result holds.

Proposition 2 (Stability) Assume a bounded solution exists for the DE model given

by equations (7) and (12). The stability conditions for this DE model are identical to

the stability conditions for the RE model given by (7) and (16).
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While the stability conditions are exactly same as under the RE model, we note

that the existence of a bounded solution under DE requires an additional assumption.

We formalize this requirement in the following proposition.

Proposition 3 (Existence of a Bounded Solution) Assume a bounded solution ex-

ists for the RE model given by equations (7) and (12) with θ = 0. Then a bounded

solution for the DE model exists if (1 + θ)FP+G+ θG1 is full-rank.

Example 1 below will illustrate how DE can affect the existence of a bounded

solution, even when RE models have a bounded and stable solution.

3.3 Technical Remark: Predetermined Variables and the Di-

agnostic Expectations Operator

A novelty in DSGE models, when compared to earlier DE models in the literature,

is the presence of predetermined variables. This fact raises the question of how to

compute the DE of such variables. Thus far, this issue was not explicit since in models

of class (12), agents do not compute the DE of predetermined variables in isolation,

but in combination with future variables. Nevertheless, from a technical perspective,

some readers may wonder about the right way to think about this question. For

completeness, here we provide a brief discussion.

The main aspect to recognize is that, because in these models predetermined vari-

ables are in linear combination of normally distributed future variables, the linear

combination is also normally distributed. By implication, uncertainty is present, and

diagnosticity is active in the mind of the agent. This carries implications for predeter-

mined variables. This can be seen from (14), since even the vectors xt and yt undergo

a diagnostic transformation when expectations are taken over the linear combination.

This observation offers the following approach to define the DE of a predetermined

variable, say xt.
13 Suppose that xt follows an univariate AR(1) process, xt = ρxxt−1+εt,

where εt ∼ i.i.d. N(0, σ2
ε). Introduce an arbitrarily small amount of uncertainty by

adding white noise δt+1, with variance σ2
δ . We are interested in beliefs about the linear

combination xt + δt+1. Since this object is also normally distributed, we obtain, using

the BGS formula:

Eθt [xt + δt+1] = (1 + θ)Et[xt + δt+1]− θEt−1[xt + δt+1] (17)

Taking the limit when σδ approaches 0 from above, we obtain the following expression

13We thank an anonymous referee for suggesting this approach.

14



for the DE of the predetermined variable:

Eθt [xt] ≡ lim
σδ→0+

Eθt [xt + δt+1] = (1 + θ)xt − θEt−1[xt] (18)

These steps show that, in these models, inference on predetermined variables is also

affected by the representativeness heuristic.14 In the appendix, we provide a formal

derivation of (18) recurring to the Dirac delta distribution.

What is the behavioral basis for equation (18)? For the purpose of providing

intuition, consider a recursive equation for a price, say pt+1 = a + bpt + νt+1, with

b > 0 and a white noise νt+1. A higher current price pt signals a higher future price

pt+1. Memory is overly influenced by the statistical positive association of current and

future prices. Indeed, the presence of the future shock νt+1 introduces uncertainty and

activates the representativeness heuristic. Seeing a higher pt causes the agent to over-

sample past histories in which next period’s price was high. In sum, pt cues the agent

to extrapolate into the future period’s price, pt+1. In a way, one might interpret this

behavior as one where beliefs overshoot already for date-t variables, as (18) shows.15

Note, however, that the validity of this limit argument rests on the presence of

uncertainty surrounding predetermined variables in these models. This does not mean,

of course, that if an agent were to be asked, hypothetically, about their expectation

of xt in the absence of uncertainty (σδ = 0), they would respond something different

than xt. Consistent with BGS and Gennaioli and Shleifer (2010), a complete absence

of uncertainty would deactivate diagnosticity (equivalently, dropping the NNA) and

eliminate any inference bias:16

Eθt [xt|σδ = 0] = xt (19)

As we explain in Example 1 below, expression (18) carries interesting behavioral

insights into the amplification mechanism operating in DSGE models. Moreover, the

limit argument offers an approach to operationalize the definition of the DE of prede-

termined variables, in a way preserves consistency within the DSGE. Also, it delivers

an additivity result for the DSGE model, which is however relegated to the appendix.

We conclude this technical remark by emphasizing that adhering to this limit ar-

14Note that this bias appears even for i.i.d. shocks in the presence of surrounding uncertainty: take a white noise
process xt = ϵt. We have that limσδ→0+ Eθt [ϵt + δt+1] = (1 + θ)ϵt, despite Eθt [ϵt+1] = 0.

15To see how the date-t variable undergoes a transformation, notice that Eθt [pt+1] = a + Eθt [bpt + νt+1] =
a+ b (pt + θ (pt − Et−1[pt])).

16In technical terms, beliefs feature a discontinuity at the point of no uncertainty: no bias at exactly zero
uncertainty, together with a discrete jump for strictly positive uncertainty about the future.
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gument is not crucial for the purposes of solving these models. One can directly

apply (14) to the linear combination of future and contemporaneous variables present

in model (12) by acknowledging that the combination is normally distributed. See

Bianchi, Ilut, and Saijo (2022), who also take this approach.17 Both approaches are

equivalent.

3.4 Examples: Endogenous Extrapolation

These two examples illustrate how DE generate endogenous extrapolation in dynamic

models. (Example 1 also discusses unbounded solutions; Example 2 also discusses the

loglinearization of equations with non-stationary variables.)

3.4.1 Example 1: Univariate Endogenous State Variable Model

The main purpose of this example is to illustrate the following point. When DE are

taken over exogenous variables, there is no extrapolation if shocks are i.i.d. There is

in fact an equivalence between RE and DE. To see this, consider the AR(1) process

xt, assume ρx = 0 and compute Eθt [xt+1]. A simple calculation using formula (11)

shows that RE and DE are equivalent in this case. Instead, in the context of DE over

endogenous variables, state variables can activate extrapolation even when shocks

are i.i.d. We label this property ‘endogenous extrapolation’.18 Modeling diagnostic

expectations on endogenous variables provides a novel, internal propagation mechanism

for DSGE models.

Consider the following model:

yt = aEθt [yt+1] + cyt−1 + εt (20)

where |a+ c| < 1 and εt is white noise.

The solution of the RE model (θ = 0) can be derived analytically using the minimum

state variable solution method:

yt = ϕ1yt−1 +
1

1− aϕ1

εt (21)

17In this vein, notice that all of the results of subsections 3.1 and 3.2 did not use the limit argument.
18We briefly discussed this endogenous extrapolation property in the context of the Muth model with inventory

dynamics in Section 2.
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Figure 1: Amplification in the Univariate Model

yt+1

yt

yt+1 = φ1yt

yt = aEt[yt+1] + εt

yt = aEθt [yt+1] + εt

where ϕ1 ≡ 1−
√
1−4ac
2a

.19 Under DE, the minimum state variable solution is given by

yt = ϕ1yt−1 +
1

1− (1 + θ)aϕ1

εt (22)

Notice from equation (22) that computing the DE over the endogenous variable yt+1

delivers extrapolation and amplification, even though the exogenous process is i.i.d.

To see this, notice that since 1− aϕ1 > 0, for small enough θ (more on this below), a

positive shock εt generates an overreaction of yt.

To get intuition, consider Figure 1. On the (yt+1, yt) plane, we plot the form of

the solution, yt+1 = ϕ1yt (dotted line) and the forward-looking reaction functions

yt = aEθt [yt+1] + εt (full line) and yt = aEt[yt+1] + εt (dashed line). We assume the

economy is in steady state before the shock, and thus yt−1 = 0. Under RE, the

reaction function collapses to yt = ayt+1 + εt. Under DE, the reaction function is,

instead, yt = a(1+ θ)yt+1 + εt. The intersection of the dotted line with either reaction

function (RE or DE) gives the solution. Because of extrapolation, the reaction function

is steeper under DE, signifying the higher expectation of yt+1 in the mind of the agent.

This extrapolation is the source of amplification at date t.20

With this example, we can also illustrate the result obtained in Proposition 3:

When θ → 1
aϕ1

− 1 or θ → ∞, then the DE solution explodes even though there exists

19Specifically, using the method of undetermined coefficients, we get the following requirement: ϕ1 = aϕ21 + c.
Imposing that ϕ1 → 0 as c→ 0, we arrive at the solution. |a+ c| < 1 ensures that the model is stable in the sense
of Proposition 2 and that the RE solution is bounded.

20In other words: Given the solution yt+1 = ϕ1yt + 1/(1 − (1 + θ)aϕ1)εt+1, the uncertainty about εt+1 acti-
vates diagnosticity in the mind of the agent when computing Eθt [yt+1], which becomes ϕ1 (yt + θ(yt − Et−1[yt])).
Therefore, there is a transformation of the DE of yt, which generates amplification.
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a unique bounded RE solution. The lesson of this example is therefore that in practice

the researcher may need to be mindful of bifurcation points. In particular, bifurcation

values could affect search over the parameter space in the context of structural esti-

mation. In our application to NK models, we compute the conditions such that the

DE solution explodes, and verify that the associated limit values for θ are very large.

Therefore, this does not materially affect our results.

3.4.2 Example 2: Nominal Euler Equation

Consider the following Euler equation of a nominal economy:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
(23)

where Ct is consumption, Pt is the price level, it is the nominal rate, u(·) = log(·) is
period utility, and β is the discount factor.21

In order to loglinearize (23) one needs to take the path dependence implied by DE

into consideration. Because of the reference distribution, previous beliefs held at date

t − 1 constitute a state variable. One way to appreciate this fact is, for instance, by

looking at the BGS formula (11) and notice that the DE involves past held beliefs

Et−1. Therefore, different from the RE case, one cannot multiply by Pt on both sides

of the equation and introduce Pt inside the DE operator. Instead, loglinearizing (23)

directly, we obtain:

ĉt = Eθt [ĉt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (24)

where {ĉt, ît, p̂t} denote loglinear deviations of consumption and the interest rate from

their respective steady states, and of the price level from an initial price level, respec-

tively. Using the BGS formula (11) and algebraic manipulation delivers the loglinear

diagnostic Euler equation22

ĉt = Eθt [ĉt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) (25)

According to the last term, current surprise inflation induces an expansionary chan-

nel by reducing the subjective real rate computed by diagnostic agents. The reason

is as follows. Due to path dependence, computation of a real rate of interest involves

21Section 4 derives this equation from first principles. Following BGS, the diagnostic distribution for non-linear
processes is also defined as a distorted likelihood that over-weights states representative of recent news. We provide
a formal definition in Appendix D.

22See Appendix D for the derivation.
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the price level at t − 1.23 Since the agent is extrapolating from yesterday (t − 1)

into tomorrow (t + 1), today’s inflation innovation π̂t − Et−1[π̂t] is also extrapolated

into tomorrow when making a forecast for price level pt+1: Current surprise inflation

causes the diagnostic agent to expect future inflation, to a degree θ, thereby reducing

the subjective real interest rate. The intuition for why this is the case is same as

discussed above. Uncertainty about future variables, pt+1 in this instance, entails a

transformation of the current variables when they enter in linear combination with

future variables. Furthermore, this effect is present even in the case of i.i.d. shocks,

once again underscoring the novelty of computing DE on endogenous variables. We

will exploit this channel in Section 4 by emphasizing its implications for fiscal policy.

3.5 A Practical Guide to the Implementation of Diagnostic

Expectations in DSGE Models

We conclude this section with the following summary. A researcher interested in using

diagnostic expectations within a DSGE model can take the following steps.

1. Obtain the exact equilibrium conditions of the model. (Section 4 provides an

example in the context of a 3-equation NK model, and Section 5 in the context

of a medium-scale DSGE model.)

2. Loglinearize the model, being careful not to introduce contemporaneous variables

in-and-out of the DE operator. (See the appendix for examples.)

3. Obtain the RE representation of the model (Proposition 1).

4. Solve the RE model based on a software package that can handle expectations

conditional on previous period’s information set (Et−1).

5. Check that the parameter values considered does not cover bifurcation values

(Proposition 3 and Example 1).

4 Analysis Using a New Keynesian Model

In this section, we derive a three-equation New Keynesian model augmented by di-

agnostic expectations. Our goal is to revisit a number of prominent themes in this

23To see this, multiply on both sides of (23) by Pt−1 and use Pt inside the DE to obtain:

u′(Ct)
Pt−1

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt−1

Pt

Pt
Pt+1

]
(26)

which can then be loglinearized to arrive at (25).
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context.

4.1 Diagnostic New Keynesian Model

We set up the model from first principles. There are three sets of agents in the economy:

households, firms and the government.

4.1.1 Households

Households maximize the following lifetime utility

logCt −
ω

1 + ν
L1+ν
t + Eθt

[
Σ∞
s=t+1β

s−t
(
log(Cs)−

ω

1 + ν
L1+ν
s

)]
(27)

where Lt is labor supply, ν > 0 is the inverse of the Frisch elasticity of labor supply,

β is the discount factor β, satisfying 0 < β < 1, ω > 0 is a parameter that pins down

the steady-state level of hours.24 Maximization is subject to a budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt (28)

where Pt is the price level, Bt+1 is the demand of nominal bonds that pay off 1 + it

interest rate in the following period, Wt is the wage, Dt and Tt are dividends from

firm-ownership and lump-sum government transfers, respectively.

Notice that we write dynamic maximization problems, as this one, by explicitly

separating time t choice variables from the expectation of future choice variables.

This separation is crucial for solving the model with diagnostic expectations, and is a

consequence of the DE path dependence discussed in Section 3.25

4.1.2 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods’ demand is given by Yt(j) =
(
Pt(j)
Pt

)−ϵp
Yt, where

ϵp > 1 is the elasticity of substitution, Pt(j) is the price of intermediate good j, and Pt

is the price of final good Yt. Each intermediate good is produced using the technology

24Following BGS, the diagnostic distribution for non-linear processes is also defined as a distorted likelihood that
overweights states representative of recent news. We provide a formal definition in Appendix D.

25The reader may wonder whether DE introduces time inconsistency in agents’ choices. It turns out that this is
not the case in the loglinear approximation when the reference distribution is based on t−1. By the law of iterated
expectations (which then holds for the diagnostic expectation), time t + 1 policy functions are in fact consistent
with agents’ expectations (about their time t+ 1 policy functions).
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Yt(j) = AtLt(j), where ât ≡ log(At) is an aggregate TFP process that follows an AR(1)

process with persistence coefficient ρa:

ât = ρaât−1 + εa,t (29)

and εa,t ∼ iid N(0, σ2
a). The firm pays a quadratic adjustment cost ψp

2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt,

in units of the final good (Rotemberg 1982) to adjust prices. Firms’ per period profits

are given by Dt ≡ Pt(j)Yt(j) − WtLt(j) − ψp

2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt. The firm’s profit

maximization problem is

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑

s=1

βsQt,t+sDt+s

]}

(30)

where Qt,t+s is the household’s nominal stochastic discount factor.

4.1.3 Government

The government sets nominal interest rate with the following rule 1 + it = (1 +

iss)Π
ϕπ
t

(
Yt
Y ∗
t

)ϕx
, where Y ∗

t = At is the natural rate allocation, iss = 1
β
− 1 is the

steady state nominal interest rate, ϕπ ≥ 0, ϕx ≥ 0, and steady state gross inflation

Π = 1. Total output produced is equal to household consumption expenditure and

adjustment costs spent when adjusting prices. We first consider a model where is no

government spending, and nominal bonds are in zero net supply.

4.1.4 Equilibrium

Appendix D presents the equilibrium conditions.26 In particular, it shows that the

household intertemporal first order condition is equation (23). This appendix also

goes over the log-linear approximation in detail. The resulting equilibrium is given by

the following four equations:

ĉt = Eθt [ĉt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (31)

π̂t = βEθt [π̂t+1] + κ̃(ĉt − ât) + κ̃ν(ŷt − ât) (32)

ît = ϕππ̂t + ϕx(ŷt − ât) (33)

ĉt = ŷt (34)

26The DE operator is the expectation over a continuous density, hence one gets these first-order conditions by
taking derivatives, as usual.
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where κ̃ ≡ ϵp−1

ψp
, ŷt, ĉt, p̂t, ît are the log deviation of output, consumption, the price

level, and the nominal interest rate respectively, and π̂t is the log deviation of inflation

from the zero-inflation steady state. The shock process is given by:

ât = ρaât−1 + εa,t (35)

where εa,t ∼ i.i.d. N(0, σ2
a).

As explain in the context of Example 2 in Section 3, equation (31) can be written

as (25), showing that DE change the expression for the approximated Euler equation

by introducing a current inflation surprise term. We obtain a similar Phillips curve

(32) to the RE case using Rotemberg (1982) pricing. The key to this result is that,

different than with Calvo pricing, Rotemberg pricing with DE allows one to obtain

a recursion that only involves one expectation forward. This turns out to be key for

tractability. The appendix presents the detailed derivation.27

Define κ ≡ (1 + ν)κ̃. We make the following assumption in order to guarantee the

existence of a bounded solution (Proposition 3).28

Assumption 2 (Boundedness) θ < ϕπ + κ−1(1 + ϕx)

We provide an explicit solution for the model in Appendix D.

4.2 Diagnostic Expectations and the Possibility of Extra Am-

plification

A classic challenge in macroeconomic modeling is finding ways to generate realistic

business cycles with shocks of moderate size. The literature has relied on multiple

types of frictions (e.g. nominal, as in Christiano, Eichenbaum, and Evans 2005, or

financial, as in Bernanke and Gertler 1989; Kiyotaki and Moore 1997), interactions in

the form of strong complementarities (Benhabib and Farmer 1994), or multiple shocks

(Smets and Wouters 2007) to fit the data.

We demonstrate that diagnosticity provides a viable behavioral alternative to un-

derstand the large size of observed fluctuations within the NK model. Because di-

agnosticity leads agents to extrapolate the impact of exogenous shocks, expectations

are more volatile. Intuitively, one would expect the DE-NK model to predict a higher

volatility of output than under RE. Indeed, the following proposition establishes that

27In a loglinearized RE model with perfect inflation indexation, one can obtain identical Phillips curves using
either the Calvo or the Rotemberg price setting assumption.

28We also assume that κ(ϕπ − 1) + (1− β)ϕx > 0 to ensure a stable solution in the sense of Proposition 2.
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Figure 2: Excess Volatility under DE, Baseline NK Model
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Notes: The figure presents percentage points of volatility under DE relative to RE as a function of the slope of Phillips curve, κ, and
for various values of diagnosticity parameter, θ. The model is given by equations (31)-(35). See Footnote 30 for the default calibration.

diagnosticity can generate extra endogenous volatility in the NK model. We analyti-

cally prove this result when prices are completely rigid (ψp → ∞).29

Proposition 4 (Extra Volatility: NK Model) Consider the model given by (31)-

(35). Assume parameters are such that Assumption 2 is satisfied. When ψp → ∞ (rigid

prices), output is more volatile under DE than under RE : V ar(ŷDEt ) > V ar(ŷREt ).

When ψp → 0 (flexible prices), output volatility under DE is equal to that under RE.

In the flexible price limit, we obtain the efficient benchmark where output volatility

is equal to the stationary TFP process volatility. In the perfectly rigid price case,

diagnosticity interacts with price rigidity to amplify fluctuations in output whenever

θ > 0. In the intermediate range, we numerically illustrate how excess volatility under

DE varies with the degree of price rigidity, parameterized by κ. Our default calibration

of the NK model is based on the textbook by Gaĺı (2015).30 θ is set to 1 following

Bordalo, Gennaioli, Shleifer, and Terry (2021). We obtain a standard deviation of

output of 2.96%, relative to 1.82% under RE. Thus, output volatility increases by 63%

due to DE.

DE interact with the nominal frictions embedded in the NK model in order to gen-

erate extra output volatility. Figure 2 plots the excess volatility under DE relative to

RE as a function of κ plotted on the x-axis, for different values of θ. κ is inversely

related to ψp, the adjustment cost parameter. Given the default calibration, DE gen-

29Away from this limit, we can use the solution of the model presented in the appendix and obtain a condition
for extra volatility, but this condition is messy and does not lend itself to any clear interpretation.

30We set β = 0.99, ϵp = 9, ϕπ = 1.50, and ϕx = 0.5. We set ν = 2, and ψp such that κ = 0.050. The TFP
process is calibrated with persistence 0.90 and standard deviation of 2%.
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erates highest excess volatility relative to RE when prices are perfectly rigid. Excess

volatility monotonically declines as prices become flexible.31 In the flexible price limit,

the excess volatility converges to zero. Also, the excess volatility is increasing in the

diagnosticity parameter as long as Assumption 2 is satisfied.

In order to further demonstrate the interaction of nominal rigidities with diagnos-

ticity, we consider the case of a frictionless real business cycle (RBC) model. The

model is standard and is provided in Appendix E. There, we analytically show that

output is less volatile under DE than under RE when there is full depreciation of cap-

ital (δ = 1) and TFP shock process has zero persistence (ρa = 0). For a calibration

away from these analytical assumptions, we find that the standard deviation of output

is lower under DE than under RE.

It is useful to draw a parallel to the news shocks literature originating in the seminal

work by Beaudry and Portier (2004) and Beaudry and Portier (2006) in order to

understand these results. The addition of DE to the NK model can be seen as a

way of generating errors in expectations that resemble news about the future. For

instance, in the case of a positive TFP shock, agents extrapolate this shock, expecting

a further positive TFP shock in the next period. Therefore, the TFP shock generates

a contemporaneous raise in TFP, and an excessive increase in expectations about TFP

in the next period. Shocks to expectations can be seen as shifts in aggregate demand.

Whether aggregate demand can move away from aggregate supply depends on the

degree of nominal rigidities. When prices are sticky, output is demand determined:

The positive income effect raises consumption and in general equilibrium this effect

dominates. Output ultimately increases. This explains the extra volatility afforded by

the DE-NK model. Similarly, in the presence of capital, shocks to expectations also

face difficulties in generating comovement in a baseline, frictionless, RBC model with

flexible prices (Beaudry and Portier 2006; Jaimovich and Rebelo 2009). Indeed, in the

case of a positive news shock, the implied income effect produces a fall of labor supply

and hence output (Barro and King 1984). However, as shown in Blanchard, L’Huillier,

and Lorenzoni (2013), nominal rigidities are also a solution to this counterfactual

prediction of the RBC model. Indeed, we will return to this property of DE in the

case of an estimated medium-scale DSGE models.32

We note that the recent important paper by Bordalo, Gennaioli, Shleifer, and Terry

(2021) presents another case in which DE interact with frictions to generate extra

31It is possible to get lower volatility of output under DE relative to RE for different parameter configurations.
For example, when persistence of the TFP process ρa = 0.1, κ = 1, and θ = 1, we obtain dampening of output
volatility under DE relative to under RE.

32To be clear, we use this parallel to news shocks only for the purposes of providing intuition. In fact, compared
to news shocks, DE generate novel and different effects. Section 5 will expand more on this point.
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volatility. The paper looks at an RBC model with financial frictions on the firm side.

Firms are heterogeneous. The paper shows that the interaction of firms’ expectations

with financial frictions successfully generate amplification of investment and output

dynamics, and fits a number of facts relating to credit cycles.

4.3 Keynesian Supply Shocks

Motivated by economic crisis caused by the COVID-19 pandemic, a rapidly growing

literature focuses on constructing models that have the ability to generate a demand

shortfall that is fundamentally caused by a disruption on the supply side of the econ-

omy, that is, a ‘Keynesian’ supply shock. Thus far, some of the candidate explana-

tions for this phenomenon include multiple consumption goods (Guerrieri, Lorenzoni,

Straub, and Werning 2022), endogenous firm-entry (Bilbiie and Melitz 2020), het-

erogenous risk-tolerance (Caballero and Simsek 2021), and endogenous TFP growth

(Fornaro and Wolf 2021). As the following proposition shows, DE present a behavioral

mechanism capable of producing Keynesian supply shocks.

Proposition 5 (Keynesian Supply Shocks) Consider the model given by (31)-(35).

Assume that ψp → ∞ and that the diagnosticity parameter is high enough, that is,

θ > 2(1 − ρa)(1 + ϕx)/(ϕxρa). Then, the output gap x̂t positively co-moves with the

unanticipated component of TFP: ∂x̂t
∂εa,t

> 0.

Similar to Proposition 4, the proposition imposes completely rigid prices for tractabil-

ity. The result extends to the case of moderately rigid prices, as Figure 3 shows. We

use the default calibration discussed in Footnote 30. The figure plots the evolution

of the output gap. Following a negative TFP shock, the economy enters a recession:

the output gap falls under DE. In the RE case, the output gap moves in the opposite

direction.

The key to this striking result is extrapolation: following the shock, agents extrap-

olate and become excessively pessimistic about future output. This leads to a large

drop in consumption, which due to nominal rigidities, leads to contemporaneous fall

in output. Due to diagnosticity, expectations become sufficiently pessimistic to induce

a fall in output larger than the initial drop in TFP, generating a Keynesian recession.

This is in contrast to the result under RE where the fall in TFP, being only transitory,

does not lead to a fall in aggregate demand. Hence, there is a boom: lower TFP for

the same level of aggregate demand increases the demand for labor; this generates a

boom in the labor market, together with a rise in the output gap.
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Figure 3: Output Gap Response to a Negative TFP Shock, Baseline NK Model

1 2 3 4
-0.4

-0.2

0

0.2

Diagnostic
Rational

Notes: The figure depicts the impulse response of the output gap to a unit negative shock to TFP. The productivity shock process is
given by equation (35). The blue solid line denote impulses responses with diagnostic expectations, whereas the red dotted line denote
responses with rational expectations. The dynamics of employment are exactly the same as the output gap.

A noteworthy result, following BGS, is that there is a systematic reversal in output

gap to the RE forecast when the extrapolation of current news turns out to be incorrect

under DE. When at time t − 1 the news about productivity is bad, agents become

pessimistic and the output gap becomes negative. Next period, the excess pessimism

subsides and the output gap is corrected upwards. The forecast errors of output gap

are thus predictable: diagnostic forecasts neglect the systematic reversals in output

gap.33

4.4 Fiscal Policy Multiplier

Here we address the implications of DE for the size of the fiscal policy multiplier.

There are two reasons to do this.

First, given the recent unprecedented fiscal response to the COVID-19 crisis in the

U.S. and other countries, understanding the effects of fiscal policy is central. Also,

substantial empirical evidence indicates that marginal propensities to consume are

large (see Fagereng, Holm, and Natvik 2021, among others), or similarly, that fiscal

multipliers are large in the cross section (Nakamura and Steinsson 2014).34 We show

that DE constitute a useful addition to the NK framework, because it generates novel,

rich implications for the fiscal multiplier.

Second, this exercise is a natural path for understanding the endogenous extrapo-

lation generated by the diagnostic Fisher equation embedded in equation (23). This

33The solution for output gap under DE, with rigid prices, is x̂t =
ϕxρa(1+θ)−(1+ϕx−ρa)

(1+ϕx)(1+ϕx−ρa) ât − ϕxθρ
2
a

(1+ϕx)(1+ϕx−ρa) ât−1.

When θ > 0, the second term denotes the reversal from revision in expectations.
34See Steinsson (2021) for a similar discussion.
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endogenous extrapolation channel highlights the implication of the extra term arising

due to belief path-dependence, as explained in Example 2, Section 3.

We add government spending shocks to the NK model. There is a balanced bud-

get government spending financed by lump-sum taxes. Now, the total output in the

economy is used for consumption and government expenditure. That is, we replace

equation (34) with:

ŷt = ĉt + ĝt (36)

where ĝt is the percentage change of government spending from its steady state as

fraction of steady state output. ĝt follows an exogenous process:

ĝt = ρgĝt−1 + εg,t (37)

where εg,t ∼ iid N(0, σ2
g). The equilibrium is given by equations (31), (32), (33), and

(36), for a given process (37).

For convenience, we write the diagnostic Fisher equation here:

r̂t = ît − Et[πt+1]− θ(Et[πt+1]− Et−1[πt+1])− θ(πt − Et−1[πt]) (38)

Extrapolation implied by DE reduces the real interest rate, and hence leads to higher

multipliers.

To make this point in a transparent way, we start by looking at i.i.d. govern-

ment spending shocks. The reason is that with i.i.d. shocks, there is no exogenous

extrapolation.35 We obtain the following proposition.

Proposition 6 (Fiscal Policy Multiplier) Consider the model given by equations

(31), (32), (33), (36), and (37). Assume that ϕx = 0 and that the persistence of the

shock ρg = 0. Then:

1. Under rational expectations, the fiscal policy multiplier is always strictly less than

1. Under diagnostic expectations, the fiscal policy multiplier is greater than 1 if

θ > ϕπ, and less than 1 if θ < ϕπ.

2. The fiscal policy multiplier is greater under diagnostic expectations than under

rational expectations.

3. The fiscal policy multiplier is increasing in θ, and tends to infinity as θ −→
ϕπ + κ−1.

35To see this, notice that equation (11) implies, for an AR(1) process, Eθt [xt+1] = ρxx̌t + θρxε̌t.
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Hence, when the degree of diagnosticity is above the reaction parameter of the mon-

etary authority, the multiplier is greater than one. The intuition for this result is as

follows. The diagnostic real rate moves, in response to current inflation, due to the

endogenous extrapolation (governed by θ), and by the response of the central bank. In

the RE benchmark, the multiplier is always smaller than 1 because the central bank

moves the nominal rate to dampen the effect of fiscal policy. The condition θ > ϕπ

ensures that endogenous extrapolation offsets this dampening.

The degree of diagnosticity parametrizes the multiplier, increasing it above the RE

multiplier, and spanning the full range of values to infinity. We assume that ϕx = 0 in

order to get a clean and easy to interpret condition such that the multiplier is greater

than 1 in the DE model.36

This analytical case highlights that the higher multiplier under DE is only working

through the term θ(πt − Et−1[πt]) in the diagnostic Fisher equation. Extrapolation is

endogenous, generating the expansionary effect discussed in Example 2 above. Given

that the government spending shock is i.i.d., there is no exogenous extrapolation of

the shock due to diagnosticity.

We move away from the default calibration to illustrate the results in the case

ϕx = 0. In order to illustrate a case where the multiplier is greater than 1, we consider

a dovish interest rate rule (ϕπ = 1.1) and a moderately higher diagnosticity parameter

of θ = 1.5. Using a persistence of the government shock equal to 0.5 generates a DE

multiplier of 1.04, and an RE multiplier of 0.91. Raising the diagnosticity parameter

slightly generates much larger multipliers. Furthermore, using a steeper Phillips curve

(say, κ = 0.20) strengthens the endogenous inflation extrapolation channel: the DE

multiplier is now 1.13, for an RE multiplier of 0.73.

We conclude this section by noting that DE do not always lead to higher multipliers.

When government shocks are persistent, the expectation of future spending crowds

out current consumption, reducing output. With DE, expectations of future spending

are exaggerated, and can considerably reduce multipliers when persistence is high. To

illustrate this, we go back to our default calibration. In addition, we set the persistence

of the shock to 0.9. In this case, the RE multiplier is 0.17, for a DE multiplier of -0.32.

In this simulation, the exogenous extrapolation channel is so strong that it dominates

the endogenous extrapolation channel, leading to a negative multiplier.

36The general condition is θ ≥ ϕπ + ϕx

(1−ψ)κ .
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4.5 Overreaction and Delayed Overreaction

Whether beliefs as measured by surveys feature under- or overreaction is the subject of

an important debate in recent literature. Indeed, Coibion and Gorodnichenko (2012)

provide evidence of underreaction of consensus forecasts, whereas Bordalo, Gennaioli,

Ma, and Shleifer (2020) provide evidence of overreaction at the level of the individual

forecaster. Kohlhas and Walther (2021) find that there is overreaction, in some cases,

even at the aggregate level. In a complementary way, Angeletos, Huo, and Sastry

(2020) stress that at the aggregate level one can observe both under- and overreation.

According to them, what matters is the horizon: there is underreaction in the short

run, whereas overreaction dominates in the medium run.

The importance of the horizon at which one observes the dynamics of forecasts

has also been stressed in an application to stock returns by Bordalo, Gennaioli, La

Porta, and Shleifer (2019). The authors stress that the key is to look at the medium-

term forecast errors to find evidence of overreaction to news. The explanation is the

following. A gradual arrival of news can happen some time after an anticipated event,

and a buildup of the overreaction can move forecasts away from the underreaction

generated by imperfect information on impact.

Based on the premise by Bordalo et al. (2019), our broad aim in this section is to

contribute to this debate by presenting an extension of the NK model in which long-

term beliefs are guided by the diagnostic Kalman filter. The key innovation of our

setup compared to previous exercises in the literature is that agents form beliefs about

a hidden component that features both sizeable persistence, and is also permanent (in

the sense that the underlying process has a unit root.) To model the long-term nature

of this hidden object, we calibrate this persistence to a high value, which conceptually

connects our exercise to the long-run risks approach (Bansal and Yaron 2004). How-

ever, ours is a general equilibrium representative-agent macroeconomic model where

consumers are concerned with the long run path of income.

Assume prices are completely rigid. Consumption is pinned down solely by beliefs

about long-run income.37 The information structure is as follows. TFP, in logs, now

has a permanent component ζt and a temporary component ξt. Agents do not observe

these components separately. Instead, they observe realized TFP and a noisy signal

about the permanent component st = ζt + εs,t where εs,t ∼ i.i.d. N(0, σ2
s), and form

beliefs using the diagnostic Kalman filter introduced by Bordalo et al. (2020).38

37We take the limit ϕx → 0 and ψp → ∞. For brevity we do not write down the equations more explicitly, but
this conclusion can be reached by iterating forward the Euler equation.

38Even though the model does not explicitly have dispersed information as in Coibion and Gorodnichenko (2012),
we follow Lorenzoni (2009) by using a simple representative agent model with aggregate noisy signals. The filter

29



Figure 4: Impulse Responses: Beliefs About the Long-Run
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Notes: The panels depict the impulse responses of beliefs about long-run productivity to a one unit positive shock to the permanent
component of TFP. The left-hand side panel presents the case of a precise signal (σs = 0.01 and θ = 1.0); the right-hand side panel
with the case of an imprecise signal (σs = 0.03 and θ = 1.0).

The following analytical result offers a simple comparison of beliefs about the long-

run under a) the diagnostic Kalman filter (DKF), b) the rational Kalman filter (RKF),

and c) the full information RE benchmark (FIRE).

Proposition 7 (Overreaction) Assume that ψp → ∞, ϕx = 0, and the persistence

of the permanent component ρζ = 0. Consider a positive shock to ζt. Then,

1. Beliefs about the long-run are greater under the DKF than under the RKF.

2. If θ is high enough, beliefs about the long-run under the DKF are greater than

under FIRE.

When ρζ > 0, delayed overreaction is possible. We offer a collection of numerical

results using the following calibration. In order to capture the idea that the agent

is forming beliefs about a very long-run object, we calibrate the persistence of the

permanent component to a high value, ρζ = 0.98. We normalize the standard deviation

of TFP to 1. We consider two values of the standard deviation of the signal: a relatively

precise signal (of standard deviation 0.01), or a relatively imprecise signal (of standard

deviation 0.03). Figure 4 presents the dynamics for beliefs about long-run productivity

in response to a one standard deviation permanent shock. The left-hand side (LHS)

panel presents the case of a precise signal, and the right-hand side (RHS) panel presents

the case of an imprecise signal.

Under FIRE, long-run beliefs jump to 1 on impact and stay there. This is because

the standard deviation of TFP innovations has been normalized to 1, and beliefs im-

needs to be adapted to the particular information structure here, but the ideas are the same. For details of the
model specification, see Blanchard et al. (2013), or Appendix F for a full specification in the context of the
medium-scale DSGE.
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mediately adjust to the long-run value of TFP after the shock. In the case of a precise

signal (LHS panel), beliefs under the RKF underreact on impact, starting off at 0.70.

As learning happens over time, these beliefs rise, gradually reverting back to 1 in the

long run.39 Instead, beliefs under the DKF strongly overreact on impact. This because

the signal is so precise that diagnosticity overwhelms imperfect information.

Turning to the case of an imprecise signal (RHS panel), beliefs under the RKF

underreact significantly, starting off at 0.41. Given that now imperfect information

is more severe, DKF beliefs also slightly underreact on impact, starting off at 0.84.

However, because agents receive a new signal every period, there is gradual learning.

Therefore, as they gather more information, DKF implies a sizeable overreaction over

periods 2 to 6, with a peak at 1.16. Notice, the RKF also slightly overreacts around

period 5. This is due to a mechanical effect induced by the persistence of beliefs.

However, diagnosticity induces overreaction above and beyond this mechanical effect,

with a subsequent systematic reversal.

We conclude by noting that we reported results only varying the precision of the

signal. By varying the degree of diagnosticity one modifies the degree of overreaction

independently. For instance, increasing θ to 1.5 (which is within the range of estimates

reported by Bordalo, Gennaioli, Ma, and Shleifer 2020) can generate a slight overre-

action in the short run and a stronger overreaction in the medium run, leading to a

hump-shaped pattern of beliefs.

5 Empirical Evaluation

Given the theoretical findings of the previous sections, we undertake an empirical eval-

uation of diagnostic expectations using standard structural methods. The primary

goal is to ask the following question. Consider a baseline, medium scale, rational ex-

pectations DSGE model. Replace rational expectations with diagnostic expectations.

(The diagnostic model nests the rational expectations model via the diagnosticity pa-

rameter.) Is there evidence that diagnostic expectations improve the ability of the

DSGE model to fit business cycle data?

With this formulation of the broad question that will guide our empirical inves-

tigation, four interrelated subquestions emerge: What is the estimated value of the

diagnosticity parameter? Does the credible interval span the RE limit? Ultimately, is

there statistical evidence that diagnosticity provides an advantage when fitting busi-

39There is a light overreaction in period 3 even in the case of the RKF. This is simply a mechanical implication
of the persistence of beliefs inherited from the highly persistent permanent component.

31



ness cycle data? If so, what changes in the interpretation of the data?

Given the recent interest in the literature on survey data (see Bordalo, Gennaioli,

Ma, and Shleifer 2020, Coibion and Gorodnichenko 2015b, among others), we include

five survey forecast series from the Survey of Professional Forecasters (SPF) among the

set of observable variables. Recently, Milani and Rajbhandari (2020) and Miyamoto

and Nguyen (2020) have shown that DSGE models featuring news shocks can fit SPF

data.40 Hence, we also include news and noise shocks in the estimation, based on

the specification by Blanchard, L’Huillier, and Lorenzoni (2013) (henceforth BLL). In

model evaluation, Chahrour and Jurado (2018) find BLL to be the best candidate for

fitting the data with shocks to rational expectations, such as news or noise.41

Thus, we highlight that our empirical exercise is disciplined by the addition of a

host of ingredients in the baseline model: a rich set of frictions, shocks and compet-

ing channels. This includes the frictions introduced in the seminal work by Chris-

tiano, Eichenbaum, and Evans (2005). We include the exogenous driving processes

introduced by Smets and Wouters (2007). We include news shocks as an alternative

channel to explain expectations. We include information frictions in the form of noise

shocks (included in the news and noise specification by BLL). By adding all these

bells and whistles (nominal, real, and information frictions), driving processes, and

the alternative expectation channel, we aim to perform a tough test of the usefulness

of the behavioral friction embodied by diagnostic expectations. Indeed, we want to

assess whether it provides a significant empirical advantage, even when all the other

commonly used ingredients have been included.

We note that the inclusion of information frictions leads to a diagnostic Kalman

filter, as introduced by Bordalo, Gennaioli, Ma, and Shleifer (2020). Coibion and

Gorodnichenko (2015b) have also emphasized the importance of expectation underre-

action in the aggregate, which our information structure is able to account for.

5.1 Medium-Scale DSGE Model

Since the model is standard (Christiano, Eichenbaum, and Evans 2005), we describe

here its main ingredients and relegate the details to the appendix. The preferences of

the representative household feature habit formation and differentiated labor supply.

40Related work by the Federal Reserve Bank of New York has included data on inflation and Federal Funds rate
expectations in DSGE estimation (Del Negro et al. 2013).

41‘News and noise’ models of belief-driven fluctuations are models where rational agents receive noisy advance
information about fundamental shocks hitting the economy. In a series of representation results for this type of
theories of the business cycle, Chahrour and Jurado (2018) show that, generally, “news and noise” models admit
both a pure news representation of beliefs and fundamentals, and a noise representation.
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The capital stock is owned and rented by the representative household, and the capital

accumulation features a quadratic adjustment cost in investment, as introduced by

Christiano et al. (2005). The model features variable capacity utilization.

The final good is a Dixit-Stiglitz aggregate of a continuum of intermediate goods,

produced by monopolistic competitive firms, with Rotemberg (1982) costs of price

adjustment. Similarly, specialized labor services are supplied under monopolistic com-

petition, with Rotemberg (1982) costs of nominal wage adjustment. The monetary

authority sets the nominal interest rate following an inertial Taylor rule.

The model features eight persistent structural shocks: shocks to temporary and

permanent productivity, a noise shock to the signal about permanent productivity,

a shock to the marginal efficiency of investment, shocks to price and wage markups,

shocks to monetary and fiscal policy. We introduce i.i.d. measurement errors for SPF

forecasts.42

Following Smets and Wouters (2007) and Justiniano, Primiceri, and Tambalotti

(2010), the model is estimated based on U.S. time series for GDP, consumption, in-

vestment, employment, the federal funds rate, inflation, and wages, for the period

1954:III-2004:IV. This sample period facilitates comparison of our results across mod-

els in the robustness section, and avoids complications arising from the zero lower

bound. We also include SPF data on consumption growth, investment growth, output

growth, short-term inflation and short-term interest rate forecasts. The data appendix

presents more details. We set up a Kalman filter to get smoothed estimates of the

permanent component of productivity and the associated agents’ beliefs. Table 7 in

the appendix presents the parameter prior distributions. We generate 5,000,000 draws

using a Metropolis-Hastings algorithm and discard the first 20% as initial burn-in.

5.2 Results

The parameter estimates are reported in Table 1. We report mean posterior estimates,

along with the 90% credible interval. We present estimates for the diagnostic model

and the rational model, side-by-side. The bottom row reports the marginal likelihood

for both models.

Let us first look at the estimate for the diagnosticity parameter θ. Our prior

distribution is normal with mean 1 and standard deviation 0.3. The estimated posterior

mean for θ is 0.7325. This estimate is close to the one obtained in the previous empirical

42The two productivity shocks are not separately observed by the agent. Instead, a public signal on permanent
productivity is available. These three variables imply a distributed lag model for TFP and beliefs that admit a
pure news representation, as shown by Chahrour and Jurado (2018).
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Table 1: Posterior Distribution

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.7325 [0.5917, 0.8746]
α cap. share 0.1340 [0.1226, 0.1453] 0.1390 [0.1278, 0.1505]
h habits 0.7211 [0.6922, 0.7502] 0.5803 [0.5424, 0.6178]
χ′′(1)
χ′(1) cap. util. costs 5.0666 [3.4432, 6.6709] 5.5929 [3.9095, 7.2242]

ψp Rotemberg prices 125.58 [98.710, 152.17] 181.84 [126.66, 188.88]
ϕw Rotemberg wages 582.13 [256.01, 897.76] 9710.9 [4510.5, 14712.]
ν inv. Frisch elas. 3.8520 [2.4474, 5.2254] 1.2832 [0.5012, 1.9475]
S′′(1) inv. adj. costs 6.9588 [5.8400, 8.0723] 7.0701 [6.0111, 8.1332]
ρR m.p. rule 0.5818 [0.5429, 0.6209] 0.5563 [0.4380, 0.6806]
ϕπ m.p. rule 1.5363 [1.4173, 1.6537] 1.0682 [1.0001, 1.2046]
ϕx m.p. rule 0.0061 [0.0001, 0.0109] 0.0013 [0.0001, 0.0030]

Technology Shocks
ρ persist. 0.8573 [0.8368, 0.8780] 0.9535 [0.9352, 0.9716]
σa tech. shock s.d. 1.3772 [1.2603, 1.4947] 1.5258 [1.3896, 1.6601]
σs noise shock s.d. 0.5400 [0.3196, 0.7531] 1.0594 [0.3781, 1.7574]

Investment-Specific Shocks
ρµ persist. 0.3027 [0.2474, 0.3575] 0.3310 [0.2631, 0.4003]
σµ s.d. 18.905 [15.017, 22.716] 20.212 [16.369, 23.989]

Markup Shocks
ρp persist. 0.8749 [0.8303, 0.9209] 0.8205 [0.7663, 0.8769]
ϕp ma. comp. 0.5858 [0.4728, 0.7022] 0.5563 [0.4380, 0.6806]
σp s.d. 0.1591 [0.1306, 0.1877] 0.1988 [0.1700, 0.2271]
ρw persist. 0.9969 [0.9939, 0.9999] 0.6543 [0.5146, 0.7978]
ϕw ma. comp. 0.5765 [0.3942, 0.7630] 0.5142 [0.2882, 0.7444]
σw s.d. 0.4383 [0.3434, 0.5300] 0.4490 [0.3836, 0.5142]

Policy Shocks
ρmp persist. 0.0295 [0.0100, 0.0514] 0.0197 [0.0009, 0.0383]
σmp s.d. 0.3801 [0.3440, 0.4158] 0.3283 [0.3000, 0.3556]
ρg persist. 0.9341 [0.9058, 0.9626] 0.8974 [0.8682, 0.9275]
σg s.d. 0.3699 [0.3384, 0.4017] 0.3706 [0.3384, 0.4022]

Measurement Errors
σME
y s.d. 0.4975 [0.4467, 0.5471] 0.5034 [0.4529, 0.5533]

σME
c s.d. 0.4089 [0.3594, 0.4575] 0.4255 [0.3739, 0.4764]
σME
i s.d. 1.4320 [1.2539, 1.6039] 1.4514 [1.2692, 1.6284]
σME
r s.d. 0.2692 [0.2417, 0.2966] 0.2285 [0.2018, 0.2551]
σME
π s.d. 0.1639 [0.1432, 0.1845] 0.1482 [0.1267, 0.1693]

log Marg. Likelihood -1812.71 -1847.38
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exercises reported by Bordalo, Gennaioli, Ma, and Shleifer (2020), and to the value

used by Bordalo, Gennaioli, Shleifer, and Terry (2021). Figure 7 in the appendix shows

that the posterior distribution of θ is unimodal. The 90% credible interval covers values

from 0.5917 to 0.8746, away from the RE limit of zero.

In order to understand the implications of DE, we analyze the impulse response

functions (IRFs) to the main driving processes.43 Figure 5 plots IRFs for the one-

step-ahead consumption forecast, and for selected quantities (consumption and output

growth, specifically). Figure 6 plots these IRFs for selected prices (price inflation,

nominal and real interest rates).

Figure 5: Impulse Responses: Quantities
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Notes: The panels depict the impulse responses of one-step-ahead consumption forecast, consumption, and output to a one standard
deviation shock to noise signal, temporary TFP, and wage markup. The blue solid lines denote impulses responses with diagnostic
expectations, whereas the red dashed lines denote responses with rational expectations. See Table 1 for parameters.

Consider the IRFs to the noise shock. In this model, the noise shock raises expec-

tations of future income. This pushes the consumer to increase demand, and firms

43We plot the IRFs of the shocks that explain the highest share of consumption volatility on impact.
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to invest in anticipation of higher profits. Therefore, it can be intuitively thought of

as an aggregate demand shock. The noise shock increases consumption and output

in the DE model (full line, blue). The same happens in the rational counterfactual,

obtained by shutting down diagnosticity (θ = 0, dashed line, red). Focusing on the

consumption forecast, we see that the behavioral consumer’s beliefs overreact to the

shock, exhibiting a more volatile conditional response to the noise shock, and a rapid

reversal relative to RE. The combination of excess volatility and reversal results in

a boom-bust in actual consumption and economic activity more broadly, above and

beyond the mechanical reversal generated with the Kalman filter in the RE counter-

factual. The boom-bust in consumption forecast is sharper than response of actual

consumption due to the presence of habits in consumption.

Turning to the IRFs of prices, we note that price inflation tends to feature an

overreaction on impact. This is due to the forward-looking behavior of prices: By the

logic of the NK Phillips curve, current inflation depends on the expectation of future

inflation. For instance, following a positive TFP shock, inflation falls by a larger

amount under DE than under RE. This overreaction is particularly acute in the case

of the noise and the temporary TFP shock. Another noticeable difference between the

DE model and the RE counterfactual comes from the responses of the real rate. As

highlighted earlier in the paper, the diagnostic real rate expression features an extra

term, whereby current surprise inflation is extrapolated. As in Bianchi et al. (2022),

this term generates an additional propagation mechanism in the DE model.

Overall, comparing the IRFs of the DE model and the RE counterfactual suggests

that the DE model affords extra volatility of endogenous variables in general equilib-

rium. This theme was developed analytically at the beginning of Section 4, and linked

to nominal rigidities. To quantify this point we compute the excess unconditional

volatility afforded by DE for consumption growth, output growth, price and wage in-

flation, and the real rate. Among these, the largest increase is the one of the real rate,

with a 37% increase in volatility. The increase of consumption volatility is particularly

strong as well, at 23%. This is consistent with the view that consumers overreact

in their expectations of future consumption via the Euler equation. The volatility of

other variables increase as well (see Table 8 in the appendix).

We use the Bayes factor to empirically evaluate the fit of the diagnostic model

against the rational model. The log marginal likelihood of the data given the estimated

diagnostic model is -1812.71. This statistic is lower, -1847.38, in the case of the rational

counterpart.44 This difference in log marginal likelihoods represents evidence in favor

44Following the Kass and Raftery (1995) classification, 2 log(BF ) = 2× 34.67 = 69.34 statistic represents “very
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Figure 6: Impulse Responses: Prices
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Notes: The panels depict the impulse responses of inflation, the nominal interest rate, and the real rate to a one standard deviation
shock to noise signal, temporary TFP, and wage markup. The blue solid lines denote impulses responses with diagnostic expectations,
whereas the red dashed lines denote responses with rational expectations. See Table 1 for parameters.

of the diagnostic model.

We look at the forecast error variance decompositions to get intuition into how

the DE model fits the data and outperforms the RE model. Table 2 presents the 1Q

ahead variance decomposition across all structural shocks for quantities and prices.

For each, we first present the case of the DE model. Then, for comparison, we present

the variance decomposition for the estimated RE model (with parameter estimates

presented in Table 1). A striking finding is that the DE model relies much less on

noise shocks to explain consumption fluctuations. The contribution of noise shocks

to consumption volatility is only 12% in the DE model (compared to 43% in the RE

model), and to output is 7% in the DE model (compared to 25% in the RE model).

Other shocks explain these variables, with temporary TFP shocks explaining 30% of

strong evidence” in favor of the diagnostic model. This statistic has been used for model comparisons in the DSGE
literature. See, for example, Ascari, Bonomolo, and Lopes (2019).
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consumption and 18% of output volatility in the DE model (versus 15% and 7% in the

RE model), and with wage markup shocks explaining 30% of consumption and 19%

output volatility (versus 1% and 0% in the RE model).45

Table 2: Variance Decomposition: Quantities and Prices

Variable Noise Perm.
TFP

Temp.
TFP

Invest. Price
Markup

Wage
Markup

Monet. Fiscal

Consumption

DE 0.1158 0.0432 0.2976 0.0013 0.0313 0.3010 0.1814 0.0283

RE 0.4310 0.0039 0.1509 0.0006 0.0334 0.0121 0.3680 0.0001

Investment

DE 0.0020 0.0018 0.0279 0.9347 0.0102 0.0187 0.0035 0.0012

RE 0.0156 0.0002 0.0104 0.9585 0.0050 0.0014 0.0089 0.0001

Output

DE 0.0707 0.0262 0.1776 0.2842 0.0373 0.1942 0.1093 0.1005

RE 0.2493 0.0021 0.0716 0.2867 0.0278 0.0059 0.2017 0.1547

Price Inflation

DE 0.0658 0.0000 0.4055 0.0880 0.3259 0.0314 0.0656 0.0179

RE 0.0175 0.0003 0.2859 0.0025 0.5902 0.1023 0.0007 0.0006

Wage Inflation

DE 0.1285 0.0216 0.0115 0.1120 0.4138 0.2210 0.0814 0.0101

RE 0.0046 0.0003 0.0835 0.0004 0.2449 0.6662 0.0000 0.0000

Nominal Rate

DE 0.0279 0.0000 0.1737 0.0378 0.1350 0.0125 0.6053 0.0077

RE 0.0026 0.0000 0.0413 0.0003 0.0840 0.0146 0.8571 0.0001

Real Rate

DE 0.0319 0.0000 0.1647 0.0431 0.0360 0.0147 0.7006 0.0090

RE 0.0077 0.0001 0.0848 0.0019 0.0006 0.0391 0.8656 0.0002

What explains this pattern? The DE model exploits the rich propagation afforded

by extrapolation in the forward-looking behavior of consumers, firms, workers, and

financial markets. Consumers extrapolate, generating extra volatility and reversals of

consumption. Firms extrapolate, generating extra volatility and reversals of invest-

ment. Price and wage setters extrapolate, generating extra volatility and reversals

45Chahrour and Jurado (2018) propose a variance decomposition of news and noise in terms of fundamental
shocks and noise. For ease of comparison, we retain the original BLL decomposition.
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in price and wage inflation. Financial markets extrapolate, generating extrapolation

of current surprise inflation when pricing nominal bonds, together with implied dy-

namics of the real rate. Instead, in the case of the RE model, errors in expectations

arise only about future income, following the permanent income channel emphasized

by BLL, who build on Lorenzoni (2009). Overall, the DE model affords a more flex-

ible structure of errors in expectations, and is able to explain deviations from belief

rationality on several dimensions. This finding can be interpreted as evidence that

DE outcompete noise shocks as a preferred channel to explain fluctuations. Consistent

with this view, we point to the fact that the estimated noise in the signal, σs, is 0.5400

in the DE model (versus 1.0594 in the RE model). The DE model fits the data with

a more precise signal and therefore a lower degree of information imperfections. It

explains fluctuations with the aid of other shocks, which employ diagnosticity in order

to propagate internally in general equilibrium.

We also note the sharp drop in the importance of exogenous markups in explaining

price and wage inflation variance. Indeed, price markup shocks explain 33% of price

inflation volatility in the DE model (versus 59% in the RE model). Similarly, wage

markup shocks explain 22% of wage inflation volatility in the DE model (versus 67%

in the RE model). The DE model exploits the forward-looking behavior of wage

setters to explain goods prices and wages, relying more on other shocks and internal

propagation mechanisms. For instance, temporary TFP shocks explain 41% of price

inflation volatility in the DE model (versus 29% in the RE model). Also, price markup

shocks explain 41% of wage inflation volatility in the DE model, instead of 24% of

wage inflation volatility in the RE model. Consistent with this finding on the variance

decomposition, the wage Phillips curve is steeper in the DE model, as evidenced by a

much lower Rotemberg costs parameter.

Table 3 presents variance decomposition for the forecast data, distinguishing be-

tween the contribution of structural shocks and of observation errors. We find that

the structural shocks account for a higher share of the empirical volatility of forecast

data in the DE model. For instance, 44% of the one-step-ahead consumption forecast

is explain by structural shocks in the DE model (versus 31% in the RE model), and

56% of the one-step-ahead inflation forecast volatility is explained by structural shocks

in the DE model (versus 33% in the RE model).

To sum up, this analysis points to two primary reasons that explain the empirical

success of the DE model. First, diagnosticity is a powerful and flexible amplification

mechanism, generating errors in expectations along several dimensions. Thus, the

key role of noise shocks is diminished in the DE model. This is important, since these
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Table 3: Variance Decomposition: One-Step-Ahead Forecasts

Variable Structural Shocks Measurement Errors

Consumption

DE 0.44 0.56

RE 0.31 0.69

Investment

DE 0.33 0.67

RE 0.17 0.83

Output

DE 0.44 0.56

RE 0.30 0.70

Price Inflation

DE 0.56 0.44

RE 0.33 0.67

Nominal Rate

DE 0.91 0.09

RE 0.76 0.24

shocks require a fairly dovish monetary authority to propagate. Notice that, compared

to the RE model, the DE model can explain fluctuations in quantities by relying less

on such a dovish monetary authority. To corroborate this claim, we emphasize that

the reaction parameter ϕπ to inflation is estimated at 1.54, compared to a very low

value of 1.07 in the RE model. The DE estimate is more in line with other estimates

in the literature, as for example 2.04 by Smets and Wouters (2007), and 2.09 by

Justiniano, Primiceri, and Tambalotti (2010).46 Second, the model is able to explain

price and wage dynamics inflation internally, relying less on exogenous markup drivers.

Consistent with this view, we highlight that the standard deviation of price markup

shock σµ is estimated at 0.1591 in the DE model (versus 0.1998 in the RE model).47

We interpret the fact that price and wage fluctuations are explained internally, rather

than exogenously, as an encouraging finding. This is because DSGE models could be

criticized on the grounds that markup shocks constitute a rather black-boxy ingredient

without a realistic counterpart (Chari, Kehoe, and McGrattan 2009).

46The RE estimate is actually consistent with BLL, who discuss why the news and noise model requires a fairly
accommodative rule in the case of log preferences.

47The estimated standard deviation of wage markup shocks is also lower, 0.44 in the DE model, versus 0.45 in
the RE model.

40



5.3 Robustness

5.3.1 Prior on the Diagnosticity Parameter θ Centered at Zero

The model can in principle fit the data with a value of θ that is either close to zero, or

negative. Thus, it is important to check that imposing a prior distribution centered at

a positive value (such as 1) does not importantly affect our results. Using a symmetric

prior distribution around 0 (θ ∼ N(0.0.3)), we re-estimate the DSGE model under

DE. Table 9 in the appendix presents the results. Our posterior estimate of θ is not

importantly affected, with a mean posterior of 0.6537. Again, the 90% credible interval

is away from zero, covering values from 0.5193 to 0.7884, away from the RE limit of

zero. The log marginal likelihood is also higher for the DE model than for the RE

model (-1814.82 versus -1847.38).

5.3.2 Diagnostic Expectations in Alternative Off-The-Shelf Models

Another robustness check concerns the importance of details of our implementation

for the conclusion that DE provide a superior fit of business cycle data. There are two

separate angles of potential concern. First, does this conclusion crucially depend on

using the BLL model? Second, does this conclusion crucially depend on including SPF

data among the set of observable variables?

In order to demonstrate that the answer to both these questions is negative, here,

we undertake the estimation of two influential off-the-shelf DSGE models: Smets and

Wouters (2007) and Justiniano, Primiceri, and Tambalotti (2010). In the estimation

of each of this models, we make sure to replicate the authors’ procedure as close as

possible: We use the same sample 1954:III–2004:IV. We use their data set, ensuring

variable construction does not cause any differences. We also set the same prior distri-

bution. Hence, our RE results replicate their findings. The introduction of DE in this

case constitutes a particularly tight test that DE are useful to explain business cycle

data.

Table 11 in the appendix presents the results for the Smets and Wouters (2007)

model. We present estimates for this model under diagnosticity, and for the baseline

the rational model, side-by-side.48 Our posterior estimate of θ is smaller than under

BLL, but still positive with a mean posterior of 0.4435. The 90% credible interval

is away from the RE limit of zero, covering values from 0.1822 to 0.6928. The log

marginal likelihood is also higher for the DE model than for the RE model (-897.91

48For the RE model, we obtain a similar slope of the price and wage Phillips curves despite the use of Rotemberg
adjustment costs instead of Calvo in our specification of nominal rigidities.
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versus -900.69).

Table 13 in the appendix presents the results for the Justiniano, Primiceri, and

Tambalotti (2010) model. We present estimates for this model under diagnosticity,

and for the baseline the rational model, side-by-side. Our posterior estimate of θ is

smaller than under BLL but still positive with a mean posterior of 0.4336. The 90%

credible interval is away from the RE limit of zero, covering values from 0.1894 to

0.6745.49 The log marginal likelihood is also higher for the DE model than for the RE

model (-1190.86 versus -1193.78).

6 Conclusion

In this paper, we argue that diagnostic expectations constitute a behavioral mechanism

that can be fruitfully incorporated into New Keynesian macroeconomics. To this end,

we first considered a set of challenges encountered by researchers working with this

type of models, and revisited them analytically under diagnostic expectations. We

concluded that the use of diagnostic expectations opens up avenues to make significant

progress in the context of these challenges. We then asked if diagnostic expectations

are validated empirically. Using a rich medium-scale DSGE model with news shocks

and imperfect information, we conclude that the answer to this question is yes: The

diagnostic model dominates the rational counterpart in terms of fit.

Our general solution method offers opportunities to explore and revisit a number

of themes in macroeconomics and international macroeconomics in the context of di-

agnostic expectations. For example, a challenge in open economy models has been

to account for the cyclicality of the current account in emerging countries, or to im-

prove our understanding of exchange rate predictability. We leave these explorations

to future work.
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A Muth (1961) Under Diagnostic Expectations: De-

tailed Derivation

A.1 Muth’s Over-Discounting

We show an equivalence of DE with Muth’s model of deviations from rationality (Muth

1961, pp. 321-2). The shock process can be written as linear combination of current

and past normally and independently distributed random variables ϵi with zero mean

and variance σ2:

ut =
∞∑

i=0

wiϵt−i (39)

Any desired correlogram in the u’s may be obtained by an appropriate choice of the

weights wi.

As in Muth (eqn 3.7), conjecture that price is a linear function of the independent

disturbances

Pt =
∞∑

i=0

Wiϵt−i (40)

The expected price is then

P θ
t = Eθt−1[Pt] = (1 + θ)Et−1[Pt]− θEt−2[Pt] =

∞∑

i=1

Wiϵt−i + θW1ϵt−1 = (1 + θ)W1ϵt−1 +
∞∑

i=2

Wiϵt−i

(41)

From the equilibrium equation (4), we obtain:

Pt +
γ

β
Eθt−1[Pt] = − 1

β
ut (42)

W0ϵt +

(
1 +

γ(1 + θ)

β

)
W1ϵt−1 +

(
1 +

γ

β

) ∞∑

i=2

Wiϵt−i = − 1

β

∞∑

i=0

wiϵt−i (43)

Hence, we get

W0 = − 1

β
w0 (44)
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(
1 +

γ(1 + θ)

β

)
W1 = − 1

β
w1 ⇐⇒ W1 = − 1

β + (1 + θ)γ
w1 (45)

(
1 +

γ

β

)
Wi = − 1

β
wi ⇐⇒ Wi = − 1

β + γ
wi ∀i = 2, ... (46)

Compare the solution to Muth’s solution in equations (3.19) to see that Muth’s ex-

trapolation coefficient f1 = 1 + θ.

A.2 Inventory Speculation Model (Muth 1961, Section 4, pp.

322-30)

Qd
t = −βPt; β > 0 (Demand)

Qs
t = It−1 + ut (Supply)

It = γẼtPt+1; γ > 0 (Production in Advance)

St = α
(
Ẽt[Pt+1]− Pt

)
;α > 0 (Inventory Demand)

Qd
t + St = Qs

t + St−1 (Market Clearing)

We get the following univariate equilibrium condition:

−(α + β)Pt + αEtPt+1 = (α + γ)Et−1Pt − αPt−1 + ut (47)

We assume that shock process ut has zero persistence (ρ = 0). That is, ut = ϵt ∼
i.i.d.N(0, σ2

ϵ ). Guess the solution takes the following form:

Pt = APt−1 +Bϵt + Cϵt−1 (48)

Using method of undetermined coefficients we find that the solution under RE and DE

are as follows:

PRE
t = APt−1 −

1

α + β − αA
ϵt (49)

PDE
t = APt−1 +Bϵt + Cϵt−1 (50)

where A is the smaller root of the quadratic αA2 − (2α + β + γ)A+ α = 0,

B = − (α + γ)(1 + θ) + α + β − αA

[(α + γ)(1 + θ) + α + β] (α + β − α(1 + θ)A)− αA (α + β − α(1 + θ)A) + α(1 + θ)(α + γ)θA

(51)
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C = − (α + γ)θAB

(α + γ)(1 + θ) + α + β − αA
(52)

We can see that, for θ > 0, B is a function of θ (whereas the coefficient −1/(α+β−
αA) is not), and that C ̸= 0. This shows that the DE and RE solutions are different,

even for i.i.d. shocks.50

B Diagnosticy, RE Representation, and More on

Predetermined Variables

This appendix collects all proofs for the results stated in Section 3. Standard ma-

trix operations to obtain the solution, and associated proofs (needed once the RE

representation has been obtained), are discussed in Appendix C.

B.1 Diagnostic Expectation of Future Variables

Suppose that xt follows an univariate AR(1) process, xt = ρxxt−1 + εt, with εt ∼
i.i.d. N(0, σ2

ε). Given (realized) states x̌t and x̌t−1, the diagnostic probability distribu-

tion function of xt+1 is

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = ρxx̌t−1)

]θ
· C (53)

When looking at equation (53), it is important to notice that, generically, x̌t ̸=
ρxx̌t−1 (due to the realization of the shock εt.) However, since εt is fixed at 0 by the

NNA, then

f(xt+1|xt = ρxx̌t−1) ∝ φ

(
xt+1 − ρ2xx̌t−1

σε

)
(54)

Thanks to the NNA, the variance of this pdf is σ2
ε , which is the same as the variance

of the true pdf of xt+1. Thus, the true and the reference distributions have the same

variance. This ensures tractability.

We now prove that the diagnostic expectation of a univariate variable can be ex-

pressed in terms of rational expectations.

50If one were to drop the Pt−1 term in the equilibrium equation, it is straightforward to verify that the DE and
RE solutions would coincide when ρ = 0.
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Lemma 1 (Univariate RE Representation) Suppose that xt follows an AR(1) pro-

cess and that the NNA holds. Then,

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (55)

Proof (Lemma 1.) The diagnostic expectation of xt+1 is given by

Eθt [xt+1] =

∫ ∞

−∞
xf θt (x)dx (56)

The diagnostic pdf is given by

f θt (x) =

[
1
σε
φ

(
x−ρxx̌t
σε

)]1+θ

[
1
σε
φ

(
x−ρ2xx̌t−1

σε

)]θ C (57)

where C is a normalizing constant given by

C = exp

{
− 1

2

(
θ(1 + θ)ρ2xx̌

2
t + θ(θ + 1)ρ4xx̌

2
t−1 − 2(1 + θ)θρ3xx̌tx̌t−1

σ2
ε

)}
(58)

in which case

Eθt [xt+1] =

∫ ∞

−∞
xf θt (x)dx

=

∫ ∞

−∞
x
1

σε
φ

(
x− (ρxx̌t + θ(ρxx̌t − ρ2xx̌t−1))

σε

)
dx (59)

Thus, the diagnostic distribution f θt (xt+1) is normal with variance σ2
ε and mean

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (60)

■

In formula (55), the lagged expectation Et−1[xt+1] is the expectation conditional on

information available at t− 1, that is, conditional on x̌t−1. Thus, Et[xt+1] = ρxx̌t and

Et−1[xt+1] = ρ2xx̌t−1. For a given realized ε̌t, this proof implies that:

Eθt [xt+1] = Et[xt+1] + θρxε̌t > Et[xt+1] (61)

if and only if ε̌t > 0, that is diagnostic expectations indeed extrapolate the past shock

into future beliefs.
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Extension to Multivariate Case. Assume that the vector zt follows a multivariate

AR(1) process, zt = Azzt−1+wt, wherewt ∼ N(0,Σw), andAz is a persistence matrix.

(Notice that we do not require orthogonality.)

We make the following multivariate no-news assumption (henceforth NNA) for any

Gaussian AR(1) vector zt+1.

Assumption 3 (Multivariate No-News Assumption)

f(zt+1| −Gt) = f(zt+1|zt = Azžt−1) (62)

The extension to the multivariate case is based on the fact that each element of the

vector is univariate normal.

Lemma 2 (Multivariate DE Formula) Assume that the vector zt follows a multi-

variate AR(1) process. Then,

Eθt [zt+1] = Et[zt+1] + θ(Et[zt+1]− Et−1[zt+1]) (63)

Proof (Lemma 2). The proof proceeds element-by-element of the vector zt+1. With-

out loss of generality, consider the first element z1,t+1. The marginal distribution of

z1,t+1 is also normal, and thus, under the NNA,

Eθt [zi,t+1] = Et[zi,t+1] + θ(Et[zi,t+1]− Et−1[zi,t+1]) (64)

The proof for the other elements of zt is identical. ■

Equation (11) follows from this lemma.

B.2 Existence and Uniqueness of the Rational Expectations

Representation for the General Linear Model

The proof will use the fact that endogenous variables of the DSGE model are normally

distributed, allowing to use the multivariate BGS formula (11), together with the

linearity of the RE operator. First, we need to prove the following lemma.

Lemma 3 (Distribution of the Linear Combination Fyt+1 +G1yt +Mxt+1 +N1xt)

Consider the multivariate process (7) and model (12). The vector Fyt+1 + G1yt +

Mxt+1 +N1xt follows a multivariate normal distribution.
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Proof (Lemma 3). First,

Mxt+1 ∼ N(MAx̌t,MΣvM
′) (65)

Also,

Fyt+1 ∼ N(FPy̌t + FQAx̌t,F(Q+R)Σv(Q+R)′F′) (66)

Finally,

Fyt+1 +G1yt +Mxt+1 +N1xt ∼ N((FP+G1)y̌t + ((FQ+M)A+N1)x̌t,

(F(Q+R) +M)Σv(F(Q+R) +M)′) (67)

■

Proof (Proposition 1). Lemma 3 shows Fyt+1 +G1yt +Mxt+1 +N1xt is multi-

variate Gaussian. As a consequence of this fact, we can can evaluate the DE on the

multivariate model using Lemma 2. Re-writing equation (14):

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

+θ
(
Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

−Et−1[Fyt+1 +G1yt +Mxt+1 +N1xt]
)

(68)

Using the linearity of the RE operator:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = FEt[yt+1] +G1Et[yt] +MEt[xt+1] +N1Et[xt]

+θ
(
FEt[yt+1] +G1Et[yt] +MEt[xt+1] +N1Et[xt]

−FEt−1[yt+1] +G1Et−1[yt] +MEt−1[xt+1] +N1Et−1[xt]
)

(69)

Since Et[yt] = yt and Et[xt] = xt, and using the definitions ofG andN in the statement

of the proposition, we find that equation (12) implies equation (15).

Uniqueness follows from the fact that the DE can only be evaluated in a unique

way once NNA on the multivariate model (Assumption 3) has been assumed.

Hence, model (12) is equivalent to model (15).

■
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B.3 Formalization of the Limit Argument for Predetermined

Variables Presented in Section 3.3

Following the notation of Section 3.3, the predetermined variable is xt. At time-t,

xt has been realized and therefore it is degenerate. Based on the fact that, in the

DSGE model, predetermined variables are in combination of future variables, the limit

argument in Section 3.3 proceeded by introducing an arbitrarily amount of uncertainty

around xt. We considered the linear combination xt + δt+1, where δt+1 is white noise.

We are interested in the DE of xt + δt+1:

Eθt [xt] ≡ lim
σδ→0+

Eθt [xt + δt+1] (70)

We formalize this idea using the Dirac delta function, defined as follows. Suppose

that x̌t is the realization of xt. Since xt is degenerate, it can be represented by a

cumulative distribution function (cdf) with vanishing uncertainty:

Pr(xt ≤ x̌|xt = x̌t) = lim
σε→0+

1

σε
Φ

(
x̌− x̌t
σε

)
(71)

This is the probability that xt is below any given value x̌, where Φ(x) is the cumulative

distribution function (cdf) of a standard normal random variable:

Φ (x̌) =

∫ x̌

−∞
φ(x)dx (72)

This implies that Pr(xt = x̌t) = 1 and Pr(xt ̸= x̌t) = 0, also denoted using the Dirac

delta function δ(x):

δ(x) = lim
a→0+

1

a
φ
(x
a

)
(73)

with the requirement that δ(x) is a pdf. Using this notation, δ(xt − x̌t) is the pdf of

xt, and thus

Pr(xt ≤ x̌|xt = x̌t) =

∫ x̌

−∞
δ(x− x̌t)dx (74)

is equal to 1 for x̌ ≥ x̌t and equal to 0 otherwise.

Lemma 4 will now formalize the limit argument presented in the body. It computes

the time-t diagnostic expectation of xt under the NNA. In this case, the reference

distribution of xt is degenerate, with expectation ρxx̌t−1, where x̌t−1 is the past real-

ization. We represent this reference distribution by a cdf with vanishing uncertainty,
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as follows

Pr(xt ≤ x̌|xt = ρxx̌t−1) = lim
σε→0+

1

σε
Φ

(
x̌− ρxx̌t−1

σε

)
(75)

Lemma 4 (DE of a Degenerate Random Variable) Suppose that xt is an AR(1)

process. Assume that

Pr(xt ≤ x̌|xt = x̌t) = lim
σε→0+

1

σε
Φ

(
x̌− x̌t
σε

)
(76)

and that the NNA holds. Then,

Eθt [xt] = x̌t + θ(x̌t − ρxx̌t−1) (77)

Proof (Lemma 4). The diagnostic expectation of xt is given by

Eθt [xt] =
∫ ∞

−∞
xf θt (x)dx (78)

In order to get the diagnostic pdf of xt, we start by looking at the diagnostic cdf, which

by virtue of the NNA is

Prθt (xt ≤ x̌) = lim
σε→0+

∫ x̌

−∞

[
1
σε
φ
(
x−x̌t
σε

)]1+θ

[
1
σε
φ
(
y−ρxx̌t−1

σε

)]θ C dx (79)

First, note that

[
1
σε
φ

(
x−x̌t
σε

)]1+θ

[
1
ση
φ

(
y−ρyx̌t−1

σε

)]θ =
1√
2πσε

exp

{
−1

2

[
(1 + θ)

(
x− x̌t
σε

)2

− θ

(
x− ρxx̌t−1

σε

)2]}

=
1√
2πσε

exp

{
−1

2

[
y −

(
(1 + θ)x̌t − θρtx̌t−1

)]2

σ2
ε

}
× 1

C
(80)

where the value of C must be

C = exp

{
−1

2

[
θ(1 + θ)x̌2t + θ(1 + θ)ρ2xx̌

2
t−1 − 2θ(1 + θ)ρxx̌tx̌t−1

σ2
ε

]}
(81)

so that

Prθt (xt ≤ x̌) = lim
σε→0+

1

σε
Φ

(
x̌− (x̌t + θ(x̌t − ρxx̌t−1))

σε

)
(82)

54



and

f θt (xt) = δ(xt − (x̌t + θ(x̌t − ρxx̌t−1))) (83)

Hence, in order to look for the DE of xt, we write

Eθt [xt] = lim
σε→0+

lim
u→∞

∫ u

−∞
x

[
1
σε
φ

(
x−x̌t
σε

)]1+θ

[
1
σε
φ

(
x−ρxx̌t−1

σε

)]θ Cdx

= lim
σε→0+

lim
u→∞

∫ u

−∞
x

1

σε
φ

(
x−

(
(1 + θ)x̌t − θρxx̌t−1

)

σε

)
dx

= lim
σε→0+

lim
u→∞

{∫ u

−∞

x−
(
(1 + θ)x̌t − θρxx̌t−1

)

σε
φ

(
x−

(
(1 + θ)x̌t − θρxx̌t−1

)

σε

)
dx

+
(
(1 + θ)x̌t − θρxx̌t−1

) ∫ u

−∞

1

σε
φ

(
x−

(
(1 + θ)x̌t − θρxx̌t−1

)

σε

)
dx

}
(84)

We will evaluate the integral by change of variables. To this end, define z ≡
x−((1+θ)x̌t−θρxx̌t−1)

σε
such that

Eθt [xt] = lim
σε→0+

lim
u→∞

{
σε

∫ u−((1+θ)x̌t−θρxx̌t−1)

σε

−∞
zφ(z)dz + ((1 + θ)x̌t − θρxx̌t−1)

∫ u−((1+θ)x̌t−θρxx̌t−1)

σε

−∞
φ(z)dz

}

(85)

Since limσε→0+
u−((1+θ)x̌t−θρxx̌t−1)

σε
= +∞ when u > (1 + θ)x̌t − θρxx̌t−1, we have

lim
σε→0+

∫ u−((1+θ)x̌t−θρxx̌t−1)

σε

−∞
zφ(z)dz = 0 and lim

σε→0+

∫ u−((1+θ)x̌t−θρxx̌t−1)

σε

−∞
φ(z)dz = 1 (86)

Therefore,

Eθt [xt] = x̌t + θ(x̌t − ρxx̌t−1) (87)

■

We already mentioned above that agents in the model do not compute the DE

of predetermined variables in isolation. This is important to keep in mind when in-

terpreting expression (77). In the model, predetermined variables are exclusively in

linear combination of future variables, which is why diagnosticity is activated for these

variables. This is the correct way of thinking why there is a transformation of the

expectation of the predetermined variables as well.

The expression (77) allows to obtain additivity in the following sense, extending
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BGS’s result to settings with predetermined variables.51 (The case of backward looking

expectations is trivial by the absence of diagnosticity.)

Proposition 8 (Strong Additivity of the DE) Suppose that xt and yt are orthog-

onal AR(1) processes and that the NNA holds. Then, for any integers r, s:

Eθt [xt+r + yt+s] = Eθt [xt+r] + Eθt [yt+s] (88)

Proof (Proposition 8). Suppose first that both r, s ≥ 0. The case s, r ≥ 1 follows

from the fact that both xt+r and yt+s are normal. The case of s = 0 or r = 0 follows

from Lemma 4.

Suppose now that one of r, s < 0, and assume, without loss of generality, that this is

r. Then, xt+r is a constant, and there is no diagnosticity associated with this variable

(i.e., by the NNA, the value under the reference event is the same as the realized value,

Gt = −Gt). Then, clearly, Eθt [xt+r] = xt+r and

Eθt [xt+r + yt+s] = (1 + θ)(xt+r + Et[yt+s])− θ(xt+r + Et−1[yt+s])

= xt+r + (1 + θ)Et[yt+s]− θEt−1[yt+s] (89)

since xt+r is known at t− 1. Hence,

Eθt [xt+r + yt+s] = Eθt [xt+r] + Eθt [yt+s] (90)

The proof when both r, s < 0 is similar. ■

This additivity result clarifies that we now have a consistent definition of the DE

at all leads and lags.

Case of No Residual Uncertainty, σε = 0. For completeness of this discussion, let

us now suppose that there is no residual uncertainty in the observation of xt. In other

words, there is no diagnosticity associated with computing DE for xt at time t (the

NNA is dropped). Since xt is degenerate, its true distribution is Pr(xt = x̌|xt = x̌t) = 1

if x̌ = x̌t and 0 otherwise. The absence of diagnosticity implies Gt = −Gt, and so the

diagnostic distribution is equal to the true distribution. As a consequence,

Eθt [xt|σε = 0] = x̌t (91)

51See BGS, proof of Corollary 1, Online Appendix, for the case r, s ≥ 1.
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C Detailed Solution Procedure, Stability, and Bound-

edness of the Solution: Supplementary Materials

and Proofs

Detailed Solution Procedure. We solve for the recursive equilibrium law of motion

of a linear diagnostic-expectations DSGE model using the method of undetermined

coefficients.

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 +Qxt +Rvt (92)

We write the model in the rational expectations representation as

0 = FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt +G1Pyt−1 + ...

+G1Qxt + θG1Qvt + (1 + θ)G1Rvt +G2Pyt−1 +G2Qxt +G2Rvt +MAxt + ...

+ θMAvt +N1xt + θN1vt +Hyt−1 +N2xt (93)

It is now straightforward to proceed by the method of undetermined coefficients to

find a solution of the form (92), and the matrices P,Q,R can be found solving the

following matrix equations.

FP2 +GP+H = 0 (94)

FPQ+ FQA+GQ+MA+N = 0 (95)

θFPQ+ (1 + θ)FPR+ θFQA+ θG1Q+GR+ θG1R+ θMA+ θN1 = 0 (96)

where G = G1 +G2 and N = N1 +N2.
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We can use the techniques discussed in Uhlig (1995) to solve the quadratic matrix

equation (94) in P. The solution of the other two equations is straightforward as they

are linear in Q and R: After vectorization, equation (95) becomes

(Im ⊗ FP)vec(Q) + (AT ⊗ F)vec(Q) + (Im ⊗G)vec(Q) + vec(MA) + vec(N) = 0

(97)

such that

vec(Q) = −
(
(Im ⊗ FP) + (AT ⊗ F) + (Im ⊗G)

)−1

× (vec(MA) + vec(N)) (98)

R can be found from (96):

R = −
(
(1 + θ)FP+G+ θG1

)−1(
θFPQ+ θFQA+ θG1Q+ θMA+ θN1

)
(99)

Observe that solution for matrices P and Q does not depend on diagnosticity

parameter.

The Solution under Rational Expectations. Consider the model under rational

expectations:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt = 0 (100)

where G = G1 + G2 and N = N1 + N2 and, as above, yt and xt denote vectors of

endogenous variables (including controls and states) (m× 1) and of exogenous states

(n × 1). Et denotes the rational expectation operator, and the exogenous process is

given by (7).

Suppose that there is a unique stable solution of the model:

yt = P̃yt−1 + Q̃xt (101)

then, we can rewrite the stochastic difference equation (100) as follows:

FEt
[
P̃yt + Q̃xt+1

]
+GP̃yt−1 +GQ̃xt +Hyt−1 +MAxt +Nxt = 0 (102)
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We can simplify the above equation to

FP̃2yt−1 + FP̃Q̃xt + FQ̃Axt +GP̃yt−1 +GQ̃xt +Hyt−1 +MAxt +Nxt = 0

(103)

and can solve similarly for the recursive equilibrium law of motion via the method of

undetermined coefficients. Specifically, the matrices P̃ and Q̃ can be found solving the

following matrix equations.

FP̃2 +GP̃+H = 0 (104)

FP̃Q̃+ FQ̃A+GQ̃+MA+N = 0 (105)

Comparison of these equations with their counterpart under DE immediately shows

that P = P̃ and Q = Q̃.

Stability Conditions. Given the quadratic matrix equation (94)

FP2 +GP+H = 0 (106)

for the m×m matrix P and m×m matrices G and H, define the 2m× 2m matrices

Ξ and ∆:

Ξ =

[
−G −H

Im 0m

]
(107)

and

∆ =

[
−F 0m

0m Im

]
(108)

where Im is the identity matrix of size m and 0m is the m×m matrix with only zero

entries.

Uhlig (1995) shows that if (a) s is a generalized eigenvector and λ is the corre-

sponding generalized eigenvalue of Ξ with respect to ∆, then s can be written as

s′ =
[
λx

′
, x

′]
for some x ∈ Rm, and (b) there are m generalized eigenvalues λ1, ..., λm

together with generalized eigenvectors s1, ..., sm of Ξ with respect to ∆, written as

s
′
i = [λix

′
i, x

′
i] for some xi ∈ Rm, and if (x1, ..., xm) is linearly dependent, then

P = ΩΛΩ
′

(109)

is a solution to the matrix quadratic equation, where Ω = [x1, ..., xm] and Λ =

diag(λ1, ..., λm).
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The stability conditions are given as follows.52

Theorem 1 The solution P is stable if |λi| < 1 for all i = 1, ...,m.

Thus, we can easily show that the stability conditions for both models are the same.

Proof (Proposition 2). The solutions P and P̃ are the same since they involve

identical matrices F, G, and H. Thus, the stability conditions stated in Theorem 1

are the same for both solutions. ■

Proof (Proposition 3). Let’s consider the RE model presented in equation (100)

where the exogenous variables are stacked in a (n × 1) vector xt that is assumed to

follow the AR(1) stochastic process

xt = Axt−1 + vt (110)

where vt is a (k × 1) vector of Gaussian and orthogonal exogenous shocks:

vt ∼ N(0,Σv) (111)

and A is a diagonal matrix of persistence parameters.

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 +Qxt (112)

Assume, without loss of generality, that any unanticipated shocks or news only hit

the economy at date 1. The economy is in steady state at date 0 or before. Then, the

solution of the DE model from date 2 onwards coincides with the RE model solution.

We prove this statement by considering the RE representation of the DE model derived

in equation (15), reproduced here:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)

+Mθ
(
Et[xt+1]− Et−1[xt+1]

)

+G1θ
(
yt − Et−1[yt]

)

+N1θ
(
xt − Et−1[xt]

)
= 0 (113)

52See Section 6.3 of Uhlig (1995) for a detailed discussion.
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Since no news or shocks are assumed to happen for t ≥ 2, we get that

Et[yt+1]− Et−1[yt+1] = Et[xt+1]− Et−1[xt+1] = yt − Et−1[yt] = xt − Et−1[xt] = 0; ∀t ≥ 2

(114)

The system from date t ≥ 2 then simplifies to the RE model, the solution of which

is given by equation (112) for t ≥ 2. Date 1 solution for the DE model can then be

found from (note the assumption that the economy is in steady state before date 1):

FE1[y2] +Gy1 +ME1[x2] +Nx1

+θ
(
FE1[y2] +ME1[x2] +G1y1 +N1x1

)
= 0 (115)

Notice that E1[y2] and E1[x2] are known at date 1 from the RE solution.

E1[y2] = Py1 +QAx1; E1[x2] = Ax1 (116)

After substituting these values and rearranging, we get:

(
(1 + θ)FP+G+ θG1

)
y1 +

(
(1 + θ)(FQ+M)A+N+ θN1

)
x1 = 0 (117)

Then, it follows that a bounded solution for the DE model exists if (1+θ)FP+G+θG1

is full-rank. ■

General Condition for Extra Volatility We establish a general result about when

DE generate extra volatility over RE. Specific examples are provided in Section 4. As

a reminder, in the case of DE, the solution of a general linear model takes the form:

yt = Pyt−1 +Qxt +Rvt (118)

Instead, in the case of RE, the solution of model takes the form:

yt = P̃yt−1 + Q̃xt (119)

Comparing these two immediately leads to conjecture that, under DE, there should

be extra volatility due to the presence of the extra term Rvt. However, whether this

conjecture is true for a given set of parameters will depend on the covariance of the

matrix Q with the other matrices of parameters in the solution. This is what the

following proposition makes precise.
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Proposition 9 (Extra Volatility) Let yDEt and yREt denote the vectors of endoge-

nous variables under DE and RE, respectively. Let yDEit and yREit respectively denote

the i-th component of the vector of endogenous variables yDEt and yREt and V ar(yDEit )

and V ar(yREit ) denote the variance of the variable yDEit and of the variable yREit . Then,

V ar(yDEit ) is larger than V ar(yREit ) if and only if:

diag(RΣvR
′ + 2QΣvR

′)i > 0 (120)

where Σv is the variance-covariance matrix of vt.

Proof. We have already shown that P and P̃ are the same and that Q and Q̃ are the

same. Thus, given the exogenous process xt, the solution for the model with diagnostic

expectations and for the model with rational expectations can be formulated as

yDEt = Pyt−1 +Qxt +Rvt (121)

yREt = Pyt−1 +Qxt (122)

such that the variance of the vector of endogenous variables under diagnostic expecta-

tions, yDEt , is given by

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt)

+ 2 Cov(Pyt−1,Qxt) + 2 Cov(Pyt−1,Rvt) + 2 Cov(Qxt,Rvt) (123)

Similarly, the variance of the vector of endogenous variables under rational expec-

tations, yREt is given by

V ar(yREt ) = V ar(Pyt−1) + V ar(Qxt) + 2 Cov(Pyt−1,Qxt) (124)

Since cov(Pyt−1,Rvt) = 0, (123) is simplified to

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt) + 2 Cov(Pyt−1,Qxt) + 2 Cov(Qxt,Rvt)

(125)

such that by taking the difference of the two variances, we have

V ar(yDEt )− V ar(yREt ) = V ar(Rvt) + 2 Cov(Qxt,Rvt)

= V ar(Rvt) + 2 Cov(QAxt−1 +Qvt,Rvt)

= RΣvR
′ + 2QΣvR

′ (126)
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Thus, for an endogenous variable yit to have extra volatility with diagnostic expec-

tations, the i-th diagonal component of the matrix RΣvR
′+2QΣvR

′ must be greater

than zero.

We conclude by making a parallel to the work by Matsuyama (2007), who high-

lights, in the context of financial frictions, that equilibrium properties change non-

monotonically with parameter values in such models. Looking at the expression for

the matrix R reveals that it is a non-linear function of θ. Hence, even values of θ close

to zero have the potential to (discontinuously) induce large volatility in linear models.

D Diagnostic New Keynesian Model: Detailed Deriva-

tion and Proofs

There are three sets of agents in the economy: households, firms and government.

Total output produced is equal to consumption expenditure made by the households

and adjustment costs spent in adjusting prices.

D.1 Diagnostic Distribution

We first generalize the concept of diagnostic distribution to non-linear models with

exogenous shocks.

Let Dt be a vector of variables, endogenous and exogenous. Assume there is a

non-linear transformation Dt ≡ T (Dt−1,vt), that maps time-t − 1 variables, Dt−1,

and a given realization of the exogenous shock process v̌t, where vt is a vector of

i.i.d. exogenous Gaussian shocks N(0,Σv). Notice that this can accommodate the

AR(1) of exogenous variables as in Section 3. Let f (Dt+1|Dt = T (Dt−1, v̌t)) denote

the true distribution of Dt+1 at time t + 1, conditional on current state variables.

Let f (Dt+1|Dt = T (Dt−1,Et−1[vt])) denote the true distribution of Dt+1 at time t+ 1

conditional on a reference set of the state vector T (Dt−1,Et−1[vt]). As in the no-news

assumption, the agent has not observed the current realization of the shocks vt in the

reference set, and hence forms forecast of Dt+1 assuming a counterfactual path for

state vector given by the expectation of the shocks. Following Maxted (2022), BGS,

Gennaioli and Shleifer (2010), the “representativeness” of future states Dt+1 is given

by the likelihood ratio:

f (Dt+1|Dt = T (Dt−1, v̌t))

f (Dt+1|Dt = T (Dt−1,Et−1[vt]))
(127)
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Diagnostic expectations overweight states that are representative of recent news, the

ones exhibiting the largest increase in likelihood based on recent information. This

diagnostic distribution is formalized by assuming that agents evaluate future levels of

state vector evolve as follows:

f θ (Dt+1|Dt = T (Dt−1, v̌t)) = f (Dt+1|Dt = T (Dt−1, v̌t)) ·
[

f (Dt+1|Dt = T (Dt−1, v̌t))

f (Dt+1|Dt = T (Dt−1,Et−1[vt]))

]θ
1

Z

(128)

The extent to which representativeness distorts expectations is governed by the pa-

rameter θ.

D.2 Households

Households have the following lifetime utility

logCt − ω
L1+ν
t

1 + ν
+ Eθt

[
Σ∞
s=t+1β

s−t
[
log(Cs)−

ω

1 + ν
L1+ν
s

]]
(129)

subject to budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt , (130)

PtCt is nominal expenditure on final consumption good, Bt+1 denotes purchase of nom-

inal bonds that pay off 1 + it interest rate in the following period, WtLt denotes labor

income, Dt and Tt denote dividends from firm-ownership and lump-sum government

transfers respectively. Eθt is the diagnostic expectations operator with diagnosticity

parameter θ.

Let logCt ≡ u(Ct). The consumption Euler equation is given by:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
(131)

Substitute the resource constraint Yt = Ct, and loglinearizing:

ŷt = Eθt [ŷt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (132)

where {ŷt, ît, p̂t} denote loglinear deviations of output, the nominal interest rate from

their respective steady states, and of the price level from an initial price level, respec-

tively. We can show that (Eθt [p̂t+1]− p̂t) can be rewritten as Eθt [π̂t+1]+ θ(π̂t−Et−1[π̂t]).
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Using the BGS formula (11) presented in the main text, we can get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[p̂t+1]− θEt−1[p̂t+1]− p̂t (133)

Adding and subtracting (1 + θ)p̂t, we get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[p̂t+1] + θp̂t (134)

Adding and subtracting θEt−1[p̂t], we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1]− θEt−1[p̂t] + θp̂t (135)

Adding and subtracting θp̂t−1, we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] + θ(π̂t − Et−1[π̂t]) (136)

Recognize that (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] ≡ Eθt [π̂t+1], we get that

Eθt [p̂t+1]− p̂t = Eθt [π̂t+1] + θ(π̂t − Et−1[π̂t]) (137)

D.3 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods demand given by:

Yt(j) =

(
Pt(j)

Pt

)−ϵp
Yt (138)

where ϵp > 1 is the elasticity of substitution across intermediate goods’ varieties, Pt(j)

is price of intermediate good j, and Pt is the price of final good Yt. Each intermediate

good is produced using the technology:

Yt(j) = AtLt(j) (139)

where log(At) is an aggregate TFP process that follows an AR(1) process with persis-

tence coefficient ρa:

logAt = ρa logAt−1 + εa,t (140)
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where ϵa,t ∼ iid N(0, σ2
a). Firm pays a quadratic adjustment cost in units of final good

(Rotemberg 1982) to adjust prices:

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (141)

Firm’s per period profits are given by:

Dt ≡ Pt(j)Yt(j)−WtLt(j)−
ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (142)

Firm’s profit maximization problem

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑

s=1

βsQt,t+sDt+s

]}

(143)

where Qt,t+s is the nominal stochastic discount factor of the household. Substitute in

the demand for intermediate goods to get:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−ϵp
Yt −

Wt

At

(
Pt(j)

Pt

)−ϵp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑

s=1

βsQt,t+sDt+s

]}

(144)

Notice that Pt(j) appears in period t profits and period t + 1 adjustment costs. It

doesn’t appear anywhere else in the problem. So we can “ignore” the remaining terms

as we take the first-order condition. The monopolistically competitive firm solves the

following problem:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−ϵp
Yt −

Wt

At

(
Pt(j)

Pt

)−ϵp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt − Eθt

[
βQt,t+1

ψp
2

(
Pt+1(j)

Pt(j)
− 1

)2

Pt+1Yt+1

]}

+ other terms (145)

First order condition:

(1− ϵp)

(
Pt(j)

Pt

)−ϵp
Yt + ϵp

Wt

AtPt

(
Pt(j)

Pt

)−ϵp−1

Yt − ψp

(
Pt(j)

Pt−1(j)
− 1

)
Pt

Pt−1(j)
Yt

−ψpβEθt
[
u′(Ct+1

u′(Ct)

(
Pt+1(j)

Pt(j)
− 1

)
Pt+1(j)

Pt(j)

Pt
Pt(j)

Yt+1

]
= 0 (146)

Symmetry across all firms implies that reset price equals the aggregate price level.
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Define Πt =
Pt

Pt−1
:

(1− ϵp)Yt + ϵp
Wt

AtPt
Yt − ψp(Πt − 1)ΠtYt + ψpβEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

(147)

Divide by Yt:

(1− ϵp) + ϵp
Wt

AtPt
− ψp(Πt − 1)Πt +

ψp
Yt
βEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0 (148)

Log-linearize around the deterministic steady state such that A = 1, w = W
P

=

ωCY ν = ϵp−1

ϵp
, Π = 1, and Yt = Y . Let wt =

Wt

Pt

ϵpw(ŵt − ât)− ψpπ̂t + ψpβEθt π̂t+1 = 0 (149)

Rearrange to get

π̂t = βEθt [π̂t+1] +
ϵpw

ψp
(ŵt − ât) (150)

From the intra-temporal labor supply first order condition, we have:

ŵt = ĉt + ν(ŷt − ât) (151)

Use the resource constraint ĉt = ŷt, to rewrite the new Keynesian Phillips Curve

(NKPC):

π̂t = βEθt [π̂t+1] +
ϵpw

ψp
(1 + ν)ŷt (152)

Note that ϵp w

ψp
= ϵp−1

ψp
. Then, the NKPC is given by

π̂t = βEθt [π̂t+1] + κ(ŷt − ât) (153)

where κ ≡ ϵp−1

ψp
(1 + ν).
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D.4 Policy Rule

The government sets nominal interest rate with the following rule:

1 + it
1 + iss

= Πϕπ
t

(
Yt
Y ∗
t

)ϕx

(154)

where Y ∗
t = At is the natural rate allocation, iss =

1
β
− 1 is the steady state nominal

interest rate, ϕπ ≥ 0, ϕx ≥ 0, and steady state inflation Π = 1. Log-linearized policy

rule is given by:

ît = ϕππ̂t + ϕx(ŷt − ât) (155)

We assume that nominal bonds are in net zero supply. There is no government spend-

ing.

D.5 Market Clearing

Total output produced is used for consumption expenditure.

Yt = Ct (156)

D.6 Equilibrium

The log-linearized equilibrium in the New Keynesian model with diagnostic expecta-

tions is given by following three equations in three unknowns {ŷt, π̂t, ît} for a given

shock process {ât}.

ŷt = Eθt [ŷt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) (157)

π̂t = βEθt [π̂t+1] + κ(ŷt − ât) (158)

ît = ϕππ̂t + ϕx(ŷt − ât) (159)

where κ ≡ ϵp−1

ψp
(1 + ν), and the shock processes are given by:

ât = ρaât−1 + εa,t (160)

where εa,t ∼ iid N(0, σ2
a).
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D.7 Solution

D.7.1 Rational Expectations

Under RE, the solution of the model with TFP shocks is given by:

ŷt = ρa
ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
ât−1 +

ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
εa,t

(161)

π̂t =
−ρaκ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
ât−1 −

κ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
εa,t

(162)

D.7.2 Diagnostic Expectations

Guess the solution takes the following form:

ŷt = α1ât−1 + γ1εa,t; π̂t = α2ât−1 + γ2εa,t (163)

Using method of undetermined coefficients, we can solve for the coefficients. The

coefficients α1 and α2 are identical under DE and RE.

α1 = ρa
ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
(164)

α2 =
−ρaκ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
(165)

Coefficients γ1 and γ2 depend on the DE parameter.

γ1 =
(1 + θ)α1 + (1 + θ)α2 [1− β(ϕπ − θ)] + κ(ϕπ − θ)

1 + ϕx + κ(ϕπ − θ)
; γ2 = β(1 + θ)α2 + κ(γ1 − 1)

(166)

D.8 Proof of Propositions 4 and 5

Because there are no government shocks, ĉt = ŷt. The equilibrium with completely

rigid prices, i.e. ψp → ∞, given by:

ŷt = Eθt [ŷt+1]− ît (167)

ît = ϕx(ŷt − ât) (168)
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where ât = ρaât−1 + εa,t, ρa ∈ [0, 1), and ϵa,t ∼ iid N(0, σ2
a). Substituting the policy

rule into the Euler equation, we get:

ŷt =
1

1 + ϕx
Eθt [ŷt+1] +

ϕx
1 + ϕx

ât (169)

By forward iteration, and using the law of iterated expectations under the no-news

assumption,

ŷt = lim
T→∞

Eθt [ŷT+1]

(1 + ϕx)T+1
+

∞∑

i=1

ϕxEθt [ât+i]
(1 + ϕx)i+1

+
ϕx

1 + ϕx
ât (170)

The system is locally determinate if and only if ϕx > 0. Let ϕx > 0. Then,

ŷt =
∞∑

i=1

ϕxEθt [ât+i]
(1 + ϕx)i+1

+
ϕx

1 + ϕx
ât (171)

From the definition of the shock process, we know that, ∀ i > 0

Eθt [ât+i] = ρia(1 + θ)ât − θρi+1
a ât−1 = ρia ((1 + θ)ât − θρaât−1) (172)

We can then derive the solution for output:

ŷt =
ϕxρa(1 + θ) + ϕx(1 + ϕx − ρa)

(1 + ϕx)(1 + ϕx − ρa)
ât −

ϕxθρ
2
a

(1 + ϕx)(1 + ϕx − ρa)
ât−1 (173)

This solution can be rewritten as:

ŷt = ρ
ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)
ât−1 +

ϕxρAθ + ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)
εa,t (174)

Volatility of output is then

V ar(ŷt) =

(
ρ

ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)

)2

V ar(ât−1) +

(
ϕxρAθ + ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)

)2

σ2

(175)

The first coefficient is same under rational and diagnostic expectations. Volatility

is higher under diagnostic expectations relative to rational expectations if and only if

(ϕxρAθ + ϕx(1 + ϕx))
2 > ϕ2

x(1 + ϕx)
2 (176)

⇐⇒ θ > 0 (177)
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In the flexible price limit, κ→ ∞, output under DE and RE follows (from D.7):

ŷt = ρaât−1 + εa,t ≡ ât (178)

Hence, DE and RE have the same output variability when κ→ ∞ (or ψp → 0).

This completes the proof for Proposition 4.

The solution for output gap x̂t ≡ ŷt − ât is given by:

x̂t =
−ρa(1− ρa)(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρa)
ât−1 +

θϕxρa − (1− ρa)(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρa)
εa,t (179)

In response to an unanticipated improvement in productivity, output gap can be pos-

itive on impact if and only

θϕxρa − (1− ρa)(1 + ϕx) > 0 (180)

When θ = 0, that is rational expectations, output gap negatively co-moves with pro-

ductivity shock. Under diagnostic expectations, productivity improvements can be

expansionary on impact. This completes the proof for Proposition 5.

D.9 Proof of Proposition 6

Note that after a one-time unanticipated shock, the solution under DE and RE coincide

at subsequent dates since there is no news. (This was shown formally in the context

of the general linear model in the previous appendix, proof of Proposition 3.) At date

t = 1, we can derive the solution under DE as follows. From the RE solution, we know

the expectations of forward looking variables :

E1ŷ2 = ρg
(1− βρg)(1− ρg) + κψ(ϕπ − ρg)

(1− βρg)(1− ρg + ϕx) + κ(ϕπ − ρ)
εg,t; (181)

E1π̂2 = ρg
κ(1− ψ)(1− ρg)− κψϕx

(1− βρg)(1− ρg + ϕx) + κ(ϕπ − ρg)
εg,t (182)

E0ŷ2 = E0π̂2 = E0π̂1 = 0 (183)
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We can thus construct the diagnostic expectation terms that enter the DE model, and

simplify the model to

ŷ1 = (1 + θ)E1 [ŷ2 + π̂2 − ĝ2]− î1 + θπ̂1 + ĝ1 (184)

π̂1 = β(1 + θ)E1 [π̂2] + κŷ1 − κψĝ1 (185)

î1 = ϕππ̂1 + ϕxŷ1 (186)

Substituting the latter two equations into the Euler equation, and rearranging we get

ŷ1 =
(1 + θ)E1 [ŷ2 + (1 + βθ − βϕπ)π2] + [1 + (ϕπ − θ)κψ − (1 + θ)ρg]εg,1

1 + ϕx + (ϕπ − θ)κ
(187)

The corresponding RE solution can be seen with θ = 0.

We study three scenarios with analytical results:

1. When the shocks are iid (ρg = 0), the solution is:

ŷ1 =
1 + (ϕπ − θ)κψ

1 + ϕx + (ϕπ − θ)κ
εg,1 (188)

For a bounded solution (and continuity with RE solution), we assume that θ <

ϕπ + κ−1(1 + ϕx). There are two cases for the fiscal multiplier:

• ϕx < ν: The fiscal multiplier under DE is larger than under RE. The mul-

tiplier is increasing in θ, exceeds one for values of θ > ϕπ + ϕx
(1−ψ)κ . As

θ → ϕπ + κ−1(1 + ϕy), the fiscal multiplier → ∞.

• ϕx > ν: The fiscal multiplier under DE is smaller than under RE.

2. When the government spending shocks are iid and ϕx = 0, the solution for output

under DE is :

ŷ1 =
1 + (ϕπ − θ)κψ

1 + (ϕπ − θ)κ
εg,1 (189)

For the solution to be continuous in the RE limit and bounded, we assume that

θ < ϕπ + κ−1. Since ψ = 1
1+ν

< 1, the fiscal multiplier is increasing in θ. Under

the RE limit, θ = 0, the fiscal multiplier is strictly less than one. For θ > ϕπ,

the multiplier is larger than one. Finally, the multiplier explodes to infinity as

θ → ϕπ + κ−1.

3. When prices are perfectly rigid, that is κ → 0, the solution for output is given
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by:

ŷ1 =
(1− ρg)(1 + ϕx)− θρgϕx
(1 + ϕx)(1− ρg + ϕx)

εg,1 (190)

Fiscal multiplier under DE is smaller than under RE. Fiscal multiplier is decreas-

ing in θ. For θ > (1−ρg)(1+ϕx)
ρgϕx

, assuming ρg > 0, output falls under DE with

increase in government spending.

D.10 Proof of Proposition 7

1. When ψp → ∞, ϕx = 0, and ρζ = 0, beliefs about the long-run (BLR) under the

DKF are given by

ζθt|t ≡ ζt|t + θ(ζt|t − ζt|t−1) (191)

where ζt|t ≡ Et[ζt] and ζt|t−1 ≡ Et−1[ζt]. Also, BLR under the RKF are given by

ζt|t. From the rational Kalman filter, we have

ζt|t = ζt|t−1 +Gaint(st − st|t−1) (192)

where st|t−1 ≡ Et−1[st] and Gaint is the Kalman gain. Thus, BLR under the DKF

is simplified to

ζθt|t ≡ ζt|t + θ ×Gaint(st − st|t−1) (193)

and as st− st|t−1 > 0 with a positive shock to ζt, BLR are greater under the DKF

than under the RKF.

2. We can also rewrite (193) as

ζθt|t = ζt−1 + (1 + θ)×Gaint(st − st|t−1) (194)

given that ζt|t−1 = ζt−1. As BLR under FIRE are simply ζt = ζt−1 + ϵζ,t, BLR

under the DKF are greater than under FIRE if (1 + θ)×Gaint(st − st|t−1) > ϵζ,t

where ϵζ,t is a shock to ζt. Thus, if

θ ≥ ϵζ,t
Gaint(st − st|t−1)

− 1 (195)

beliefs about the long-run under the DKF are greater than under FIRE.
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E Real Business Cycle Model

We list the equilibrium conditions for a standard RBC model. Equilibrium is given by

a sequence of seven unknowns {Ct, Kt+1, Yt, It, Nt, R
k
t , W̃t.} that satisfy the following

seven equations for a given exogenous process At and an initial value of capital stock

K0.

1

Ct
= βEθt

[
Rk
t+1 + 1− δ

Ct+1

]
(196)

W̃t = ωCtN
ν
t (197)

Kt+1 = (1− δ)Kt + It (198)

Yt = Kα
t (AtNt)

1−α (199)

Yt = Ct + It (200)

Rk
t = α

Yt
Kt

(201)

W̃t = (1− α)
Yt
Nt

(202)

β is the discount rate, δ is depreciation rate, ν is inverse of the Frisch elasticity of

labor supply, α is the capital share, and ω is a normalizing constant in the steady

state. θ > 0 is the diagnosticity parameter. The system of log-linearized equations is

as follows (where the lower case letters denote the log-deviations form the respective

steady state values)53:

w̃t = ct + νnt (203)

ct = Eθt
[
ct+1 −

Rk

Rk + 1− δ
rkt+1

]
(204)

kt+1 = δÎt + (1− δ)kt (205)

yt = (1− α)at + αkt + (1− α)nt (206)

yt = scct + (1− sc)Ît (207)

rkt = yt − kt (208)

w̃t = yt − nt (209)

where Rk is the steady state rental rate, and sc is the steady state share of consumption

in output. The economy starts in the steady state. There is a one-time unanticipated

iid shock a1 at time 1.

53Ît is also log-deviations of investment It from its steady state value.
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E.1 Rational Expectations and Full Depreciation, δ = 1

We derive analytical result assuming full depreciation, that is δ = 1. The Euler

equation under rational expectations and full depreciation is given by:

ct − kt+1 = Et [ct+1 − yt+1] (210)

From the labor supply and labor demand conditions, we obtain

(1 + ν)nt = yt − ct (211)

When δ = 1, Ît = kt+1. Use the above equation into the Euler equation, along with

investment equation to get

Ît − yt + (1 + ν)nt = (1 + ν)Et[nt+1] (212)

Substitute in the resource constraint,

1

1− sc
[yt − scct]− yt + (1 + ν)nt = (1 + ν)Et[nt+1] (213)

⇐⇒ sc
1− sc

[yt − ct] + (1 + ν)nt = (1 + ν)Et[nt+1] (214)

⇐⇒
(
1 +

sc
1− sc

)
nt = Et[nt+1] (215)

Solution for employment is

nt = 0, ∀t ≥ 0 (216)

We can solve for the solution for other variables at dates 1 and 2:

c1 = y1 = Î1 = k2 = (1− α)a1; (217)

c2 = y2 = Î2 = k3 = α(1− α)a1 (218)

and so on.

E.2 Diagnostic Expectations and full depreciation, δ = 1

The Euler equation is

ct = Eθt [ct+1 − yt+1 + kt+1] (219)
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As before, the economy starts in the steady state. There is a one-time unanticipated

iid shock a1 at time 1. From Date 2, the solution is same as rational expectations

model. Since, we have iid shocks, the solution at date 1 is:

c1 = (1 + θ)k2 (220)

Substitute into the resource constraint to get

y1 = (1 + θsc)k2 (221)

From labor supply and labor demand,

(1 + ν)n1 = y1 − c1 = −θ(1− sc)k2 (222)

Finally, from the production function

y1 = (1− α)a1 + (1− α)n1 (223)

⇐⇒ (1 + θsc)k2 = (1− α)a1 + (1− α)n1 (224)

⇐⇒ − (1 + θsc)

θ(1− sc)
(1 + ν)n1 = (1− α)a1 + (1− α)n1 (225)

n1 = − θ(1− sc)(1− α)a1
(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

(226)

Solution is

n1 = − θ(1− sc)(1− α)a1
(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

(227)

k2 =
(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(228)

c1 =
(1 + θ)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(229)

y1 =
(1 + θsc)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(230)

Date 2 solution is :

n2 = 0 (231)

y2 = αk2 =
α(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(232)
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E.3 Analytical Proposition for RBC model

Proposition 10 (Extra Volatility: RBC Model) Consider the model given by (35),

(203)-(209). Assume that the depreciation rate δ = 1 and that ρa = 0. Output is less

volatile under DE than under RE: V ar(ŷt)DE < V ar(ŷt)RE.

Volatility of output at date 1 is lower under DE compared to RE if and only if

(1 + θsc)(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1 (233)

which is true. Further, note that volatility of output at date 1 under DE is decreasing

in ν. Similarly, we can show that volatility of output under diagnostic expectations

is lower at all future horizons as well. For example, Volatility of output at date 2 is

lower under DE compared to RE if and only if

(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1 (234)

which is true since 1 + θsc > 1 and (1− α)θ(1− sc) > 0.

E.4 Numerical Results on Extra Volatility: NK and RBC

Models

To numerically demonstrate the excess volatility in the NK model, we use the calibra-

tion discussed in Table 4, which is our standard calibration. Stationary TFP follows

an AR(1) process with persistence 0.9 and standard deviation 0.02. We set the dis-

count factor β to 0.99. For the RBC model, we set the capital share α to 0.2 and the

capital depreciation rate δ to 0.025. For the NK model, we set ϕπ = 1.5, ϕx = 0.5, and

κ = 0.05. We also set the diagnosticity parameter θ to one.

Panel a) in Table 5 shows unconditional volatilities of output growth, and consump-

tion growth under diagnostic and rational expectations. Since there is no government

spending or investment, output growth and consumption growth are equivalent in the

NK model. We find that the output gap under diagnostic expectations exhibits 63 per-

cent higher standard deviation relative to the output gap under rational expectations.

Panel b) in Table 5 shows unconditional volatilities of output growth, consumption

growth, and investment growth, both under diagnostic and rational expectations in

the baseline RBC model. Consumption growth is twice as volatile under diagnostic

expectations than under rational expectations. On the other hand, investment growth

and output growth are dampened under diagnostic expectations due to the general
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Table 4: Calibration: The NK and RBC models

Parameter Value

Common to Both Models

θ Diagnosticity 1

β Discount factor 0.99

NK model

ν Inv. Frisch elasticity 2

ϕπ Taylor rule inflation 1.5

ϕx Taylor rule output gap 0.5

κ Slope of the Phillips curve 0.05

RBC model

α Capital share 0.2

δ Capital depreciation rate 0.025

Shock Process

ρa Shock persistence (stationary TFP) 0.9

σa Standard dev. (stationary TFP) 0.02

Table 5: Model-Implied Volatilities with Stationary TFP Shocks

(a) New Keynesian Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0182 0.0296 63%
Consumption 0.0182 0.0296 63%
Investment – – –

(b) Real Business Cycle Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0204 0.0188 -8%
Consumption 0.0052 0.0103 98%
Investment 0.1147 0.0816 -29%

Notes: The table reports the standard deviations of output growth, consumption growth and investment growth in the New Keynesian
(NK) model and the RBC model in Panels (a) and (b) respectively. Final column titled “Percentage Increase” shows the percentage
increase in standard deviation under the diagnostic expectations model relative to the rational expectations benchmark. There is one
shock process in the two models. See Table 4 for the parameters.

equilibrium adjustment of the interest rate. Diagnosticity, therefore, does not always

generate extra amplification.
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F A Medium-Scale DSGE model

F.1 Model Ingredients

The model follows the exposition in BLL. The economy comprises of following agents:

a continuum of households supplying differentiated labor, a continuum of firms pro-

ducing differentiated goods, a perfectly competitive final goods firm, a perfectly com-

petitive labor agency that provides the composite labor input demanded by firms, and

a government in charge of fiscal and monetary policy.

F.1.1 Monopolistically Competitive Producers

Assume there is a continuum of differentiated intermediate good producers that sell

the intermediate good Yjt. A perfectly competitive firm aggregates intermediate goods

into a final composite good Yt =

[
∫ 1

0
Y

ϵp,t−1

ϵp,t

jt dj

] ϵp,t
ϵp,t−1

, where ϵp > 1 is time-varying

elasticity of demand. The iso-elastic demand for intermediate good j is given by: Yjt =(
Pjt

Pt

)−ϵp,t
Yt, where Pt is the aggregate price index and Pjt is the price of intermediate

goods j. Each intermediate good j is produced by a price-setting monopolistically

competitive firm using labor Ljt and physical capital Kjt:

Yjt = (AtLjt)
1−α Kα

jt (235)

where the TFP process At is the sum of two components (in logs):

logAt = logZt + log Ξt (236)

The variable Zt denotes a non-stationary TFP series that evolves according to:

Zt
Zt−1

=

(
Zt−1

Zt−2

)ρζ

G
1−ρζ
ζ exp(εζ,t); εζ,t ∼ iid N(0, σ2

ζ ) (237)

where ρζ is the persistence of the shock process, and εζ,t is a random disturbance that

causes deviations of the TFP growth from its balanced growth rate Gζ . The stationary

TFP evolves as follows:

log Ξt = ρξ log Ξt−1 + εξ,t; εξ,t ∼ iid N(0, σ2
ξ ) (238)

where ρξ is the persistence of the shock process, and εξ,t is an i.i.d shock with variance

σ2
ξ . (We define at ≡ logAt, ζt ≡ logZt, ξt ≡ log Ξt, Ga,t ≡ At/At−1, and Gζ,t ≡
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Zt/Zt−1.)

Following BLL, we assume that

ρζ = ρξ ≡ ρ (239)

and that the variances satisfy the following restriction54

ρσ2
ζ = (1− ρ)2σ2

ξ (240)

While agents observe the TFP process as a whole, they do not observe two com-

ponents ζt and ξt separately. Considering the idea that agents have more information

than merely about productivity, agents observe a noisy signal st about the permanent

component of TFP:

st = ζt + εs,t; εs,t ∼ iid N(0, σ2
s) (241)

where εs,t is an i.i.d. normal shock, which affects agents’ beliefs but is independent of

fundamentals. This noisy signal relates to the additional informative signal that agents

receive which is a straightforward interpretation of Equation (241). Ultimately, the

presence of this noisy information helps the econometrician make inferences about the

(unobserved) long-term productivity trend by looking at the behavior of consumption.

Firms choose inputs to minimize total cost each period. Marginal cost, independent

of firm-specific variables, is given by mct =
1

A1−α
t

(
Rk

t /Pt

α

)α (
Wt/Pt

1−α

)1−α
, where

Rk
t

Pt
and

Wt

Pt
denote aggregate rental rate of capital and real wage. A firm j pays a quadratic

adjustment cost in units of final good (Rotemberg 1982) to adjust its price Pjt. The

cost is given by ψp

2

(
Pjt

Π̃t−1Pjt−1
− 1

)2

PtYt, where ψp ≥ 0 regulates the adjustment costs.

Price change is indexed to Π̃t−1 = Π̄1−ιpΠ
ιp
t−1, where ιp governs indexation between

previous period inflation rate Πt−1 and steady state inflation rate Π̄. Firm’s per period

profits are given by: Djt ≡ PjtYjt − PtmctYjt − ψp

2

(
Pjt

Π̃t−1Pjt−1
− 1

)2

PtYt. Each period,

the firm chooses Pjt to maximize present discounted value of real profits:

max
Pjt

{
ΛtDjt

Pt
+ Eθt

[
∞∑

s=1

Λt+sDjt+s

Pt+s

]}
(242)

where Λt is the marginal utility of consumption in period t, and Eθt [ · ] is the diag-

nostic expectation operator regulated by parameter θ. Notice that we write dynamic

54As shown in BLL, these restrictions imply that the univariate process for at is a random walk with variance
σ2
a.
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maximization problems by explicitly separating time t choice variables from the ex-

pectation of future choice variables. This separation is crucial for solving the model

with diagnostic expectations, and is a consequence of the technical issues discussed in

Section 3.

F.1.2 Households

There is a continuum of monopolistically competitive households, indexed by i ∈ [0, 1],

supplying a differentiated labor input Li,t. A perfectly competitive employment agency

aggregates various labor types into a composite labor input Lt supplied to firms, in

a Dixit-Stiglitz aggregator: Lt =

[
∫ 1

0
L

ϵw,t−1

ϵw,t

i,t di

] ϵw,t
ϵw,t−1

, where ϵw,t > 1 is time-varying

elasticity of demand. The iso-elastic demand for labor input i is given by: Li,t =(
Wi,t

Wt

)−ϵw,t

Lt, whereWi,t is household i’s wage rate, andWt is the aggregate wage rate

that the household takes as given.

The household i has following lifetime-utility at time t:

(
log(Ci,t − hC̃t−1)−

ω

1 + ν
L1+ν
i,t − ψwi,t

)
+ Eθt

[
Σ∞
s=t+1β

s−t
(
log(Ci,s − hC̃s−1)−

ω

1 + ν
L1+ν
i,s − ψwi,s

)]

(243)

where h is the degree of habit formation on external habits over aggregate consumption

C̃t−1, which the household takes as given, ν > 0 is inverse of the Frisch elasticity of

labor supply, ω > 0 is a parameter that pins down the steady-state level of hours,

and the discount factor β satisfies 0 < β < 1. ψwi,t is the loss in utility in adjusting

wages. We assume a quadratic adjustment cost given by ψwi,t =
ψw

2

[
Wit

Π̃w
t−1Wit−1

− 1
]2
,

where ψw ≥ 0 is a parameter, and wage contracts are indexed to productivity and

price inflation. We assume Π̃w
t−1 = GaΠ̄

1−ιw (exp(εζ,tεξ,t)Πt−1)
ιw with 0 ≤ ιw < 1.

The household’s budget constraint in period t is given by

PtCi,t + PtIi,t +
Bi,t+1

1 + it
= Bi,t +Wi,tLi,t +Dt + Tt +RK

t ui,tK
u
i,t − Pta(ui,t)K

u
i,t (244)

where Ii,t is investment, Wi,tLi,t is labor income, and Bi,t is income from nominal

bonds paying nominal interest rate it. Households own an equal share of all firms, and

thus receive Dt dividends from profits. Finally, each household receives a lump-sum

government transfer Tt.

The households own capital, Ku
i,t, and choose the utilization rate, ui,t. The amount

of effective capital, Ki,t, that the households rent to the firms at nominal rate RK
t is
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given by Ki,t = ui,tK
u
i,t. The (nominal) cost of capital utilization is Ptχ(ui,t) per unit

of physical capital. As in the literature, we assume χ(1) = 0 in the steady state and

χ′′ > 0. Following GHLS, we assume investment adjustment costs, S
(

Ii,t
GaIi,t−1

)
, in the

production of capital, where Ga is the steady state growth rate of At. Law of motion

for capital is as follows:

Ku
i,t+1 = µt

[
1− S

(
Ii,t

GaIi,t−1

)]
Ii,t + (1− δk)K

u
i,t (245)

where δk denotes depreciation rate, and µt is an exogenous disturbance to the marginal

efficiency of investment that follows:

log µt = ρµ log µt−1 + εµ,t; εµ,t ∼ iid N(0, σ2
µ) (246)

As in the literature, we assume that S(1) = S ′(1) = 0, and calibrate S ′′(1) > 0.

F.1.3 Government

The central bank follows a Taylor rule in setting the nominal interest rate it. It

responds to deviations in (gross) inflation rate Πt from its target rate Π̄ and output.

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR
[(

Πt

Π̄

)ϕπ

Y
ϕy
t

]1−ρR

exp(λmpt ) (247)

with 0 < ρR < 1, ϕπ ≥ 0, and ϕy ≥ 0. iss is the steady state nominal interest rate,

and λmpt follows the process

log λmpt = ρmp log λ
mp
t−1 + εmp,t; εmp,t ∼ N(0, σ2

mp) (248)

We assume government balances budget every period PtTt = PtGt, where Gt is

the government spending. Gt is determined exogenously as as a fraction of GDP:

Gt =
(
1− 1

λgt

)
Yt where the government spending shock follows the process:

log λgt = (1− ρg) log λ
g + ρg log λ

g
t−1 + εg,t; εg,t ∼ N(0, σ2

g) (249)

λg is the steady state share of government spending in final output.
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F.1.4 Market Clearing

We focus on a symmetric equilibrium where all intermediate goods producing firms

and households make the same decisions. Therefore, we can drop subscripts i and j.

The aggregate production function, in the symmetric equilibrium, is then given by:

Yt = (AtLt)
1−αKα

t , since Kt = Ki,t = Kjt and Nt = Ni,t = Njt. The market clearing

for the final good, in the symmetric equilibrium, requires that

Yt = Ct + It + χ(ut)K
u
t +Gt +

ψp
2

[
Πt

Π̃t−1

− 1

]2
Yt (250)

This completes the presentation of the DSGE model.

F.2 Stationary Allocation

We normalize the following variables :

yt = Yt/At (251)

ct = Ct/At (252)

kt = Kt/At (253)

kut = Ku
t /At−1 (254)

It = It/At (255)

wt = Wt/(AtPt) (256)

rkt = Rk
t /Pt (257)

λt = ΛtAt (258)

Definition 1 (Normalized Equilibrium) 18 endogenous variables {λt, it, ct, yt, Πt,

mct, Π̃t−1, Π
w
t , Π̃

w
t−1, wt, Lt, k

u
t+1, r

K
t , It, qt, ut, kt, Ga,t}, 8 endogenous shock processes

{Gζ,t,Ξt, st, µt, λ
p
t , λ

w
t , λ

mp
t , λgt}, 8 exogenous shocks {εζ,t, εξ,t, εs,t, εµ,t, εp,t, εw,t, εmp,t, εg,t}

given initial values of kut−1.

Consumption Euler Equation

λt
Ga,tΠt

= β(1 + it)Eθt
[

λt+1

Ga,tGa,t+1

1

ΠtΠt+1

]
(259)

λt =
1

ct − hct−1

Ga,t

(260)
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Price-setting

(1−ϵp,t)+ϵp,t mct−ψp
(

Πt

Π̃t−1

− 1

)
Πt

Π̃t−1

+ψp
βΠt

λtyt
Eθt

[
λt+1

(
Πt+1

Π̃t

− 1

)
Πt+1

Π̃t

yt+1

Πt

]
= 0

(261)

Π̃t−1 = Π̄1−ιpΠ
ιp
t−1 (262)

Wage-setting

ψw

[
Πw
t

Π̃w
t−1

− 1

]
Πw
t

Π̃w
t−1

= ψwβEθt
[
Πw
t+1

Π̃w
t

− 1

]
Πw
t+1

Π̃w
t

+ Ltλtϵw,t

[
ω
Lνt
λt

− ϵw,t − 1

ϵw,t
wt

]
(263)

Π̃w
t−1 = GaΠ̄

1−ιw(exp(εζ,t) exp(εξ,t)Πt−1)
ιw (264)

Πw
t =

wt
wt−1

ΠtGa,t (265)

Capital Investment

kut+1 = µt

[
1− S

(
It
It−1

Ga,t

Ga

)]
It + (1− δk)

kut
Ga,t

(266)

qt =
βGa,t

λt
Eθt

[
λt+1

Ga,tGa,t+1

(
rKt+1ut+1 − χ(ut+1) + qt+1(1− δk)

)]
(267)

qtµt

[
1− S

(
It
It−1

Ga,t

Ga

)
− S ′

(
It
It−1

Ga,t

Ga

)
It
It−1

Ga,t

Ga

]

+
βGa,t

λt
Eθt

[
µt+1

λt+1

Ga,t

qt+1
Ga,t+1

Ga

(
It+1

It

)2

S ′
(
It+1

It
Ga,t+1

Ga

)]
= 1 (268)

Capital Utilization Rate

kt = ut
kut
Ga,t

(269)

rKt = χ′(ut) (270)

Production Technologies

yt = kαt L
1−α
t (271)

kt
Lt

=
wt
rkt

α

1− α
(272)

mct =
(rkt )

αw1−α
t

αα(1− α)1−α
(273)
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Government

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR
[(

Πt

Π̄

)ϕπ

Y
ϕy
t

]1−ρR

exp(λmpt ) (274)

Market Clearing

yt = ct + It + χ(ut)
kut
Ga,t

+

(
1− 1

λgt

)
yt (275)

TFP Growth Rate

logGa,t = logGζ,t + (log Ξt − log Ξt−1) (276)

Law of Motion of Shocks

logGζ,t = (1− ρ) logGζ + ρζ logGζ,t−1 + εζ,t (277)

log Ξt = ρξ log Ξt−1 + εξ,t (278)

st = logZt + εs,t (279)

log µt = ρµ log(µt−1) + εµ,t (280)

log λmpt = ρmp log λ
mp
t−1 + εmp,t (281)

log λgt = ρg log λ
g
t−1 + εg,t (282)

Disturbances

TFP growth shock εζ,t ∼ N(0, σ2
ζ ) (283)

Stationary TFP shock εξ,t ∼ N(0, σ2
ξ ) (284)

Noise shock εs,t ∼ N(0, σ2
s) (285)

MEI shock εµ,t ∼ N(0, σ2
µ) (286)

Monetary policy shock εmp,t ∼ N(0, σ2
mp) (287)

Government spending shock εg,t ∼ N(0, σ2
g) (288)

F.3 Steady State

1 = β
1

Ga

1 + i

Π
(289)
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λ =
Ga

c(Ga − h)
(290)

mc =
ϵp

ϵp − 1
(291)

ωLν

λ
=
ϵw − 1

ϵw
w (292)

Πw = ΠGa (293)

Π = Π̄ (294)

q = 1 (295)

u = 1 (296)

(1− 1− δk
Ga

)ku = I (297)

1 = β

[
1

Ga

(
rK + (1− δk)

)]
(298)

k =
ku

Ga

(299)

rK = χ′(1) (300)

y = kαL1−α (301)

rk =
ϵp

ϵp − 1
α
y

k
(302)

w =
ϵp

ϵp − 1
(1− α)

y

L
(303)

y = c+ I+
(
1− 1

λg

)
y (304)

S(1) = S ′(1) = 0;S” > 0 (305)

Ga = Gζ (306)

F.4 Log-linearized Model

Consumption Euler Equation

λ̂t − Ĝa,t − πt = ît + Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 − πt − πt+1

]
(307)

λ̂t +
Ga

Ga − h
ĉt −

h

Ga − h

(
ĉt−1 − Ĝa,t

)
= 0 (308)
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Price-setting

πt = βEθt [πt+1 − ιpπt] + ιpπt−1 +
ϵp − 1

ψp
m̂ct + λ̂p,∗t (309)

where λ̂p,∗t is the normalized price-markup shock process. Let the un-normalized pro-

cess be denoted with λ̂pt . Then λ̂
p,∗
t = ϵp−1

ψp
λ̂pt . In steady state λp = ϵp

ϵp−1

Wage-setting

πwt = βEθt
[
πwt+1 − ιwπt − ιwĜa,t+1

]
+ ιwπt−1+ ιwĜa,t+

ϵwωL
1+ν

ψw

[
νL̂t − ŵt − λ̂t

]
+ λ̂w,∗t

(310)

where λ̂w,∗t is the normalized wage-markup shock process. Let the un-normalized wage

markup process be denoted with λ̂wt . Then λ̂w,∗t = ϵwωL1+ν

ψw
λ̂wt . In steady state λw =

ϵw
ϵw−1

πwt = ŵt − ŵt−1 + πt + Ĝa,t (311)

Capital Investment

k̂ut+1 =
I
ku

(
Ît + µ̂t

)
+

1− δk
Ga

(
k̂ut − Ĝa,t

)
(312)

q̂t− Ĝa,t+ λ̂t = Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 +

rK

rK + 1− δk
r̂Kt+1 +

1− δk
rK + 1− δk

q̂t+1

]
(313)

q̂t + µ̂t − S”(1)
(
Ît − Ît−1 + Ĝa,t

)
+ βS”(1)Eθt

(
Ît+1 − Ît + Ĝa,t+1

)
= 0 (314)

Capital Utilization Rate

k̂t = ût + k̂ut − Ĝa,t (315)

r̂Kt =
χ”(1)

χ′(1)
ût (316)

Production Technologies

ŷt = αk̂t + (1− α)L̂t (317)

r̂Kt = ŵt + L̂t − k̂t (318)

m̂ct = αr̂Kt + (1− α)ŵt (319)
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Government

ît = ρRît−1 + (1− ρR) (ϕππt + ϕyŷt) + εmp,t (320)

Market Clearing
1

λg
ŷt =

c

y
ĉt +

I
y
Ît +

χ′(1)k

y
ût +

1

λg
λ̂gt (321)

TFP Growth Rate

Ĝa,t = Ĝζ,t + ξ̂t − ξ̂t−1 (322)

ât = ζ̂t + ξ̂t (323)

where ât and ζ̂t are defined as log deviations of At and Zt from their initial values.

Law of Motion of Shocks

Ĝζ,t = ρζĜζ,t−1 + εζ,t (324)

ξ̂t = ρξ ξ̂t−1 + εξ,t (325)

µ̂t = ρµµ̂t−1 + εµ,t (326)

λ̂mpt = ρmpλ̂
mp
t−1 + εmp,t (327)

λ̂gt = ρgλ̂
g
t−1 + εg,t (328)

λ̂p,∗t = ρpλ̂
p,∗
t−1 + εp,t − ϕpεp,t−1 (329)

λ̂w,∗t = ρwλ̂
w,∗
t−1 + εw,t − ϕwεw,t−1 (330)

Disturbances

TFP growth shock εζ,t ∼ N(0, σ2
ζ ) (331)

Stationary TFP shock εξ,t ∼ N(0, σ2
ξ ) (332)

Noise shock εs,t ∼ N(0, σ2
s) (333)

MEI shock εµ,t ∼ N(0, σ2
µ) (334)

Monetary policy shock εmp,t ∼ N(0, σ2
mp) (335)

Government spending shock εg,t ∼ N(0, σ2
g) (336)

Price markup shock εp,t ∼ N(0, σ2
p) (337)

Wage markup shock εw,t ∼ N(0, σ2
w) (338)
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F.5 Prior Distribution of the Parameters

The following parameters are fixed in the estimation procedure as shown in Table 6.

The depreciation rate δk is fixed at 0.025, and the discount factor β is set to 0.99. The

Dixit-Stiglitz aggregator for the goods (ϵp) and for labor services (ϵw) are fixed at 6.

The parameter affecting the level of disutility from working (ω) is set to 1, and the

steady-state share of government spending to final output is fixed at 1.2.

Table 6: Fixed Parameters

Parameter Value

β Discount factor 0.99

δk Capital depreciation rate 0.025

1− 1
λg

Government spending share 0.20

ω Labor preference 1

ϵp Elasticity of goods demand 6

ϵw Elasticity of labor demand 6

Notes: The table reports parameters fixed in the estimation procedure for both DE and RE.
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Table 7: Prior Distribution

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 1 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 5 1

ψp Rotemberg prices Normal 100 25
ψw Rotemberg wages Normal 3000 5000
ν inv. Frisch elas. Gamma 2 0.75
S′′(1) inv. adj. costs Normal 4 1
ρR m.p. rule Beta 0.5 0.2
ϕπ m.p. rule Normal 1.5 0.3
ϕx m.p. rule Normal 0.005 0.005

Technology Shocks
ρ persist. Beta 0.6 0.2
σa tech. shock s.d. Inv. Gamma 0.5 1
σs noise shock s.d. Inv. Gamma 1 1

Investment-Specific Shocks
ρµ persist. Beta 0.6 0.2
σµ s.d. Inv. Gamma 5 1.5

Markup Shocks
ρp persist. Beta 0.6 0.2
ϕp ma. comp. Beta 0.5 0.2
σp s.d. Inv. Gamma 0.15 1
ρw persist. Beta 0.6 0.2
ϕw ma. comp. Beta 0.5 0.2
σw s.d. Inv. Gamma 0.15 1

Policy Shocks
ρmp persist. Beta 0.4 0.2
σmp s.d. Inv. Gamma 0.15 1
ρg persist. Beta 0.6 0.2
σg s.d. Inv. Gamma 0.5 1

Measurement Errors

σmey s.d. Inv. Gamma 0.5 1

σmec s.d. Inv. Gamma 0.5 1
σmei s.d. Inv. Gamma 0.5 1
σmeπ s.d. Inv. Gamma 0.5 1
σmer s.d. Inv. Gamma 0.5 1

Notes: The table reports the prior distribution of structural parameters in the estimation procedure. The diagnosticity parameter θ is
fixed at 0 under RE.
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Figure 7: Posterior Distribution of Diagnosticity Parameter

(a) Prior centered at 1
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(b) Prior centered at 0
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Notes: Panels a) and b) depict the prior and posterior density of θ when the prior is centered at 1 and 0, respectively. The red, solid
lines denote the prior distribution of θ, which follows a Normal distribution with standard deviation 0.3. The black, solid lines (the
green, dashed vertical line) denote the posterior distribution (the posterior mean) of θ.

Table 8: Model-Implied Volatilities in the Medium-Scale DSGE Model

Variable Diagnostic Rational Percentage
Expectations Expectations Increase

Consumption 0.7939 0.6445 23%
Output 1.0055 0.8928 13%
Price Inflation 0.5308 0.4682 13%
Wage Inflation 0.9411 0.8498 11%
Real Rate 0.7532 0.5516 37%

Notes: The table reports the standard deviations of consumption growth, output growth, price inflation, wage inflation, and the real
rate in the medium-scale DSGE model. The final column entitled “Percentage Increase” shows the percentage increase in standard
deviation under the DE model relative to the RE benchmark (setting θ = 0 along with parameter estimates in Table 1). There are
eight structural shocks in the model, as in Blanchard et al. (2013): the TFP growth shock, TFP level shock, noise shock, marginal
efficiency of investment (MEI) shock, price markup shock, wage markup shock, monetary policy shock, and government spending
shock.
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G Robustness

G.1 Prior on the Diagnosticity Parameter θ Centered at Zero

Table 9: Posterior Distribution: Prior Centered at Zero

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.6537 [0.5193, 0.7884]
α cap. share 0.1340 [0.1227, 0.1455] 0.1390 [0.1278, 0.1505]
h habits 0.7110 [0.6810, 0.7415] 0.5803 [0.5424, 0.6178]
χ′′(1)
χ′(1) cap. util. costs 5.0273 [3.4169, 6.6350] 5.5929 [3.9095, 7.2242]

ψp Rotemberg prices 124.51 [97.470, 151.19] 181.84 [126.66, 188.88]
ψw Rotemberg wages 538.73 [231.71, 833.33] 9710.9 [4510.5, 14712.]
ν inv. Frisch elas. 3.6778 [2.4841, 5.0289] 1.2832 [0.5012, 1.9475]
S′′(1) inv. adj. costs 6.9600 [5.8331, 8.0849] 7.0701 [6.0111, 8.1332]
ρR m.p. rule 0.5920 [0.5541, 0.6304] 0.5563 [0.4380, 0.6806]
ϕπ m.p. rule 1.5297 [1.4093, 1.6481] 1.0682 [1.0001, 1.2046]
ϕx m.p. rule 0.0062 [0.0001, 0.0111] 0.0013 [0.0001, 0.0030]

Technology Shocks
ρ persist. 0.8584 [0.8381, 0.8786] 0.9535 [0.9352, 0.9716]
σa tech. shock s.d. 1.4050 [1.2824, 1.5249] 1.5258 [1.3896, 1.6601]
σs noise shock s.d. 0.5375 [0.3182, 0.7481] 1.0594 [0.3781, 1.7574]
Investment-Specific Shocks
ρµ persist. 0.3066 [0.2493, 0.3630] 0.3310 [0.2631, 0.4003]
σµ s.d. 18.947 [15.038, 22.845] 20.2121 [16.369, 23.989]
Markup Shocks
ρp persist. 0.8748 [0.8303, 0.9205] 0.8205 [0.7663, 0.8769]
ϕp ma. comp. 0.5874 [0.4748, 0.7023] 0.5563 [0.4380, 0.6806]
σp s.d. 0.1623 [0.1337, 0.1905] 0.1988 [0.1700, 0.2271]
ρw persist. 0.9969 [0.9940, 0.9999] 0.6543 [0.5146, 0.7978]
ϕw ma. comp. 0.5708 [0.3867, 0.7587] 0.5142 [0.2882, 0.7444]
σw s.d. 0.4449 [0.3514,0.5354] 0.4490 [0.3836, 0.5142]
Policy Shocks
ρmp persist. 0.0296 [0.0100, 0.0516] 0.0197 [0.0009, 0.0383]
σmp s.d. 0.3751 [0.3394, 0.4099] 0.3283 [0.3000, 0.3556]
ρg persist. 0.9332 [0.9051, 0.9619] 0.8974 [0.8682, 0.9275]
σg s.d. 0.3699 [0.3376, 0.4011] 0.3706 [0.3384, 0.4022]
Measurement Errors
σME
y s.d. 0.4968 [0.4464, 0.5467] 0.5034 [0.4529, 0.5533]

σME
c s.d. 0.4107 [0.3607, 0.4594] 0.4255 [0.3739, 0.4764]
σME
i s.d. 1.4291 [1.2541, 1.6033] 1.4514 [1.2692, 1.6284]
σME
r s.d. 0.2681 [0.2406, 0.2949] 0.2285 [0.2018, 0.2551]
σME
π s.d. 0.1614 [0.1409, 0.1817] 0.1482 [0.1267, 0.1693]

log Marg. Likelihood -1814.82 -1847.38
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G.2 Smets and Wouters (2007)

Table 10: Prior Distribution: Smets and Wouters (2007)

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 0.5 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.7 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 0.5 0.15

ψp Rotemberg prices Normal 350 75
ψw Rotemberg wages Normal 1000 1000
ν inv. Frisch elas. Normal 2 0.75
S′′(1) inv. adj. costs Normal 4 1.5
ρR m.p. rule Beta 0.75 0.1
ϕπ m.p. rule Normal 1.5 0.25
ϕx m.p. rule Normal 0.125 0.05
ϕdx m.p. rule Normal 0.125 0.05
ιp index. prices Beta 0.5 0.15
ιw index. wages Beta 0.5 0.15
100Ga s.s. growth rate Normal 0.4 0.1
logL s.s. hours Normal 0 2
100(π − 1) s.s. infl. Gamma 0.625 0.1
100(β−1 − 1) disc. factor Gamma 0.25 0.1
F share of fixed costs Normal 1.25 0.125
σc cons. curvature Normal 1.5 0.375

Shocks
ρa persist. tech. Beta 0.5 0.2
σa s.d. tech. Inv. Gamma 0.1 2
ρµ persist. inv. Beta 0.5 0.2
σµ s.d. inv. Inv. Gamma 0.1 2
ρb persist. pref. Beta 0.5 0.2
σb s.d. pref. Inv. Gamma 0.1 2
ρp persist. prices Beta 0.5 0.2
ϕp ma. comp. prices Beta 0.5 0.2
σp s.d. prices Inv. Gamma 0.1 2
ρw persist. wages Beta 0.5 0.2
ϕw ma. comp. wages Beta 0.5 0.2
σw s.d. wages Inv. Gamma 0.1 2
ρmp persist. mon. Beta 0.5 0.2
σmp s.d. mon. Inv. Gamma 0.1 2
ρg persist. fisc. Beta 0.5 0.2
σg s.d. fisc Inv. Gamma 0.1 2
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Table 11: Posterior Distribution: Smets and Wouters (2007)

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.4435 [0.1822, 0.6928]
α cap. share 0.1874 [0.1575, 0.2169] 0.1884 [0.1588, 0.2178]
h habits 0.7100 [0.6385, 0.7839] 0.7027 [0.6334, 0.7725]
χ′′(1)
χ′(1) cap. util costs 0.6241 [0.4539, 0.8013] 0.5785 [0.4016, 0.7549]

ψp Rotemberg prices 399.36 [292.11, 506.07] 383.13 [272.30, 490.97]
ψw Rotemberg wages 2266.5 [1083.3, 3407.9] 2265.1 [1092.8, 3375.0]
ν inv. Frisch elas. 1.9577 [1.0626, 2.7971] 2.0293 [1.1717, 2.8701]
S′′(1) inv. adj. costs 5.6924 [3.9384, 7.3949] 5.7666 [4.0637, 7.4253]
ρR m.p. rule 0.7962 [0.7560, 0.8381] 0.8132 [0.7754, 0.8515]
ϕπ m.p. rule 2.0801 [1.7974, 2.3631] 2.0199 [1.7277, 2.3092]
ϕx m.p. rule 0.0836 [0.0450, 0.1220] 0.0839 [0.0478, 0.1199]
ϕdx m.p. rule 0.2412 [0.1943, 0.2886] 0.2327 [0.1862, 0.2790]
ιp index. prices 0.3075 [0.1491, 0.4647] 0.2268 [0.0905, 0.3584]
ιw index. wages 0.6287 [0.4343, 0.8238] 0.5712 [0.3695, 0.7756]
100Ga s.s. growth rate 0.4206 [0.3950, 0.4467] 0.4226 [0.3982, 0.4465]
logL s.s. hours 0.6699 [-1.169, 2.5050] 0.6560 [-1.147, 2.4377]
100(π − 1) s.s. infl. 0.7775 [0.6156, 0.9427] 0.7543 [0.5932, 0.9219]
100(β−1 − 1) disc. factor 0.1640 [0.0708, 0.2523] 0.1671 [0.0731, 0.2576]
F share of fixed costs 1.5447 [1.4160, 1.6777] 1.5845 [1.4549, 1.7142]
σc cons. curvature 1.3804 [1.1204, 1.6347] 1.3740 [1.1540, 1.5844]

Shocks
ρa persist. tech. 0.9592 [0.9384, 0.9806] 0.9528 [0.9331, 0.9731]
σa s.d. tech. 0.4658 [0.4174, 0.5145] 0.4623 [0.4152, 0.5101]
ρµ persist. inv. 0.7815 [0.6861, 0.8806] 0.7129 [0.6197, 0.8095]
σµ s.d. inv. 0.3405 [0.2507, 0.4282] 0.4528 [0.3726, 0.5315]
ρη persist. pref. 0.3829 [0.1746, 0.6025] 0.2429 [0.0848, 0.3919]
ση s.d. pref. 0.1747 [0.1104, 0.2358] 0.2359 [0.1944, 0.2778]
ρp persist. prices 0.8709 [0.7877, 0.9529] 0.8706 [0.7914, 0.9506]
ϕp ma. comp. prices 0.6564 [0.4567, 0.8613] 0.6710 [0.4991, 0.8443]
σp s.d. prices 0.1044 [0.0671, 0.1409] 0.1407 [0.1116, 0.1695]
ρw persist. wages 0.9600 [0.9327, 0.9882] 0.9672 [0.9455, 0.9900]
ϕw ma. comp. wages 0.8620 [0.7775, 0.9500] 0.8817 [0.8188, 0.9482]
σw s.d. wages 0.1899 [0.1430,0.2370] 0.2432 [0.2070, 0.2793]
ρmp persist. mon. 0.1216 [0.0287, 0.2064] 0.1389 [0.0383, 0.2316]
σmp s.d. mon. 0.2520 [0.2252, 0.2780] 0.2467 [0.2217, 0.2713]
ρg persist. fisc. 0.9806 [0.9681, 0.9933] 0.9802 [0.9673, 0.9935]
σg s.d. fisc. 0.5224 [0.4720, 0.5731] 0.5260 [0.4746, 0.5755]
ρga corr. 0.5255 [0.3800, 0.6717] 0.5202 [0.3745, 0.6670]

log Marg. Likelihood -897.91 -900.69
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G.3 Justiniano, Primiceri, and Tambalotti (2010)

Table 12: Prior Distribution: Justiniano, Primiceri, and Tambalotti (2010)

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 0.5 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 5 1

ψp Rotemberg prices Normal 100 25
ψw Rotemberg wages Normal 3000 5000
ν inv. Frisch elas. Gamma 2 0.75
S′′(1) inv. adj. costs Normal 4 1
ρR m.p. rule Beta 0.6 0.2
ϕπ m.p. rule Normal 1.7 0.3
ϕx m.p. rule Normal 0.13 0.05
ϕdx m.p. rule Normal 0.13 0.05
ιp index. prices Beta 0.5 0.15
ιw index. wages Beta 0.5 0.15
100Ga s.s. growth rate Normal 0.5 0.03
λp s.s. markup prices Normal 0.15 0.05
λw s.s. markup wages Normal 0.15 0.05
logL s.s. log hours Normal 0 0.5
100(π − 1) s.s. infl. Normal 0.5 0.1
100(β−1 − 1) disc. factor Gamma 0.25 0.1

Shocks
ρa persist. tech. Beta 0.6 0.2
σa s.d. tech. Inv. Gamma 0.5 1
ρµ persist. inv. Beta 0.6 0.2
σµ s.d. inv. Inv. Gamma 0.5 1
ρb persist. pref. Beta 0.6 0.2
σb s.d. pref. Inv. Gamma 0.1 1
ρp persist. prices Beta 0.6 0.2
ϕp ma. comp. prices Beta 0.5 0.2
σp s.d. prices Inv. Gamma 0.1 1
ρw persist. wages Beta 0.6 0.2
ϕw ma. comp. wages Beta 0.5 0.2
σw s.d. wages Inv. Gamma 0.1 1
ρmp persist. mon. Beta 0.4 0.2
σmp s.d. mon. Inv. Gamma 0.1 1
ρg persist. fisc. Beta 0.6 0.2
σg s.d. fisc. Inv. Gamma 0.5 1
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Table 13: Posterior Distribution: Justiniano, Primiceri, and Tambalotti (2010)

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.4336 [0.1894, 0.6745]
α cap. share 0.1702 [0.1603, 0.1800] 0.1700 [0.1602, 0.1800]
h habits 0.8788 [0.8443, 0.9142] 0.8270 [0.7655, 0.8902]
χ′′(1)
χ′(1) cap. util. costs 5.3160 [3.6696, 6.9322] 5.2978 [3.6521, 6.9145]

ψp Rotemberg prices 123.01 [91.513, 154.15] 116.43 [84.65, 147.570]
ψw Rotemberg wages 2863.31 [594.68, 5275.6] 3204.29 [720.56, 5835.5]
ν inv. Frisch elas. 4.3961 [2.9554, 5.7777] 4.2917 [2.8854, 5.6762]
S′′(1) inv. adj. costs 2.9689 [2.0722, 3.8461] 2.7528 [1.8821, 3.6124]
ρR m.p. rule 0.8064 [0.7681, 0.8445] 0.8193 [0.7822, 0.8567]
ϕπ m.p. rule 2.1751 [1.8764, 2.4631] 2.0782 [1.7792, 2.3655]
ϕx m.p. rule 0.0559 [0.0269, 0.0847] 0.0600 [0.0306, 0.0887]
ϕdx m.p. rule 0.2425 [0.1983, 0.2860] 0.2389 [0.1974, 0.2801]
ιp index. prices 0.2589 [0.1266, 0.3888] 0.1964 [0.0821, 0.3062]
ιw index. wages 0.1477 [0.0862, 0.2085] 0.1127 [0.0595, 0.1655]
100Ga s.s. growth rate 0.4675 [0.4237, 0.5108] 0.4695 [0.4256, 0.5139]
λp s.s. markup prices 0.2340 [0.1791, 0.2890] 0.2419 [0.1847, 0.2982]
λw s.s. markup wages 0.1347 [0.0525, 0.2127] 0.1360 [0.0543, 0.2130]
logL s.s. log hours 0.1827 [-0.600, 0.9579] 0.2032 [-0.571, 0.9877]
100(π − 1) s.s. infl. 0.7877 [0.6831, 0.8934] 0.7677 [0.6557, 0.8782]
100(β−1 − 1) disc. factor 0.1379 [0.0604, 0.2119] 0.1404 [0.0611, 0.2154]

Shocks
ρa persist. tech. 0.2145 [0.1240, 0.3047] 0.2518 [0.1522, 0.3508]
σa s.d. tech. 0.8828 [0.8032, 0.9591] 0.8908 [0.8121, 0.9695]
ρµ persist. inv. 0.7650 [0.6965, 0.8352] 0.7352 [0.6598, 0.8125]
σµ s.d. inv. 5.1618 [3.9758, 6.3096] 5.8481 [4.3020, 7.3632]
ρb persist. pref. 0.3595 [0.2202, 0.4971] 0.5161 [0.3394, 0.6957]
σb s.d. pref. 0.0650 [0.0379, 0.0911] 0.0566 [0.0317, 0.0818]
ρp persist. prices 0.9363 [0.9003, 0.9739] 0.9276 [0.8882, 0.9680]
ϕp ma. comp. prices 0.6515 [0.4918, 0.8136] 0.6790 [0.5503, 0.8127]
σp s.d. prices 0.0989 [0.0692, 0.1276] 0.1344 [0.1126, 0.1559]
ρw persist. wages 0.9808 [0.9652, 0.9975] 0.9773 [0.9586, 0.9972]
ϕw ma. comp. wages 0.9164 [0.8734, 0.9603] 0.9202 [0.8809, 0.9606]
σw s.d. wages 0.1679 [0.1355, 0.2006] 0.2115 [0.1847, 0.2387]
ρmp persist. mon. 0.1630 [0.0623, 0.2610] 0.1627 [0.0576, 0.2636]
σmp s.d. mon. 0.2336 [0.2109, 0.2560] 0.2262 [0.2050, 0.2472]
ρg persist. fisc. 0.9970 [0.9947, 0.9990] 0.9967 [0.9941, 0.9990]
σg s.d. fisc. 0.3477 [0.3187, 0.3756] 0.3476 [0.3191, 0.3764]

log Marg. Likelihood -1190.86 -1193.78
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H Data Appendix

Our data set spans the period 1954:III to 2004:IV. The series for Real GDP, Real Per-

sonal Consumption Expenditures, Real Personal Durable Consumption Expenditures,

Real Gross Private Domestic Investment, Wages and the GDP Implicit Price Defla-

tor are from the Bureau of Economic Analysis. Population and employment series

are from the Bureau of Labor Statistics online database (series IDs LNS10000000Q

and LNS12000000Q respectively). The Federal Funds Rate series is from the Federal

Reserve Board online database (series ID H15/H15/RIFSPFF N.M).

The GDP series is constructed by dividing Real GDP by population. The con-

sumption series is constructed by subtracting Real Personal Durable Consumption

from Real Personal Consumption and dividing by population. The investment series is

constructed by dividing the sum of Real Gross Investment and Real Personal Durable

Consumption by population. The labor input series is constructed by dividing Employ-

ment by Population. Inflation is constructed by computing the quarterly log difference

of the Price Deflator. The real wage is constructed by dividing Real Wages by the

Price Deflator. The nominal interest rate is the effective Federal Funds Rate.

For SPF forecast data, we use the median forecast (across individual forecasters)

as the consensus forecast. All forecasts we use are one quarter ahead forecasts. For

the output (series ID RGDP), consumption (series ID RCONSUM), and investment

(series ID RNRESIN) growth rate, we subtract these growth rate forecasts by actual

population growth rate to obtain per capita forecasts. Inflation and the nominal inter-

est rate are obtained from the GDP Price Deflator and the Treasury bill rate (series

IDs PGDP and TBILL).
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