Identifying Monetary Policy Shocks: A Natural Language Approach

S. Borağan Aruoba Thomas Drechsel
(University of Maryland)

March 2023
Goal: study the effects of monetary policy i_t on macro variables Y_t

Problem: i_t endogenously reacts to Y_t

Formalize problem:

$$i_t = f(\Omega_t) + \varepsilon_t$$

- Ω_t: information set of central bank, contains Y_t
- $f(\cdot)$: systematic conduct of monetary policy
- ε_t: monetary policy shock
MOTIVATION

 - Run linear regression
 \[\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \varepsilon_{t}^{RR} \]
 - \(X_t \) contains forecasts from documents prepared for FOMC ("Greenbooks")
 - With residuals \(\hat{\varepsilon}_{t}^{RR} \), construct IRFs of \(Y_t \)
MOTIVATION

 - Run linear regression
 \[\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \varepsilon_{t}^{RR} \]
 \(X_t\) contains forecasts from documents prepared for FOMC ("Greenbooks")
 - With residuals \(\hat{\varepsilon}_{t}^{RR}\), construct IRFs of \(Y_t\)

- Key assumptions:
 1. Forecasts of Fed economists are good approximation of information set \(\Omega_t\)
 2. Linear specification is good approximation of systematic policy \(f(\cdot)\)
Revive the idea of Romer and Romer (2004) using …

Natural language processing:
- Process language in thousands of pages of text prepared for FOMC meetings
- Show that sentiment around economic concepts is informative beyond forecasts

Machine learning:
- Include forecasts and sentiment indicators in a regression, also nonlinearly
- Hundreds of regressors → apply ridge regression as dense ML technique
PREVIEW OF FIVE FINDINGS

1. Contribution of systematic vs. exogenous changes in monetary policy
 - Original Romer-Romer regression: $R^2 = 0.5$; implies 50% of ΔFFR are shocks
 - Our approach $R^2 = 0.94$; implies much of original RR shock variation is endogenous
PREVIEW OF FIVE FINDINGS

1. Contribution of systematic vs. exogenous changes in monetary policy
 - Original Romer-Romer regression: $R^2 = 0.5$; implies 50% of ΔFFR are shocks
 - Our approach $R^2 = 0.94$; implies much of original RR shock variation is endogenous

2. Inspecting the drivers of systematic changes in monetary policy
 - Mostly real activity sentiments and forecasts, limited role for price variables
1. Contribution of systematic vs. exogenous changes in monetary policy
 - Original Romer-Romer regression: $R^2 = 0.5$; implies 50% of ΔFFR are shocks
 - Our approach $R^2 = 0.94$; implies much of original RR shock variation is endogenous

2. Inspecting the drivers of systematic changes in monetary policy
 - Mostly real activity sentiments and forecasts, limited role for price variables

3. What are monetary policy shocks?
 - FOMC reaches decisions not directly related to staff’s analysis
 - E.g. based on long-run credibility concerns
4. Effects of monetary policy shocks

- Estimated shocks give theoretically consistent IRFs of standard variables
- Not the case for shocks estimated with original Romer-Romer specification

\[i \uparrow \Rightarrow Y \downarrow \quad P \downarrow \quad EBP \uparrow \quad SP500 \downarrow \]
4. Effects of monetary policy shocks
 ▶ Estimated shocks give theoretically consistent IRFs of standard variables
 ▶ Not the case for shocks estimated with original Romer-Romer specification

 \[i \uparrow \Rightarrow Y \downarrow \quad P \downarrow \quad EBP \uparrow \quad SP500 \downarrow \]

5. Real-time application to recent Fed meetings using Beigebooks only
 ▶ Not feasible with original Romer-Romer approach because of forecast publication lag
 ▶ Rate hikes in 2022/23 almost entirely systematic (17bp out of 450 bp are shock)
METHODOLOGY
STEP 1. PROCESS RAW TEXT

- Download documents associated with scheduled FOMC meetings
 - Main focus: Beigebook & Tealbook A (for earlier dates: Red- & Greenbooks)
 - Real-time version: Beigebook only

- Start with the meeting on October 5, 1982, which is when the Fed started targeting the Fed Funds Rate as their policy tool, see Thornton (2006)

- End with latest available meeting in December 2016 \Rightarrow 276 FOMC meetings

- Some of subsequent analysis runs until the ZLB (2008:10)
STEP 2. IDENTIFY ECONOMIC CONCEPTS

- After cleaning steps, we store all singles, doubles, and triples
 - “… consumer price inflation …” gives a triple, two doubles and three singles
 - “… inflation and economic activity …” gives us three singles and one double
 - “… for inflation. Activity on the other hand…” gives us three singles

- Select most frequently discussed economic concepts

- Combine/exclude overlapping concepts

- Final list amounts to 296 economic concepts
Most frequent economic concepts:

- durable_goods
- auto_sales
- reserves
- financial_developments
- productivity
- deposits
- current_account
- retail_sales
- domestic_demand
- unemployment
- hours
- cpi
- recovery
- import_prices
- euro
- borrowing
- yield
- nominal_gdp
- wages
- tourism
- gdp
- exports
- loans
- credit
- lending
- oil_prices
- liquidity
- hiring
- stock_market
- energy_prices
- residential_real_estate
- commodity_prices
- machinery
- china
- output
- equipment
- housing
- weather
- japan
- weather
- canada
- currencies
- vacancies
- new_orders
- labor_market
- structures
- consumer_confidence
- compensation_per_hour
- economic_growth
STEP 3. CONSTRUCT SENTIMENT

- Apply a method inspired by Hassan, Hollander, van Lent, and Tahoun (2020)
- Consider the 10 words mentioned before and after each concept's appearance
- Check whether these are words associated with positive or negative sentiment
 - Use classification based on enhanced version of Loughran and McDonald (2011)
- Each positive word gives a score of +1 and each negative word of -1
- Sum up the scores within a meeting, and scale by the total number of words
- Using sentences instead of +/- 10-word windows gives very similar indicators
EXAMPLE: SENTIMENT AROUND “ECONOMIC ACTIVITY”
STEP 4. RUN RIDGE REGRESSION

$$\Delta i_t = \alpha + \beta i_{t-1} + \Gamma(\tilde{X}_t, Z_t) + \varepsilon^*_t$$

- \tilde{X}_t: numerical forecasts: with all variables, lags, differencing \rightarrow 132 time series
- Z_t: sentiment indicators \rightarrow 296 time series, also include 4 lags
- $\Gamma(\cdot)$ captures non-linearity \rightarrow implement as linear-quadratic specification

- Problem is “curse of dimensionality”
 - In above setting, 3,226 variables on the right hand side
 - Before ZLB, 210 observations

- Solution: ridge regression with 10-fold cross-validation
INTERMEDIATE VALIDATION EXERCISE:
DO SENTIMENT INDICATORS PROVIDE USEFUL INFORMATION?
DO SENTIMENT INDICATORS PROVIDE USEFUL INFORMATION?

 - Enough to orthogonalize FFR changes with respect to the staff’s forecasts alone ...
 - ... IF forecast for variable of interest incorporates available information efficiently
 - Argument relies on Greenbook forecast of $X = E[X|\Omega]$

- We provide evidence that Greenbook forecast best interpreted as **modal**

 “I would characterize our forecasts over the years as an effort to present a meaningful, modal forecast of the most likely outcome. When we felt that there was some skewness to the probability distribution, we tried to identify it. In this instance, as we looked at the recent data, we felt that there was a greater thickness in the area of our probability distribution a little above our modal forecast.”

 (Michael Prell, director of RS in FOMC meeting on July 2-3, 1996)

- We show econometrically that sentiments predict forecast errors, so $X \neq E[X|\Omega]$
DO SENTIMENT INDICATORS PROVIDE USEFUL INFORMATION?

<table>
<thead>
<tr>
<th></th>
<th>(1) current quarter</th>
<th>(2) 1-quarter ahead</th>
<th>(3) 1-year ahead</th>
<th>(4) 2-years ahead</th>
<th>(5) current quarter</th>
<th>(6) 1-quarter ahead</th>
<th>(7) 1-year ahead</th>
<th>(8) 2-years ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PC of all sentiments</td>
<td>-0.029* [0.016]</td>
<td>-0.114** [0.049]</td>
<td>-0.445** [0.190]</td>
<td>-0.622** [0.238]</td>
<td>-0.026 [0.016]</td>
<td>-0.098** [0.048]</td>
<td>-0.285* [0.165]</td>
<td>-0.363** [0.171]</td>
</tr>
<tr>
<td>Economic activity sentiment</td>
<td>-0.019 [0.014]</td>
<td>-0.070** [0.033]</td>
<td>-0.082 [0.121]</td>
<td>0.059 [0.201]</td>
<td>-0.019 [0.014]</td>
<td>-0.069** [0.035]</td>
<td>-0.077 [0.145]</td>
<td>0.160 [0.258]</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.019 [0.149]</td>
<td>-0.070** [0.033]</td>
<td>-0.082 [0.121]</td>
<td>0.059 [0.201]</td>
<td>-0.019 [0.014]</td>
<td>-0.069** [0.035]</td>
<td>-0.077 [0.145]</td>
<td>0.160 [0.258]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.045</td>
<td>0.149</td>
<td>0.248</td>
<td>0.208</td>
<td>0.033</td>
<td>0.097</td>
<td>0.090</td>
<td>0.055</td>
</tr>
<tr>
<td>Obs</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>62</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>62</td>
</tr>
</tbody>
</table>

- Unemployment rate forecast errors predictable with sentiments
- Interpretation: negative activity sentiment \Rightarrow positive error is consistent with negative sentiment capturing thicker upper tail

*Significant at the 10% level
**Significant at the 5% level
RESULTS OF THE IDENTIFICATION PROCEDURE
\(R^2 \) ACROSS DIFFERENT REGRESSION MODELS

\[
\begin{array}{|l|c|c|c|}
\hline
\text{Romer-Romer original OLS with subset of forecasts} & 19 & 0.50 \\
\text{Ridge with extended set of forecasts} & 133 & 0.55 \\
\text{Ridge with all forecasts & sentiments (linear)} & 429 & 0.65 \\
\text{Ridge with all forecasts & sentiments (nonlinear)} & 858 & 0.75 \\
\text{Ridge with all forecasts & sentiments (linear with lags)} & 1,613 & 0.87 \\
\text{Ridge with all forecasts & sentiments (nonlinear with lags)} & 3,226 & 0.94 \\
\hline
\end{array}
\]

\(R^2 \) tells us how much of the variation in \(\Delta i \) is explained by systematic policy.

Wider side of forecasts, human language, lags and nonlinearities all rise \(R^2 \).
WHAT EXPLAINS THE SYSTEMATIC COMPONENT?

<table>
<thead>
<tr>
<th>Sentiment PC1</th>
<th>Sentiment PC2</th>
<th>Numerical forecast PC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>economy</td>
<td>advanced foreign economies</td>
<td>-0.141 output growth (+1) 0.187</td>
</tr>
<tr>
<td>firms</td>
<td>merchandise</td>
<td>0.140 output growth (0) 0.175</td>
</tr>
<tr>
<td>economic activity</td>
<td>foreign economies</td>
<td>0.135 bus. fixed inv. growth (+2) 0.160</td>
</tr>
<tr>
<td>manufacturing activity</td>
<td>credit standards</td>
<td>-0.131 ind. prod. growth (+1) 0.160</td>
</tr>
<tr>
<td>commercial real estate</td>
<td>farm</td>
<td>0.127 output growth (+2) 0.158</td>
</tr>
<tr>
<td>manufacturing firms</td>
<td>cash</td>
<td>0.125 nominal output growth (+1) 0.153</td>
</tr>
<tr>
<td>labor market</td>
<td>core inflation</td>
<td>-0.124 housing starts (+1) 0.151</td>
</tr>
<tr>
<td>services</td>
<td>industrial production</td>
<td>0.123 housing starts (+2) 0.150</td>
</tr>
<tr>
<td>consumer confidence</td>
<td>trade deficit</td>
<td>0.121 housing starts (+3) 0.150</td>
</tr>
<tr>
<td>industries</td>
<td>developing countries</td>
<td>0.119 housing starts (0) 0.149</td>
</tr>
</tbody>
</table>

- Real activity variables important for sentiment and forecast PCs
- Limited role for sentiment around price and financial variables
Estimated monetary policy shocks

Residual (ppt FFR change)

Original Romer–Romer residuals
Residuals from full nonlinear ridge regression

FOMC meeting date

WHAT ARE MONETARY POLICY SHOCKS?

- In the paper we provide case studies for meetings with largest estimated shocks.
- It turns out that these are situations in which the FOMC made decisions based on considerations not directly related to the economic outlook.
 - In particular long-run credibility concerns.
- Key example is November 1994 meeting, largest tightening shock in our sample.
 - Staff material suggests market had already built in a rate hike.
 - Greenspan advocated a larger hike: “a mild surprise would be of significant value.”
THE EFFECTS OF MONETARY POLICY SHOCKS
SETTING TO ESTIMATE IRFS

- Directly follow monthly BVAR framework Jarocinski and Karadi (2020)
- Shock series is 1982:10 to 2008:10, but can estimate BVAR through to 2016
- System includes 1-year Treasury yield, the log of the S&P500, log real GDP, the unemployment rate, the log GDP deflator, and the excess bond premium (EBP)
- Report bands based on 16th and 84th percentiles
- Results similar with local projections approach (Jordà, 2005)
FULL NONLINEAR RIDGE VS. RR OLS
REAL-TIME APPLICATION
IDEA OF REAL-TIME APPLICATION

- Beigebooks are publicly available prior to every FOMC meeting
- Constructing sentiments from Beigebook \rightarrow limited proxy for FOMC’s information
 - We verify this in the period where we can use both Tealbooks and Beigebooks
- Not possible to apply original Romer-Romer method: no forecasts in Beigebook!
- Run regression over the 2015-2022 period and zoom in on 2022 and early 2023
INTEPRETING THE 2022-23 RATE HIKES

- Contractionary shock component (orange area) cumulates to 17 basis points
CONCLUSION
CONCLUSION

- Classic question in macroeconomics: what are the effects of monetary policy?
- This paper estimates monetary policy shocks by:
 - Accurately capturing the information available to the FOMC
 - Allowing for nonlinearities in the decision process
- NLP and ML techniques enable us to retrieve shocks with desirable proprieties
- Monetary policy has sizeable effects on activity, inflation, asset prices, risk premia
- **We make our estimated shocks and sentiment indicators available online!**
REFERENCES

APPENDIX SLIDES
Using the raw list of economic concepts, we combine/exclude overlapping concepts

- Combine singular and plural, e.g. “oil price” and “oil prices”
- Separate mutually exclusive important concepts, e.g. keep “commercial real estate” and “residential real estate,” but drop “real estate”
- Subsume unimportant concepts if sufficiently related, e.g. drop “consumer credit” and “bank credit,” but keep “credit”
- Exclude direct mention of policy rate, since that is discussion of the action
3. EXAMPLES OF POSITIVE AND NEGATIVE WORDS

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequate</td>
<td>adversely</td>
</tr>
<tr>
<td>advantage</td>
<td>aggravate</td>
</tr>
<tr>
<td>benefit</td>
<td>bad</td>
</tr>
<tr>
<td>boost</td>
<td>burdensome</td>
</tr>
<tr>
<td>confident</td>
<td>collapse</td>
</tr>
<tr>
<td>conducive</td>
<td>concerning</td>
</tr>
<tr>
<td>desirable</td>
<td>decline</td>
</tr>
<tr>
<td>diligent</td>
<td>deficient</td>
</tr>
<tr>
<td>easier</td>
<td>eroded</td>
</tr>
<tr>
<td>encouraging</td>
<td>exacerbate</td>
</tr>
</tbody>
</table>

... ...

... ...
INFLATION EXPECTATIONS

![Graph showing inflation expectations over time with FOMC meeting dates and standardized sentiment scores.](image-url)

- The x-axis represents FOMC meeting dates from 1985 to 2015.
- The y-axis represents the standardized sentiment score.
- The graph includes shaded areas indicating significant events or periods.

Back
LABOR MARKET

![Graph showing the standardized sentiment score over time with FOMC meeting dates highlighted.](image-url)
ADDITIONAL FORECAST ERROR RESULTS: OUTPUT GROWTH

<table>
<thead>
<tr>
<th>Panel (b): output forecast errors on LHS</th>
<th>current quarter</th>
<th>1 quarter ahead</th>
<th>1 year ahead</th>
<th>2 years ahead</th>
<th>current quarter</th>
<th>1 quarter ahead</th>
<th>1 year ahead</th>
<th>2 years ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PC of all sentiments</td>
<td>0.121</td>
<td>0.411</td>
<td>0.540*</td>
<td>-0.171</td>
<td>0.121</td>
<td>0.411</td>
<td>0.540*</td>
<td>-0.171</td>
</tr>
<tr>
<td></td>
<td>[0.220]</td>
<td>[0.325]</td>
<td>[0.310]</td>
<td>[0.402]</td>
<td>[0.220]</td>
<td>[0.325]</td>
<td>[0.310]</td>
<td>[0.402]</td>
</tr>
<tr>
<td>Economic activity sentiment</td>
<td>0.036</td>
<td>0.146</td>
<td>0.079</td>
<td>-0.485</td>
<td>0.036</td>
<td>0.146</td>
<td>0.079</td>
<td>-0.485</td>
</tr>
<tr>
<td></td>
<td>[0.228]</td>
<td>[0.272]</td>
<td>[0.251]</td>
<td>[0.403]</td>
<td>[0.228]</td>
<td>[0.272]</td>
<td>[0.251]</td>
<td>[0.403]</td>
</tr>
<tr>
<td>Constant</td>
<td>0.300*</td>
<td>0.139</td>
<td>-0.252</td>
<td>-0.380</td>
<td>0.300*</td>
<td>0.139</td>
<td>-0.252</td>
<td>-0.380</td>
</tr>
<tr>
<td></td>
<td>[0.167]</td>
<td>[0.276]</td>
<td>[0.340]</td>
<td>[0.750]</td>
<td>[0.167]</td>
<td>[0.276]</td>
<td>[0.340]</td>
<td>[0.750]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.005</td>
<td>0.030</td>
<td>0.049</td>
<td>0.003</td>
<td>0.000</td>
<td>0.003</td>
<td>0.001</td>
<td>0.021</td>
</tr>
<tr>
<td>Obs</td>
<td>206</td>
<td>204</td>
<td>198</td>
<td>54</td>
<td>206</td>
<td>204</td>
<td>198</td>
<td>54</td>
</tr>
</tbody>
</table>
ADDITIONAL FORECAST ERROR RESULTS: INFLATION

Panel (c): inflation forecast errors on LHS

<table>
<thead>
<tr>
<th></th>
<th>current quarter</th>
<th>1 quarter ahead</th>
<th>1 year ahead</th>
<th>2 years ahead</th>
<th>current quarter</th>
<th>1 quarter ahead</th>
<th>1 year ahead</th>
<th>2 years ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PC of all sentiments</td>
<td>0.148</td>
<td>0.170</td>
<td>0.142</td>
<td>-0.011</td>
<td>0.263***</td>
<td>0.222*</td>
<td>0.236*</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>[0.101]</td>
<td>[0.133]</td>
<td>[0.173]</td>
<td>[0.164]</td>
<td>[0.092]</td>
<td>[0.126]</td>
<td>[0.141]</td>
<td>[0.214]</td>
</tr>
<tr>
<td>Economic activity sentiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.163</td>
<td>-0.136</td>
<td>-0.267</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>[0.109]</td>
<td>[0.167]</td>
<td>[0.208]</td>
<td>[0.216]</td>
<td>-0.167</td>
<td>-0.140</td>
<td>-0.271</td>
<td>-0.019</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.163</td>
<td>-0.136</td>
<td>-0.267</td>
<td>0.056</td>
<td>-0.167</td>
<td>-0.140</td>
<td>-0.271</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>[0.109]</td>
<td>[0.167]</td>
<td>[0.208]</td>
<td>[0.216]</td>
<td>[0.103]</td>
<td>[0.160]</td>
<td>[0.201]</td>
<td>[0.207]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.029</td>
<td>0.032</td>
<td>0.017</td>
<td>0.013</td>
<td>0.081</td>
<td>0.049</td>
<td>0.041</td>
<td>0.000</td>
</tr>
<tr>
<td>Obs</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>62</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>62</td>
</tr>
</tbody>
</table>