
Identifying News Shocks from Forecasts

Jonathan J. Adams∗ Philip Barrett†

March 29, 2023

EARLY DRAFT

Link to Most Current Version

Abstract

We propose a method to identify the anticipated components of macroeconomic

shocks in a structural VAR: we include empirical forecasts about each time series in
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and to further decompose each one into “news” and “surprise” shocks. We estimate

our VAR on US time series using forecast data from the SPF, Federal Reserve, and

asset prices. The fiscal stimulus and interest rate shocks that we identify have typical

effects that comport with existing evidence. In our news-surprise decomposition, we

find that news contributes to a third of US business cycle volatility, where the effect of

fiscal shocks is mostly anticipated, while the effect of monetary policy shocks is mostly

unexpected. Finally, we use the news structure of the shocks to estimate counterfactual

policy rules, and compare the ability of fiscal and monetary policy to moderate business

cycles.
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1 Introduction

The effects of anticipated macroeconomic shocks differ from when the shocks are unexpected.

Is it possible to isolate the effects of news from surprises in general settings? Estimating

these different effects is crucial for drawing conclusions, especially regarding the effectiveness

of policy. In this paper, we introduce a method to separately identify the anticipated and

unanticipated components of macroeconomic shocks.

Our strategy is to include data on forecasts about the macroeconomic time series in a

vector autoregression (VAR). Forecasts are valuable because they reveal information about

the future that is not otherwise revealed by the macroeconomic time series alone. We modify

a standard structural VAR (SVAR) driven by a series of structural shocks, by assuming that

each shock has an anticipated component – the “news” – and an unanticipated component

– the “surprise”. If each news dimension is sufficiently relevant, we prove that including

a forecast about each time series in the VAR identifies the effect of the news and surprise

components of every structural shock.

Our method is not only useful for isolating news from surprise: it is a method to identify

structural shocks themselves. Structural VARs typically assume that shocks are mutually

orthogonal in order to identify them from reduced form innovations in the observed time

series. If their news and surprise components are also mutually orthogonal, then our method

identifies the entire set of structural shocks, including their news and surprise components.

Thus our method is an alternative to the large variety of other strategies for identifying the

set of structural shocks in VARs.1

We apply our method by estimating a VAR on US time series. We take data on forecasts

from the Survey of Professional Forecasters (SPF), the Federal Reserve’s Greenbook fore-

casts, and also construct some expectations from asset prices. In our VAR, we estimate a

variety of structural shocks that resemble well-understood objects, including shocks to fiscal

and monetary policy. Our estimated shocks have realistic effects, including fiscal multipliers

that match other estimates in the literature, quantitatively realistic effects of monetary pol-

icy shocks that resemble those implied by high-frequency-identified instruments. Crucially,

we can decompose each shock into the news and surprise components. For example, we find

that the effects of fiscal shocks on output are largely anticipated, and the news component

1A classic approach is to make assumptions about the causal ordering of shocks within a period, and
apply a Cholesky decomposition to the variance matrix (Sims, 1980). Other linear restrictions can identify
the structural shocks by making assumptions about long-run effects (Shapiro and Watson, 1988), restrictions
on the signs of shocks (Uhlig, 2005) or outside evidence on the magnitude of short-run effects (Blanchard and
Perotti, 2002). Recently, attention has been focused on identifying the set of structural shocks using higher
order moments and heteroskedasticity. Examples with dynamic heteroskedasticity include Sentana and
Fiorentini (2001), Rigobon (2003), Lanne et al. (2010), and Lewis (2021). Lütkepohl and Netšunajev (2017)
reviews this literature further. Other papers lean on non-Gaussianity more generally including Hyvärinen
et al. (2010) and Gouriéroux et al. (2017).
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implies much a larger government spending multiplier than the surprise component, echoing

the findings in Ramey (2011). In contrast, the effects of monetary policy shocks are mostly

surprises.

We find a large role for news in explaining business cycles: half of output volatility is due

to news shocks. This echoes the findings of a large literature studying the relevance of news

shocks for the macroeconomy. Many of these papers focus on news about technology2 but

we join a modest group studying news about policy shocks, discussed below. Indeed, many

papers follow a conceptually similar approach to ours by including a forecast in their VAR to

isolate surprises or news about the forecasted variable.3 However, including a single forecast

identifies a specific news shock only if there is a single structural shock that is anticipated.

Otherwise, what might appear to be news about a shock such as fiscal policy also includes

news about shocks to supply, demand, and so forth. This is the main advantage of our

approach relative to existing VAR studies of news: by including forecasts about every time

series, we can distinguish the effects of news to different structural shocks. And we find that

conflation of news about multiple shocks is a nontrivial concern, as the news component of

nearly all shocks is relevant for at least one time series.

A valuable advantage of decomposing shocks into news and surprise is the ability to

estimate the effects of counterfactual policies. Wolf and McKay (2022) demonstrate that,

under some assumptions, impulse response functions to news about shocks at different hori-

zons are sufficient to construct counterfactual impulse response functions under alternative

policy rules. We implement their approach using our identification of impulse responses

to news and surprise shocks and conduct several counterfactual experiments. We find that

fiscal policy can be effective at stabilizing output over the business cycle, but with costs:

taxes and inflation become more volatile. And current fiscal policy is already somewhat

stabilizing; when we consider a counterfactual with fixed government spending, real activity

and inflation are both more volatile. There are some shocks that fiscal policy is not effective

at moderating, but monetary policy is more effective at moderating precisely these shocks,

suggesting a role for fiscal and monetary coordination. We come to similar conclusions as

Wolf and McKay when considering counterfactual monetary policy. The best counterfactual

monetary policy rules that we can construct are less effective at stabilizing output than fis-

2Examples include Beaudry and Portier (2006), Barsky and Sims (2012), Schmitt-Grohé and Uribe (2012),
Blanchard et al. (2013), and Chahrour and Jurado (2021). The most closely related papers are those that
utilize forecast data to identify news about technology: Hirose and Kurozumi (2021) include forecast data
in a New Keynesian DSGE model to identify news shocks and estimate that technology news drives nearly
half of output volatility; Cascaldi-Garcia (2022) uses forecast revisions of economic growth to instrument
for technology news shocks, which drive 11%− 26% of output volatility depending on the horizon.

3Papers including forecasts to identify fiscal surprises include Ramey (2011), Auerbach and Gorod-
nichenko (2012), and Born et al. (2013). VAR methods using forecasts and additional structural assumptions
to identify fiscal news include Caggiano et al. (2015), Ricco (2015), Ricco et al. (2016) and Forni and Gam-
betti (2016).
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cal stimulus, while interest rate pegs do not lead to more volatile inflation and cause output

to be more elastic to shocks in the short run.

We contribute to a large literature studying the effects of news about fiscal policy.

Ramey (2011) uses narrative methods to identify changes in current and future government

spending driven by military events, and argues the many fiscal shocks identified by structural

VARs are actually anticipated. Fisher and Peters (2010) use financial returns to defense

contractors to identify shocks that include news about future defense spending. Ben Zeev

and Pappa (2017) apply the Barsky and Sims (2012) methodology to identify the shock

dimension that contains the most news about government defense spending over a 5-year

horizon. A common theme in these papers is that the fiscal multiplier due to news about

government spending is large.

The revenue side of fiscal policy has received a similar treatment. Leeper et al. (2009)

argue VAR-based estimates of shocks will be misleading when tax changes are anticipated.

Romer and Romer (2010) use a narrative approach to construct a series of anticipated

tax changes, and estimate that legislation of relatively exogenous tax increases have large

contractionary effects. Mertens and Ravn (2012) decompose the Romer-Romer series into

anticipated and unanticipated components, and show that they have opposite effects on

output in the short run. House and Shapiro (2006) come to a similar conclusion studying

tax reforms in the early 2000s. Ramey (2019) surveys additional evidence.

2 A Simple Example

We introduce our identification strategy in a simple example, before exploring the general

case.

2.1 Identification in the Simple Example

Consider the univariate time series xt is given by

xt = ρxt−1 + ϵt + γvt (1)

where ϵt is some i.i.d. fundamental shock process. However, while ϵt affects the variable xt

at time t, some component of it may be anticipated in advance. Assume that the innovation

ϵt ∼ N(0, σϵ) is the sum of two components:

ϵt = ut + vt−1

where ut ∼ N(0, σu) and vt−1 ∼ N(0, σv) are independent, so that σ2u + σ2v = σ2ϵ .
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With this structure, news has two effects. News revealed in period t− 1 directly affects

the realization of the shock ϵt. But we also allow news about the future vt to enter equation

(1) contemporaneously if γ ̸= 0. This is because when individuals receive news about

future shocks, the information may affect their decisions immediately. For example, if

firms expect their productivity to change in the future, they will adjust their investment

today. This presents additional challenges: news affects some variables with delay, but

others immediately. The full multivariate model is necessary to capture these effects on

other variables, but the econometric challenges are clear even when considering the simple

univariate example.

An econometrician observing only the history of xt is unable to distinguish between the

“surprise shock” ut and “news shock” vt−1, because each period introduces two new shock

realizations, but only one new observation of xt.

Crucially, while the “news shock” vt−1 is not directly observed by the econometrician,

it is observed by forecasters at time t− 1. For this simple example, assume that forecasters

report their rational expectation E[xt+1|xt, vt]:

ft = E[xt+1|xt, vt] = ρxt + vt (2)

The contemporaneous forecasts include information that the econometrician cannot infer

from the history of xt alone.

Including the forecasts ft in a VAR allows news and surprise to be jointly identified.

The two-dimensional VAR is given by(
ft

xt

)
= B

(
ft−1

xt−1

)
+A

(
vt

ut

)
(3)

and let wt =

(
ft

xt

)
−B

(
ft−1

xt−1

)
denote the reduced form innovations. In this case, the

coefficient matrices are

B =

(
ρ 0

1 0

)
A =

(
1 + ργ ρ

γ 1

)

A is necessarily invertible, so the econometrician can identify both structural shocks by(
vt

ut

)
= A−1wt

In this simple example, including forecasts in a VAR allows for the anticipated and

surprise components of a shock to be independently identified. However, with such a simple

model, their effects are so similar as to be uninteresting. News and surprise imply the same
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impulse response function of xt. But when news can also have contemporaneous effects,

these two shocks may imply very different dynamics.

2.2 The Importance of Accounting for News

In order to identify the dynamic effects of the fundamental ϵt shocks, the econometrician

must account for news using the ft forecasts.

What does an econometrician without forecast data estimate? This time series is an

ARMA(1,1) process in which neither vt nor ut are independently identifiable. To see why,

consider the Wold representation:

xt = ρxt−1 + wt + θwt−1

with the white noise innovation denoted wt. The MA component is found by solving two

equations for θ and var(wt):

(1 + θ2)var(wt) = var(wt + θwt−1) = (1 + γ2)σ2v + σ2u

θvar(wt) = cov(wt + θwt−1, wt+1 + θwt) = cov(γvt + vt−1 + ut, γvt+1 + vt + ut+1) = γ2σ2v

The actual expression for wt in terms of the underlying shocks is recursive, and thus most

cleanly expressed using lag operator polynomials:

wt =
1

(1 + θL)
(ut + (γ + L)vt)

An econometrician estimating the ARMA(1,1) process for xt will not recover the impulse

response function (IRF) to a fundamental shock ϵt. Figure 1b reports these IRFs. The solid

blue line is the IRF to a unit innovation in the ARMA, estimated without forecast data.

The dashed red line is the IRF to an average unit increase in the fundamental shock. A unit

ϵt may have many possible combinations of news and surprise; the plot shows the average

combination. A component of this shock is anticipated, given that ϵt = ut + vt−1, so there

is a non-causal entry in the plot. The w IRF and ϵ IRF have dissimilar shapes.

Without forecast data, there is a more substantial problem than being unable to identify

the underlying shocks: each component ut, vt−1, and their sum ϵt has a different impulse

response function, none of which can be identified from the xt time series. The one-standard-

deviation IRF for ut is:

E[xt+h|ut = σu] = ρhσu

the shape of this IRF is easily identified by estimating the AR coefficient of the ARMA(1,1),
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(a) Fundamental vs. Reduced Form Shocks (b) News and Surprise Components

Figure 1: Impulse Response Functions in the Simple Example

Panel 1a plots the impulse response to a unit innovation to the ARMA(1,1) Wold representation (blue solid
line), and to a unit structural shock (red dashed line). Panel 1b plots the impulse response to a standard
deviation innovation to the structural news component (dash-dot green line) and to the structural surprise
component (dotted magenta line). The parameter values are ρ = 0.9, γ = 4, σ2

u = 0.75, and σ2
v = 0.25.

but the scale σu is not identified. Worse, the IRF for vt is not a simple exponential decay:

E[xt+h|vt = σv] =

γσv h = 0

(γρh + ρh−1)σv h > 0

so neither the scale nor the shape is identified, because γ and σv are not identified without

forecast data.

Figure 1b plots the true impulse responses to the news and surprise components. The

dotted magenta line is the response to a one-standard-deviation surprise shock ut: xt sud-

denly jumps then declines as if driven by an AR(1) process. The green line is the response

to a one-standard-deviation news shock vt−1. The anticipation effect of the news causes

an immediate increase. Then, once the full shock is realized in period t, there is a further

increase, followed by the same exponential decay as a surprise shock. Properly weighted,

these two IRFs sum to the ϵ IRF in Figure 1a.

Including forecasts in a VAR allowed for news and surprises to be separately identified

in this univariate example. But identification is always more complicated in a multivari-

ate VAR, which typically requires additional identifying assumptions to identify structural

shocks. Yet, the next section demonstrates that the lessons from the simple example gener-

alize: including rational forecasts is enough for identification without any additional struc-

ture.
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3 Identification

This section outlines the general structural VAR, provides a constructive proof of identi-

fication, describes how rational forecasts are cleaned from empirical forecasts, and derives

the implied impulse response functions.

3.1 The Basic VAR Model

A standard structural VAR(m) is

xt =
m∑
j=1

Bjxt−j +Aϵt

where xt is an n × 1 vector of time series, Bj are a series of n × n coefficient matrices,

ϵt ∼ N(0, I) is an n × 1 vector of standard normal structural shocks, and A is an n × n

matrix that determines how the structural shocks affect contemporaneous time series.

We allow the structural shocks to be partially anticipated in ways that are not directly

observable to the econometrician. Specifically, we decompose the shock ϵt into a surprise

component ut and a news component vt−1 that is anticipated one period in advance:

ϵt = ut + vt−1

We assume the components are orthogonal so that news does not predict surprises: ut ⊥
vt−1. The standard SVAR assumption is that each entry in the shock vector is mutually

orthogonal, so that V ar(ϵt) = I. We further assume that the entries in the surprise and

news components are mutually orthogonal, i.e. V ar(ut) = D2
u and V ar(vt−1) = D2

v where

Du and Dv are diagonal matrices.4 The requirement that news is orthogonal to future

surprises implies

D2
u +D2

v = I (4)

The standard SVAR is also modified so that time series may be affected by news about

future shocks vt:

xt =

m∑
j=1

Bjxt−j +Aϵt + Cvt (5)

This is not an identifying restriction. Rather, allowing for arbitrary C introduces additional

flexibility and challenges. But economic theory suggests that news about future shocks can

have large effects on contemporaneous decisions.

4Alternatively, this property is implied by assuming that the structural shocks are not just uncorrelated,
but independent.
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Assume that ft is a vector of rational expectations for the corresponding time series:

ft = E
[
xt+1|{xt−j}m−1

j=0 , ϵt, vt

]
(6)

The expectation is conditional on current news vt, so the vector ft contains information

that may not be directly observable to the econometrician.

Because ft is the rational expectation, there exist restrictions on the relationship between

ft and xt that are sufficient to identify all of the structural shocks. Equation (5) implies

that ft follows

ft =
m∑
j=1

Bjxt+1−j +Avt (7)

because E
[
ϵt+1|{xt−j}m−1

j=0 , ϵt, vt

]
= vt and E

[
vt+1|{xt−j}m−1

j=0 , ϵt, vt

]
= 0.

The time series xt can be written recursively in terms of current surprises ut and current

news vt using the SVAR structure (5) and the rational expectation (7):

xt =

m∑
j=1

Bjxt−j +A(ut + vt−1) + Cvt

=

m∑
j=1

Bjxt−j + (ft−1 −
m∑
j=1

Bjxt−j) +Aut + Cvt

= ft−1 +Aut + Cvt

The expectations ft can similarly be written

ft = B1xt +
m∑
j=2

Bjxt+1−j +Avt

= B1(ft−1 +Aut + Cvt) +
m∑
j=2

Bjxt+1−j +Avt

Stack the expectations and time series into a single VAR(m− 1):(
ft

xt

)
=

m−1∑
j=1

Bj

(
ft−j

xt−j

)
+A

(
vt

ut

)
(8)
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where

Bj ≡



 B1 B2

I 0

 j = 1 0 Bj+1

0 0

 j > 1

and

A ≡

(
B1C +A B1A

C A

)
Estimating the VAR (8) recovers the coefficients {Bj}mj=1 and the variance matrix of

forecast errors Σ, which satisfies

Σ = A

(
D2

v 0

0 D2
u

)
A′

The symmetric matrix Σ has 2n2 + n unique entries. B1 is identified from the VAR, while

A and C each have n2 unknown parameters. D2
u and D2

v each have n unknowns, but

the equation (4) implies n additional restrictions, enough to exactly identify the unknown

parameters.

3.2 Deriving the Estimator

In this section, we introduce and prove the main identification theorem. The proof is

constructive, describing how to estimate the unknown matrices given estimates from the

reduced form VAR of the first coefficient matrix B1 and the residual covariance matrix Σ.

The model must satisfy two key assumptions. First, A must be invertible: this implies

that the shocks in ϵt have linearly independent effects on the time series. Second, D2
v must

be invertible: each shock must have a nontrivial news component. However, we do not

require that D2
u is invertible, i.e. some shocks can be fully anticipated.

Theorem 1 If A and D2
v are full rank, then A, C, D2

u and D2
v are determined (up to sign

and column order) by Σ and B1.

Proof. Subdivide the matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
into n × n blocks. The off-diagonal

submatrices satisfy Σ12 = Σ′
21, so the three remaining submatrices are given by

(
Σ11

Σ21 Σ22

)
=

(
(B1C +A)D2

v(B1C +A)′ +B1AD
2
uA

′B′
1

CD2
v(B1C +A)′ +AD2

uA
′B′

1 CD2
vC

′ +AD2
uA

′

)
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Define the n× n matrices ϕ and ψ by

ϕ ≡ Σ11 −B1Σ21 − Σ′
21B

′
1 +B1Σ22B

′
1

= AD2
vA

′

ψ ≡ Σ22 − (Σ21 − Σ22B
′
1)ϕ

−1(Σ21 − Σ22B
′
1)

′

= CD2
vC

′ +AD2
uA

′ − CD2
vA

′(AD2
vA

′)−1AD2
vC

′

= AD2
uA

′

Equation (4) implies

ϕ+ ψ = AA′

The singular value decomposition (SVD) of ϕ + ψ gives unitary matrix U and diagonal

matrix Λ2 such that

ϕ+ ψ = UΛ2U ′

and

A = UΛV ′

for some unitary V . Then the SVD of Λ−1U ′ϕUΛ−1 gives the matrices V and D2
v from

Λ−1U ′ϕUΛ−1 = V ′D2
vV

This gives the matrices A = UΛV ′ and D2
u = I − D2

v . Then the final matrix C is found

from

C = (Σ21 − Σ22B
′
1)(D

2
vA

′)−1

The application of the singular value decomposition makes it clear that the shocks are

only identified up to column order; the SVD is only unique up to reordering of the singular

values. Choosing an order for the singular values implies an ordering of the shocks in ϵt.

Moreover, our method only determines the variances of the shocks D2
u and D2

v , so the shock

signs are also indeterminate.

3.3 Forecast Cleaning

In practice, empirical forecasts f̃t may not correspond to the rational expectation (7). For

example, there is extensive evidence that surveyed expectations feature predictable biases.5

5Notable examples include Souleles (2004), Greenwood and Shleifer (2014) Coibion and Gorodnichenko
(2015), and Bordalo et al. (2020), among many others.
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Therefore it is necessary to “clean” any empirical forecasts in order to transform them into

rational expectations. To be a rational expectation, the cleaned forecast’s errors must be

orthogonal to m lags of the time series xt, of the empirical forecasts f̃t, and any other data

zt in the information set.

To construct the rational expectation ft, we run the VAR(k) with k ≥ m: f̃t

zt

xt

 =
k∑

j=1

Gj

 f̃t−j

zt−j

xt−j

+ υt

where υt is a reduced form error.

Let Gx,j denote the final n rows of Gj . The cleaned rational forecast ft is given by

ft =
k∑

j=1

Gx,j

 f̃t+1−j

zt+1−j

xt+1−j

 (9)

which is the best linear forecast of xt+1 conditional on the information set spanned by lags

of measured forecasts f̃t, the time series xt, and other regressors zt.

Under some assumptions, this cleaning procedure recovers the true rational expectation.

We model empirical forecasts f̃t as linear deviations from the rational forecast ft. The

deviations may depend on lags of the rational forecast ft, the time series xt, observable

confounders zt, fundamental surprises ut, or fundamental news vt:

f̃t =
k∑

j=0

(
Hf

j ft−j +Hx
j xt−j +Hz

j zt−j +Hu
j ut−j +Hv

j vt−j

)
or in terms of lag operator polynomials

f̃t = Hf (L)ft +Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt (10)

Theorem 2 If Hf (L) is causally invertible, then the rational forecast ft is given by equation

(9).

Proof: Appendix A.1

This approach makes two strong assumptions: the additional confounding terms zt are

all observable, and Hf (L) is invertible. In particular, if aggregate forecasts reflect publicly

available information, the observability assumption is a reasonable one. But – as with any

regression – it will be essential to include all of the relevant controls in the forecast cleaning.

What if the assumptions are broken, so that forecasts are affected by some unobserved
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confounders beyond zt? In these cases we can still clean the forecast and identify shocks

under looser assumptions. But the interpretation of a news shock changes. Appendix A.2

considers this case.

3.4 Impulse Response Functions in the Presence of News

This section describes the impulse response functions implied by the structural VAR.

The horizon h impulse response ϕu(h) to a surprise ut is standard:

ϕu(h) = BhA

ϕu(h) is a matrix, so that the entry in row i and column j captures the horizon h response

of time series i to shock j.

The impulse responses to news have an additional term, because the news shock vt−1

first affects the period t− 1 time series through the news channel, and then again in period

t when the full shock is realized. The corresponding impulse response matrix is:

ϕv(h) =

C h = 0

BhC +Bh−1A h > 0

The impulse response functions are related to conditional expectations by:

E[xt+h|ut] = ϕu(h)ut E[xt+h|vt] = ϕv(h)vt

The fundamental shock ϵt = ut + vt−1 is the sum of the surprise and news components.

We calculate the IRF to a unit ϵt shock as the response to an average ϵt realization:

ϕϵ(h) = E[xt+h|ϵt = 1]

= E [E[xt+h|ut] + E[xt+h|vt−1]|ϵt = 1]

= E [ϕu(h)ut + ϕv(h+ 1)vt−1|ϵt = 1]

= ϕu(h)E [ut|ϵt = 1] + ϕv(h+ 1)E [vt−1|ϵt = 1]

= ϕu(h)D
2
u + ϕv(h+ 1)D2

v

where D2
u and D2

v are the diagonal matrices of shock variances.

Accordingly, for each shock i, a unit impulse to ϵit is the sum of a V ar(uit) impulse to uit

and a V ar(vit−1) impulse to vit−1. Because of the news timing, the impulse response to ϵt

is non-causal: it can affect time series in period t− 1. Correctly accounting for the timing,
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the impulse response matrix is:

ϕϵ(h) = ϕu(h)D
2
u + ϕv(h+ 1)D2

v

=

CD2
v h = −1

Bh+1CD2
v +BhA(D2

u +D2
v) h ≥ 0

3.5 Generalizations and Alternatives

Our main approach applies to a broad class of dynamic models. But it still includes some

restrictions that can be further relaxed.

Thus far, we have assumed that news occurs one period in advance. But news might

realistically have longer horizons. For example, Mertens and Ravn (2012) estimate the

effects of tax changes with announcements measured up to 16 quarters in advance of the

policy change.

It is possible to account for additional news horizons by incorporating data on addi-

tional forecasts. Appendix B derives the SVAR restrictions in this case. Some additional

horizons may be feasible, but the data requirements grow rapidly: we show that the VAR

is potentially identified when news occurs at h different horizons by including forecasts at

each of the h additional horizons. This may be possible for some variables – in particular

interest rates and inflation – but many variables do not have widely available forecast data

beyond a year in advance. For example, the Survey of Professional Forecasts only reports

expectations over 0− 4 quarter horizons.

We have also assumed thus far that the econometrician has data on all relevant state

variables in the economy. That is, they observe the entire vector xt and the associated

forecasts in the SVAR equation (5). But what if a critical time series is missing from the

data? Appendix D derives the appropriate SVAR restrictions when some state variables are

unobserved. News and noise shocks may still be identified, but the problem is computation-

ally more intensive; we do not have an analytical solution for the implied decomposition of

the variance matrix Σ.

4 Application to Fiscal and Monetary Policy Shocks

We apply our structural VAR method to data on US time series. We identify clear fiscal

shocks and monetary policy shocks, estimate the implied multipliers, and study the general

effects of news versus surprises.
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4.1 Data

Our main source of forecast data is the Survey of Professional Forecasters (SPF), which

is currently run by the Federal Reserve Bank of Philadelphia. The survey is administered

quarterly to roughly 40 anonymous forecasters since 1968. We take the median reported

values as our measure of forecasts.

Some variables are not available in the SPF for the entire sample, so we turn to other

sources. In particular, the SPF only collects estimates on real government consumption

and investment since 1981:III, so before this period we draw from the Federal Reserve’s

official forecasts reported in the Greenbook for every FOMC meeting. These values are

not collected in publicly available datasets for all periods, so when necessary, we transcribe

them from the original Greenbooks. For each quarter, we take the most recent estimate.

We also use the Greenbook forecasts for Federal budget receipts and surpluses. For these

variables, we use the dataset collected by Croushore and van Norden (2018), which we

extend to 2016:IV by transcribing from the most recently released Greenbooks.

For interest rates, we measure forecasts directly from the yield curve. We use this

measure because the SPF only provides forecasts for a limited number of interest rate

horizons, and only since 1981:III. Where rht denotes the return from time t to t + h, we

calculate the forecast E[rht+1] by

E[rht+1] = rh+1
t − r1t

This is known to be a biased forecast, as the yield curve incorporates liquidity and risk pre-

mia as well as expectations. Yet while the yield curve-implied forecasts do not exactly match

the SPF forecasts, they track each other very closely; for 3-month T-bills, the correlation

coefficient is 0.996.

Finally, we use 3-month-ahead futures contracts to measure forecasts for oil prices and

exchange rates. Covered interest rate parity predicts that the implied forecasted growth

rates should track 3-month interest rates closely, but not exactly; deviations depend on

expected costs of holding oil or interest rate differences across countries, respectively.

Table 1 reports the time series that we use. We transform the variables in three different

ways. For NIPA variables and federal budget variables, we follow Ramey (2016) and divide

by an estimated quadratic trend in real GDP. This transformation allows fiscal multipliers

to be read directly from the impulse response functions. For the price level as measured by

the GDP deflator, we take log differences and annualize to calculate the inflation rate. For

other variables that grow regularly (e.g. housing starts), we take logs, but we leave in levels

those variables that are not clearly nonstationary (unemployment, interest and exchange

rates). Finally, we remove a quadratic trend and linear seasonal factors from all variables.
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Variable Date range Forecast Source

Baseline Specification
Real GDP 1968:IV - 2022:II SPF
Federal tax receipts 1968:IV - 2016:IV Fed Greenbooks
Real government spending 1968:IV - 2022:II Fed Greenbooks for 1968:IV - 1981:II

SPF for 1981:III - 2022:II
GDP deflator 1968:IV - 2022:II SPF
3-month Treasury rate 1968:IV - 2022:II Yield curve
Housing starts 1968:IV - 2022:II SPF

Additional Variables
Unemployment Rate 1968:IV - 2022:II SPF
Industrial production 1968:IV - 2022:II SPF
Federal budget surpluses 1968:IV - 2016:IV Fed Greenbooks
USD/CAD exchange rate 1968:IV - 2022:II Futures contracts
Real oil price 1983:I - 2022:II Futures contracts
1, 2, 3, 4, and 5-year Treasury rates 1968:IV - 2022:II Yield curve

Table 1: List of Variables

Our baselines specification appears above the break in Table 1. We include output,

government spending, taxes, short term interest rates, and inflation so that we might identify

shocks that reflect fiscal and monetary policy, which have well-understood effects on these

variables. We also include housing starts as a second measure of real activity; housing starts

have SPF forecasts that cover our entire sample, and aggregate forward-looking decisions

that may be informative about news. Figure 2 plots these detrended and deseasonalized

time series.

Figure 2 plots our baseline time series and their associated forecasts. In constructing the

forecast series ft we aim to satisfy three objectives. The first objective is plausibility: that

our forecasts plausibly reflect all information about outcomes xt+1 at time t. The second

objective is that we do not overfit to the data. The third is the forecasts must satisfy the

identifying assumption: that forecasts contain all the information already available to the

VAR structure, formalized in equation (6).

To meet these objectives we proceed in in two steps, based on the methodology in

Section 3.3. We start by constructing a vector of variables zt which aims to include as

much as possible of the information available at time t about relevant future outcomes. To

do this without overfitting, we a construct three machine learning models separately for

each of the six variables in the baseline VAR: an elastic net, a regression tree, and a simple

linear projection. Each model predicts one-period-ahead outcomes using up to eight lags of
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Figure 2: Baseline Time Series and Forecasts

The solid red line plots our baseline time series. Government spending, output, and federal taxes are real,
deflated by the GDP deflator, and expressed relative to a quadratic real GDP trend. Housing starts are
the natural log, and all data series are deseasonalized and detrended. The source of forecast data is the
SPF for all baseline series, except the Federal Reserve’s Greenbook is used for government spending before
1981:III, and for taxes, while the Treasury forecast is derived from the yield curve. Forecasts are cleaned to
be rational in sample.

both data and outcomes for all 16 variables in Table 1, some 256 possible predictors. We

use rolling cross-validation to select tuning parameters and then pick the model with the

lowest out-of-sample average RMSE individually for each of the six variables. The fitted

predictions thus embody plausible forecasts of xt robust to overfitting. These, we label zt.

And so the N entries of zt are the machine learning predictions for each of the elements of

xt+1. We then include these zt in the cleaning process described in 3.3.

The advantage of this approach is that if there is a variable not in the VAR specification

contains reliable information about future outcomes, this will be included in the constructed

forecast ft. For example, if lagged oil prices – a variable not in our baseline VAR – happen

to be a robust predictor of inflation, then the machine learning models will include them.

And so the relevant entry of zt will contain the component of inflation that can be explained

by oil prices. If this information is supplementary to the information in the lags of the data
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and the empirical forecasts, (xt, . . . , xt−m, f̃t, . . . , f̃t−m), then the cleaned forecast ft will put

weight on it. Likewise, if the empirical forecasts f̃t happen to embody all the information

available about future outcomes, this method would allow ft to fully reflect that.

One disadvantage of this method is that there remains some risk of overfitting. This

arises because we clean the forecasts after cross-validating, and so there may be spurious

reliance on the variables in the VAR. However, this is mitigated by the relatively short

lag length and limited specification of the baseline VAR. Moreover, this reflects a deeper

issue, that the well-known bias-variance tradeoff in forecasting means that our objective of

not overfitting is not always compatible with the identifying assumption in equation (6).

Yet our approach aims to limit the extent of this problem by using the machine learning

forecasts as a bottleneck, limiting information about future outcomes to the same dimension

as the data itself.

4.2 Measuring uncertainty over point estimates

To compute confidence intervals for various statistics, including impulse responses, we boot-

strap the model. To do this, we create a large number, N sim, of simulations of the data

and unbiased forecasts using the data generating process, each of 202 periods – the same

as our sample. For each simulation, we re-estimate the reduced-form VAR and denote the

reduced form coefficients for the jth simulation by (B
(j)
1 , . . . , B

(j)
m ,Σ(j)). We then apply

the identification process to produce estimated structural parameters A(j), C(j), D
(j)
u , D

(j)
v

using the algorithm outlined in Theorem 1. This givens us a simulated distribution of es-

timates which should reflect sampling uncertainty under the null hypothesis that the point

estimates are consistent.

One difficulty is that the simulated structural matrices are only unique up to sign and

re-ordering of the shocks. For example, if shock number 1 in the point estimate A happens

to be a demand shock, there is no guarantee that the same shock is in column 1 of A(j) is the

same shock. Depending on the ordering of components of the singular value decomposition,

a completely different shock may be ordered first. Moreover, because the identification

relies on a second-order statistic – the variance-covariance matrix – the identification is not

unique up to sign. Multiplying the same column in the A and C matrices by −1 gives the

same time series properties, just with the interpretation of what constitutes positive and

negative shocks reversed.

Thus for each simulation, we search over all possible combinations of re-orderings and

sign flips to find that which minimizes the square difference to the point estimates for A

and C. With N = 6 variables, this is already very large, with 2N possible sign flips and

N ! possible reorderings, giving 2N × N ! = 46, 080 possible combinations in total. This

ordering procedure minimizes a continuous loss function, satisfying the requirements for
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Lewis (2021) Theorem 4: our labeling method does not affect the asymptotic distribution

of the structural matrices (and so neither the implied impulse response functions). We can

thus use the sample of structural parameters so created to calculate the distributions of

model statistics as required.

In general, the resulting confidence intervals are quite wide. However, it should be

noted that these reflect a broad range of sources of uncertainty, not always included in

other approaches. First, because we re-estimate the shock variance matrices D
(j)
u , D

(j)
v for

each simulation, our impulse responses show not just the uncertainty over how a given

shock propagates, but also that due to the uncertainty over the size of each shock. This is

particularly important when thinking about impulse responses. Second, sampling variation

means that the reordering and re-signing of the shocks is imperfect – variation due to one

shock may be mistakenly attributed to another. One feature of this is that confidence inter-

vals often exhibit a degree of symmetry around zero, reflecting to difficulty in consistently

signing the shocks. Third, the identification method itself is intrinsically nonlinear, with

small changes in reduced form coefficients sometimes leading to large changes in the struc-

tural coefficients. Finally, because our bootstrap technique matches the observed sample

length, we include variation appropriate to small sample, and do not rely on large-sample

approximations.

As a way to check our estimated sample uncertainty from the bootstrap, we implement

several alternative methods to compute the distribution of coefficient, each of which shut

down some of these sources of uncertainty. One alternative is to draw reduced form samples

from the asymptotic distribution of the VAR coefficients (see (Hamilton, 1994) for details).

This isolates down the small-sample part of the sampling variability. Another is to use

the delta method, which effectively linearizes the mapping from reduced form to structural

coefficients, thus compressing the tails of the sampling distributions. Finally, we also inves-

tigate the role of uncertainty over structural variances Du, Dv by presenting results where

the size of the shock is held fixed in the estimation. We discuss these methods further

further when presenting relevant statistics.

4.3 Shock Labeling

Our identification scheme recovers the structural shocks, but it does not tell us what they

are. For convenience, and to help with interpretation, we devise a labeling scheme for the

shocks, giving them each a name. We base this on the impulse responses to the average

combination of news and surprise shocks. This is because these average shocks are the

closest analogue of estimates which do not make a general distinction between the news

and surprise components of macroeconomic shock. This allows us to label the shocks in line

with the past work. We initially do this qualitatively, proposing a labelling scheme based
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on the signs of the impulse responses. For two of the shocks – monetary and fiscal policy

shocks – we check that the quantitative responses they those estimated elsewhere.

4.3.1 Average impulse response functions

We base our shock labeling scheme on the average impulse responses. That is, the ϵt

responses described in Section 3.4. These are shown in Figure 3, which we calculate as

described in Section 3.4. The response to each structural shock is weighted average of the

response to news and surprise components of the shock. For all variables, the response is

measured as the percentage deviation from trend associated with a unit structural shock.

Dotted and dashed lines show the central 60 and 90 percent of the bootstrapped distribution

of outcomes respectively. We assign labels to each shock initially based on the signs and

significance of the impulse responses.

The first shock features an immediate and statistically significant contraction in gov-

ernment tax revenues and a prolonged and statistically significant increase in government

spending, albeit somewhat delayed. At the same time, output and real activity (as mea-

sured by housing starts) increases. This we label as a fiscal stimulus shock. In Section

4.3.2 we verify that the magnitude of these responses are consistent with tax and spending

multipliers in the literature.

The second shock features a clear, statistically significant, and immediate increase in

short term interest rates. This is followed by a decline in output over the next year or so and

then a subsequent decline in inflation, although not always strongly statistically significant.

In Section 4.3.3 we again verify this shock, by comparing to estimated monetary policy

shocks in the literature.

The third and fourth shocks we label as demand and supply respectively. In the case

of the former, the output response is immediate and statistically significant, with a more

long-lasting increase in inflation and a delayed interest rate response. In contrast to the

fiscal shock, spending goes down and taxes go up, consistent with a aggregate expansion not

driven by the public sector. In the case of the latter, we base our labeling on the markedly

opposing responses of inflation and output on impact.

We leave the final two shocks unlabeled. This is not to say that one could not make

a case for a structural interpretation of either. In particular, the second unlabeled shock

appears much like our monetary policy shock. However, these shocks both fail some of the

quantitative validation tests below. And so we remain silent on the interpretation of these.
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Figure 3: Estimated average impulse responses to structural shocks

The impulse response functions are plotted to an average one standard deviation structural shock, calculated
as in Section 3.4. The solid line is the point estimate and the dashed and dotted lines show respectively the
5th − 95th and 20th − 80th percentile ranges from a bootstrap simulation with Nsim = 500 replications. For
government consumption, output, and taxes, units are percentage points relative to trend lagged output. For
inflation, interest rates, and housing starts, units are annualized percentage points relative to own-variable
lagged trend.
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4.3.2 Validating the Fiscal Policy Shock

To corroborate our interpretation of the first shock as a fiscal policy changes, we show that

the responses are consistent with tax and spending multipliers estimated the literature.

Typically, the h−period fiscal multiplier in response to a fiscal policy shock is defined as

the ratio of the cumulative change in output relative to the cumulative change the relevant

fiscal variable (either taxes or spending).6 That is, the multipliers are:

µhG =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Gt+s

µhT =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Tt+s

where Yt and Gt are output and government spending relative to trend GDP. So an increase

in government spending over h periods totalling 1 percent of trend GDP thus leads to an

increase in cumulative output over the same period equivalent to µhG percent of trend GDP.

As we estimate a more general fiscal shock, which includes both tax and spending

changes, we cannot compute these multipliers individually. However, we can do this exercise

in reverse. That is, taking as given estimates of multipliers from the literature, we can

compute the output response that would be implied by the tax and spending profiles. So

for fixed values of µhT , µ
h
G we can compute:

µhY = µhG

h∑
s=0

Et∆Gt+s + µhT

h∑
s=0

Et∆Tt+s (11)

If we have identified a fiscal shock, and the multipliers estimated in the literature are

correct, then this quantity should be close to our cumulative estimated output response,∑h
s=0 Et∆Yt+s. This fact allows us to construct a test of whether of our fiscal shock labeling

is consistent with the estimates in the literature. We substitute values from several papers

for the tax and spending multipliers into equation (11) and replace the conditional expec-

tations for changes in tax and spending with out estimated impulse responses to compute

µhY at various horizons.7

Table 2 lists the values of the multipliers we use and their sources. Perhaps the most

similar exercise is Lewis (2021), who also identifies the entire set of structural shocks and

must label fiscal shocks based on estimated IRFs. To this we add results from three classic

6Notable papers using this definition include Mountford and Uhlig (2009), Farhi and Werning (2016),
Hagedorn et al. (2019), and others mentioned in the main text. See Batini et al. (2014) or Ramey (2016)
for an overview. Other definitions of multipliers are sometimes used; for example, Blanchard and Perotti
(2002) measure the multiplier using the peak output response, while Leeper et al. (2017) use real interest
rates to discount future quantities.

7This is a benefit of scaling these variables relative to trend GDP prior to estimating our VARs (see
Section 4.1). It means that the impulse responses are already in the appropriate units.
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papers: Blanchard and Perotti (2002), Ramey (2016), and Romer and Romer (2010).8 As

the latter two estimate only spending and tax multipliers separately, we combine them.

To these, we add the well-known estimates of Caldara and Kamps (2017) who use two

approaches to estimate dynamic tax and spending multipliers. We also consider two recent

estimates of the spending multiplier – Ricco (2015) and Ben Zeev and Pappa (2017) – again

supplementing them with tax multipliers from Romer and Romer (2010).

The individual points in Figure 4 the show the corresponding literature-consistent output

responses, µhY , for each of these estimates. This is compared to our estimated cumulative

output response, both point estimates (solid lines) and bootstrapped confidence intervals

(dashed and dotted). The agreement with the Lewis (2021) estimates is remarkably close.

Indeed, we should emphasize that the solid line and the points are from entirely separate

calculations. Ex ante, there is nothing which necessarily says that these should line up.

This close agreement suggests that is shock very similar to the fiscal shock identified by

Lewis (2021), validating our interpretation. The remaining estimates are generally within

or close to the confidence intervals for our estimates, especially at shorter horizons, and so

further buttressing further our interpretation. Of course, the implied output response using

the Blanchard and Perotti (2002) multipliers is a little large. However, this reflects the fact

that they simply find multipliers which are much larger than those measured in more recent

work.

4.3.3 Validating the Monetary Policy Shock

Here we validate our claim that the second shock in Figure 3 can be interpreted as a

monetary policy shock. Our approach is to again to show that the average impulse responses

look quantitatively similar to those in the literature.

Specifically, we utilize the monetary policy shocks identified by Bauer and Swanson

(2022), who isolate the unanticipated component of monetary policy changes using high

frequency variation around both FOMC announcements and speeches by the Fed chair,

orthogonalized to asset prices. In order to compare like with like, we aggregate the Bauer-

Swanson shocks at the quarterly frequency and estimate their effects in a VAR with our

baseline data. Figure 5 compares the impulse responses from their shocks against ours.

The high-frequency shocks have very similar quantitative effects on real activity, taxes,

and spending. The impact on interest rates is a little different, although the asymmetry

in the bootstrap means that for most periods, the responses are within the 60 percent

media-centered confidence interval. Effects on inflation, however, are somewhat stronger.

8Blanchard and Perotti (2002) and Romer and Romer (2010) do not report their estimates as cumulative
multipliers, so in order to compare with the other studies, we use the multipliers re-estimated by Lewis (2021)
using Blanchard and Perotti’s method, and the multipliers re-estimated by Favero and Giavazzi (2012) using
Romer and Romer’s method.
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Figure 4: Cumulative output response: estimated versus implied by multipliers from the
literature

The solid line is the point estimate and the dashed and dotted lines show respectively the 5th − 95th and
20th − 80th percentile ranges from a bootstrap simulation with Nsim = 500 replications. The points show
the cumulative output responses, µh

Y , implied by our estimated tax and spending responses if the multipliers
were those in the literature, summarized in Table 2.
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Source h µhG µhT
Lewis 2021 2 0.56 0.03

4 0.57 -0.09
8 0.57 -0.71
12 0.64 -1.33
16 0.76 -1.77
20 0.87 -2.06

Blanchard and Perotti 2002 2 0.61 -0.64
4 0.60 -1.01
8 0.56 -2.28
12 0.60 -3.63
16 0.70 -4.69
20 0.80 -5.41

Ramey 2011/Romer and Romer 2010 20 1.20 -2.60
Caldara and Kamps 2017, penalty function 2 0.05 -1.05

6 0.35 -1.20
12 0.55 -0.80
20 0.25 -0.45

Ben Zeev and Pappa 2017/Romer and Romer 2010 6 2.40 -1.25
Ricco 2015/Romer and Romer 2010 16 1.50 -2.60

Table 2: Tax and spending multipliers from the literature

Table 2 shows the values of the tax and spending multipliers used to calculate µh
Y , the implied cumulative

output response from the tax and spending responses for the fiscal shock. Where a pair of papers is cited,
the former is used to calculate the spending multiplier, µh

G, and the latter the tax multiplier, µh
T . The

cumulative Blanchard and Perotti (2002) multipliers are those reported by Lewis (2021), and the cumulative
Romer and Romer (2010) multipliers are those reported by Favero and Giavazzi (2012).

4.4 The Importance of News Versus Surprises in Macroeconomic Fluc-

tuations

Having calculated and labeled the structural shocks, ad validated the interpretation of the

two policy shocks, we now decompose each into its news and surprise components

Figure 6 splits out the point estimate impulse responses to the average shocks into their

news and surprise components. This shows that the importance of news and surprises

varies considerably across different shocks. For instance, supply and demand shocks are

driven more by news and surprises respectively. This accords with the common view of

demand shocks as relatively fast-moving and harder to predict. Likewise, fiscal policy

appears on average a larger surprise component than monetary policy, for which surprises

seem generally to be more important.

To investigate this issue in a little more depth, we construct an explicit variance decom-

position for all the variables and shocks in our model. It is relatively straightforward to
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Figure 5: Estimated IRFs to Monetary Shocks

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed using the high-frequency monetary policy shocks of Bauer and Swanson (2022). To match samples
and specification, the line labelled “high-frequency identification” line reports the results from estimating a
four-lag VAR with the same variables and coverage as our baseline model, extended to including the Bauer
and Swanson (2022) shocks and where the impulse responses are computed from a Cholesky decomposition
with the monetary shock ordered first. The solid line labeled “Baseline” is the point estimate and the
dashed and dotted lines show respectively the 5th − 95th and 20th − 80th percentile ranges from a bootstrap
simulation with Nsim = 500 replications.

show that the h−step ahead forecast error variance can be written as the sum of contribu-

tions from the news and surprise components of each of the structural shocks. In Appendix

C, we work out this decomposition for the general case. But when M = 1, this becomes:
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Figure 6: Estimated IRFs to Structural Shocks

The impulse response functions are plotted to an average unit structural shock, calculated as in Section 3.4.
The dark and light gray bars capture the relative contribution of news and surprise to an average structural
shock. For government consumption, output, and taxes, units are percentage points relative to trend lagged
output. For inflation, interest rates, and housing starts, units are annualized percentage points relative to
own-variable lagged trend.
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MSEtxt+h =
N∑
j=1

(
h∑

s=1

Bh−s(AjA
′
j)(B

′)h−s

)
σ2u,j

+
N∑
j=1

(
h∑

s=1

1h>1B
h−s−1

(
AjA

′
j +B(CjA

′
j) + (AjC

′
j)B

′

+B(CjC
′
j)B

′) (B′)h−s−1 + (CjC
′
j)

)
σ2v,j (12)

where Aj and Cj are the jth columns of matrices A and C respectively and 1h>1 is an

indicator function that is 1 if h > 1 and 0 otherwise. Note that because this is linear

in the variances of each of the news and surprise shocks (the σ2u,j and σ2v,j), this can be

interpreted as an additive decomposition of the total variance with each term representing

the contribution from each shock.

Table 3 reports this variance decomposition. For most variables, both news and surprises

play an important role. In general, news seems to account for a smaller share of variance,

but it is still not trivial – around 25 to 35 percent. This generally large role for news is

consistent with broad themes int he literature. Empirical studies of news following Beaudry

and Portier (2006) and Barsky and Sims (2011) broadly find large roles for news to explain

business cycles. These types of papers associate news with forecast errors about technology;

with our identification strategy, we can go further and find news associated with the entire

set of structural shocks. One important exception is that inflation. There, news matters

more, accounting for around 67 percent of fluctuations 6 years ahead. This is principally

driven by news about demand – consistent with the idea that inflation is driven by forward-

looking agents responding to changes in aggregate demand. Indeed, demand shocks are the

largest or second largest contributor to the variation in all variables, something that seems

reasonable for a business-cycle frequency analysis if policy shocks are generally stabilizing.

The relative importance of news is much less stable across shocks, however. It is hard to

summarise the relative importance of news for each shock – different variables have different

variances, and so it is not obvious how to create a summary measure of the importance of

news for each shock across a range of outcomes. But in general, fiscal shocks are the

most “newsy” likely reflecting the long lags in implementing fiscal policies. The minority

share of news in supply shocks might seem a little curious given its apparent importance in

Figure 6. However, this is largely due to the fact that new about supply shocks typically

have offsetting effect at different horizons, limiting their impact as a long-run driver of

macroeconomic fluctuations.

Some variable-shock-specific points are also worth highlighting here. Notably, monetary
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Variable Type Fiscal stimulus Mon. policy Demand Supply Unlabeled #1 Unlabeled #2 Total

Gov. spending News 7.9 7.8 6.0 5.2 3.0 0.6 30.5
Surprise 17.9 10.6 2.0 0.2 22.5 16.3 69.5
Total 25.7 18.5 8.0 5.3 25.5 16.9 100.0

Output News 8.7 2.8 16.7 3.2 2.5 2.7 36.5
Surprise 2.0 9.6 28.1 15.3 5.5 3.0 63.5
Total 10.7 12.4 44.8 18.5 8.0 5.6 100.0

Taxes News 5.1 5.2 7.5 1.8 2.2 3.9 25.7
Surprise 19.4 2.1 14.6 17.3 7.6 13.4 74.3
Total 24.5 7.3 22.0 19.1 9.8 17.3 100.0

3-month interest rate News 6.4 2.1 16.9 4.8 2.2 1.9 34.4
Surprise 0.9 8.2 16.6 11.2 7.3 21.4 65.6
Total 7.3 10.2 33.5 16.1 9.6 23.3 100.0

Housing starts News 4.8 4.0 5.4 2.7 1.6 2.5 21.0
Surprise 10.6 30.5 17.5 5.6 2.6 12.2 79.0
Total 15.4 34.6 22.9 8.3 4.1 14.7 100.0

Inflation News 6.0 2.4 33.6 19.3 1.7 4.8 67.8
Surprise 0.8 2.2 10.8 14.7 0.4 3.2 32.2
Total 6.8 4.6 44.4 34.0 2.1 8.0 100.0

Table 3: Forecast error variance decomposition, 24 quarters ahead

The forecast error decomposition shows for each variable in percent the fraction of the overall forecast error
variance attributable to each shock, split into the news and surprise components. Totals are shown in the
right hand column. The news and surprise components sum to 100 for each variable. The “Avg. share”
row is calculated as the unweighted average by shock of the share of variance for each variable due to news
or surprise for each variable. It is thus a rough summary measure of the relative importance of news and
surprise for a given shock across all variables.

policy shocks only drive a small amount of the variance in interest rates. This would be true

if monetary policymakers generally adhere to a policy rule which responds to other shocks.

The same is not true for fiscal variables, which are predominantly driven by policy changes

and, in the case of taxes, supply and demand. Housing starts, a particularly forward-looking

measure of real activity, are most affected by monetary policy and demand shocks.

While news is important for all time series, it is heterogeneous by the type of shock. For

example, the effects of fiscal stimulus shocks are disproportionately due to news, especially

for the output response.. In contrast, the effects of monetary policy shocks are almost

exclusively due to surprises. Other shocks are mixed.

4.5 Policy shocks: News versus surprise

We now turn to the differential impact of policy news and surprise shocks, something that

seems likely to be of interest to policymakers. Figure 7 presents separately the impulse

responses to one-standard-deviation news and surprise innovations for the policy shocks, as

defined in Section 3.4. The interpretation of a news shock is that in period 1, it is revealed

that there will be a surprise shock in period 2. The news impulse therefore combines both

the anticipation of the policy change in period 2 and its realized impact.

The news and surprise components of the fiscal shock are broadly similar. In both

cases, increases in spending and reductions in taxes lead to an increase in output which
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peaks three to four years later. If anything, the policy impact of a news shock is a little

more front-loaded. Upon announcement of the expansion starting in period 2, output rises

immediately. Taxes also increase by a similar amount. This make some intuitive sense –

if an announcement of a tax cut tomorrow likely expands activity today, contemporaneous

revenues will likely rise. Government spending also increases immediately, suggesting an

endogenous anticipation effect of government expenditure to expectations of a future ex-

pansion (for example, if an announcement of new projects tomorrow leads to preparatory

work today). The peak response of output also arrives a little sooner for a news shock,

consistent with a more front-loaded impact.

The news and surprise components of the monetary policy shock are less clear, with

wider confidence intervals. However, despite similar impacts on the interest rate, the im-

pact of a news shock on activity is more immediate. Indeed, the well known “liquidity

effect” – whereby activity and inflation increase temporarily on impact of a monetary pol-

icy tightening appears to be a feature only of surprises and not of news shocks.

5 Counterfactual Policy

This section applies the Wolf and McKay (2022) method to study counterfactual policy

rules.

5.1 Method

One of the key observations in Wolf and McKay (2022) is that in a world where news shocks

matter, policymakers are able to pursue their goals not just through their current actions

but also through news about their future actions. They exploit this insight to address

a long-standing critique of the usefulness of VARs for computing purely empirical policy

counterfactuals: that they are subject to the Lucas critique (Lucas Jr, 1976).

For intuition, imagine that one were to able to perfectly identify the impact of a monetary

policy shock using a VAR and wanted to understand what would have happened if policy had

followed a different rule, one that perfectly stabilized inflation. One possibility, pioneered by

Sims and Zha (2006), would be to use the estimated impulse responses for inflation from the

monetary shock to compute the sequence of policy innovations which would have stabilized

inflation period-by-period. The challenge to this approach is that the policy realized ex

post is inconsistent with agents’ expectations.

Wolf and McKay (2022) show that identification of news shocks is sufficient to overcome

this challenge in a relatively large class of commonly used macro models. The intuition

is that policymakers can implement a different rule not just through a surprise today but

by also communicating their future actions as news shocks. As a result, agents’ ex ante
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Figure 7: Estimated IRFs to Policy Shocks

The impulse response functions are to one-standard-deviation news and surprise components of each fiscal
shock, calculated as in Section 3.4. The solid line is the point estimate and the dashed and dotted lines show
respectively the 5th − 95th and 20th − 80th percentile ranges from a bootstrap simulation with Nsim = 500
replications. For government consumption, output, and taxes, units are percentage points relative to trend
lagged output. For inflation, interest rates, and housing starts, units are annualized percentage points
relative to own-variable lagged trend.
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beliefs are then consistent with the ex post policy rule. This in turn means that policy

counterfactuals can be estimated in three steps: 1) identifying news shocks, 2) compute the

sequence of news and surprises which would implement the counterfactual policy, 3) use the

estimated impulse responses to calculate the responses of the macroeconomy to that rule.

So far, this paper has been about the first of these. We now turn to the remaining ones.

To apply this to our setting, we start by classifying our estimated shocks as either policy

shocks (the fiscal stimulus and monetary policy shocks) or as others (demand, supply, and

the unlabeled shock). We then consider one-at-a-time the problem of the policymakers in

control of each policy shock, assuming that they wish to minimize some loss function.

Specifically, assume that the policymaker controls both the surprise and the news for

shock g, denoted ugt and vgt . We denote the vectors of non-policy shocks by u−g
t and v−g

t .

We consider linear policy counterfactuals which can be written as:[
ugt
vgt

]
= α

[
u−g
t

v−g
t

]
(13)

where α is a 2 × 2(n − 1) matrix recording how the policymaker responds to the other

structural shocks.

Let the impulse responses to surprise and news under this rule be denoted by ψu(h) and

ψv(h). Then: [
ψu(h)

ψv(h)

]
=

[
ϕ−g
u (h)

ϕ−g
v (h)

]
+ α

[
ϕgu(h)

ϕgv(h)

]

We then assume that the policymaker aims to minimize a linear loss function:

min ||xtF ||

for some matrix F . This loss function could be a direct loss due to macroeconomic fluctu-

ations (e.g. departures from an inflation target) or it could be deviations from a specific

policy rule (e.g. a Taylor rule). In either case, we follow Wolf and McKay (2022) by com-

puting α to minimize this loss. A sufficient condition for this is to minimize the loss function

on the impulse responses, as these are just the building blocks of the linear model. We thus

rewrite the problem as:

min

∣∣∣∣∣
∣∣∣∣∣
[
ψu(h)

ψv(h)

]
F

∣∣∣∣∣
∣∣∣∣∣ = min

∣∣∣∣∣
∣∣∣∣∣
[
ϕ−g
u (h)

ϕ−g
v (h)

]
F + α

[
ϕgu(h)

ϕgv(h)

]
F

∣∣∣∣∣
∣∣∣∣∣

When the metric || · || is a sum of squares, this can be solved by estimating α from the
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regression: [
ϕ−g
u (h)

ϕ−g
v (h)

]
F = −α

[
ϕgu(h)

ϕgv(h)

]
F + ϵh (14)

5.2 Counterfactual Exercises

We study two types of counterfactual policies: active policies which aim to moderate busi-

ness cycles, and passive policies which hold policy instruments fixed. In both cases, we

compare and contrast fiscal and monetary policy.

5.2.1 Output Stabilization

In this section, we study how different policy instruments can be used for output stabi-

lization. For each policy instrument, we select the linear combination of news and surprise

shocks that minimize the variance in detrended output. This gives a different policy re-

sponse for each of the remaining 10 shocks (for each policy instrument there are 5 remaining

structural shocks, each with a news and noise component.) In the plots that follow, we only

plot the counterfactual impulse responses to the non-policy structural shocks: supply, de-

mand, and the unlabeled shocks.

Figure 8 shows our results when fiscal stimulus is used to moderate business cycles. The

path of government spending changes most from the baseline in three cases: news about

demand is ordinarily expansionary, so government spending must contract to moderate out-

put, supply surprises are ordinarily contractionary, so government spending must increase

after these surprises, and similarly for surprises to the second unlabeled shock. In most

cases, government spending is able to stabilize output to have nearly no response. The

main exceptions are demand surprises and supply news, which have IRF shapes that can-

not be moderated bya combination of fiscal policy news and surprises. However, there are

costs to this stabilization. In some cases, inflation or interest rates become more volatile,

particularly for the shocks to which the fiscal variables must adjust the most. Focusing

on output stabilization also does not perfectly moderate the other measure of real activity;

housing starts become somewhat less volatile, but not by nearly as much as output, and

certainly not after supply news shocks.

Figure 9 shows our results when monetary policy is used to stabilize output. Monetary

policy is more effective than fiscal stimulus in response to some shocks, in particular demand

suprrises and supply news, but less effective in repsonse to others. This suggests a clear

role for monetary and fiscal coordination. The general prescription is for monetary policy

to tighten relative to the baseline after the expansionary surprise shocks, as conventional

wisdom suggests. In most cases, using monetary policy to stabilize output does not lead to

substantially more inflation.
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5.2.2 Passive Policies

All policy shocks move over the business cycle and lead to expansions and contractions in the

other time series. In this section, we consider counterfactuals where the policy instruments

are as fixed as possible.

Figure 10 plots the counterfactual impulse responses when government spending is nearly

fixed. We are able to construct combinations of shocks to get close to zero government

spending response in most cases except the supply news and unlabeled surprises, which are

small contributors to business cycle volatility. When government spending is fixed, most

time series are much more volatile, output in particular.Most noticeably, unlabeled surprises

are much more expansionary and inflationary. And demand surprises are more expansionary,

suggesting that the baseline government spending policy is actively attenuating the largest

driver of business cycles (Table 3).

Figure 11 plots our results when monetary policy is selected to approximate an interest

rate peg as well as possible. The Wolf and McKay (2022) method assumes that coun-

terfactual equilibria exist and are unique; this famously is not the case for interest rate

pegs in New Keynesian models, so there may be other possible equilibria when such a pol-

icy is implemented. Similar to Wolf and McKay, we find that an interest rate peg does

not substantially affect inflation dynamics. However, we find larger changes to output im-

pulse responses. Still, Wolf and McKay specifically study counterfactual responses to the

Ben Zeev and Khan (2015) news shock about investment costs, which does not have a clear

analog in our VAR.
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Figure 8: Output Stabilization with Government Spending

Baseline time series impulse responses to news and surprise components of the four non-policy structural
shocks under the prevailing baseline rule are plotted as solid lines. The best feasible approximations using
government spending for output targeting are plotted as dashed lines, computed following equation (14)
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Figure 9: Output Stabilization with Monetary Policy

Baseline time series impulse responses to news and surprise components of the four non-policy structural
shocks under the prevailing baseline rule are plotted as solid lines. The best feasible approximations using
monetary policy for output targeting are plotted as dashed lines, computed following equation (14)
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Figure 10: Fixed Government Spending

Baseline time series impulse responses to news and surprise components of the four non-policy structural
shocks under the prevailing baseline rule are plotted as solid lines. The best feasible approximations to fixed
government spending are plotted as dashed lines, computed following equation (14)
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Figure 11: Monetary Policy with an Interest Rate Peg

Baseline time series impulse responses to news and surprise components of the four non-policy structural
shocks under the prevailing baseline rule are plotted as solid lines. The best feasible approximations using
monetary policy to enforce an interest rate peg are plotted as dashed lines, computed following equation
(14)
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A Forecast Cleaning Properties

A.1 Proof of Theorem 2

Proof. Equation (10) and the causal invertibility assumption imply that we can write the
rational expectation as

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Hf (L)−1Hu(L)ut−Hf (L)−1Hv(L)vt

Lags of ut and vt can be written in terms of current and past rational forecasts and ob-
servables, per equation (8). Denote these representations with the invertible lag operator
polynomials ut = Mu

x (L)xt +Mu
f (L)ft and vt = Mv

x (L)xt +Mv
f (L)ft. The rational expec-

tation becomes:

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Mu
x (L)xt−Mu

f (L)ft−Mv
x (L)xt−Mv

f (L)ft

= (I+Mu
f (L)+M

v
f (L))

−1
(
Hf (L)−1f̃t − (Hf (L)−1Hx(L) +Mu

x (L) +Mv
x (L))xt −Hf (L)−1Hz(L)zt

)
which we simplify by defining the causal lag operator polynomials ψf̃ , ψx, and ψz to collect
coefficients, allowing us to write the rational expectation as

ft = ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt (15)

Consider the relationship between xt+1 and the lagged observables:

xt+1 = ft +Aut+1 + Cvt+1

= ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt +Aut+1 + Cvt+1

ut+1 and vt+1 are orthogonal to current and past observables, so forecasting xt+1 by re-
gressing on lags of f̃t, xt, and zt recovers the rational expectation:

E[xt+1|{f̃t−j , xt−j , zt−j}∞j=0] = E[ft +Aut+1 + Cvt+1|{f̃t−j , xt−j , zt−j}∞j=0]

= E[ft|{f̃t−j , xt−j , zt−j}∞j=0]

which is given by equation (9).

A.2 Noisy Forecast Cleaning

When the conditions of Theorem 2 are not satisfied, the interpretation of our forecast
cleaning becomes weaker, but still useful.

Instead of an ideal rational expectation conditional on all information in available to
forecasters, our cleaned forecasts are the best unbiased forecasts given the observable time
series and reported forecasts. The interpretation of news must change as well. Instead
of the component of structural shocks that is anticipated by forecasters, news is now the
component that can be forecasted by the VAR.

First, we modify equation (5) so that the structural VAR depends on expectations
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of future shocks Et[ϵt+1] in general rather than the news component vt explicitly. This
expectation may include noise shocks or other confounders in addition to the structural vt:

xt =
m∑
j=1

Bjxt−j +Aϵt + CEt[ϵt+1]

Next modify equation (10) so that forecasts are now given by

f̃t = Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Now the empirical forecasts f̃t are not deviations from some ideal rational expectation.
Rather, they are just some linear combination of observables, structural shocks, and the
noise shocks ζt.

The component of forecasts excluding the observable terms is

ξt ≡ Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Let Hξ(L)wξ
t denote the Wold decomposition of ξt, with w

ξ
t white noise. Forecasting xt+1

gives the cleaned forecast:

ft = E[xt+1|Ω] =
m∑
j=1

Bjxt+1−j +AE[ϵt+1|Ω]

=
m∑
j=1

Bjxt+1−j +AE[ϵt+1|{ξt−j}∞j=0] =
m∑
j=1

Bjxt+1−j +AE[ϵt+1|wξ
t ]

so we define our reduced form news ṽt as

ṽt ≡ E[ϵt+1|wξ
t ]

= DvH
v
0
′Σ−1

wξw
ξ
t

where Hv
0 is the contemporaneous coefficient matrix in the Hv(L) polynomial.

ṽt enters the structural VAR in the same way as the true news shock vt. So when
can we identify it using the method derived in Section 3? When the dimensions of ṽt are
orthogonal, i.e. when Hv

0
′Σ−1

wξ is diagonal. What does this mean? The fundamental shock

ϵit+1 to dimension i is associated one-for-one with a noise shock ζit to that dimension. Noise
shocks to different dimensions cannot co-vary.

Does this imply agents cannot receive signals about different fundamentals with corre-
lated noise? No. For example, GDP can still be a noisy signal about both productivity
and labor supply. Rather, the condition requires that the noise shocks can be separated
into orthogonal noise for each fundamental shock. News-noise equivalence (Chahrour and
Jurado, 2018) implies that this condition is equivalent to the structural assumption that
news shocks are mutually orthogonal.
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B Additional News Horizons

Our baseline method considers 1-period-ahead news. But sometimes shocks are anticipated
even further in advance. In this appendix, we describe how to generalize our method to
account for news at multiple horizons by including additional forecasts in the VAR.

We define some new notation decomposing structural shocks into their anticipated com-
ponents over many horizons, similar to Wolf and McKay (2022):

ϵt = νt|t + νt|t−1 + νt|t−2 + ...+ νt|t−k

The shock vector ϵt depends on news shocks νt|t−j received at each horizon j in the past,
up to k total horizons. Mapping to our original one-period-ahead notation, the first two
horizons of news were written as νt|t = ut and νt|t−1 = vt−1.

To generalize equation (5), assume that the linear model is:

xt =
m∑
j=1

Bjxt−j +
k∑

i=0

AiEt[ϵt+i]

=
m∑
j=1

Bjxt−j +
k∑

i=0

Ai

(
k−i∑
ℓ=0

νt+i|t−ℓ

)

And suppose you have data on rational forecasts up to horizon k:

f it ≡ Et[xt+i]

Stack the expectations and time series into a single VAR(m− 1):
fkt
...
f1t
xt

 =
m−1∑
j=1

Bj


fkt−j
...

f1t−j

xt−j

+A


νt+k|t
...

νt+1|t
νt|t

 (16)

where

Bj ≡




B1 ... Bk−1 Bk Bk+1

... ...
...

...
...

0 ... I 0 0

0 ... 0 I 0

 j = 1


0 ... 0 0 Bk+j

... ...
...

...
...

0 ... 0 0 0

0 ... 0 0 0

 j > 1

which is the generalization of equation (8).

45



The coefficients in A are determined by how new shocks affect the forecast updates:

Et[xt]− Et−1[xt] =
k∑

i=0

Aiνt+i|t

Et[xt+1]− Et−1[xt+1] = B1(Et[xt]− Et−1[xt]) +

k−1∑
i=0

Aiνt+1+i|t

...

Et[xt+ℓ]− Et−1[xt+ℓ] =
ℓ∑

j=1

Bj(Et[xt+ℓ−j ]− Et−1[xt+ℓ−j ]) +
k−ℓ∑
i=0

Aiνt+ℓ+i|t

which implies

A


νt+k|t
...

νt+1|t
νt|t

 = ...


... ...

...
...

Ak−2 +B1(Ak−1 +B1Ak) +B2Ak ... B1(A0 +B1A1) +B2A1 B2
1B1A0 +B2A0

Ak−1 +B1Ak ... A0 +B1A1 B1A0

Ak ... A1 A0




νt+k|t
...

νt+1|t
νt|t


Our baseline method with one-period-ahead news was exactly identified (so long as

invertibility conditions were met). With longer horizons, the matrix A is overidentified,
so additional forecast horizons can be useful to help discipline estimation. The matrices
A0, A1, ...Ak have (k+1)n2 unknowns, and the variance of each news shock V ar(νt+j|t) adds
an additional (k + 1)n unknowns. The covariance matrix Σ of residuals from the VAR has

up to ((k+1)n)2

2 + (k+1)n
2 independent entries. Finally, variance adding up gives n additional

restrictions:

In =

k∑
j=0

V ar(νt+j|t)

When do the number of independent entries and restrictions exceed the number of un-
knowns? When the number of news horizons satisfy k > 1:

((k + 1)n)2

2
+

(k + 1)n

2
+ n > (k + 1)n2 + (k + 1)n

((k + 1)n)2 + (k + 1)n > 2(k + 1)n2 + 2kn

(k − 1)n2 + (k − 1)n > 0

which holds with equality for k = 1.
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C Variance Decomposition Derivation

Restating equation (5)

xt =
m∑
j=1

Bjxt−j +Aϵt + Cvt

=
m∑
j=1

Bjxt−j +Aut +Avt−1 + Cvt

Letting Xt be the appropriately stacked vector of m lags of xt. Then:

Xt = B̂Xt−1 + Âut + Âvt−1 + Ĉvt

Where B̂ concatenates the Bj and adds the lag matrix at the bottom, and Â and Ĉ add a
bunch of zeros in the extra rows.

Then the h−period forecast error is:

Xt+h − EtXt+h =

{
Âut+1 + Ĉvt+1 h = 1∑h

s=1 B̂
h−sÂut+s +

∑h−1
s=1 B̂

h−s−1
(
Â+ B̂Ĉ

)
vt+h + Ĉvt+h h > 1

And the corresponding error variance for the forecast is:

MSEtXt+h =


ÂDu(Â)

′ + ĈDv(Ĉ)
′ h = 1∑h

s=1 B̂
h−sÂD2

uÂ
′(B̂′)h−s

+
∑h−1

s=1 B̂
h−s−1

(
Â+ B̂Ĉ

)
D2

v

(
Â+ B̂Ĉ

)′
(B̂′)h−s + ĈD2

vĈ
′ h > 1

And the hs-period-ahead variance due to the jth shock has contemporaneous and news
components given by:

Surprise = σ2u,j

h∑
s=1

B̂h−s(ÂjÂ
′
j)(B̂

′)h−s

News =


σ2v,j(ĈjĈ

′
j)

′ h = 1

σ2v,j(ĈjĈ
′
j)

+
∑h

s=1 B̂
h−s−1

(
ÂjÂ

′
j + B̂(ĈjÂ

′
j) + (ÂjĈ

′
j)B̂

′ + B̂(ĈjĈ
′
j)B̂

′
)
(B̂′)h−s−1 h > 1

Where Âj etc. are the jth column of the corresponding matrix
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D Hidden States

Our identification method requires that the structural VAR in equation (5) is the true data
generating process. But what if there are hidden states in the economy that do not appear
in the data? In this section, we generalize the method to allow for this possibility.

Again suppose that the state vector xt follows equation (5), but has some dimensions
that are not directly observed. Instead, the data vector yt is determined by the observation
equation

yt = xt +Gut +Gvt−1 +Hvt (17)

Without loss of generality, we can normalize the hidden states to obey equations (5) and
(17).

Observations are related to forecasts by

yt = ft−1 + (A+G)ut + (C +H)vt

while the forecasts ft = Et[yt+1] are now given by

ft = Et[xt+1] +Gvt =
m∑
j=1

Bjxt+1−j + (A+G)vt

=
m∑
j=1

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(yt −Gut −Gvt−1 −Hvt) +

m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(ft−1+Aut−Gvt−1+Cvt)+
m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j)+(A+G)vt

Stack the expectations and time series into a single VARMA(m− 1,m):(
ft
yt

)
=

m−1∑
j=1

Bj

(
ft−j

yt−j

)
+

m∑
j=0

Aj

(
vt−j

ut−j

)
(18)

where (as before)

Bj ≡



(
B1 B2

I 0

)
j = 1(

0 Bj+1

0 0

)
j > 1
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and

Aj ≡



(
B1C +A+G B1A

C +H A+G

)
j = 0(

−BjG−Bj+1H −Bj+1G

0 0

)
m > j > 0(

−BmG 0

0 0

)
j = m

As in the simple VAR case, the autoregressive terms identify the Bj matrices. But now
A0 has two additional matrices that thwart identification: G andH. Fortunately, the hidden
state structure introduces additional MA terms, which allow for possible identification of
G and H. We emphasize that with the structure, we only have sufficient conditions for
identification – at least as many linearly independent equations as unknowns – but not a
constructive proof analogous to Theorem 1. This is because our baseline method admits an
analytical solution to the decomposition of the variance matrix Σ, but we have found no such
analytical solution in this generalization, so estimation must use a numerical decomposition.

We use A1 to demonstrate identification, although these matrices are now potentially
overidentified, so we can use even more lags to improve the statistical power when estimating
G and H. The variance matrix of forecast errors is now

Σ0 = A0

(
D2

v 0
0 D2

u

)
A′

0

but with the MA structure, it is possible to identify the covariance matrix of any two MA
components, i.e.:

Σij = Ai

(
D2

v 0
0 D2

u

)
A′

j

To calculate the Ai matrices, subdivide the matrix Σjj ≡
(

Σj,11 Σj,12

Σj,21 Σj,22

)
into n × n

blocks. The off-diagonal submatrices satisfy Σj,12 = Σ′
j,21, so the remaining submatrices are

given by
Σ0,11 = (B1C +A+G)D2

v(B1C +A+G)′ +B1AD
2
uA

′B′
1

Σ0,21 = (C +H)D2
v(B1C +A+G)′ + (A+G)D2

uA
′B′

1

Σ0,22 = (C +H)D2
v(C +H)′ + (A+G)D2

u(A+G)′

which correspond to the three block matrix equations that we used to identify the original
VAR (Theorem 1). With two additional matrices to identify, use the covariance between
MA terms:

Σ01 =

(
−(B1C +A+G)D2

v(B1G+B2H)′ −B1AD
2
uG

′B′
2 0

−(C +H)D2
v(B1G+B2H)′ − (A+G)D2

uG
′B′

2 0

)
Which, in addition to

D2
u +D2

v = I
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is as many linear restrictions as unknowns.
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