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Abstract

Out-of-sample tests are widely used for evaluating and selecting between models’ forecasts

in economics and finance. Underlying these tests is often the assumption of constant relative

performance between competing models, however this is invalid for many practical applica-

tions. In a world of changing relative performance previous methodologies give rise to spuri-

ous and potentially misleading results, an example of which is the well-known “splitting point

problem”. We propose a new two-step methodology designed specifically for forecast evalu-

ation and selection in a world of changing relative performance. In the first step we estimate

the time-varying mean and variance of the series for forecast loss differences, and in the second

step we use these estimates to compare and rank models in a changing world. We show that

our tests have high power against a variety of fixed and local alternatives.

1 Introduction

In a field such as economics where the majority of data available is non-experimental, an important

way to judge competing models is by comparing their relative forecasting performance. Out-of-

sample forecast evaluation tests, which are broadly variations of the Diebold-Mariano test from

their 1995 seminal paper, are currently the benchmark for comparing models’ forecasting perfor-

mance. However, in an unstable environment where relative performance between models can
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change over time these tests can generate spurious and potentially misleading results. An ex-

ample of this is the well-known “splitting point problem”. The sample splitting point is used in

Diebold-Mariano-type tests to split the sample into the first part, data used for estimation, versus

the second part, data used for evaluation. The commonly adopted approach advocates a late sam-

ple splitting point which leaves relatively little data for evaluation and consequently leads to these

tests having low power.1 However beyond this broad guideline, the choice of the splitting point

is somewhat arbitrary and left to the discretion of the practitioner. This becomes problematic in

a world of changing relative performance. In such a setting, one model may outperform its com-

petition for some window of data, but under-perform for a different window. Because the splitting

point controls the window of data used for evaluation, different splitting points imply different

evaluation windows and the results of these tests may change or completely reverse depending

on this arbitrary choice. Consequently it opens up the possibility of data-mining for practitioners

to select favorable splitting points that support their desired hypothesis. Despite these drawbacks,

out-of-sample tests are still often preferred to their alternative, in-sample tests. In-sample tests

use all available data for both estimation and evaluation hence they do not suffer a power loss,2

however they are prone to spurious results due to over-fitting. Specifically, the ability of a model

to fit the data is not necessarily connected to the model’s forecasting performance. In fact Hansen

(2010) shows that often a model’s in-sample fit is inversely related to its forecasting performance.

See Hansen and Timmermann (2015) for a discussion on the matter.

To demonstrate the two main problems of the existing out-of-sample tests, namely low power

and the arbitrary dependence on the splitting point, consider the following real-world example.

We forecast the daily variance of IBM returns spanning 2006-2016 using two models: GARCH(1,1)

model with Standard normal errors and GARCH(1,1) model with Student-t errors. Each point on

the graph below, together with the critical values for the test statistic under the null hypothesis,

represents a Diebold-Mariano-type test at that particular splitting point. Variance forecasts are

produced via a standard recursive scheme, 5 minute realized volatility calculated from the data

is used as a proxy for the “true” variance, and mean squared errors are calculated by averaging

squared errors after a particular splitting point. We present the difference in the mean squared er-

rors, ∆MSEt and the associated 5% critical values across a range of splitting point choices, such that

the out-of-sample data starts in December 2010, leaving at most 1500 data points for evaluation.

1See Diebold (2013) for a discussion on this issue and a more recent study by Hirano and Wright (2017) that con-
cludes that current out-of-sample tests perform poorly due to large estimation errors.

2Hansen (2008) proposes a methodology for optimal weight selection of forecasts in nested linear models, but it is
not easy to extend this to nonlinear and non-nested models.
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Figure 1: The figure displays the difference in MSE calculated for GARCH(1,1)-N and GARCH(1,1)-St-t for
IBM data, 2006-2016 using recursive forecasting scheme. The MSE for each of the models is taken with
respect to 5min RV calculated from the data.

This example is representative of many practical applications. For many plausible choices of

the splitting point, the test is not powerful enough to reject. For other choices of the splitting point

we obtain a rejection in one direction, and for yet other choices we obtain a rejection in the opposite

direction. Hence, depending on the choice of splitting point all possible conclusions of the test are

possible. As the practitioner is usually not obliged to show results for all splitting points, in this

example it is possible to select any desired outcome.

In this paper, we propose a new forecast evaluation and selection methodology that is designed

explicitly for a world of changing relative performance, where constant relative performance is

now a special case. Importantly, we distinguish between the notions of forecast evaluation and

forecast selection as in a changing world past performance may not indicate future performance.

Our forecast evaluation test takes inspiration from the spirit of Diebold-Mariano tests and com-

pares the average historical performance of the models to test for overall equal predictive ability. In

contrast to existing out-of-sample tests, our metric for overall equal predictive ability takes account

of the whole sample of forecast losses and does not anchor itself on a particular sample splitting

point, hence making our test robust to the situation of unstable environments. For the purpose

of forecast selection, we propose to rank models based on which model we expect to outperform

in the next period. We do this by constructing forecasted probabilities of how likely the forecast

loss of one model will be smaller than the forecast loss of another model. A practitioner may then

select a model for forecasting next period based on which model is more likely to outperform.
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Our overall methodology is summarized by a two-step procedure. In the first step, we non-

parametrically estimate the time-varying mean and variance for the series of forecast loss differ-

ences. In the second step, we utilize these estimates to compare and rank competing models using

our two proposed approaches. Our statistic comparing average performance for overall equal

predictive ability aggregates the time-varying means normalized by its time-varying standard de-

viation across the entire sample. One therefore can interpret the new test as an aggregated t-test

across the whole sample, which is reminiscent to the weighted least squares idea in the standard

regression framework. For our second approach, we construct forecasted probabilities for how

likely one model will outperform another based upon the estimates from step one. In addition, we

construct forecast intervals, which measure the confidence interval of the forecasted probability. In

general, our two approaches will often coincide in their conclusions, and indeed this is always the

case for examples where relative performance is constant. However in some applications model

A that performed on average equal over the overall sample may suddenly outperform for a short

window towards the end of the sample. In such a situation, our first approach will indicate his-

torical equal predictive ability, however our second approach will propose to select model A for

future forecasts. The second approach is more relevant for the purpose of ranking models for fu-

ture forecasts, however because it is only concerned only with the next period performance, the

resulting ranking is noisier and subject to change depending on the end date of the sample. On

the other hand, a practitioner may be interested in which model provided a better explanation to

the data, and here our first approach will be more appropriate to address the question. We believe

both approaches are insightful for different situations and we leave it to the practitioner to select

the appropriate methodology for their application.

Related to this work is the paper by Giacomini and White (2006), who develop a conditional

version of the unconditional equal predictive ability test of Diebold and Mariano (1995). Acknowl-

edging the possible dependence of relative performance on the information set at a given point in

time, Giacomini and White (2006) condition their test on a set of covariates. This therefore enables

one to use their test to detect the possible variation of relative performance over time. For example,

their test rejects their null when models’ relative performance depends on a “state of the world”

variable, even if the unconditional relative performance is equal. In this case the dependence on

the state of the world variable leads to variation in relative performance over time, and in general

their test can be thought of as a check for whether we are in a changing world or a constant world

(where a rejection of their test is indicative of changing relative performance).

Also related to our work, Giacomini and Rossi (2010) were the first to bring attention to the

problem of what they call “unstable environments”, i.e. a world of gradually changing relative
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performance (as opposed to sharp structural breaks). They do this by comparing the local relative

performance between two models. This directly allows for the possibility of relative performance

to change over time, and it is an important step in the literature towards addressing this issue.

However, for the purposes of forecast evaluation and forecast selection Giacomini and Rossi (2010)

has two main shortcomings. First, from the perspective of forecast evaluation their test focuses

only on local relative performance and hence can only utilize local data, which likely leads to their

test having low power. Second, their methodology can only inform the practitioner as to which

model was better at a particular point in the past. It is not informative towards the question of

forecast selection, which is often more of interest to practitioners.3

In addition there are the papers by Inoue and Rossi (2012) and Hansen and Timmermann

(2010). They look to address the splitting point problem by highlighting the potential for data

mining of practitioners who search for favorable splitting points. They propose to explicitly mine

over all splitting points for the one that is the most favorable for the alternative hypothesis, and they

reevaluate their test statistic at this splitting point with adjusted critical values that account for the

bias introduced by mining. These papers offer a solution to the splitting point problem in a world

of constant relative performance. We distinguish our contribution in considering a world of chang-

ing relative performance. In a changing world, selecting only the most critical single splitting point

again leverages their test on a particular window of evaluation. Hence their solution to the split-

ting point cannot be generalized to this broader environment due to the same problem discussed

earlier for Diebold-Mariano-type tests. Indeed, mining under changing relative performance can

similarly lead to spurious results. Applied to an example such as the one presented earlier, it may

be possible that each model is favored over the other, where their test selects different splitting

points depending on which conclusion they mine for.

The rest of the paper is organized as follows. In section 2 we further discuss the changing

relative performance and the two approaches we propose. In section 3 we present our theoretical

results. Section 4 addresses the issue of bandwidth selection for our two-step nonparametric pro-

cedure. Section 5 describes the bootstrap procedure that is used to approximate the distribution

of our new statistics in applications. In section 6 we investigate the size and the power of our test

under a variety of alternatives as well as the performance of the sign forecasts. We present our ap-

plications in section 7 and conclude in section 8. All proofs of the theoretical results are collected

in Appendix B.

Throughout this paper, the following notation is used. Let f (x) be any function from Rd → R,

3This is except in the situation of a clear one-time reversal in relative performance, where one model is clearly better
after a sharp structural break. Giacomini and Rossi (2010) consider a version of their test which addresses this scenario.
In this special case their methodology can determine which model is superior for future forecasts.
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then 9f (x) = ∂ f (x)/∂x and :f (x) = ∂2 f (x)/∂x2 denote the first and the second derivatives with

respect to the argument x respectively. We write ‖ · ‖p for p ≥ 1 denotes the Lp-norm on (Ω,F , P).

Throughout the paper we also simply write ‖ · ‖ to denote L2-norm. For a generic non-singular

matrix A, AT denotes its transpose; for a square matrix B, we write λ (B) to denote its largest

eigenvalue. For any given vector a, diag(a) creates a diagonal matrix with elements of a along the

main diagonal. Finally,
p−→ denotes the convergence in probability and d−→ denotes convergence in

distribution. All convergences are considered when the sample size T → ∞.

2 Forecast evaluation and selection in unstable environments

We proceed with the framework of two models, although the methodology can be further gener-

alized to many models via pairwise comparisons. Let A,B be two models, {yt}T
t=1 be the original

data, β̂At , β̂Bt denote the parameter estimates of two models at time t, which reflect the models as

well as the estimation procedures4. We denote the difference in forecast losses at time t + k by

∆LABt+k = L
(

yt+k, β̂At

)
− L

(
yt+k, β̂Bt

)
, where L (·) denotes the loss function chosen by the fore-

caster5. In what follows we shall refer to ∆LABt+k as ∆Lt+k for simplicity of notation. Note that

in general the loss function will be affected by estimation error, however given our expanding

estimation scheme for constructing the losses it is reasonable to assume that the estimation error

vanishes asymptotically. We also explicitly acknowledge that the mean and variance of ∆Lt+k

might be time-varying. In particular, we define µt+k = E [∆Lt+k|Xt], where Xt denotes the set of

possible regressors. We make our notation general, so that µt+k can potentially depend on a set

of regressors, in which case µt+k denotes the conditional mean of the loss difference at time t + k.

Note that here we refer to Xt as the set of possible regressors in modelling the conditional mean

of the loss differences, and not the regressors used to construct forecasts. A natural example of

Xt are the lags of ∆Lt as in Giacomini and White (2006). However, it is often the case that we are

interested in the unconditional mean which is obtained by setting Xt = ∅ for all t. An example of

the latter is the commonly applied Diebold-Mariano type tests.

In a world of constant relative forecasting performance, i.e. µt+k = µ, for all Xt and all t ∈
{1, · · · , T}, the task of evaluating and selecting between competing models is simple. Specifically,

if µ = 0 we say the models have equal predictive ability, and if µ < 0 we say that modelA is better

than model B and we would select model A for future forecasts. In such a world, the conclusion

of the standard out-of-sample tests does not depend on the evaluation window and hence neither

4We generically refer to β̂A,β̂B as parameter estimates, however, depending on whether a parametric, semiparamet-
ric or nonparametric model is used β̂ can be any estimator used to construct the forecasts.

5Throughout the paper we denote the forecast horizon by k as h will be reserved for denoting the bandwidth.
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on the choice of the splitting point, although with a too short evaluation window the test shall

suffer from low power. Indeed almost all of the current methodologies explicitly assume constant

relative performance, including the tests by Diebold and Mariano (1995), West (1996), White (2000),

Clark and McCracken (2001, 2005), McCracken (2000, 2007), Hansen (2005), Corradi and Swanson

(2007), Hansen et al. (2011), Inoue and Rossi (2012) and by Hansen and Timmermann (2010) and

Li and Patton (2017), among others.

However in an unstable environment, i.e. a world of changing relative forecasting perfor-

mance6, the task of forecast evaluation and selection becomes far less obvious. For the example

provided in Figure 1, the two competing models often overtake each other depending on the eval-

uation window, and there is no clear dominant choice based on the previous methodologies. Yet,

there are nonetheless two important questions of interest to practitioners, namely how can we eval-

uate the overall historical forecasting performance of models and how should we select models for

future forecasts? Note that unlike the constant relative performance special case, these questions

become separate in an unstable environment as historical performance may not indicate future

performance. Hence we propose to address these questions separately.

Giacomini and Rossi (2010) is the first paper in the literature that looks to address the issue of

changing relative performance. They propose to compare at each moment in time the local relative

performance of models. Specifically, for a given forecast horizon k they propose to measure the

local mean of loss differences µt+k as a sample mean centered around a window of a (fixed) size

m, i.e.

µ̂t+k :=
1
m

t+m/2+1

∑
s=t−m/2

∆Ls+k,

such that we can test the following null hypothesis:

HGR
0 : µt+k < 0 ∀ t ∈ {1, · · · , T − k} vs. HGR

1 µt+k ≥ 0 ∀ t ∈ {1, · · · , T − k}.

Given Giacomini and Rossi’s approach, the next challenge is how we can address two questions

aforementioned questions. For many examples, one model will outperform for some window of

data and underperform for another window, hence their test shall reject HGR
0 for some t’s and

accept it for some other t’s. Furthermore it is not possible to use their framework to select models

for future forecasts.

The purpose of this paper is to provide a methodology for forecast evaluation and forecast se-

lection in an unstable environment. To address forecast evaluation, we compare past performance

6Note that changing relative performance can still occur even when the data generating process is stationary, see
the example presented in Appendix A1
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and test for overall equal predictive ability. This provides a direct generalization of the existing

out-of-sample tests to unstable environments, with our main contribution being that we utilize

the entire sample of data which generates a few important advantages. To address forecast selec-

tion, we propose to forecast the probability that one model shall outperform the other in the next

immediate period, i.e. the probability that the sign of the next period loss difference is negative.

We choose to forecast the sign of the next period forecast loss difference as opposed to its level

as levels can depend on arbitrary factors such as a factor of scaling to the loss function, and it is

not clear what kind of a difference in levels constitutes a significant deviation (see Giacomini and

White (2006) for a simple application of their framework to level forecasting). Meanwhile, the sign

of the loss difference reflects a binary comparison, and indeed the sign for a particular comparison

is the same across all symmetric loss functions.

For our test for overall equal predictive ability, our first innovation is to use the (near) en-

tire series of forecast losses to construct our statistic, which extends the evaluation to (nearly) the

whole sample. This makes our test more powerful, and it makes the result of our test no longer

reliant on the arbitrary choice of the sample splitting point. Our metric by which we compare past

performance is defined as the sum of weighted expected relative forecast losses across the entire

sample, where the weighting is given by the time-varying standard deviation of the forecast losses

at that point in time. We offer our weighting as the second innovation. Our metric to measure

past performance belongs to a general class of metrics, which encompasses most of the current

methodologies (the general class is also formally defined below). Although our particular met-

ric is just one of many, we argue that it has several attractive features that make it insightful to

consider. With our weighting, the forecast losses at the beginning of the sample which come with

the largest estimation error are naturally down weighted. Moving towards the end of the sample,

more data is used for the estimation leading to lower estimation error, therefore later losses receive

a larger weight. Our metric is the first to accommodate this explicitly, i.e. that different forecasting

loss differences shall be weighted differently. The motivation for our weighting is to reduce the

variance of the statistics, which leads to higher power.

We first define the metric by which we measure relative predictive ability:

DEFINITION 1. Let M be a collection of models under consideration and M×M be the set of all

possible model combinations from M and A,B ∈ M. Let ∆Lt+k = L
(

yt+k, β̂At

)
− L

(
yt+k, β̂Bt

)
and

µt+k ≡ E [∆Lt+k|Xt], where Xt denotes the set of possible regressors. Define the following binary relation

onM:

RT =

{
(A,B)

∣∣∣∣ T−k

∑
t=1

wt+kµt+k = 0,A,B ∈ M
}
⊆M×M,
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where ∑
t

wt+kµt+k is the metric, and {wt+k}T−k
t=1 is a set of non-negative weights. We say that given the

sample, models A and B are equally good iff (A,B) ∈ R.

Remark 1. Note that the above general class of rankings encompasses rankings from the fol-

lowing standard tests (and any variations thereof):

• Diebold-Mariano (1995) test if we set wt+k = 1 for all t ≥ S where S is a splitting point of

choice and µt+k = µ for all t ∈ T; and Xt = ∅;

• Giacomini and White (2006) test if we set wt+k = 1 for all t ≥ S where S is a splitting point

of choice and any Xt ∈ Ft−1, where Ft−1 is the information set available to the forecaster at

time t− 1;

• Giacomini and Rossi (2010) test if we set wt+k = 1 for all t ∈ [S + k − n
2 + j, S + k + n

2 + j],

where j = 0, · · · , T − n + 1− S− k, and n is a fixed size of the rolling window and S is the

original splitting point of choice; and Xt = ∅.

The metric by which we base our statistic is a special case of the general ranking defined above.

The definition for our specific metric is as follows:

DEFINITION 2. Let M be a collection of models under consideration and M×M be the set of all

possible model combinations fromM and A,B ∈ M. Define the following binary relation onM:

RT =

{
(A,B)

∣∣∣∣ T−k

∑
t=1

wt+kµt+k = 0,A,B ∈ M
}
⊆M×M,

where ∑
t

wt+kµt+k is the metric, and {wt+k ∝ φt+k/σt+k}T−k
t=1 is a set of non-negative weights, where

σ2
t+k = var (∆Lt+k|Xt) and φt+k is a set of (deterministic) given weights. We say that given the sample,

models A and B are equally good iff (A,B) ∈ R.

Remark 2. An example of φt+k is φt+k = 1 (t + k ∈ I), where I could be a period of interest,

e.g. recession times.

We now introduce the null hypothesis for our first approach formally. We have the following

null of Equal Predictive Ability (EPAw):

H
(1)
0 :

T

∑
t=T+1

wt+kµt+k = 0 vs. H
(1)
1 :

T

∑
t=T+1

wt+kµt+k 6= 0, (1)

where under definition 1, wt+k is a set of weights s.t {wt+k} ≥ 0, and under definition 2, wt+k is
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proportional to 1/σt+k, and T is the point in the sample where we begin our evaluation. We discuss

this further in the latter part of this section, see Figure 2. Moreover, the notation EPAw explicitly

acknowledges that these are rather a class of null hypothesis, depending on the chosen weighting

scheme.

Remark 3. The new test based on the above null hypotheses is also applicable for nested mod-

els, i.e. the new test can handle cases when µt+k = E [∆Lt+k] = µ = 0 for all t = 1, · · · , T},
so long as there is non-zero variance everywhere. For example, when the practitioner wants to

compare two nested models, say for example AR(1) and AR(2), although they might provide the

same estimated mean at each point in time with µt+k = E [∆Lt+k] = 0 for all t = 1, · · · , T, it is

likely the case that var (∆Lt+k) 6= 0 for all t = 1, · · · , T, and therefore our test shall apply. We

shall stress nevertheless that there are situations when our test will not be applicable, e.g. in the

situation when variance is zero everywhere.

We next provide an intuition for how our test is related to that of Giacomini and White (2006).

Recall that Giacomini and White (2006) test the following conditional moment condition: E [∆Lt+1|Ft] =

0, where Ft is the information set available to forecaster at time t. Provided that {∆Lt,Ft} is

a martingale difference sequence, we may test the more lenient in-sample moment condition7:

H0 : E [∆Lt+1ht] = 0, such that ht ∈ Ft. The authors recommend to set ht = (1, ∆Lt)
′. With such

a specification, in a regression framework this translates to the following:

∆Lt = α + β∆Lt−1 + εt, and H0 : α = 0 ∩ β = 0.

It is therefore a joint test of the loss difference having zero mean and absence of serial correlation

at first lag. Existence of serial correlation at the first lag would be indicative of changing relative

performance, as it is no longer the case that µt = µ for all t. In general, if we reject their null of

E [∆Lt+1|Ft] = 0 due to a dependence of the above moment condition on Ft. This can be con-

sidered as evidence of changing relative performance due to a changing information set, Ft. It is

still possible that a rejection occurs in a world of constant relative performance, take for example

a case where µt = µ > 0 for all t. We possibly may identify changing relative performance as

when the Diebold-Mariano (1995) test does not reject, which is indicative of insufficient evidence

against zero unconditional mean, however Giacomini and White (2006) test does reject, indicating

the rejection is likely due to changing relative performance.

Given our modelling framework, which we shall discuss in the next section, for a particular

choice of Xt one can test a more general null hypothesis that all time-varying coefficients in the

7Meaning that rejection of the null H0 : E [∆Lt+1ht] = 0 leads to rejection of H0 : E [∆Lt+1|Ft] = 0.
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regression of ∆Lt on Xt are zero for all t ∈ T. This methodology can be viewed as a way of

implementing the conventional Mincer-Zarnowitz (1969) regressions in unstable environments,

and it shall nest the Giacomini and White (2006) test as a special case. These tests can also be

interpreted as a generic version of the existing forecast rationality tests for a particular choice of

Xt. This issue is studied in Smetanina (2018b).

In what follows, we describe our method for constructing forecast losses, which we do using

a standard recursive scheme. Note that contrary to the existing out-of-sample tests, for our metric

we need to construct losses for the entire sample, and not just a short evaluation window towards

the end of sample.

t = 1 t = Tt = T t = T + 1 t = T + 2

ε̂T+k ε̂(T+1)+k ε̂(T+2)+k

Estimation sample #1

Estimation sample #2

Estimation sample #3

Figure 2: Construction of the time series of the forecast errors for a single model.

The pseudo-out-of-sample forecast made at time t for period t + k is compared with the re-

alised value in period t + k, which when differenced gives the forecast error of period t. The loss

function is then applied to this error which gives the forecast loss of period t + k. The recursive

scheme calculates the forecast loss using parameter estimates based on all data up until time t. It

is recursive because with each new period the model is re-estimated to include the new data. We

use all of the forecast losses except for a small initial period of length T, where the initial T periods

is always reserved for estimation. We recommend that practitioner uses T = 100.

After the time series of forecast losses is constructed for each model, we may now compute the

loss differences for a pair of models, A and B:

∆Lt+k = L
(

ε̂At+k

)
−L

(
ε̂Bt+k

)
, (2)

where L(·) is the chosen (by the researcher) loss function. For example, for the conventional

squared error loss function it simply becomes

∆Lt+k =
(

ε̂At+k

)2
−
(

ε̂Bt+k

)2
. (3)

Following the construction of the loss differences, we may next proceed to the theoretical results,
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which we discuss in the next section.

3 Theoretical results

Once we have constructed the time series of ∆Lt, we shall from now on only work with this time se-

ries and not the original data. For ease of notation we shall say that ∆Lt ranges from t = 1, 2, · · · , T,

although the length of this series T is different to the length of the original data yt. The new T is

equal to the original T − T − k + 1.

We model ∆Lt as a locally stationary process and allow its mean and variance to change

smoothly over time. In particular, we model ∆Lt as a function of time and its own lags only. The

rationale behind such a modelling framework is as follows. It is a well-established fact that due to

estimation error, ∆Lt exhibits serial correlation, see e.g. Bollerslev et. al. (2016). This motivates the

autoregressive structure of our model for ∆Lt. However, in general we do not expect the difference

in losses to depend on any other regressors. Therefore, in order to be as agnostic as possible, we

do not impose any additional structure on ∆Lt. As in the literature on locally stationary processes,

we make ∆Lt depend on the rescaled time points t/T rather than real time t, forming therefore

a triangular array, {∆Lt,T : t = 1, · · · , T}. This rescaling is necessary to justify the properties of

the resulting estimation procedures as we will be using the infill asymptotics. So, suppose that we

observe the time series of forecast loss differences {∆Lt,T}, t = 1, 2, · · · T. Before specifying the

model for loss differences ∆Lt,T we investigate the issue further. In particular, in Appendix A2,

we demonstrate that under recursive estimation scheme ∆Lt,T can be represented as time-varying

coefficient autoregression of order 1. With this in mind we consider that {∆Lt,T}T
t=1 follows an

autoregressive model with time-varying coefficients which is given by:

∆Lt,T = ρ0
t,T +

d

∑
j=1

ρ
j
t,T∆Lt−j,T + ξt,T, t = 1, · · · , T, (4)

where ξt has zero mean and is independent of ∆Ls,T for s ≤ t− 1.

Remark 4. In the paper we develop the theory for the general time-varying AR(d) model.

However, in all applications we will restrict it to be a simple AR(1) model. We believe it is general,

yet simple enough to account for serial correlation of the estimation error in the loss differences

∆Lt,T, see the discussion in Appendix A2. We therefore suggest that the practitioner, unless for

having a good reason for an alternative specification, always uses the AR(1) model.

We further take the time-varying functions ρ
j
t,T, j = 0, · · · , d to be deterministic functions of
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time. We use the following rescaling method. Let ρj(·) be a function on [0, 1] and let for t = 1, · · · , T

ρ
j
t,T = ρj (t/T) , j = 0, 1, · · · , d.

The notation ρ
j
t,T indicates that ρ

j
t,T depends on the sample size T and the domain of ρj(·) becomes

more dense in t/T as T → ∞. In other words, the time-varying coefficient functions ρj(·) do not

depend on the real time t but rather on the rescaled time points t/T. Note that since the coefficients

of the autoregression in (4) are time-varying, ∆Lt,T is no longer stationary. Instead, we will show

that ∆Lt.T is locally stationary in the following sense.

DEFINITION 3. (Vogt, 2012). The process {Xt,T} is locally stationary if for each rescaled time point

u ∈ [0, 1] there exists an associated process {Xt(u)} with the following two properties:

i) {Xt(u)} is strictly stationary;

ii) it holds that ∥∥Xt,T − Xt(u)
∥∥ ≤ (∣∣∣∣ t

T
− u

∣∣∣∣+ 1
T

)
Ut,T(u) a.s.,

where {Ut,T(u)} is a process of positive variables satisfying E
[
(Ut,T(u))

ρ] < C for some ρ > 0 and

C < ∞ independent of u, t and T. ‖ · ‖ denotes an arbitrary norm on Rd.

In addition, we assume that the error process {ξt,T, t = 1, · · · , T} has the following structure:

ξt,T = σ(t/T)εt, (5)

where εt is i.i.d. process having the property that εt is independent of ∆Ls,T for s ≤ t − 1. The-

oretically the requirement of the i.i.d. errors is necessary to establish mixing of ∆Lt,T process.

Conceptually, recall that the correlation of ∆Lt,T (via estimation errors) is already accounted for by

imposing an autoregressive structure and therefore εt can be thought of capturing the remaining

unforecastable component. For the ease of exposition we write the model in (4) as follows:

∆Lt,T = XT
t,Tρ (t/T) + σ (t/T) εt, (6)

where ρ(t/T) = (ρ0(t/T), ρ1(t/T), · · · , ρd(t/T))T and Xt,T = (1, ∆Lt−1,T, ∆Lt−2,T, · · · , ∆Lt−d,T)
T.

Finally we assume that ρ(u) = ρ(0) and σ(u) = σ(0) for u ≤ 0, while ρ(u) = ρ(1) and σ(u) = σ(1)

for u ≥ 1. In what follows, we estimate the time-varying coefficient function ρ(t/T) and time-

varying volatility function σ(t/T) by nonparametric kernel techniques. In particular, using the

13



notation Kh (·) = K (·/h) /h for the kernel function, we estimate the model (6) in the following

way:

Step 1 : First estimate the mean function via the local linear nonparametric estimator. In particular,

define the following locally weighted least-squares objective:

θ̂ (u) = arg min
θ

T

∑
t=1

Kh1 (t/T − u)
(

∆Lt,T −ZT
t,Tθ
)2

, (7)

where Zt,T = (Xt,T, Xt,T (t/T − u))T and θ = θ(t/T) = (ρ(t/T), 9ρ(t/T))T.

Step 2 : Define the estimated error term ξ̂t,T = ∆Lt,T − ZT
t,T θ̂(t/T). Then estimate the condi-

tional variance σ2(t/T) by running the local constant nonparametric regression of ξ̂2
t,T on

the rescaled time t/T, i.e.

σ̂2(u) = arg min
a

T

∑
t=1

Kh2 (t/T − u)
(

ξ̂2
t,T − a

)2
.

Remark 5. In the second-step estimation we use the local constant estimator, primarily because

contrary to local constant estimator σ̂(u) (with non-negative kernel), the local linear estimator σ̂(u)

is not guaranteed to be positive.

Remark 6. Although σ̂(u) is a second-step estimator, Fan and Yao (1998) analysed the asymp-

totic distribution of such an estimator and showed that its asymptotic distribution is identical to

that obtained via one-step estimation based on the true errors ξt. This is an important result as

this allows one to select the optimal bandwidths h1, h2 independently based on the conventional

one-step procedures. We discuss the bandwidths selection procedure in section 4.

To state our assumptions and main theoretical results, we introduce some further notation. In

particular, we define the following two matrices:

Ωt,T = E
[
Xt,TXT

t,T

]
∈ R(d+1)×(d+1), and H =

Id+1 0

0 h1 Id+1

 ,

where Id+1 is the identity matrix of dimension (d + 1)× (d + 1). We next state the first group of

assumptions.

ASSUMPTION A1

(i) The sequences ρt,T, σ2
t,T and Ωt,T satisfy ρt,T = ρ(t/T) + o(1), σ2

t,T = σ2(t/T) + o(1) and
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Ωt,T = Ω(t/T) + o(1) for some functions ρ(·), σ2(·) and Ω(·).

(ii) The roots of the characteristic polynomial ϑ(τ, z) = ρ1(τ)z + · · ·+ ρd(τ)zd are inside the unit

circle for all τ ∈ [0, 1].

(iii) The functions σ(·) and Ω(·) are bounded from above and from below, i.e. there exist con-

stants Cσ < ∞, Cω < ∞ and cσ > 0, cω > 0 such that 0 < cσ ≤ σ(u) ≤ Cσ < ∞ and

0 < cω ≤ Ω(u) ≤ Cω < ∞ for all u ∈ [0, 1].

(iv) The functions ρ(·) and σ(·) are Lipschitz continuous with respect to the rescaled time u.

(v) The residuals {εt} is an i.i.d. sequence having the property that εt is independent of Xs,T for

s ≤ t. Moreover, εt satisfies E
[
|εt|4+δ

]
< ∞ for some small δ > 0 and are normalised such

that E
[
ε2

t
]
= 1.

(vi) The error term εt has an everywhere positive and continuous density fε. The density fε is

bounded and Lipschitz.

Assumption A1 lays out sufficient conditions for establishing that the process {∆Lt,T} can be

locally approximated by ∆Lt(u) = XT
t (u)ρ(u) + σ(u)εt. Moreover one can also show that for each

u the process {∆Lt(u), t ∈ Z} has a strictly stationary solution. Assumption A1 corresponds to the

assumptions (M1)− (M3), (Σ1)− (Σ3) and (E1) in Vogt (2012) under which he establishes these

results for a more general class of models, see Theorems 3.1 and 3.2 in Vogt (2012).

Remark 7. Note that assumption A1(v) for the error terms εt to be i.i.d. is required for es-

tablishing mixing properties of ∆Lt,T process. We believe, however, that this is a very plausible

assumption since the autoregressive structure of ∆Lt,T captures the correlation of the estimation

error and εt thus represents the unforecastable component, see the discussion in Appendix A2.

To establish that the process {∆Lt,T} is geometrically β−mixing one extra assumption on the

density of the error term εt is required.

ASSUMPTION A2

(i) The density fε fulfills the requirement:

ˆ
R

| fε(x)− fε(x + α)|dx ≤ C|α|,
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where C is a constant such that C < ∞.

Assumption A2 corresponds to the assumption (E3) in Vogt (2012), which together with As-

sumption A1 allows one to prove that the process ∆Lt,T is geometrically β-mixing, see Theorem

3.4 in Vogt (2012) for a proof of this result. Similar assumption can be found in e.g. Orbe et. al.

(2005), who establishes the mixing property of the time-varying AR(1) process. Finally, below we

introduce the rest of the assumptions that will be necessary to present the estimation theory.

ASSUMPTION A3

(i) The functions ρ(·) and σ(·) are twice continuously differentiable with respect to the rescaled

time u and have bounded derivatives.

(ii) The kernel K(·) is a second-order kernel, which is bounded symmetric around zero density

function that has a compact support, i.e. K(v) = 0 for all |v| > C1 with some C1 < ∞. More-

over K(·) is Lipschitz, i.e. |K(v)− K(v′)| ≤ L|v− v′| for some L < ∞ and all v, v′ ∈ R. In

addition, K(·) satisfies
´

K(z)dz = 1, λj =
´

zjK(z)dz and νj =
´

zjK2(z)dz.

(iii) The bandwidths h1 and h2 satisfy the following conditions: as T → ∞, h1 → 0, Th1 → ∞ and

Th5
1 → 0. Similarly it holds that as T → ∞, h2 → 0, Th2 → ∞ and Th5

2 → 0.

Assumption A3(i) ensures that the resulting estimators ρ̂(·) and σ̂2(·) are well-behaved which

will allow us to apply the kernel methods as well as the bootstrap methods later on. Assump-

tions A3(ii)-(iii) are standard assumptions on the kernel function and bandwidths, where we take

the kernel K to be the second-order kernel. Note that we work with equally spaced time periods,

however this is not strictly necessary. For instance, the theory will hold with slight modifications,

which we do not present here, for ti, i = 1, · · · , n such that {ti/T, i = 1, · · · , n} is dense on a unit

interval. We next state our first main result.

THEOREM 1. Let Assumptions (A1)-(A3) hold. Then for any u ∈ (0, 1) it holds that

√
Th1

(
H{θ̂(u)− θ(u)} − h2

1B1(u))
)

d−→ N (0, Vθ(u)) ,
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where

B1(u) =
1
2

λ2 :ρ(u)

0

 and Vθ(u) =

ν0σ2(u)Ω−1(u) 0

0 λ−2
2 ν2σ2(u)Ω−1(u)

 .

In step two we estimate the variance σ2(u) by running local constant nonparametric regression of

squared residuals

ξ̂2
t,T =

[
∆Lt,T −ZT

t,T θ̂(t/T)
]2

, t = 1, · · · , T

on the rescaled time t/T. Given that our test statistics based on eq. (1) or eq. (??) aggregates µ̂t(u)

over u ∈ [0, 1] weighted by its standard deviation, it becomes necessary to establish the uniform

convergence of σ̂2(u) over the whole support of u rather than just establishing pointwise consis-

tency of σ2(u). The next theorem states the uniform convergence rate for the second-step estimator

σ̂2(u).

THEOREM 2. Let Assumptions (A1)-(A3) hold. Denote by Ib2 = [b2, 1− b2], where b2 is any sequence

satisfying h2/b2 → 0. Then the following holds:

sup
u∈Ib2

∣∣∣∣σ̂2(u)− σ2(u)
∣∣∣∣ = Op

(√
log T
Th2

+ h2
2

)
,

and with probability tending to one it also holds that

sup
u∈Ib2

|σ̂2(u)| ≤ Cσ ≤ ∞,

where Cσ > 0.

3.1 Test Statistics

Provided with our new definition of ranking, it is then straightforward to state the null and alter-

native hypotheses. In particular, consider the EPAw:

H0 :
T

∑
t=1

wtµt = 0 vs H1 :
T

∑
t=1

wtµt 6= 0. (8)

In line with the discussion in section 2, we choose the weights wt to be inversely proportional

to the standard error of the estimate of µt. We might want to make it slightly more general by

allowing some extra (given) weighting φt such that wt ∝ φt/set, see section 2 for the detailed
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motivation of such a weighting. We form the test statistic corresponding to the above null by

replacing the unknown quantities with the respective estimators. We first define the (proportional)

local t-statistic, which we denote by τ̂(u):

τ̂(u) =
√

ν0√
Th1

µ̂(u)
ŝe(u)

=
XT

t (u)ρ̂(u)

σ̂(u)
√

XT
t (u)Ω̂−1(u)Xt(u)

, (9)

and then the integrated (proportional) t-statistic is given by:

ST =

1ˆ

0

τ̂(u)du,

or a slightly extended version with an extra (given) weighting φ(u):

S ′T =
1√
Φ

1ˆ

0

φ(u)τ̂(u)du, with Φ =

1ˆ

0

φ2(u)du.

An example of φ(u) is φ(u) = 1 (u ∈ I), where I could be a period of time that forecaster is

interested in, for example, recession times. In what follows we analyse the asymptotic behaviour

of ST under the null as well as under fixed and local alternatives. The fixed alternative hypothesis

is given by

H1 :

1ˆ

0

τ(u)du 6= 0.

In addition, to get a rough idea of the power of the test, we further examine a series of local

alternatives, i.e. alternatives that converge to H0 as the sample size T grows. In particular, we

define the sequence of functions τT(u) given by:

τT(u) = τ(u) + cT 4 (u),

where cT → 0 as T → ∞, the function4 is continuous and the quantity
1́

0
τ(u)du satisfies the null

hypothesis H0. Under these local alternatives the process ∆Lt,T is given by

∆Lt,T = XT
t,Tρ (t/T) + cT 4 (t/T) σ (t/T) /

√
XT

t,TΩ−1(t/T)Xt,T + ξt,T, (10)
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for t = 1, · · · , T, and therefore under (10), we move along the following sequence of local alterna-

tives:

H1,T :

1ˆ

0

τT(u)du = cT

1ˆ

0

4(u)du.

The statistic ST under H1,T gets smaller as the sample size increases and therefore the alternatives

H1,T gets closer and closer to H0 as T → ∞.

THEOREM 3. Let Assumptions (A1)-(A3) hold. Then conditional on the sample {∆Lt,T, Xt,T}T
t=1

under H0,
√

T
(
ST − h2

1BT
) d−→ N (0, 1) ,

where

BT =
1
2

1ˆ

0

λ2XT
t (u):ρ(u)

σ(u)
√

XT
t (u)Ω−1(u)Xt(u)

du. (11)

The next theorem states the asymptotic distribution of the modified statistic S ′T.

THEOREM 4. Let Assumptions (A1)-(A3) hold. Then conditional on the sample {∆Lt,T, Xt,T}T
t=1

under H0,
√

T
(
S′T − h2

1B′T
) d−→ N (0, 1) ,

where

B′T =
1

2
√

Φ

1ˆ

0

φ(u)λ2XT
t (u):ρ(u)

σ(u)
√

XT
t (u)Ω−1(u)Xt(u)

du and Φ =

1ˆ

0

φ2(u)du.

We now turn to the theoretical results for the fixed and local alternatives. The next theorem

states that the bias-corrected statistic ST diverges in probability to infinity under H1. This allows

me to establish consistency of the test against fixed alternatives.8

THEOREM 5. Let Assumptions (A1)-(A3) hold. Then under H1,

ST − h2
1BT

p−→
1ˆ

0

4(u)du =: I4,

where |I4| > 0, and BT is given by eq.(11).

8This result also holds for the modified statistic S ′T .
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We next examine the behaviour of ST under local alternatives. The theorem 6 below states that

the asymptotic power of the test against local alternatives of the form τT(u) = τ(u) + cT 4 (u)

with cT = 1/
√

T and
1́

0
τ(u)du satisfying H0, is constant for all functions4 and is determined by

1́

0
4(u)du.

THEOREM 6. Let Assumptions (A1)-(A3) hold. Let cT = 1/
√

T, then conditional on the sample

{∆Lt,T, Xt,T}T
t=1 under H1,T,

√
T
(
ST − h2

1BT
) d−→ N

 1ˆ

0

4(u)du, 1

 ,

where BT is given by eq.(11).

3.2 Sign Forecasting

We now present the theory for sign forecasting. We could also forecast the level of forecast losses,

however for the reasons outlined in section 2 we believe that the sign is more informative for

model selection. Given that our model (4) for ∆Lt has an autoregressive structure, we may project

which model is likely to forecast better in the next period in the following way. Let Ft,T =

σ (∆Ls,T, εs,T|s ≤ t) to be the sigma-algebra generated by the history of ∆Lt,T and εt,T, and recall

that the model for ∆Lt is given by

∆Lt = XT
t ρ(t/T) + σ(t/T)εt, t = 1, · · · , T (12)

where with some abuse of notation due to the meaning of T, xT denotes the transpose of x and

Xt = (1, ∆Lt−1, · · · , ∆Lt−d)
T and εt is a m.d.s. At the final point in the sample T we would like to

predict the sign of ∆LT+1, i.e. we would like to know:

Pr (∆LT+1 ≤ 0|FT) = Pr
(

XT
T+1ρ

(
T + 1

T

)
+ σ

(
T + 1

T

)
εT+1 ≤ 0|FT

)
=

= Pr

(
εT+1 ≤

−XT
T+1ρ

( T+1
T

)
σ
( T+1

T

) )
= F(ε). (13)

Here, given the autoregressive structure of the difference in losses, XT+1 ∈ FT. Recall also that
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ρ(u) = ρ(1) and σ(u) = σ(1) for u ≥ 1. It then holds from (13) that

Pr (∆LT+1 ≤ 0|FT) =: F (ε?(1)) ,

where ε?(1) := −XT
T+1ρ (1) /σ(1) is the standardised residual from eq.(12). Conditional on the

sample {∆Lt}T
t=1, we can estimate the conditional probability as follows:

P̂r (∆LT+1 ≤ 0) = F̂ (ε̂?(1)) =
1
T

T

∑
t=1

1

(
ε̂t ≤

−XT
T+1ρ̂ (1)
σ̂ (1)

)
,

where ε̂?(1) is an estimate of ε?(1). Therefore for a given sample {∆Lt}T
t=1 the practitioner can

calculate the probability of ∆LT+1 of being negative. We state the theoretical result in Theorem 7

below, which allows the practitioner to calculate the probability as well as the confidence intervals

for this probability, which we call forecast intervals.

THEOREM 7. Let Assumptions (A1)-(A3) hold. Let Ft,T = σ (∆Ls,T, εs,T|s ≤ t) to be the sigma-

algebra generated by the history of ∆Lt,T and εt,T. Then the forecast of the sign of ∆LT+1 made at time T is

given by
√

T
[

F̂(ε̂?(1))− F(ε?(1))−B3(1)
]

d−→ N
(

0, F (ε?(1))
(
1− F (ε?(1))

))
, (14)

where

B3(1) =
f (ε?(1))
2σ2(1)

XT+1(1)
{

h2
1λ2 :ρ(1)σ(1) + h2

2λ2:σ(1)
}

,

and

F(ε?(1)) = Pr(∆LT+1 ≤ 0) and ε?(1) :=
−XT

T+1ρ (1)
σ̂(1)

.

Remark 8. The bias term B3(1) is due to the estimation error of ε̂(1), which itself involves the

estimates of ρ̂(1) and σ̂(1), leading to a particular form of the bias in Theorem 7.

In the simulations (see Figure 8) we see that the sign forecasts perform quite well, forecasting

near to the true probability. In particular, the sign forecasts improve as we go later in the sample.

Because the bandwidth for the first estimation step for ρ is quite small in this particular example,

this improvement is not due to estimating ρ more precisely; instead it is due to approximating

the c.d.f. of εt better as we go later in the sample, using more data. In general, it looks as if the

difficulty of approximating the c.d.f. of εt is greater than the issues surrounding estimating ρ im-

perfectly. Also, because we are not interested in forecasting the level of the forecast loss difference
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next period, but rather its sign, our results are somewhat less sensitive to the imprecision caused

by using a two-sided kernel. In general, if the p.d.f. at the particular ε∗ threshold is small, the

probability will not respond much to inaccuracies in ρ. One way to improve forecasts even further

would be to use the derivative of ρ̂(1).

In practice, we are only concerned about making predictions at the last point in time T. How-

ever, in one of our simulations and in all of our applications we will be producing pseudo out-of-

sample sign forecasting to assess the quality of our procedure. In our simulation, we derive the

true probabilities explicitly and compare it with our forecasted probabilities. In our applications

where the true probabilities are unknown, we use the following criterion to assess the quality of

our forecasts:

Ĉ :=
1

T − T

T

∑
t=T

[
1 (∆Lt+1 ≤ 0)− P̂r

bc
(∆Lt+1 ≤ 0|∆Lt)

]
, (15)

where T = 100 is the first splitting point where we begin our evaluation, and P̂r
bc
(·) denotes

the bias-corrected probability. If the forecasted probabilities were correct, then the criterion above

should on average equal to zero. The bias as well as the forecast intervals can be obtained via

bootstrap which we discuss in detail in section 5.

4 Bandwidth selection

In this section we briefly describe how we choose the optimal bandwidths h1 and h2. We start with

the optimal selection of the first stage estimation bandwidth h1. The conventional way to choose

the optimal bandwidth is to construct the asymptotic mean squared error given by:

AMSE(h1) =
h4

1
4

µ2
2‖:θ(u)‖2

2 +
tr (Vθ(u))

Th1
,

where Vθ(u) is given in Theorem 1. Then minimising AMSE(h1) with respect to h1 provides the

optimal bandwidth hopt
1 given by:

hopt
1 =

{
tr (Vθ(u)) µ−2

2 ‖:θ(u)‖−2
2
}−1/5T−1/5 (16)

However, note that (16) involves the unknown quantity :θ(u) that therefore has to be estimated first

before the optimal bandwidth can be computed. Several other methods has been proposed in the

literature, one of which is multi-fold cross-validation see e.g. Cai, Fan and Yao (2000), Cai, Fan and

Li (2000) which takes into account the time-series structure of the data. More precisely, we first
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partition the data into Q groups (usually Q = 20), with the jth group consisting of the data points

with indices:

dj = {Qk + j, k = 1, 2, 3, · · · }, j = 0, 1, 2, · · · , Q− 1.

We then fit the model and obtain the estimate of θ̂−j using the remaining data after deleting the jth

group. Now denote by Y−dj the fitted values of Yt using the data with the jth group deleted. Then

the cross-validation criterion has the following form:

CV(h1) =
Q−1

∑
j=0

∑
i∈dj

[
Yi − Ŷ−dj

]2
.

Alternatively, one can form variants of the cross-validation criteria based on the Pearson’s residu-

als:

CV1(h1) =
Q−1

∑
j=0

∑
i∈dj

[
Yi log

{
Yi

Ŷ−dj

}
− {Yi − Ŷ−dj}

]
,

where in the above one would need to set 0 log 0 = 0 to account for the cases when Yi = 0. Finally,

another cross-validation criterion can be

CV2(h1) =
Q−1

∑
j=0

∑
i∈dj

Yi − Ŷ−dj√
Ŷ−dj

 .

Minimizing the CV(h1) with respect to h1 then yields the optimal bandwidth hopt
1 . In practice, and

in general, as established by Cai, Fan and Li (2000) the cross-validation is not too sensitive to the

way the data is partitioned. The second-stage estimation procedure of estimating the conditional

variance σ2(u) via the local constant estimator is very standard, and the optimal bandwidth hopt
2 is

estimated via conventional least-squares cross-validation, see e.g. Li and Racine (2007) for details.

5 Bootstrapping ST

Theorems 3-6 allow one to conduct inference for ST, as the distribution of the test statistics is the

simple standard normal distribution. Note also, that the test statistic ST is a nonparametric statis-

tic, however through aggregation it converges to N (0, 1) with the standard parametric
√

T rate.

The bias term in Theorems 3-6, however, contains unknown quantities, such as :ρ(u). Although it

is possible to estimate these unknown quantities, replacing them with the consistent estimates will

further result in approximation errors. We therefore choose to bootstrap the statistics, which will

automatically allow me to estimate the bias without estimating the unknown quantities. In what
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follows, we discuss the bootstrap procedure in the context of Theorems 3-6, however the same

methodology will be applied to obtain the bias and the forecast intervals in Theorem 7. We set up

the fixed regressor wild bootstrap procedure to account for the time series structure of the data. In

particular, the wild bootstrap sample, which we denote by {∆L?
t,T, Xt,T}T

t=1, where

∆L?
t,T = XT

t,T ρ̂g (t/T)−MT
σ̂2(t/T)

κ
√

V(t/T)
+ ξ?t,T, (17)

where κ =
1́

0
φ(u)du and

MT =

1ˆ

0

XT
t (u)ρ̂g(u)√

V(u)
du and V(u) = σ̂2(u)XT

t (u)Ω̂
−1(u)Xt(u) (18)

The bootstrap residuals are constructed as follows:

ξ?t,T = ξ̂t,Tηt,

where ξ̂t,T := ∆Lt,T − µ̂t(t/T) = ∆Lt,T −XT
t,T ρ̂(t/T) are the estimated residuals and {ηt}T

t=1 is

a sequence of i.i.d. variables normalized such that it has zero mean and unit variance and is in-

dependent of {∆Lt,T, Xt,T}T
t=1. We further choose ηt to have a Rademacher distribution. Finally,

ρ̂g(u) denotes the oversmoothed version of ρ̂, where the bandwidth g is required to satisfy the

condition g � h1. We make this requirement precise in Assumption B below. Provided this de-

scription above, note that all quantities in (17)-(18) are known and one can simulate ∆L?
t,T according

to (17)-(18).

The intuition behind construction of the mean function of ∆L?
t,T given by (17)-(18) is such that

the bootstrapped sample {∆L?
t,T, Xt,T}T

t=1 imitates the model under the null hypothesis whether

the alternative hypothesis is true or not. Therefore the distribution of the bootstrapped statistic

S?
T, stated below, mimics the distribution of ST under the null hypothesis regardless whether the

null holds or not. Note that there are multiple ways to achieve this goal, however we believe our

strategy is the simplest. Given the bootstrap sample {∆L?
t,T, Xt,T}T

t=1, we define the bootstrapped

test statistics S?T as follows:

S?T =

1ˆ

0

XT
t ρ̂?(u)√
V(u)

du, V(u) = σ̂?(u)
√

XT
t (u)Ω̂−1(u)Xt(u),
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where

ρ̂?(u) := arg min
a

T

∑
t=1

Kh1 (t/T − u)
(

∆L?
t,T −XT

t,Ta
)2

,

and defining ξ̂?t,T = ∆L?
t,T − µ̂?

t , we further have that σ̂?(u) is given by

σ̂?(u) =

T
∑

t=1
Kh2 (t/T − u)

(
ξ̂?t,T

)2

T
∑

t=1
Kh2 (t/T − u)

.

We next state the Assumption on bandwidth g as well as our next result theorem states that the

wild bootstrap described above is consistent.

ASSUMPTION B. The bandwidth g is such that h1/g→ 0 and Th4
1/g4 → 0.

Remark 9. In practice, we suggest setting g = h1 log T.

THEOREM 8. Let Assumptions (A1)-(A3) hold. Then conditional on the sample {∆Lt,T, Xt,T}T
t=1 with

probability tending to one
√

T
(
S?T − S? − h2

1BT
) d−→ N (0, 1) ,

where BT is given by eq.(11). In other words, P?
(
S?T − S? − h2

1BT ≤ x
) p−→ Φ(x), where Φ(x) is a Gaus-

sian distribution function with zero mean and variance 1.

Once the wild bootstrap is set up, the size and the power of the test in the next section will then

be calculated as follows. We denote by ST,n the value of the test statistic ST in the n-th simulation,

and let S?T,n,b be the value of the bootstrap statistics S?T in the b-th bootstrap sample generated

in the n-th simulation. We denote by G?
n the empirical distribution function calculated from the

sample of the bootstrap values in n-th simulation, i.e. of {S?T,n,b}B
b=1. Then the actual size of the

test statistics can be calculated as follows. Given a fixed nominal size α, for each simulated sample

n ∈ N, calculate the (1− α)-quantile of G?
n, denoted by q?α,n. Finally we compute the actual size

and power corresponding to the nominal level α as

1
N

N

∑
n=1

1
(
ST,n > q?α,n

)
.
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6 Simulations

In this section we provide the simulations’ results for the size and power of our test statistic ST as

well as demonstrating the sign forecasting methodology. We start by investigating the size of our

test ST.

6.1 Test Statistics: Size

For all simulations we set the number of simulations N = 1000 and we vary the number of boot-

strap replications, B, between B = 500, B = 750, and B = 1000. We start with replicating two

alternatives from Giacomini and White (2006) that constitute our null hypothesis. In particular we

simulate the loss difference ∆Lt as the following AR(1) process:

H
(1)
0 : ∆Lt = µ(1− ρ) + ρ∆Lt−1 + εt, εt ∼ i.i.d.N (0, 1) (19)

For each of n ∈ N simulations we generate a sequence of loss differences ∆Lt of length T = 150

according to (19), starting from the initial value of ∆Lt that equals the difference of squared errors

for forecasts of the second log difference of the monthly U.S. consumer price index (CPI), CPI2016:12

implied by two models: i) a white noise; and ii) an AR(1) model for CPI estimated over a window

of size m = 150 using the data up to 2016:11. Moreover, we consider the scenario with zero

unconditional mean and ρ(0, 0.05, · · · , 0.9).9 Table 1 shows the simulated actual size for different

levels of the nominal size α = 0.01, 0.05, 0.10, 0.15.

Table 1: Actual size versus nominal size of two-sided ST for H
(1)
0 .

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.012 0.072 0.117 0.162

B = 750 0.009 0.062 0.107 0.156

B = 1000 0.009 0.057 0.104 0.151

For the second null hypothesis, also borrowed from Giacomini and White (2006), for T = 150

we generate the sequence of loss differences as follows:

H
(2)
0 : ∆Lt =

µ

p(1− p)
(St − p) + εt, εt ∼ i.i.d.N (0, 1), (20)

9We present the results for ρ = 0.2 only as varying ρ virtually leaves the results unchanged.
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where St = 1 with probability p and St = 0 with probability 1− p, with p = 0.5. We thus have that

the unconditional mean E [∆Lt] = 0, however

E [∆Lt|St] =

µ/p if St = 1

−µ/(1− p) if St = 0.

Table 2 shows the simulated actual size for different levels of the nominal size α = 0.01, 0.05, 0.10, 0.15.

Table 2: Actual size versus nominal size of two-sided ST for H
(2)
0 .

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.020 0.048 0.108 0.160

B = 750 0.018 0.052 0.107 0.154

B = 1000 0.015 0.050 0.103 0.150

We next simulate the data for ∆Lt,T for the sample of length T = 1000 under H
(3)
0 such that

mean is time-varying:

H
(3)
0 : ∆Lt,T = ρ0(t/T) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

and

ρ0(u) = sin (8πu) , ρ1(u) = 0 ∀ u and σ(u) = 1 ∀ u.

Under H
(3)
0 the mean of ∆Lt is time-varying. The mean performs four full sine cycles over the

course of our sample, so that over the whole sample the overall mean is also zero by symmetry.

For simplicity we set the variance to be constant throughout.

Table 3: Actual size versus nominal size of two-sided ST for H
(3)
0 .

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.015 0.065 0.107 0.150

B = 750 0.014 0.061 0.105 0.145

B = 1000 0.012 0.060 0.105 0.145

The above tables show that the actual size is very close to the nominal size for all levels and
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for all nulls under consideration. The results are stable regardless of the number of bootstrap

replications B.

6.2 Test Statistics: Power

We start by replicating two alternatives from Giacomini and White (2006) that also constitute alter-

natives for our test. The first alternative simulates the loss differences ∆Lt according to (19) such

that ρ = 0 and µ = (0, 0.05, · · · , 1). We fix the nominal size of the test to be 5%. Below we show the

power curves when applying our one-sided and two-sided tests as well as Giacomini and White

(2006) test.
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Figure 3: Power curves under alternative H
(1)
1 .

We next consider another alternative that we borrow from Giacomini and White (2006) paper.

In particular, we again generate the loss differences ∆Lt according to (20), where we vary d =
µ

p(1−p) = (0, 0.1, · · · , 1). Note that d represents the difference in expected loss between two states.

We apply our general test S ′T by setting the choice weighting functions to be the states of the

world, i.e. we set φt = St, conditional on the states of the world St. In this case (20) constitutes an

alternative for our null as well. We plot the power curves below.
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Figure 4: Power curves under alternative H
(2)
1 .

We now investigate the power of the test under several fixed alternatives that exhibit time

variation of the mean/variance process. We deliberately design the set of these alternatives to be

similar to our earlier time-varying null H
(3)
0 , however we add one additional feature that makes

for a deviation from the null. Under the first alternative H
(1)
1 we simulate the data as follows:

∆Lt,T = ρ0(t/T) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

where

ρ0(u) = sin (8πu) + 0.1, ρ1(u) = 0 ∀ u and σ(u) = 1 ∀ u.
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Figure 6: Data generating processes (DGP) under the null H
(3)
0 as the corresponding alternatives H

(2)
1 , H

(3)
1

and H
(3)
1 . The red lines represents the true mean function µt.

Under H
(1)
1 , we add a small intercept to the curve of the mean from the null. The deviation is

hard to differentiate visually due to the variance around the mean, and the mean still goes above

and below zero, with relative performance overtaking back and forth.

Under H
(2)
1 we leave the mean the same as under the null and change the variance in a way that

all upswings of the sine function are volatile and downswings are more volatile, more precisely:

∆Lt,T = ρ0(t/T) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

and where

ρ0(u) = sin (8πu) , ρ1(u) = 0 ∀ u,
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and setting w = T/8, the local variance is given by

σ(u) =

1 ∀ u ∈ [1 + kw, (k + 1)w] for k = 0, 2, 4, 6.

1.5 ∀ u ∈ [1 + kw, (k + 1)w] for k = 1, 3, 5, 7.

Note that although the mean function under H
(2)
1 is the same as under H0, due to the changes

in the variance, the upper swings shall receive more weight as they are less volatile, while the

opposite shall hold for the downswings. As the result, we expect the overall statistic to be positive,

pointing towards the preference of model B versus the model A.

Finally, we consider the alternative H
(3)
1 that allows for a break in the mean function. In partic-

ular, under H
(3)
1 we simulate the data as follows:

∆Lt,T = ρ0(t/T) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

where ρ1(u) = 0 ∀ u and σ(u) = 1 ∀ u, and

ρ0(u) =

sin(8πu) for u ∈ [1, T/2],

sin(8πu) + 0.1 for u ∈ [T/2 + 1, T].

This alternative highlights the ability for our statistic to deal with breaks. Here the deviation to the

null is smaller than the first alternative where the intercept added is throughout the whole sample.

Table 4: Mean of ST.

Alternative E (ST)

H
(1)
1 3.08

H
(2)
1 2.82

H
(3)
1 1.40

Table 5: Power for different alternatives with two-
sided null.

Nominal size H
(1)
1 H

(2)
1 H

(3)
1

α = 0.01 0.75 0.60 0.24

α = 0.05 0.88 0.64 0.38

α = 0.10 0.94 0.75 0.50

α = 0.15 0.97 0.85 0.57
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Figure 7: The figure plots the power curves for different alternatives. The dashed blue line depicts the

power curve under H
(3)
1 , the dashed violet line depicts the power curve under H

(2)
1 , and the dashed red

line depicts the power curve under H
(1)
1 .

Figure 7 shows that our test has a very good power at any nominal level and is capable of de-

tecting relatively small deviations from the null. We finish this section with the following thought

experiment. Assume that the true data generating process for ∆Lt is indeed as under one of the

considered alternatives H
(1)
1 , H

(2)
1 or H

(3)
1 . Assume that researcher applies any currently available

test, e.g. Diebold and Mariano (1995) test or Giacomini and White (2006) test to decide whether

competing models have equal forecasting performance. As with any existing out-of-sample test

the researcher would have to choose the splitting point. Table 11 displays the results of apply-

ing these tests as function of the cutoff point ρ, which is a fraction of the sample length used for

forecast evaluation to the sample length used for the model estimation.
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Table 6: Results of applying standard tests under different alternatives.

Results when ∆Lt is simulated according to H
(1)
1 .

p-value/Cutoff ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DM (1995) 0.419 0.170 0.624 0.002 0.042 0.033 0.310 0.040 0.207 0.026

GW (2006) 0.011 0.010 0 0 0 0 0 0 0 0

Results when ∆Lt is simulated according to H
(1)
2 .

p-value/Cutoff ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DM (1995) 0.524 0.205 0.098 0.031 0.012 0.219 0.146 0.924 0.609 0.057

GW (2006) 0.586 0.206 0.100 0.010 0.024 0.035 0.010 0 0 0

Results when ∆Lt is simulated according to H
(1)
3 .

p-value/Cutoff ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DM (1995) 0.484 0.194 0.474 0.014 0.408 0.062 0.065 0.136 0.9496 0.017

GW (2006) 0.090 0.100 0 0 0 0 0 0 0 0

Note: The cutoff point ρ is defined as a fraction of the evaluation to estimation samples, i.e.
ρ = T2/T1, where T2 is the length of the sample used for forecast evaluation and T1 is the length
of the sample used for estimation. The values in the table present the p-values from the test at
the nominal level α = 5%. The p-values in bold indicate rejection at the nominal size α = 5%.
DM abbreviates Diebold and Mariano (1995) test of equal predictive ability and GW abbreviates
Giacomini and White (2006) test of conditional predictive ability with ht = [1, ∆Lt−1]

′.

Table 11 shows that the conclusion of the tests, especially Diebold and Mariano (1995) test, can

change depending on the splitting point when applied to our alternatives. Giacomini and White

(2006) test suffers less from the splitting point problem and with a reasonable estimation sample

delivers consistent results. Interestingly, for many splitting points Diebold and Mariano (1995) test

does not reject the null of equal predictive ability, while Giacomini and White (2006) test does reject

the same null10. This is indicative of changing relative performance as we knew ex-ante, hence the

10Note that this result is not specific to Diebold and Mariano (1995) test, but in fact to all existing tests that derive
from it, including superior predictive ability tests, see White (2000), Hansen (2005) as well as Model Confidence Set test
by Hansen et.al.(2011).
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existing methodology based on constant relative performance is inappropriate. We stress that the

presented thought experiment is not a reflection on the tests as they were not designed to deal with

the world of changing relative performance, but rather to highlight the dangers that the researcher

runs into when applying existing tests that rely on inappropriate assumption.

6.3 Sign Forecasting

In this section we assess how our methodology for sign forecasting, described in section 3.3, per-

forms with a known data-generating process. In this case the true probability Pr (∆LT+1 ≤ 0) is

known. For simplicity, we choose the H
(3)
0 as our true data generating process for ∆Lt and forecast

the probability Pr (∆LT+1 ≤ 0), starting from T = 100.

Figure 8: The red line plots the true probability Pr (∆LT+1 ≤ 0) and the blue dots represent the estimate
P̂r (∆LT+1 ≤ 0) .

Figure 8 plots the true probability Pr (∆LT+1 ≤ 0) against its estimate P̂r (∆LT+1 ≤ 0), where

for each point on the curve the data up to T is used, where T = 100, · · · , T. Overall, the estimated

probability is quite close to its true value and becomes more precise the more data is used for

the original estimation. This happens primarily due to the c.d.f. of the error term ε̂t being better

estimated towards the end of the sample as more data is used. At the final point in the sample, we

forecast a probability of 0.3829 with a corresponding forecast interval of [0.3520, 0.4200]. Finally,

applying our criterion, given in eq. (15), we get Ĉ = −0.052, which points to the fact that on

average our estimated probability P̂r (∆LT+1 ≤ 0) is on average overestimated by approximately
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5.2%.

7 Application

In this section we apply our proposed methodologies to the data. We first go back to the motivating

example we presented in the introduction in Figure 1.

7.1 Motivating example in the Introduction

We consider the daily IBM returns spanning 03/01/2006-29/12/2016 and use two models to fore-

cast daily variance: GARCH(1,1) model with Gaussian errors and GARCH(1,1) model with Student-

t errors. The forecast loss is taken to be the squared error, see eq.(3) and constructed via the recur-

sive scheme described in Section 2. We compute the 5 minute realized volatility series from the data

and it is taken to represent the "true" daily variance. We define ∆Lt to be ∆Lt :=
(
ε̂St

t
)2−

(
ε̂G

t
)2, i.e.

we subtract the squared error produced by the GARCH(1,1) model with Gaussian errors from the

squared error produced by the GARCH(1,1) model with Student-t errors. Once the {∆Lt} has been

constructed, we apply our proposed two-step nonparametric procedure using AR(1) time-varying

coefficient model (4) to estimate the corresponding time-varying mean and variance. Figure 9

depicts µ̂t and σ̂2
t and τ̂(t/T) calculated via eq.(9).
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Figure 9: Plots of the estimates of τ̂, µ̂t and σ̂2
t for IBM data, 2006-2016, using squared error loss and

recursive forecasting scheme.

Recall that each corresponding µ̂t is weighted by the inverse of the standard error of µ̂t(u).

One can approximately take the weight to be 1/σ̂t. Hence whenever a spike occurs in the relative

forecasting performance (represented by the violet dashed lines), the µt in those periods get down

weighted. We next calculate the test statistic ST. Tables below show the critical values of two-sided

and one-sided ST test, specific to this application.

Table 7: Critical values for ST.

Quantiles 0.005 0.025 0.05 0.075 0.85 0.90 0.925 0.95 0.975 0.99 0.995

Cr. values −2.48 −1.90 −1.64 −1.37 1.00 1.43 1.61 1.72 2.10 2.60 2.77

Note: The critical values are calculated via the wild bootstrap and are specific to the application at
hand.

The value of the test statistic in this application example is ST = −26.33. Provided the critical

values in Table 12, when the null of Equal Predictive Ability is tested, it is rejected at all levels of

significance. Under the one-sided null of Superior Predictive Ability, the null is not rejected for

all significance levels, indicating that there is no evidence that the GARCH(1,1) model with nor-

mal errors is superior to the GARCH(1,1) model with Student-t. Under remark 4 the practitioner
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should default to choosing GARCH(1,1) with Student-t errors for forecasts. If supposing we test

the opposite one-sided null, we find evidence that GARCH(1,1) with Student-t errors is superior

to GARCH(1,1) with normal errors at all levels.

Below we present the results of our pseudo out-of-sample sign forecasts.

Figure 10: One-step ahead sign forecasting for the motivating example in the introduction.

We see that primarily, the probability of the GARCH(1,1) model with Student-t errors outper-

forming the GARCH(1,1) model with normal errors is relatively high for most points in time with

a few exceptions. Finally applying the criterion given by eq. (15) we get the value Ĉ = −0.033,

indicating that our forecasted probabilities are on average overestimated by 3.3%. At the final

point in the sample, we forecast a probability of 0.3129 with a corresponding forecast interval of

[0.2700, 0.3540]. Interestingly, this probability does not conclude that GARCH(1,1) with Student-

t errors should be selected. This highlights the randomness inherent in forecasting next period

probabilities. In this case, our two approaches would select different models for forecasting.

7.2 Comparing parameter-reduction methods

In this section we condider an application similar to that considered in Giacomini and White (2006).

We consider the “balanced panel" of the dataset FRED-MD, consisting of 128 monthly economic

time series measured over January, 1959 - August, 2017, and apply the same transformations to the
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original series, as documented in Appendix to the dataset11. In particular, compared to Giacomini

and White (2006), we extend their dataset to the August of 2017. We replace the sequential model

examined in Giacomini and White (2006) with lasso to avoid multiple sequential testing. We then

use several parameter-reduction methods, described below, to construct 1-month ahead forecasts

of four US macroeconomic variables: two real variables - industrial production (abbreviated IP)

and real personal income less transfers (abbreviated RPI); and two price indices: consumer price

index (abbreviated CPI) and producer price index (abbreviated PPI).

All forecasting models project the k−step ahead variable of interest Yt+k onto time t predictors

Xt and lags of the variable of interest Yt, Yt−1, · · · . We next describe the forecasting methods.

The full model for the k-step ahead forecast of the variable of interest Yt is as follows:

Yt+k = α + βXt + γ1Yt + γ2Yt−1 + · · ·+ γ6Yt−5 + εt+k, (21)

where Xt contains all 135 predictors from the FRED-MD dataset. To overcome multicollinearity in

Xt, we follow Giacomini and White (2006) and replace the groups of variables in Xt whose corre-

lation is greater that 0.98 with their average. The new Xt contains 120 predictors.

The first method considers the full model (21) and applies lasso to determine the relevant

predictors. Denote by Zt = (X′t,Yt,Yt−1, · · · ,Yt−5)′, then lasso estimates the parameter vector

θ = (α, β′, γ1, γ2, · · · , γ6)′ by solving

θ̂ := arg min
θ∈Rd

{
1
T

T

∑
t=1
‖Yt − θ′Zt‖2

2 + λ‖θ‖1

}
,

where d is the dimension of the parameter vector θ and ‖ · ‖2 and ‖ · ‖1 denotes the L2- and L1-

norms respectively.

The next model we consider is the diffusion index method (abbreviated DI) that first uses prin-

cipal component analysis to estimate j factors F̂t from the predictors Xt and then considers the

reduced model given by:

Yt+k = α + βF̂t + γ1Yt + · · ·+ γpYt−p + εt+k,

where the lag length p is selected by BIC and the number of factors j is chosen by applying

Onatski’s (2009) test.

11The FRED-MD dataset is collected and constantly updated by the Federal Reserve Bank of St. Louse and can be
found online with the following link. For the variables we consider in this paper, the transformations are as follows: the
first log difference for RPI and IP variables; and the second log difference for CPI and PPI variables.
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The Bayesian shrinkage method (abbreviated Bay) considers the full model (21) and applies

Bayesian estimation with Normal-Gamma priors for the coefficients. Moreover, the Bayesian es-

timation is coupled with the use of the Elastic Net as a more stabilized version of lasso, see Zou

and Hastie (2005), that also allows grouping effects. In particular, the Elastic Net estimator θ̂ of the

parameter vector θ = (α, β′, γ1, γ2, · · · , γ6)′ is the solution of the following minimization problem:

θ̂ = arg min
θ∈Rd

1
2σ2

T

∑
t=1

(
Yt − θ′Zt

)2
+ λ1

d

∑
j=1
|θj|+ λ2

d

∑
j=1

θ2
j ,

where d is the dimension of the parameter vector θ and Zt = (X′t,Yt,Yt−1, · · · ,Yt−5)′. We follow

Korobilis (2013) for setting the priors. In particular, the Bayesian prior for θ in the above penalized

regression is

π(θ|σ2) ∼ e
− λ1√

σ2

d
∑

j=1
|θj|−

λ2
2σ2

d
∑

j=1
θ2

j
,

and for the shrinkage parameter τj, j = 1, · · · , d the hyperprior on τ2
j is given by

π(τ2
j |λ2

1) ∼ Exponential
(

λ2
1

2

)
, for j = 1, · · · , d,

which leads to the prior of the parameter vector have the following diagonal covariance matrix:

V =



(
τ−2

1 + λ2
)−1 (

τ−2
2 + λ2

)−1

. . . (
τ−2

d−1 + λ2
)−1 (

τ−2
d + λ2

)−1


.

The benchmark methods are the autoregressive model (denoted by AR) given by:

Yt+k = α + γ1Yt + γ2Yt−1 + · · ·+ γ6Yt−5 + εt+k,

where p is selected by BIC and 0 ≤ p ≤ 6, and the random walk model (denoted by RW) in levels,

corresponding to the forecasting model in differences Yt+k = α + εt+k, which therefore captures

just the unconditional mean of the variable of interest. We use the squared error as our loss func-

tion for evaluating the forecasts and construct the time series of losses for k = 1 month according

the recursive scheme, described in Figure 2 with T = 100.

Our one-sided test ST tests the null of SPA, against an alternative of inferior predictive ability.
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The loss differences are constructed from the loss of the model from the column model of our table,

minus the loss of the model from the row model of our table. Therefore, a negative test statistic

is indicative of SPA of the column model versus the row model, whereas a positive test statistic is

indicative of the inferior predictive ability. Our decision rule is to select the column model when-

ever there is not significant evidence to reject the null of SPA. Otherwise we select the row model.

We highlight the cases when we reject the null of SPA in bold. We also identify that in general, the

Bayesian model performs consistently poorly for all four variables. Conversely, the Random Walk

model performs in general the best, except for forecasting personal income where it is insignifi-

cantly worse than the AR model.

Our two-sided test allows us to construct our overall ranking for models. The results are pre-

sented in Tables 13-14. Significant rejections in either direction of our null is highlighted again in

bold. For each of our variables of interest, we obtain the following rankings:

• Personal income: AR ≥ RW≥ DI ≥ Lasso ≥ Bay;

• Industrial production: RW ≥ Lasso ≥ AR ≥ DI > Bay;

• Producer price index: RW>Lasso ≥ DI ≥ AR ≥ Bay;

• Consumer price index: RW ≥ Lasso > DI ≥ AR > Bay.

In the above, ≥ indicates an insignificant superior ranking and > indicates a significant supe-

rior ranking. We remark that for all four variables, the Bayesian shrinkage method is consistently

the worst in terms of its forecasting ability for k = 1 month, and significantly so for industrial

production and the consumer price index. Conversely, the random walk model performs the best

(followed by lasso), for all variables except personal income where the AR model is insignificantly

ranked higher.

We now proceed to applying the sign forecasting methodology, described in Section 3.3. For

each of the variables we report the forecasted probability P̂r (∆LT+1 ≤ 0) at the end of the sample

as well as the associated forecast interval [F̂I l , F̂Iu]. Also, for all variables we perform our pseudo

out-of-sample sign forecasting exercise, starting with T = 100, and report the value of our criterion

Ĉ. Results are presented in Table 15. From the results in Table 15 we can infer our ranking of models

based on forecasted next period next period performance. We do so in the following way. We say

that model A outperforms model B, denoted as A > B, if F̂I l > 0.5 and A ≥ B if 0.5 ∈ [F̂I l , F̂Iu]

and Pr
(
∆LABT+1 < 0

)
> 0.5. Using the above described notation the ranking is as follows:

• Personal income: Lasso > AR > RW > DI > Bay;
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• Industrial production: Lasso > AR > RW > DI > Bay;

• Producer price index: AR > Lasso > RW > DI > Bay;

• Consumer price index: AR > Lasso≥ RW > DI > Bay,

This ranking is to some degree similar to the ranking based on average past performance.

In particular, at the bottom of our ranking we see that the Bayesian shrinkage method performs

consistently the worst out of all models for all four variables. The diffusion index method (DI)

performs also generally poorly, which is again consistent with our metric for past performance.

One likely explanation of the poor performance of the DI method is the potential for overfitting,

which translates into poor out-of-sample forecasting. The reason for the latter is that, in addition

to the lags of the forecasted variable, the DI model also includes the k common factors extracted

from the whole dataset, which might be irrelevant for forecasting in any particular period.

Interestingly, our sign forecasting approach to ranking indicates that the random walk model

is not the best model for next period forecasting, as it is always dominated by either the lasso

or the autoregressive model. In the case of the autoregressive model, it is likely because the au-

toregressive model can account for serial correlation in loss differences, which sometimes is the

dominant feature in the data. Likewise, it appears that some of the time the lasso model is bet-

ter able to capture next period performance than both the autoregressive model and the random

walk model. We can also infer that our average performance metric, especially due to the weight-

ing we employ, favors models that perform well consistently and with low variance over models

that perform very well some of the time but not so well the other times. Hence the random walk

model, as the conservative choice out of our selection of models, is often the best by our average

performance metric. However forecasting one period ahead, we see it is the case that either or the

autoregressive model will outperform. For the sake of brevity, we present the results for longer

horizons, k = 6 and k = 12 months in Appendix C.
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8 Concluding remarks

In this paper we address the issue of forecast evaluation and forecast selection in unstable envi-

ronments. Existing out-of-sample tests often suffer from low power, and in unstable environments

they can generate spurious and potentially misleading results. We address the possibility of unsta-

ble environments explicitly, and provide two methods by which to inform the selection of models

for future forecasts. Importantly, our new methodology is no longer reliant on a sample splitting

point, which is directly connected to the two limitations of the existing out-of-sample tests. We

demonstrate that our methodology performs well across a variety of applications, and our test has

high power against a range of fixed and local alternatives.
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Appendix A1.

Consider the following hypothetical example. Assume the true data generating process for {yt}T
t=1

follows an AR(1) process:

yt = ρyt−1 + εt, εt ∼ i.i.d.(0, σ2), |ρ| < 1.

Assume one uses two simple models to forecast yt one-step ahead:

• Model A uses ŷt+1|t = 0 for all t = 1, · · · , T as a forecast for yt+1;

• Model B uses ŷt+1|t = 0.1 for all t = 1, · · · , T as a forecast for yt+1;

Assume also that the forecaster uses the mean squared error (MSE) as the loss to assess the quality

of the forecasts, i.e.

LAt = E
[(

yt+1 − ŷt+1|t
)2 |Ft

]
= ρ2y2

t + σ2,

and

LBt = E
[(

yt+1 − ŷt+1|t
)2 |Ft

]
= ρ2y2

t + σ2 − 0.2ρyt + 0.01,

and therefore

∆LABt = LAt −LBt = 0.01− 0.2ρyt. (22)

From eq.(22) it then follows that∆LABt ≤ 0 if yt > 0.05/ρ,

∆LABt > 0 if yt < 0.05/ρ.
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Appendix A2.

This appendix provides the discussion that motivates the model (4) in Section 3. We start by show-

ing in a stylized example that under recursive estimation scheme the loss difference ∆Lt,T forms

a varying-coefficient autoregressive process. Although the presented example is quite stylized, it

is nevertheless quite representative and we believe that similar logic will apply to a variety of sce-

narios making our methodology applicable in a variety of circumstances.

Consider the following scenario: at time t− 1 researcher produces point forecast of a variable of

interest yt using two regression models generically denoted by A and B, the recursive estimation

scheme, and xt as predictor.12 The models differ in the way parameters are estimated. The forecasts

made at time t− 1 for yt are given respectively by

ŷAt|t−1 = xt β̂
A
t−1 and ŷBt|t−1 = xt β̂

B
t−1

Assume the researcher picks the squared error as her loss, i.e.

LAt = (yt − xtŷAt|t−1)
2 = (yt − xt β̂

A
t−1)

2 =: (ε̂At )
2,

and

LBt = yt − xtŷBt|t−1 = (yt − xt β̂
B
t−1) =: (ε̂Bt )

2

such that the loss difference at time t is given by:

∆LABt := LAt −LBt = (ε̂At )
2 − (ε̂At )

2.

Recall that the parameters for both models are estimated recursively and therefore we can write:

β̂i
t = β̂i

t−1 + γi
t

(
yt − xt β̂

i
t−1

)
, i = A,B, (23)

where γi
t is the estimator gain coefficient. For simplicity and tractability of the results to follow we

consider γAt = γBt = γt, although the results will carry through even without this simplification.

12We condider single regressor solely for simplicity.

49



Consider now the loss difference next period:

∆LABt = LAt −LBt =
(

yt − xt β̂
A
t−1

)2
−
(

yt − xt β̂
B
t−1

)2
=

=
(

yt − xt

[
β̂At−2 + γt−1{yt−1 − xt−1 β̂At−2}

])2
−
(

yt − xt

[
β̂Bt−2 + γt−1{yt−1 − xt−1 β̂Bt−2}

])2
=

=

{
ε̂At−1(1− γt−1xt) + ∆yt − ∆xt β̂

A
t−1

}2

−
{

ε̂Bt−1(1− γt−1xt) + ∆yt − ∆xt β̂
B
t−1

}2

.

To analyse the above formula further, denote by Ti
t := ∆yt − ∆xt β̂

i
t−1 for i = A,B. Then

∆LABt = (1− xtγt−1)
2
{
(ε̂At−1)

2 − (ε̂Bt−1)
2
}
+ 2(TAt ε̂At−1 − TBt ε̂Bt−1) + (TAt )2 − (TBt )

2 =

= (1− xtγt−1)
2∆LABt−1 + (TAt ε̂At−1 − TBt ε̂Bt−1) + (TAt )2 − (TBt )

2 =

= ρt∆LABt−1 + (TAt ε̂At−1 − TBt ε̂Bt−1) + (TAt )2 − (TBt )
2,

which then further justifies our autoregressive modelling strategy for ∆LABt in (4) and due to time-

variation of the autoregressive coefficient it further follows that ∆Lt,T is locally stationary process.

Moreover it follows that ρt = (1− xtγt−1)
2, and one can then think of our specific modelling choice

of ρt in (4) as

1 > E
[
(1− xtγt−1)

2
]
= ρ(t/T).

We now further discuss the choice of the weighting scheme in our test statistic ST. In particular,

in what follows we will show that σ(t/T) provides a proxy for the variances of the estimation

errors. To facilitate our discussion further we make one more simplification, in particular we take

xt = 1 in our stylized example above such that ∆Lt,T is given by:

∆LABt = LAt −LBt =
(

yt − β̂At−1

)2
−
(

yt − β̂Bt−1

)2
=
(

yt − β̂At−2 − γt−1{yt−1 − β̂At−2}
)2
−

−
(

yt − β̂Bt−2 − γt−1{yt−1 − β̂Bt−2}
)2

=

(
(1− γt−1)ε̂

A
t−1 + ∆yt

)2

−
(
(1− γt−1)ε̂

B
t−1 + ∆yt

)2

=

= ∆yt + (1− γt−1)
2∆LABt−1 + 2∆yt(1− γt−1)

(
ε̂At−1 − ε̂Bt−1

)
=

= ρt∆LABt−1 + ∆yt + 2∆yt(1− γt−1)
(

ε̂At−1 − ε̂Bt−1

)
.

Let σ2
t,ηi

:= var(β̂i
t − β) denote the variance of the estimation error for model i, i = A,B. It is

therefore straightforward to show that

var (∆Lt,T|∆Lt−1,T) ∝ (σ2
t,ηA + σ2

ηt,B ).
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Appendix B.

This Appendix presents proofs of the theoretical results. Throughout the proofs for brevity of no-

tation we will drop the second subscript in the triangular array notation, i.e. for any variable Xt,T

we will just write Xt. Moreover, throughout the Appendix, the symbol C denotes a universal real

constant which may take a different value on each occurrence.
Before the proofs of the main result we introduce a definition and an auxiliary lemma that we

will use throughout.

Definition 1. (Shao and Wu (2007)) Let (εt)t∈Z be a sequence of i.i.d random variables and let

Yt = g(· · · , ε−1, ε0, ε1, · · · , εt), where g(·) is a measurable function. Let (ε?t )t∈Z be an i.i.d copy of

(εt)t∈Z; let Y?
t = g(· · · , ε?−1, ε?0, ε1, · · · , εt) be a coupled version of Yt. We say that Yt is geometrically

moment contracting of order α, denoted GMC(α), if there exists a constant C > 0 and 0 < ρ = ρ() < 1

such that for all t ∈N it holds that

E [|Yt −Y?
t |α] ≤ Cρt. (24)

The inequality in (24) indicates that the the process Yt forgets its past geometrically fast. Impor-

tantly, it is straightforward to verify that the processes described by (4) are GMC without imposing

any additional assumptions. We state and prove this in the lemma below.

Lemma 1. Under Assumptions A1-A3, the process described by eq. (4) is geometrically moment con-

tracting (GMC).

Proof of Lemma 1. The process in (4) can generically be written as follows:

Yt = γ0(t/T) + Γ(t/T)Yt−1 + σ(t/T)εt,

where γ0(t/T) = (ρ0(t/T), 0, · · · , 0)′, Yt := (∆Lt, ∆Lt−1, ∆Lt−2, · · · , ∆Lt−d)
′ and εt = (εt, 0, · · · , 0)′.

Finally the matrix Γ(t/T) is given by:

Γ(t/T) =


ρ1(t/T) ρ2(t/T) · · · ρd−1(t/T) ρd(t/T)

1 0 · · · 0 0
...

...
...

...
...

0 0 . . . 1 0

 .

Let Y?
t be a coupled version of Yt in the sense described in Definition 1. For a square matrix A we
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denote by λ(A) its largest eigenvalue. It then holds that

‖Yt −Y?
t ‖ ≤ λ(Γ(t/T))‖Yt−1 −Y?

t−1‖ ≤ λ(Γ(t/T))λ(Γ((t− 1)/T))‖Yt−2 −Y?
t−2‖ ≤ · · ·

≤ λ(Γ(t/T))λ(Γ((t− 1)/T)) · · · λ(0)‖Y0 −Y?
0 ‖.

Taking expectations of the above expression we get:

E‖Yt −Y?
t ‖ ≤

( d

∑
k=1

ρ

)t

E‖Y0 −Y?
0 ‖ = O

(
ρt) ,

which establishes the proof of Lemma 1. �

Lemma 2. Let Yt ∈ Rn be geometrically moment contracting (GMC) process of order α in the sense of

the Definition 1. It follows that YtYT
t is also GMC of order α.

Proof of Lemma 2. Denote by Y?
t ∈ Rn the coupled version of the original process Yt. Provided

that Yt is GMC of order α, the following holds:

‖YtYT
t −Y?

t (Y
?
t )

T‖α/2 ≤ ‖YtYT
t −Yt(Y?

t )
T‖α/2 + ‖Yt(Y?

t )
T −Y?

t (Y
?
t )

T‖α/2 ≤

≤ ‖Yt‖α‖Yt −Y?
t ‖α + ‖Y?

t ‖α‖Yt −Y?
t ‖α = O(ρt),

where ρ = ρ(α) < 1. �

Lemma 3. Let (εt)t∈Z be a sequence of i.i.d random variables and let Yt = g(· · · , ε−1, ε0, ε1, · · · , εt),

where g(·) is a measurable function, be a random variable that is geometrically moment contracting GMC(α)

and E [Yt] = 0, then the following holds:

E

∥∥∥∥ b

∑
a

Yt

∥∥∥∥
2
≤

∞

∑
j=0

√
b− aE

∥∥∥∥Yj −Y?
j

∥∥∥∥
2
= C
√

b− a
∞

∑
j=0

O(ρj), 0 < ρ < 1.

52



Proof of Lemma 3. First consider the following decomposition

b

∑
t=a

Yt =
b

∑
t=a

(
Yt −E[Yt] + E [Yt]

)
=

b

∑
t=a

{(
Yt −E [Yt|Ft−1]

)
+

(
E [Yt|Ft−1]−E [Yt|Ft−2]

)
+

+

(
E [Yt|Ft−2]−E [Yt|Ft−3]

)
+ · · ·

}
=

∞

∑
j=0

b

∑
t=a

(
E
[
Yt|Ft−j

]
−E

[
Yt|Ft−j−1

] )

Notice also that E
[
Yt|Ft−j−1

]
= E

[
Y?

t |Ft−j
]
. Therefore

∥∥∥∥ b

∑
t=a

Yt

∥∥∥∥
2
=

∥∥∥∥ ∞

∑
j=0

b

∑
t=a

(
E
[
Yt|Ft−j

]
−E

[
Yt|Ft−j−1

] )∥∥∥∥
2
≤

∞

∑
j=0

∥∥∥∥ b

∑
t=a

(
E
[
Yt|Ft−j

]
−E

[
Yt|Ft−j−1

] )∥∥∥∥
2
=

=
∞

∑
j=0

∥∥∥∥ b

∑
t=a

(
E
[
Yt|Ft−j

]
−E

[
Y?

t |Ft−j
] )∥∥∥∥

2
≤

∞

∑
j=0

∥∥∥∥ b

∑
t=a

(
E
[
Yj|F0

]
−E

[
Y?

j |F0

] )∥∥∥∥
2
≤

≤
∞

∑
j=0

√
b− a‖Yj −Y?

j ‖2 ≤ C
√

b− a
∞

∑
j=0

O
(

ρj
)

,

where in the last inequality we used Definition 1.

Lemma 4. Let Yt(u) be defined as in Lemma 1. Provided that supu∈[0,1] ‖Y0(u)‖ < C < ∞, then

supu∈[0,1] ‖Yt(u)‖ < C < ∞ for any t = 1, · · · , T.

Proof of Lemma 4. Using recursion Yt(u) can be written as follows:

Yt(u) =
t

∑
j=1

γ0(u)
j−1

∏
i=1

Γ(u) +
t−1

∑
j=0

σ(u)εt−j

j

∏
i=1

Γ(u) + Y0(u)
t

∏
i=1

Γ(u).

Let Ib1 := [b1, 1− b1], where b1 is any sequence satisfying h1/b1 → 0.

E sup
Iu

|Xt(u)| ≤ ρλ(Γ(u))t−1 + λ(Γ(u))t
[ t−1

∑
j=0

CωE|εt|+ sup
Iu

E|X0(u)|
]
< C < ∞.

where ρ̄ < 1 and λ(Γ(u)) denotes the largest eigenvalue of Γ(u). Pick any δ = O(Tα), where α > 0.

Then by Markov’s inequality we get:

P

(
sup

Iu

|Xt(u)| ≥ δ

)
≤

E supIu
|Xt(u)|

δ
= O

(
1

Tα

)
,

from which the statement of Lemma 4 follows. �
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Proof of Theorem 1.

The proof is an extention of that in Kristensen (2012) by extending it to globally nonstationary

regressors. We first lay out the notation used in establishing Theorem 1 in detail, since the rest of

subsequent theory will use the same notation. It holds that

θ̂(u)− θ(u) =

[
1
T

T

∑
t=1

Kh1 (t/T − u)ZtZ
T
t

]−1
1
T

Kh1

T

∑
t=1

(t/T − u)Ztξt+

+

[
1
T

T

∑
t=1

Kh1 (t/T − u)ZtZ
T
t

]−1
1
T

T

∑
t=1

Kh1 (t/T − u)ZtZ
T
t

{
θ(t/T)− θ(u)

}
= Σ−1

T (u)W̃T(u)+Σ−1
T ṼT(u),

where ṼT(u) = (ṼT,0(u)′, ṼT,1(u)′)′ and similarly W̃T(u) = (W̃T,0(u)′, W̃T,1(u)′)′, where for m =

0, 1 it holds that

W̃T,m(u) =
1
T

T

∑
t=1

Kh1 (t/T − u)
(
t/T − u

)m
Xtξt, (25)

and

ṼT,m =
1
T

T

∑
t=1

Kh1 (t/T − u) (t/T − u)2mXtX
T
t

{
θ(t/T)− θ(u)

}
[1+m(d+1):(d+1)+m(d+1)]

. (26)

We first show that H−1ΣT(u)H−1 = Σ(u) + op(1), where H = diag (Id+1, h1 Id+1) with Id+1

being the (d + 1)× (d + 1) identity matrix. We first write ΣT(u) matrix as follows:

ΣT(u) =

ΣT,0(u) ΣT,1(u)

ΣT,1(u) ΣT,2(u)

 ,

where

ΣT,m(u) =
1
T

T

∑
t=1

Kh1 (t/T − u)
(
t/T − u

)m
XtX

T
t , for m = 0, 1, 2.

Using Riemann sum approximation of an integral and the fact that Ωt,T ≡ E
[
XtX

T
t
]
= Ω(t/T) +

54



o(1), the following holds:

h−m
1 E [ΣT,m(u)] =

1
T

T

∑
t=1

E

[
XtX

T
t Kh1 (t/T − u)

(
t/T − u

h1

)m]
=

1
T

T

∑
t=1

Kh1 (t/T − u)
(

t/T − u
h1

)m

E
[
XtX

T
t

]
=

1
T

T

∑
t=1

Kh1 (t/T − u)
(

t/T − u
h1

)m

Ω(t/T) + o(1) =

=

1ˆ

−1

ymK(y)Ω(u + yh1)dy + o(1) = λmΩ(u) + o(1).

Therefore it holds that

h−m
1 ΣT,m(u) = λmΩ(u)

{
1 + op(1)

}
, and H−1ΣT(u)H−1 = Σ(u){1 + op(1)}, (27)

It therefore holds that

H{θ̂(u)− θ(u)} =
[

H−1ΣT(u)H−1
]−1

H−1
[
W̃T(u) + ṼT(u)

]
= Σ−1(u)

[
H−1W̃T(u) + H−1ṼT(u)

]
.

(28)

Consider first H−1ṼT(u) term. In particular, taking expectation of this term, it holds that:

E
[

H−1ṼT(u)
]
= h2

1BT(u) + o(h2
1), where BT,m(u) =

1
2

ΣT,m+2(u):ρ(u), m = 0, 1.

Using (27) it is also straightforward to show that

H−1BT(u) =
h2

1
2

λ2Ω(u)

0

⊗ :ρ(u) + op(h2
1), (29)

To establish pointwise convergence it now remains to show the following condition:

E

∥∥∥∥H−1ṼT(u)− H−1E
[
ṼT(u)

] ∥∥∥∥ = o(h2
1). (30)

Showing (30) is equivalent to showing the following condition for m = 0, 1:

E

∥∥∥∥∥ 1
T

T

∑
t=1

h−m
1 Kh1(t/T−u)(t/T−u)2m

[
XtX

T
t −Ω(t/T)

]
{θ(t/T)− θ(u)}[1+m(d+1):(d+1)+m(d+1)]

∥∥∥∥∥ = o(h2
1).

(31)

In what follows we show the proof for m = 0, as the proof for m = 1 is analogous. In order to
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proceed further we introduce some further notation. In particular, let

at = XtX
T
t −Ω(t/T) and bt = Kh1(t/T − u)

{
ρ(t/T)− ρ(u)

}
,

and

At =
t

∑
s=1

as and Bt =
t

∑
s=1

bs

Using the telescoping sum argument, the expression in (31) then can be written as follows:

T

∑
t=1

atbt =
T

∑
t=1

(At − At−1)bt =
T

∑
t=1

Atbt −
T

∑
t=1

At−1bt =
T

∑
t=1

Atbt −
T−1

∑
t=0

Atbt+1 =

=
T

∑
t=1

Atbt −
T

∑
t=1

Atbt+1 − A0b1 + ATbT+1 =
T

∑
t=1

At(bt − bt+1) + ATbT+1.

where in the last but one line above we used the fact that A0 = 0. Therefore:

∥∥∥∥ 1
T

T

∑
t=1

At(bt − bt+1) +
1
T

ATbT+1

∥∥∥∥ ≤ ∥∥∥∥ 1
T

T

∑
t=1

At(bt − bt+1)

∥∥∥∥+ 1
T
‖ATbT+1‖ ≤

≤ 1
T

T

∑
t=1
‖At‖‖bt+1 − bt‖+

1
T
‖AT‖‖bT+1‖.

Using Lemma 2 it is straightforward to verify that XtX
T
t is GMC. In addition, from our definition

of Bt and at terms above, it holds that ‖AT‖ = Op
(√

Th1
)

by Lemma 3 and ‖bT+1‖ = Op (1). It

therefore holds:∥∥∥∥ 1
T

T

∑
t=1

At(bt − bt+1) +
1
T

ATbT+1

∥∥∥∥ ≤ 1
T

T

∑
t=1

Op

(√
Th1

)
‖bt+1 − bt‖+ Op

(√
Th1

T

)
(32)

Consider now the term bt+1 − bt:

‖bt+1− bt‖ =
∥∥∥∥Kh1 ((t + 1)/T − u) {ρ ((t + 1)/T)− ρ(u)} − Kh1 (t/T − u) {ρ (t/T)− ρ(u)}

∥∥∥∥ =

=

∥∥∥∥[Kh1 ((t + 1)/T − u) + Kh1 (t/T − u)− Kh1 (t/T − u)
]{

ρ ((t + 1)/T)− ρ(u)
}
−

−Kh1 (t/T − u) {ρ (t/T)− ρ(u)}
∥∥∥∥ ≤ ∥∥∥∥[Kh1 ((t + 1)/T − u)−Kh1 (t/T − u)

][
ρ((t+ 1)/T)− ρ(u)

]∥∥∥∥+
+

∥∥∥∥Kh1 (t/T − u)
[

ρ((t + 1)/T)− ρ(t/T)
]∥∥∥∥ = Op

(
1

Th1

)
.
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Going back to the expression in (32) and summing only over those terms that contribute to the

sum:

∥∥∥∥ 1
T

(u+h1)T

∑
t=(u−h1)T

At(bt − bt+1) +
1
T

ATbT+1

∥∥∥∥ ≤ 1
T

(u+h1)T

∑
t=(u−h1)T

‖At‖‖bt+1 − bt‖+
1
T
‖AT‖‖bT+1‖ =

=
1
T

(u+h1)T

∑
t=(u−h1)T

Op

(√
Th1

)
Op

(
1

Th1

)
+ Op

(√
Th1

)
= Op

(√
Th1

T

)
,

which in light of Assumption on bandwidths (need also to require Th3 → ∞) establishes (31).

To finish the proof of Theorem 1, it now remains to show that
√

Th1H−1W̃T(u)
d−→ N (0, Vθ(u) ,

where the expressions for B1(u) and Vθ(u) are given in the statement of the Theorem 1. Define

Ym
t :=

h−m−1/2
1√

T
K
(

t/T − u
h1

)
(t/T − u)m

Xtξt,

which is a martingale difference sequence w.r.t. Ft = σ(∆Lt, ξt, ∆Lt−1, ξt−1, · · · ). In light of As-

sumptions A1 and A2 the process ∆Lt is strongly mixing and supt,T E [|∆Lt,T|s] < ∞ for s > 2, see

Orbe et. al.(2005) Lemma A4 or Theorem 3.4 in Vogt (2012) for a proof of this result. To complete

the proof it therefore suffices to verify the following two conditions for Ym
t , m = 0, 1. In particular,

for m = 0, 1 as Th1 → ∞ it holds that

(C1)
T
∑

t=1
E [Ym

t (Ym
t )′|Ft−1]

p−→ Vθ(u),

(C2) for some small δ > 0 it holds that
T
∑

t=1
E

[
‖Ym

t ‖2+δ

]
→ 0.

Proof of (C1). To establish the proof of condition (C1) we will prove the following two condi-

tions:

(C1-1)
T
∑

t=1
E [Ym

t (Ym
t )′]→ Vθ(u),

(C1-2)
T
∑

t=1

(
E [Ym

t (Ym
t )′|Ft−1]−E [Ym

t (Ym
t )′]

)
p−→ 0.

We start with the proof of (C1-1).

T

∑
t=1

E
[
Ym

t (Ym
t )′
]
=

1
Th1

T

∑
t=1

K
(

t/T − u
h1

)2 ( t/T − u
h1

)2m

Ω(t/T)σ2(t/T) + o(1) =

=
1
h1

1ˆ

−1

K2
(

y− u
h1

)(
y− u

h1

)2m

σ2(y)Ω(y)dy + o(1) = ν2mσ2(u)Ω(u) + o(1).
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We next prove condition (C1-2):

T

∑
t=1

(
E
[
Ym

t (Ym
t )′|Ft−1

]
−E

[
Ym

t (Ym
t )′
] )

=

=
1

Th1

T

∑
t=1

[
XtX

T
t −Ω(t/T)

]
K2
(

t/T − u
h1

)(
t/T − u

h1

)2m

σ2(t/T) + o(1).

To establish (C1-2) it suffices to verify the following condition:

E

∥∥∥∥∥ 1
Th1

T

∑
t=1

[
XtX

T
t −Ω(t/T)

]
K2
(

t/T − u
h1

)(
t/T − u

h1

)2m

σ2(t/T)

∥∥∥∥∥ = o(h2
1). (33)

Note that this condition is a simplified version of condition (30). The proof therefore follows ex-

actly the same steps (we therefore omit the details) by setting at = XtX
T
t − Ω(t/T) and bt =

K2
(

t/T−u
h1

) (
t/T−u

h1

)2m
σ2(t/T) and applying Lemma 2 and Lemma 3. This completes the proof of

condition (C1). �

Proof of (C2).

T

∑
t=1

E
[
‖Ym

t ‖2+δ
]
=

1
(Th1)1+δ/2

T

∑
t=1

K2+δ

(
t/T − u

h1

)(
t/T − u

h1

)(2+δ)m

σ2+δ(t/T)E
[
‖Xt‖2+δ|εt|2+δ

]
=

=
C

(Th1)δ/2 σ2+δ(u)

1ˆ

−1

K2+δ(y)ym(2+δ)dy = o(1). �

Therefore
√

Th1H−1W̃T
d−→ N (0, Ξ(u)), where

Ξ(u) =

ν0σ2(u)Ω(u) 0

0 ν2σ2(u)Ω(u)

 .

Combining all of the above, it then follows that

√
Th1

(
H{θ̂(u)− θ(u)} − h2

1B1(u)
)

d−→ N
(

0, Σ(u)−1Ξ(u)Σ(u)−1
)

,

which completes the proof of Theorem 1. �
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Proof of Theorem 2.

The proof is based on that of Fan and Yao (1998) and uses uniform convergence results developed

in Vogt (2012). We start by defining the estimated errors ξ̂t:

ξ̂t = ∆Lt −ZT
t θ̂(t/T) = ZT

t θ(t/T) + ξt −ZT
t θ̂(t/T) = ZT

t

{
θ(t/T)− θ̂(t/T)

}
+ ξt.

Running the local constant nonparametric regression of ξ̂2
t on rescaled time we get:

σ̂2(u) =

1
T

T
∑

t=1
Kh2 (t/T − u) ξ̂2

t

1
T

T
∑

t=1
Kh2 (t/T − u)

.

Note also that

ξ̂2
t = ZT

t

{
θ(t/T)− θ̂(t/T)

}{
θ(t/T)− θ̂(t/T)

}T

Zt + ξ2
t + 2ZT

t

{
θ(t/T)− θ̂(t/T)

}
ξt,

and therefore

ξ̂2
t − ξ2

t = ZT
t

{
θ(t/T)− θ̂(t/T)

}{
θ(t/T)− θ̂(t/T)

}T

Zt + 2ZT
t

{
θ(t/T)− θ̂(t/T)

}
ξt =

= ZT
t

{
θ(t/T)− θ̂(t/T)

}{
θ(t/T)− θ̂(t/T)

}T

Zt − 2ZT
t

{
θ̂(t/T)− θ(t/T)

}
ξt.
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We therefore can write:

σ̂2(u)− σ2(u) =
1

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u)
[
ξ̂2

t − σ2(u)
]
=

=
1

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u)

[(
ZT

t

{
θ(t/T)− θ̂(t/T)

}{
θ(t/T)− θ̂(t/T)

}T

Zt + σ2(t/T)ε2
t+

− 2ZT
t

{
θ̂(t/T)− θ(t/T)

}
σ(t/T)εt

)
− σ2(u)

]
=

=
1

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u)
[
σ2(t/T)− σ2(u)

]
+

1

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u) σ2(t/T)
{

ε2
t − 1

}
+

− 2

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u)ZT
t {θ̂(t/T)− θ(t/T)}σ(t/T)εt+

+
1

T f̂ (u)

T

∑
t=1

Kh2 (t/T − u)ZT
t

{
θ(t/T)− θ̂(t/T)

}{
θ(t/T)− θ̂(t/T)

}T

Zt.

To make it easier to work with the above expression, we write it as follows:

σ̂2(u)− σ2(u) =
1

f̂ (u)

(
Î1(u) + Î2(u) + Î3(u) + Î4(u)− σ2(u) f̂ (u)

)
,

with

f̂ (u) =
1
T

T

∑
t=1

Kh2 (t/T − u) ,

Î1(u) =
1
T

T

∑
t=1

Kh2 (t/T − u) σ2(t/T),

Î2(u) =
1
T

T

∑
t=1

Kh2 (t/T − u) σ2(t/T){ε2
t − 1},

Î3(u) = −
2
T

T

∑
t=1

Kh2 (t/T − u)ZT
t {θ̂(t/T)− θ(t/T)}σ(t/T)εt

and

Î4(u) =
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t {θ̂(t/T)− θ(t/T)}{θ̂(t/T)− θ(t/T)}TZt.

We start by deriving some preliminary results for the expressions above:

i) By applying Theorem 4.1 in Vogt (2012) by setting d = 0 and Wt,T = 1 we arrive at the
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following result:

sup
u∈Ib2

∣∣∣∣ f̂ (u)− f (u)
∣∣∣∣ = op(1). (34)

Moreover, (34) together with an extra condition that infu∈[0,1] f (u) > 0 implies that

sup
u∈Ib2

f̂ (u)−1 = Op(1).

ii) By applying Theorem 4.1 in Vogt (2012) by setting d = 0 and Wt,T = Î1(u)− σ2(u) f̂ (u) we

arrive at the following result:

sup
u∈Ib2

∣∣∣∣Î1(u)− σ2(u) f̂ (u)−E
[
Î1(u)− σ2(u) f̂ (u)

] ∣∣∣∣ = Op

(√
log T
Th2

)
.

iii)

sup
u∈Ib2

∣∣∣∣E [Î1(u)− σ2(u) f̂ (u)
] ∣∣∣∣ = O

(
h2

2
)

.

(iv) Provided Assumptions A1(v) and A3(ii), it holds that

E

[
K
(

t/T − u
h2

)
σ2(t/T){ε2

t − 1}
]2+δ/2

< ∞.

We therefore can again apply Theorem 4.1 of Vogt (2012) to Î2(u), which yields:

sup
u∈Ib2

∣∣∣∣Î2(u)
∣∣∣∣ = Op

(√
log T
Th2

)
.

(v)

Î3(u) = op(h2
1 + h2

2) and Î4(u) = op(h2
1 + h2

2).

Proof of (v). We start by deriving the exact expression for Î3:
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Î3(u) =
2
T

T

∑
t=1

Kh2 (t/T − u)ZT
t {θ̂(t/T)− θ(t/T)}ξt =

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t Σ−1

T (t/T)
[

BT(t/T) + W̃T(t/T)
]
=

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1

(
H−1ΣT(t/T)H−1

)−1
H−1

[
BT(t/T) + W̃T(t/T)

]
=

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1

(
Σ−1(t/T) + op(1)

)
H−1

[
BT(t/T) + W̃T(t/T)

]
=

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1Σ−1(t/T)H−1

[
BT(t/T) + W̃T(t/T)

]
{1 + op(1)} =

=
(
Î31(u) + Î32(u)

)
{1 + op(1)}

Denote {:ρ(u)}1:(d+1) the first d + 1 elements of :ρ(u) and by {:ρ(u)}(d+2):2(d+1) the last d + 1

elements of :ρ(u).
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We start with Î31(u):

Î31(u) =
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t Σ−1

T (t/T)BT(t/T) =

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1

[
H−1ΣT(t/T)H−1

]−1
H−1BT(t/T) =

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1

[
Σ−1(t/T) + op(1)

]
H−1BT(t/T) =

=
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1Σ−1(t/T)H−1BT(t/T){1 + op(1)} =

=

{
1
T

T

∑
t=1

Kh2 (t/T − u) ξtX
T
t Ω−1(t/T)ΣT,2(t/T){:ρ(t/T)}1:(d+1)+

1
Tλ2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)
ξtX

T
t Ω−1(t/T)h−1

1 ΣT,3(t/T){:ρ(t/T)}(d+2):2(d+1)

}
{1 + op(1)} =

=

{
h2

1
T

T

∑
t=1

Kh2 (t/T − u) ξtX
T
t Ω−1(t/T)

(
h−2

1 ΣT,2(t/T)
)
{:ρ(t/T)}1:(d+1)+

h2
1

Tλ2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)
ξtX

T
t Ω−1(t/T)

(
h−3

1 ΣT,3(t/T)
)
{:ρ(t/T)}(d+2):2(d+1)

}
{1+ op(1)} =

=

{
h2

1
T

T

∑
t=1

Kh2 (t/T − u) ξtX
T
t Ω−1(t/T)

(
λ2Ω(t/T) + op(1)

)
{:ρ(t/T)}1:(d+1)+

h2
1

Tλ2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)
ξtX

T
t Ω−1(t/T)

(
λ3Ω(t/T)+ op(1)

)
{:ρ(t/T)}(d+2):2(d+1)

}
{1+ op(1)} =

=
h2

1λ2

T

T

∑
t=1

Kh2 (t/T − u) ξtX
T
t {:ρ(t/T)}1:(d+1){1 + op(1)} = op(h2

1)
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We now consider Î32(u) term:

Î32(u) =
2
T

T

∑
t=1

Kh2 (t/T − u) ξtZ
T
t H−1Σ−1(t/T)H−1W̃T(t/T) =

=
2

T2

T

∑
t=1

Kh2 (t/T − u) ξtX
T
t Ω−1(t/T)

T

∑
s=1

Kh1 (t/T − s/T)Xsξs+

+
2

T2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)
ξtX

T
t λ−1

2 Ω−1(t/T)
T

∑
s=1

Kh1 (t/T − s/T)
(

t/T − s/T
h1

)
Xsξs =

=
1

T2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T) ξtξs

{
Kh2 (t/T − u)XT

t Ω−1(t/T)Xs +Kh2 (s/T − u)XT
s Ω−1(s/T)Xt

}
+

+
1

T2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T)
(

t/T − s/T
h1

)
λ−1

2 ξtξs×

×
{

Kh2 (t/T − u)
(

t/T − u
h1

)
XT

t Ω−1(t/T)Xs + Kh2 (s/T − u)
(

s/T − u
h1

)
XT

s Ω−1(s/T)Xt

}
=

=
1

T2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T) ξtξs

{(
Kh2(t/T−u)XT

t Ω−1(t/T)Xs

)(
1 +

(
t/T − u

h1

)(
t/T − s/T

h1

)
λ−1

2

)
+

+

(
Kh2(t/T − u)XT

s Ω−1(s/T)Xt

)(
1 +

(
s/T − u

h1

)(
t/T − s/T

h1

)
λ−1

2

)}
=

=
1

T2

T

∑
s=1

T

∑
t=1

φts =
2

T2 ∑
1≤t≤s≤T

φts + Op

(
1

Th1

)
, (35)

where in the last line we performed Hoeffding’s projection decomposition of the U−statistic above.

Using Lemma A(ii) of a technical report of Hjellvik et. al. (1996) it can be shown that for any ε0 > 0

and ε > 0

P

(
T−1(h1h2)

−1/2{1/(1+δ)−εo}
∣∣∣∣∑

t<s
φts

∣∣∣∣ > ε

)
≤ C(h1h2)εo

T2 E

[
(h1h2)

−1/(2(1+δ)) ∑
t<s

φts

]2

= o ((h1h2)
ε0)

Choosing ε0 < 1/(1 + δ) then results in Î3(u) = op(h2
1 + h2

2).
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Finally we address Î4(u) term:

Î4(u) =
1
T

T

∑
t=1

Kh2

/
(t/T − u)ZT

t {θ̂(t/T)− θ(t/T)}{θ̂(t/T)− θ(t/T)}TZt =

=
1
T

T

∑
t

Kh2 (t/T − u)ZT
t Σ−1

T (t/T)
[

BT(t/T) + W̃T(t/T)
][

BT(t/T) + W̃T(t/T)
]T

Σ−1
T (t/T)Zt =

=
1
T

T

∑
t

Kh2 (t/T − u)ZT
t H−1

(
H−1ΣT(t/T)H−1

)−1
H−1

[
BT(t/T) + W̃T(t/T)

]
×

×
[

BT(t/T) + W̃T(t/T)
]T

H−1
(

H−1ΣT(t/T)H−1
)−1

H−1Zt =

=
1
T

T

∑
t

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1

[
BT(t/T) + W̃T(t/T)

]
×

×
[

BT(t/T) + W̃T(t/T)
]T

H−1Σ−1(t/T)H−1Zt{1 + op(1)} =

=

{
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1BT(t/T)BT

T(t/T)H−1Σ−1(t/T)H−1Zt+

+
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1BT(t/T)W̃T

T (t/T)H−1Σ−1(t/T)H−1Zt+

+
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1W̃T(t/T)BT

T(t/T)H−1Σ−1(t/T)H−1Zt+

+
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1W̃T(t/T)W̃T

T (t/T)H−1Σ−1(t/T)H−1Zt

}
{1+ op(1)} =

=
(
Î41(u) + Î42(u) + Î43(u) + Î44(u)

)
{1 + op(1)}
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Consider now Î41(u) term in the expression above.

Î41(u) =
1
T

T

∑
t

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1BT(t/T)BT

T(t/T)H−1Σ−1(t/T)H−1Zt =

=
h4

1
2T

T

∑
t=1

Kh2 (t/T − u)XT
t Ω−1(t/T)h−4

1 ΣT,2(t/T){:ρ(t/T)}1:(d+1)Σ
T
T,2(t/T){:ρ(t/T)}T

1:(d+1)Ω
−1(t/T)Xt

+
h4

1

2Tλ2
2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)2

XT
t Ω−1(t/T)h−3

1 ΣT,3(t/T){:ρ(t/T)}(d+2):2(d+1)×

× h−3
1 ΣT

T,3(t/T){:ρ(t/T)}T
(d+2):2(d+1)Ω

−1(t/T)Xt =

=

{
h4

1λ2
2

2T

T

∑
t=1

Kh2 (t/T − u)XT
t {:ρ(t/T)}1:(d+1){:ρ(t/T)}T

1:(d+1)Xt+

+
h4

1λ2
3

2Tλ2
2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)2

XT
t {:ρ(t/T)}(d+2):2(d+1){:ρ(t/T)}T

(d+2):2(d+1)Xt

}
{1+ op(1)} = op(h4

1).

We now consider Î42(u) and Î43(u) terms:

Î42(u)+ Î43(u) =
2
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1BT(t/T)W̃T

T (t/T)H−1Σ−1(t/T)H−1Zt =

=
λ2h2

1
T2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T)
{

Kh2 (t/T − u)XT
t {:ρ1:(d+1)(t/T)}XT

s ξsΩ−1(t/T)Xt+

+ Kh2 (s/T − u)XT
s {:ρ1:(d+1)(s/T)}XtξtΩ−1(s/T)Xs

}
+

+
λ3h2

1

T2λ2
2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T)
(

t/T − s/T
h1

){
Kh2 (t/T − u)

(
t/T − u

h1

)2

XT
t {:ρ1:(d+1)(t/T)}XT

s ξsΩ−1(t/T)Xt+

+ Kh2 (s/T − u)
(

s/T − u
h1

)2

XT
s {:ρ1:(d+1)(s/T)}XtξtΩ−1(s/T)Xs

}
=

=
h2

1
T2

T

∑
s=1

T

∑
t=1

Kh1 (t/T − s/T)
{

Kh2 (t/T − u)XT
t {:ρ1:(d+1)(t/T)}XT

s ξsΩ−1(t/T)Xtπ(t, s, u)+

+ Kh2 (s/T − u)XT
s {:ρ1:(d+1)(s/T)}XtξtΩ−1(s/T)Xsπ

′(t, s, u)
}

=
h2

1
T2

T

∑
s=1

T

∑
t=1

φts =

=
2h2

1
T2 ∑

1≤t≤s≤T
φts + Op

(
h2

1
Th1

)
, (36)

where

π(t, s, u) = λ2 +λ3λ−2
2

(
s/T − t/T

h1

)(
t/T − u

h1

)
, π′(t, s, u) = λ2 +λ3λ−2

2

(
s/T − t/T

h1

)(
s/T − u

h1

)
.
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Finally we consider Î44(u) term:

Î44(u) =
1
T

T

∑
t=1

Kh2 (t/T − u)ZT
t H−1Σ−1(t/T)H−1W̃T(t/T)W̃T

T (t/T)H−1Σ−1(t/T)H−1Zt =

=
1

T3

T

∑
t=1

Kh2 (t/T − u)XT
t Ω−1(t/T)

[
T

∑
s=1

T

∑
r=1

Kh1 (t/T − s/T)Kh1 (t/T − r/T)XsX
T
r ξsξr

]
Ω−1(t/T)Xt+

+
1

T3λ2
2

T

∑
t=1

Kh2 (t/T − u)
(

t/T − u
h1

)2

XT
t Ω−1(t/T)×

×
[ T

∑
s=1

T

∑
r=1

Kh1 (t/T − s/T)Kh1 (t/T − r/T)
(

t/T − s/T
h1

)(
t/T − r/T

h1

)
XsX

T
r ξsξr

]
Ω−1(t/T)Xt =

=
1

T3

T

∑
s=1

T

∑
r=1

T

∑
t=1

Kh1 (s/T − t/T)Kh1 (r/T − t/T) tr
(

XsX
T
r

)
ξsξr×

×
[

Kh2 (t/T − u) γ(t, s, r, u)XT
t Ω−2(t/T)Xt + Kh2 (s/T − u) γ′(t, s, r, u)XT

s Ω−2(s/T)Xs

]
=

=
1

T3

T

∑
s=1

T

∑
t=1

T

∑
r=1

φtsr =
1

T3 ∑
1≤t≤s≤r≤T

φtsr + Op

(
1

T2h2
1

)
, (37)

where we write Ω−2(·) = Ω−1(·)Ω−1(·) and

γ(t, s, r, u) = 1 + λ−2
2

(
t/T − s/T

h1

)(
t/T − r/T

h1

)(
t/T − u

h1

)2

and

γ′(t, s, r, u) = 1 + λ−2
2

(
t/T − s/T

h1

)(
t/T − r/T

h1

)(
s/T − u

h1

)2

.

Combining (36)-(37) and using the same arguments as in (35), it is follows that Î4(u) = op(h2
1 + h2

2),

which completes the proof of (v). ‘�

Proofs of Theorems 3-6.

In what follows we show the proof of Theorem 6 for the extended statistics S ′T since the basic

statistics ST (without an extra weighting φ(u)) is nested in S ′T and can be obtained by setting

φ(u) = 1 for all u ∈ [0, 1]. Proofs of Theorems 3 and 4 can be obtained as a special case of the

proof of Theorem 6, i.e. by setting the function 4 to zero in the proofs. Proof of Theorem 5 is

straightforward provided the proof of Theorems 3 and therefore is omitted. We start by rewriting
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the test statistics S ′T, normalised by its rate as follows:

√
TS ′T =

√
T√
Φ

1ˆ

0

φ(u)τ̂(u)du =
√

T

1ˆ

0

[VT(u) + BT(u)] du,

where Φ =
1́

0
φ2(u)du and VT(u) is given by the following expression:

VT(u) =
φ(u)XT

t (u)Σ
−1
T,0(u)W̃T,0(u)

√
Φσ̂(u)

√
XT

t (u)Ω̂−1(u)Xt(u)
,

and

BT(u) =
φ(u)XT

t (u)Σ
−1
T,0(u)ṼT,0(u)

√
Φσ̂(u)

√
XT

t (u)Ω̂−1(u)Xt(u)
+ cT 4 (u) + cT

{
4 (t/T)−4(u)

}
,

where the quantities W̃T,0, ṼT,0 and ΣT,m(u) for m = 0, 1 are given by the following expressions:

ΣT,m(u) =
1
T

T

∑
t=1

Kh1 (t/T − u) (t/T − u)m
XtX

T
t , ṼT,0(u) =

1
T

T

∑
t=1

Kh1 (t/T − u)XtX
T
t {ρ(t/T)− ρ(u)}

W̃T,0(u) =
1
T

T

∑
t=1

Kh1 (t/T − u)Xtξt,

where again recall that for brevity we write Xt to abbreviate Xt,T. Proof of Theorem 6 follows from

the following three lemmas.

Lemma 1. Denote by δt(u) the following expression:

δ̂t(u) = σ̂(u)
√

XT
t (u)Ω̂−1(u)Xt(u).

Then under the assumptions (A1)-(A3) , for u ∈ Ib1 := [b1, 1− b1] where b1 is any sequence satisfying

h1/b1 → 0, the following holds:

sup
u∈Ib1

|δ̂t(u)− δt(u)|
p−→ 0. (38)

68



Lemma 2. Under the assumptions (A1)-(A3), it holds that

√
T

1ˆ

0

VT(u)du d−→ N (0, 1) .

Lemma 3. Under the assumptions (A1)-(A3), it holds that

√
T

1ˆ

0

BT(u)du =

1ˆ

0

4(u)du + h2
1

√
TBT + op(1),

where

BT =
1

2
√

Φ

1ˆ

0

φ(u)λ2XT
t (u):ρ(u)

σ(u)
√

XT
t (u)Ω−1(u)Xt(u)

du.

Proof of Lemma 1.

Before proving condition (38) in Lemma 1 we first establish the following intermediate result:

sup
u∈Ib1

‖Ω̂(u)−Ω(u)‖ p−→ 0. (39)

To establish (39) it is sufficient to establish it for L1-norm. Denote by Ω̂rp(u) and by Ωrp(u) the

(r, p)th elements of Ω̂(u) and Ω(u) respectively. Then

sup
u∈Ib1

‖Ω̂(u)−Ω(u)‖1 = sup
u∈Ib1

[
d+1

∑
r=1

d+1

∑
p=1
|Ω̂rp(u)−Ωrp(u)|

]
≤

d+1

∑
r=1

d+1

∑
p=1

sup
u∈Ib1

|Ω̂rp(u)−Ωrp(u)| =

=
d+1

∑
r=1

d+1

∑
p=1

sup
u∈Ib1

∣∣∣∣ 1
T

T

∑
t=1

Kh1 (t/T − u)XrtXpt −Ωrp(u)
∣∣∣∣. (40)

In what follows we show that the following condition holds:

E

∣∣∣∣ 1
T

T

∑
t=1

Kh1 (t/T − u)
[

XrtXpt −Ωrp(u)
]∣∣∣∣ = o(h2

1). (41)

To establish (41) we again apply our telescoping sum argument as in (30) in the proof of Theorem

1. The proof follows by setting at = XrtXpt −Ωrp(u) and bt = Kh1(t/T − u) and using Lemma 2

and Lemma 3. We omit the details since the steps are virtually identical. Once (41) is established
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by Markov’s inequality it immediately follows that:

sup
u∈Ib1

∣∣∣∣ 1
T

T

∑
t=1

Kh1 (t/T − u)XrtXpt −Ωrp(u)
∣∣∣∣ = op(1),

This in turn implies that supu∈Ib1
‖Ω̂(u)−Ω(u)‖1 = op(1) and therefore (39) follows.

sup
u∈Ib1

‖Ω̂−1(u)−Ω−1(u)‖ = sup
u∈Ib1

∥∥∥∥Ω−1(u)
(

Ω(u)− Ω̂(u)
)

Ω̂−1(u)
∥∥∥∥ ≤

≤ sup
u∈Ib1

‖Ω−1(u)‖ sup
I2

‖Ω(u)− Ω̂(u)‖ sup ‖Ω̂−1(u)‖ ≤ c2
ω sup

u∈Ib1

‖Ω(u)− Ω̂(u)‖ = op(1).

We next show that

Using the above derived results in addition to Theorem 2 we then get:

sup
u∈Ib1

|δ̂t(u)− δt(u)| ≤ sup
u∈Ib1

∣∣∣∣(σ̂(u)− σ(u)
)√

XT
t (u)Ω̂−1(u)Xt(u)

∣∣∣∣+
+ sup

u∈Ib1

∣∣∣∣σ(u)(√XT
t (u)Ω̂−1(u)Xt(u)−

√
XT

t (u)Ω−1(u)Xt(u)
)∣∣∣∣ ≤

≤ sup
u∈Ib1

|σ̂(u)− σ(u)| sup
u∈Ib1

|XT
t (u)Ω̂

−1(u)Xt(u)|+

+ sup
u∈Ib1

|σ(u)| sup
u∈Ib1

∣∣∣∣(√XT
t (u)Ω̂−1(u)Xt(u)−

√
XT

t (u)Ω−1(u)Xt(u)
)∣∣∣∣ ≤

≤ sup
u∈Ib1

|σ̂(u)−σ(u)| sup
u∈Ib1

|XT
t (u)Ω̂

−1(u)Xt(u)|+ sup
u∈Ib1

|σ(u)| sup
u∈Ib1

∣∣∣∣XT
t (u)

(
Ω̂−1(u)−Ω−1(u)

)
Xt(u)

∣∣∣∣ ≤
≤ sup

u∈Ib1

|σ̂(u)− σ(u)| sup
u∈Ib1

‖Xt(u)‖ sup
u∈Ib1

‖Ω−1(u)‖ sup
u∈Ib1

∥∥∥∥ Ω̂−1(u)
Ω−1(u)

∥∥∥∥ sup
u∈Ib1

‖Xt(u)‖+

+ sup
u∈Ib1

|σ(u)| sup
u∈Ib1

‖Xt(u)‖ sup
u∈Ib1

‖Ω̂−1(u)−Ω−1(u)‖ sup
u∈Ib1

‖Xt(u)‖ = op(1).

We therefore have the following result:

sup
u∈Ib1

|δ̂−1
t (u)− δ−1

t (u)| = sup
u∈Ib1

∣∣∣∣δt(u)− δ̂t(u)
δ2

t (u)
δt(u)
δ̂t(u)

∣∣∣∣ ≤ sup
u∈Ib1

∣∣∣∣δt(u)− δ̂t(u)
δ2

t (u)

∣∣∣∣ sup
u∈Ib1

∣∣∣∣δt(u)
δ̂t(u)

∣∣∣∣ ≤
≤ C sup

ub1

|δt(u)− δ̂t(u)| = op(1).

This establishes the proof of Lemma 1. �
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Proof of Lemma 2.

For the ease of exposition we need to introduce some further notation. First, denote by δ̂(u) =

σ̂(u)
√

XT
t (u)Ω̂−1(u)Xt(u). In light of Theorem 2 in what follows we will substitute δ̂(u) with δ(u).

Using Lipschitz conditions on functions σ(u) and Ω(u), we can therefore can write

√
T

1ˆ

0

VT(u)du =

√
T
Φ

1ˆ

0

δ−1(u)φ(u)XT
t (u)Σ

−1
T,0(u)W̃T,0(u)du =

=

√
T
Φ

1ˆ

0

δ−1(u)φ(u)XT
t (u)Ω

−1(u)W̃T,0(u)du + op(1) =

=
1√
TΦ

T

∑
s=1

{ 1ˆ

0

δ−1(u)φ(u)XT
t (u)Ω

−1(u)Kh1 (s/T − u) du
}

Xsξs + op(1) =

=
1√
TΦ

T

∑
s=1

{ 1ˆ

0

δ−1(s/T)φ(s/T)XT
t (s/T)Ω−1(s/T)Kh1 (s/T − u) du

}
Xsξs+

+
1√
TΦ

T

∑
s=1

{ 1ˆ

0

(
δ−1(u)− δ−1(s/T)

)(
φ(u)− φ(s/T)

)(
Xt(u)−XT

t (s/T)
)
×

×
(

Ω−1(u)−Ω−1(s/T)
)

Kh1 (s/T − u) du
}

Xsξs + op(1) =

=
λ0√
TΦ

T

∑
s=1

δ−1(s/T)φ(s/T)XT
t (s/T)Ω−1(s/T)Xsξs +Op(h1)+ op(h1) =

T

∑
s=1

1√
TΦ
Ys +Op(h1)+ op(h1),

where λ0 =
´

K(z)dz = 1 and Ys is given by:

Ys =
1√
TΦ

δ−1(s/T)φ(s/T)XT
t (s/T)Ω−1(s/T)Xsξs.

It is then straightforward to verify that conditional on the Xt, Ys defined above is a martingale

difference array with respect Fs, where Fs := σ (Xr, ξr : r ≤ s). We can therefore apply the central

limit theorem for the martingale difference arrays (e.g. Theorem 3.2 in Hall and Heyde (1980)) to

establish that
T
∑

s=1
Ys is asymptotically normal. For applying Theorem 3.2 in Hall and Heyde (1980),

one needs to verify the following conditions:

(C1)
T
∑

s=1
E
[
Y2

s |Fs−1, Xt
] p−→ V1,
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(C2) for every ε > 0, it holds that
T
∑

s=1
E
[
Y2

s {|Ys > ε|}|Fs−1, Xt
] p−→ 0.

To establish (C1) and (C2) it suffices to verify Lemma B.13 in Kristensen (2012). In particular,

conditional on {Xt}, the following two conditions should be verified:

(D1)
T
∑

s=1
E
[
Y2

s |Xt
] p−→ V1,

(D2) for some δ > 0, it holds that
T
∑

s=1
E
[
|Ys|2+δ|Xt

] p−→ 0.

Proof of (D1).

Consider first condition (D1). Recalling that E
[
XsXT

s
]
= Ω(s/T) + o(1) we can write:

T

∑
s=1

E
[
Y2

s
]
=

1
TΦ

T

∑
s=1

φ2(s/T)δ−2(s/T)σ2(s/T)XT
t (s/T)Ω−1(s/T)Ω(s/T)Ω−1(s/T)Xt(s/T)+ o(1) =

=
1

TΦ

T

∑
s=1

φ2(s/T)δ−2(s/T)σ2(s/T)XT
t (s/T)Ω−1(s/T)Xt(s/T) + o(1) =

=
1
Φ

1ˆ

0

φ2(u)δ−2(u)σ2(u)XT
t (u)Ω

−1(u)XT
t (u)du + o(1) =

1
Φ

1ˆ

0

φ2(u)du + o(1) = 1 + o(1),

where in the last line we used the definition of Φ and δ(u). �

Proof of (D2).

Consider now condition (D2). For some small δ > 0:

T

∑
s=1

E
[
|Ys|2+δ

]
=

1

(TΦ)1+δ/2

T

∑
s=1

E
[
|δ−1(s/T)φ(s/T)σ(s/T)XT

t (s/T)Ω−1(s/T)Xsεs|2+δ
]
=

=
1

(TΦ)1+δ/2

T

∑
s=1

δ−(2+δ)(s/T)φ2+δ(s/T)σ2+δ(s/T)E

[∣∣∣∣{XT
t (s/T)Ω−1(s/T)Xs

}
εs

∣∣∣∣2+δ
]
≤

≤ 1

(TΦ)1+δ/2

T

∑
s=1

δ−(2+δ)(s/T)φ2+δ(s/T)σ2+δ(s/T)‖XT
t (s/T)Ω−1(s/T)‖2+δE

[
‖Xs‖2+δ|εs|2+δ

]
=

=
C

Tδ/2Φ1+δ/2

1ˆ

0

δ−(2+δ)(u)φ2+δ(u)σ2+δ(u)‖Xt(u)Ω−1(u)‖2+δdu = o(1).

Combining all of the above establishes the proof of Lemma 2. �
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Proof of Lemma 3. With the notation introduced in the proof of Lemma 1, we can write

√
T

1ˆ

0

BT(u)du =
1√
T

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)XsX

T
s {ρ(s/T)− ρ(u)}

√
Φσ(u)

√
XT

t (u)Ω−1(u)Xt(u)
du+

+

1ˆ

0

4(u)du +

1ˆ

0

{4(t/T)−4(u)}du + op(1) =

1√
TΦ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u)
T

∑
s=1

Kh1 (s/T − u)XsX
T
s {ρ(s/T)− ρ(u)}+

1ˆ

0

{4(t/T)−4(u)}du+ op(1).

Taking expectation and using again the Lipschitz condition for function Ω(u), we get
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√
T

1ˆ

0

E [BT(u)] du =
1√
TΦ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u)
T

∑
s=1

Kh1 (s/T − u)Ω (s/T) h1 9ρ(u)
(

s/T − u
h1

)
du+

+
1√
TΦ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u)
T

∑
s=1

Kh1 (s/T − u)Ω (s/T)
1
2

h2
1 :ρ(u)

(
s/T − u

h1

)2

du+

+

1ˆ

0

4(u)du + o(1) =

=

√
Th1√
Φ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u)Ω(u) 9ρ(u)
{ 1ˆ

0

Kh1 (z− u)
(

z− u
h1

)
dz
}

du+

+

√
Th1√
Φ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u) 9ρ(u)
{ 1ˆ

0

Kh1 (z− u)
(

Ω(z)−Ω(u)
)(

z− u
h1

)
dz
}

du+

+

√
Th2

1

2
√

Φ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u)Ω(u):ρ(u)
{ 1ˆ

0

Kh1 (z− u)
(

z− u
h1

)2

dz
}

du+

+

√
Th2

1

2
√

Φ

1ˆ

0

δ−1(u)XT
t (u)Ω

−1(u):ρ(u)
{ 1ˆ

0

Kh1 (z− u)
(

Ω(z)−Ω(u)
)(

z− u
h1

)2

dz
}

du+

+

1ˆ

0

4(u)du + o(1) = h2
1

√
T

2
√

Φ

1ˆ

0

λ2δ−1(u)XT
t (u):ρ(u)du +

1ˆ

0

4(u)du + o(1) =

=
√

Th2
1BT +

1ˆ

0

4(u)du + o(1),

which concludes the proof of Lemma 3. �

Proof of Theorem 7.

We start by deriving Pr (∆LT+1 ≤ 0) using our model (12):

Pr (∆LT+1 ≤ 0|FT) = Pr
(

XT
T+1ρ

(
T + 1

T

)
+ σ

(
T + 1

T

)
εT+1 ≤ 0|FT

)
=

= Pr

(
εT+1 ≤

−XT
T+1ρ

( T+1
T

)
σ
( T+1

T

) )
.
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Recall that we stipulated that ρ(t/T) = ρ(1) for any t ≥ T and similarly σ(t/T) = σ(1) for any

t ≥ T. We therefore are looking to estimate

Pr

(
εT+1 ≤

−XT
T+1ρ

( T+1
T

)
σ
( T+1

T

) )
= Pr

(
εT+1 ≤

−XT
T+1ρ (1)
σ (1)

)
=: F (ε?(1)) ,

where ε?(1) := −XT
T+1ρ(1)
σ(1) . Now, conditional on the sample {∆Lt}T

t=1:

P̂r (∆LT+1 ≤ 0) = F̂ (ε̂?(1)) =
1
T

T

∑
t=1

1

(
ε̂t ≤

−XT
T+1ρ̂ (1)
σ̂ (1)

)
, (42)

where ε̂?(1) := −XT
T+1ρ̂(1)
σ̂(1) . Taking expectation of the above and using a first-order Taylor expansion

it holds that:

E
[

F̂ (ε̂?(1))
]
=

1
T

T

∑
t=1

E

[
E

[
1

(
ε̂t ≤ ε̂?(1)

∣∣∣∣ε̂?)]
]
= E

[
E

[
1

(
ε̂t ≤ ε̂?(1)

∣∣∣∣ε̂?)]
]
=

= E

[
F (ε?(1)) + F′ (ε?(1))

(
ε̂?(1)− ε?(1)

)
+ o(T−1/2)

]
=

= F(ε?(1)) + f (ε?(1))E
{(

ε̂?(1)− ε?(1)
)}

+ o(T−1/2).

Using a first-order Taylor expansion of ε̂? around ε?, it holds that:

ε̂?(1) =
−XT

T+1ρ̂ (1)
σ̂(1)

=
−XT

T+1ρ (1)
σ(1)

−
XT

T+1 [ρ̂(1)− ρ (1)]
σ̂(1)

+ XT
T+1

ρ (1) [σ̂(1)− σ(1)]
σ̂2(1)

=

= ε?(1)−
XT

T+1 [ρ̂(1)− ρ (1)]
σ(1)

+
XT

T+1ρ (1) [σ̂(1)− σ(1)]
σ2(1)

,

and therefore

E [ε̂?(1)− ε(1)] =
1

2σ2(1)
XT+1(1)

{
h2

1λ2 :ρ(1)σ(1) + h2
2λ2:σ(1)

}
=: B3(1).

Given that 1
(

ε̂t ≤
−XT

T+1 ρ̂(1)
σ̂(1)

)
is a Bernulli random variable, it therefore follows that

F̂ (ε̂?(1)) =
1
T

T

∑
t=1

1

(
ε̂t ≤

−XT
T+1ρ̂ (1)
σ̂ (1)

)
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has a binomial distribution which as T → ∞ becomes a normal distribution with the mean and

variance given by

var
(√

TF̂ (ε̂?(1))
)
= E

[
TF̂ (ε̂?(1))2

]
−
(

TE
[

F̂ (ε̂?(1))
] )2

=

= F(ε?(1))

(
1− F (ε?(1))

)
+ o(1).

Therefore, it holds that

√
T
[

F̂(ε̂?(1))− F(ε?(1))−B3(1)
]

d−→ N
(

0, F (ε?(1))
(
1− F (ε?(1))

))
, (43)

where

B3(1) =
f (ε?(1))
2σ2(1)

XT+1(1)
{

h2
1λ2 :ρ(1)σ(1) + h2

2λ2:σ(1)
}

,

which completes the proof. �

Proof of Theorem 8.

The proof of the Theorem 8 closely follows original proof of Theorems 3-6 with the bootstrapped

quantities, denoted by ?. In particular, E?(·), var? (·) and P? (·) := P?
(
·|{∆Lt,T, Xt,T}T

t=1

)
are used

to denote the expectation, variance and the distribution respectively conditional on the sample

{∆Lt,T, Xt,T}T
t=1. We start by making use of the following notation:

√
TS?T =

√
T√
Φ

1ˆ

0

φ(u)τ̂?(u)du =
√

T

1ˆ

0

[V?
T (u) + B?

T(u)] du,

where Φ =
1́

0
φ2(u)du and with the notation from (??) we can write

V?
T (u) =

√
Th1φ(u)XT

t (u)Σ
−1
T,0(u)W̃

?
T,0(u)√

Φσ̂?(u)
√

ν0Xt(u)TΩ−1(u)Xt(u)
, (44)

and

B?
T(u) =

φ(u)√
Φ

τ?(u) +

√
Th1φ(u)h2

1XT
t (u)Σ

−1
T,0(u)

(
Ṽ?

T,0(u) +R?
T(u)

)
√

Φσ̂?(u)
√

ν0Xt(u)TΩ−1(u)Xt(u)
+ op(h2

1), (45)
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where we used Theorem 2 to substitute σ̂?(u) with σ?(u) and where the following notation is used:

ΣT,m(u) =
1
T

T

∑
t=1

Kh1 (t/T − u) (t/T − u)m
XtX

T
t ,

W̃?
T,0(u) =

1
T

T

∑
t=1

Kh1 (t/T − u)Xtξ
?
t ,

and

ṼT,0(u) =
1
T

T

∑
t=1

Kh1 (t/T − u)XtX
T
t

{
ρ̂g(t/T)− ρ̂g(u)

}
,

R̃?
T(u) = −

1
T

T

∑
t=1

Kh1 (t/T − u)Xt MT
σ̂2(t/T)

κ
√

V(t/T)
.

In what follows we need to show that under the conditions of Theorem 8, the following holds:

√
T

1ˆ

0

V?
T (u)du d−→ N (0, 1) , (B1)

conditional on the sample {∆Lt,T, Xt,T} with probability tending to one, and

√
T

1ˆ

0

B?
T(u)du = h2

1

√
TBT + op(1). (B2)

For the proofs of (B1) and (B2) we will be using the following notation from the proof of Lemma 1:

denote by δ?(u) = σ?(u)
√

ν0Xt(u)Ω−1(u)Xt(u) and

Y?
t =

1√
TΦ

1ˆ

0

δ−1,?(u)φ(u)XT
t (u)Σ

−1
T,0(u)Kh1 (t/T − u)Xtξ

?
t du, (46)

where ξ?t = ξ̂tηt are the bootstrapped residuals. Note that since ηt are i.i.d. it then follows that ξ?t

have the same mixing properties as the original residuals ξt (see Theorem 5.2 in Bradley (2005)). It

is than straightforward to establish that Y?
t,T is also a martingale difference sequence and by using

uniform convergence results in Theorem 2, in what follows we can establish that conditional on

the sample with probability one it holds that

√
T

1ˆ

0

B?
T(u)du =

√
T

1ˆ

0

BT(u)du + op(1), (B3)
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and

P?

(
√

T
ˆ 1

0
V?

T (u)du ≤ x

)
p−→ Φ(x), (B4)

where Φ(x) is the standard Gaussian distribution. Therefore,

P?
(√

T (S?
T −BT) ≤ x

) p−→ Φ(x),

which then completes the proof of Theorem 8. �

Below we prove (B3) and (B4). However, before proving (B3) and (B4), we first consider σ̂?(u). We

can write

σ̂?(u) =

1
T

T
∑

t=1
Kh2 (t/T − u) (ξ̂?t )

2

1
T

T
∑

t=1
Kh2 (t/T − u)

= f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u) (ξ̂?t )
2 =

= f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u)
(

∆L?
t −XT

t ρ̂?(t/T)
)2

=

= f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u)
(

XT
t ρ̃(t/T) + ξ?t −XT

t ρ̂?(t/T)
)2

= f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u) (ξ?t )
2+

+ f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u)XT
t (ρ̃(t/T)− ρ̂?(t/T)) (ρ̃(t/T)− ρ̂?(t/T))Xt+

+ 2 f̂ (u)−1 1
T

T

∑
t=1

Kh2 (t/T − u) ξ?t (ρ̃(t/T)− ρ̂?(t/T)) .

Using results (i)-(vi) in the proof of Theorem 2, and the definition of ρ̂?(t/T), it is then straightfor-

ward to establish that

sup
u∈Ih2

∣∣∣∣σ̂?(u)− σ?(u)
∣∣∣∣ = Op

(√
log T
Th2

+ h2
2

)
, (47)

where Ih2 is defined in the statement of Theorem 2. We now prove (B3) and (B4). Using the result

in (47) we substitute σ̂?(u) with σ?(u) in the expressions of (44), (45) and (46).
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Proof of B3.

We first decompose the expression for the integrated bias part:

√
T

1ˆ

0

B?
T(u)du =

1√
TΦ

1ˆ

0

φ(u)XT
t (u)Σ

−1
T,0(u)

T
∑

s=1
Kh1 (s/T − u)XsX

T
s ρ̂g(u)

σ̂?(u)
√

XT
t (u)Ω̂−1(u)Xt(u)

du+

+
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Σ

−1
T,0(u)

T
∑

s=1
Kh1 (s/T − u)XsX

T
s

{
ρ̂g(s/T)− ρ̂g(u)

}
σ̂?(u)

√
XT

t (u)Ω̂−1(u)Xt(u)
du−

− 1√
TΦ

1ˆ

0

φ(u)XT
t (u)Σ

−1
T,0(u)

T
∑

s=1
Kh1 (s/T − u)Xs MT σ̂2(s/T)/

√
V(s/T)

κσ̂?(u)
√

XT
t (u)Ω̂−1(u)Xt(u)

du+

+
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Σ

−1
T,0(u)

T
∑

s=1
Kh1 (s/T − u)Xsξ

?
s

σ̂?(u)
√

XT
t (u)Ω̂−1(u)Xt(u)

du = T1 + T2 + T3 + T4.

In light of Lemma 1 in what follows we will substitute Ω̂(u) with Ω(u). In addition, using the same

arguments as in the proofs of Theorem 2 it is straightforward to establish that sup
u∈Ih2

|σ̂?(u)− σ̂(u)| =

op(1). We next consider T1 term:
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E? [T1] =
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)XsX

T
s ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)E

[
XsX

T
s
]

ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Ω(s/T)ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=

√
T√
Φ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
{ 1́

0
Kh1 (y− u)Ω(y)dy

}
ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=

√
T√
Φ

1ˆ

0

φ(u)XT
t (u)ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + O(h1) + op(1), (48)

where in the third inequality we used the fact that supu∈Ih1
‖XsX

T
s −E

[
XsX

T
s
]
‖ = op(1). Consider

now T2 term:

E? [T2] =
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)XsX

T
s

{
ρ̂g(s/T)− ρ̂g(u)

}
σ̂(u)

√
XT

t (u)Ω−1(u)Xt(u)
du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)E

[
XsX

T
s
] {

ρ̂g(s/T)− ρ̂g(u)
}

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Ω(s/T)

{
ρ̂g(s/T)− ρ̂g(u)

}
σ̂(u)

√
XT

t (u)Ω−1(u)Xt(u)
du + op(1) =

=

√
T√
Φ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
( 1́

0
Kh1 (y− u)Ω(y)

{
9̂ρg(u) (y− u) + 1

2
:̂ρg(u)(y− u)2

}
dy
)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du+ op(1) =

=
1
2

√
T√
Φ

1ˆ

0

λ2h2
1φ(u)XT

t (u):̂ρg(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =
√

Th2
1E [BT] + op(1). (49)

80



Consider now T3 term.

E? [T3] = −
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Xs MT σ̂2(s/T)/

√
V(s/T)

κσ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du+ op(1) =

= − 1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)E [Xs] MT σ̂2(s/T)/

√
V(s/T)

κσ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

= −
√

T√
Φ

1ˆ

0

φ(u)XT
t (u)ρ̂g(u)

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + O(h1) + op(1). (50)

Now consider the last term T4:

T4 =
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Xsξ

?
s

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Xs ξ̂sηs

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Xs

{
XT

s (ρ(s/T)− ρ̂(s/T) + ξs)

}
ηs

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1) =

=
1√
TΦ

1ˆ

0

φ(u)XT
t (u)Ω

−1(u)
T
∑

s=1
Kh1 (s/T − u)Xsξsηs

σ̂(u)
√

XT
t (u)Ω−1(u)Xt(u)

du + op(1),

where in the last equality we used the fact that uniformly in u it holds that ρ̂(u)− ρ(u) = Op
(√

log Th1/Th1 + h2
1

)
.

Combining the derivations in (48)-(50) establishes the proof of (B3). �

Proof of B4.

Denote by ζt := ξtηt, it then holds that

ξ?t := ξ̂tηt = (∆Lt − µ̂t) ηt = (µt + ξt − µ̂t) ηt =

= ξtηt + XT
t

(
ρ̂(t/T)− ρ(t/T))ηt = ζt + XT

t (ρ̂(t/T)− ρ(t/T))ηt.
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First recall that ρ̂(u)− ρ(u) = Op

(√
log T
Th1

+ h2
1

)
, and

Y?
t =

1√
TΦ

1ˆ

0

δ−1,?(u)φ(u)XT
t (u)Σ

−1
T,0(u)Kh1 (t/T − u)Xtξ

?
t du,

where ζt := ξtηt. Note also, that provided the definition of ηt, the mixing properties of Xtξt are

preserved when multiplied by ηt, see Theorem 5.2 of Bradley (2005). Therefore to establish (B4)

we need to verify conditions (C1) and (C2) in the proof of Theorems 3-6. Since the proof follows

exactly the same steps as in the proof of Theorems 3-6, it is omitted. �

Appendix C.

This Appendix presents more results from the application section. In particular, we report results

for two more forecast horizons: k = 6 months and k = 12 months.
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