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introduction

This paper studies randomized controlled trials (RCTs) with multiple treatments.

“Multiple treatments” in AEA RCT Registry returns>700 experiments.

In particular, we study “matched tuples” design.

Partition the units into blocks based on observed covariates.

Within each block, each treatment is assigned exactly once.

Examples:

Bold et al. (2018)

Brown and Andrabi (2020)

de Mel, McKenzie, & Woodruff (2013)

Fafchamps, McKenzie, Quinn & Woodruff (2014)
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introduction (cont.)
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introduction (cont.)
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introduction (cont.)

Despite popularity, limited formal results on inference beyond matched pairs.

We provide asymptotically exact inference methods for matched tuples.

i.e., limiting size= level.

Parameters: pairwise average treatment effects (ATEs) and beyond.

In practice, inference on ATEs often relies on linear regression + block fixed effects.

+ heteroskedasticity-robust variance estimator.

We show it is invalid.

For all parameters, we show blocking achieves smaller variance than large strata.
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introduction (cont.)

Results are also applied to factorial designs.

e.g., 2× 2 factorial design has two factors and four treatment status.

Main effect: effect of factor 1 averaging over values of factor 2.

Interaction effect between factors 1 and 2.

Propose “fully blocked” factorial designs.

In simulation, compares favorably to large strata and re-randomization.
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setup and notation

i.i.d. units 1 ≤ i ≤ |D|n drawn from superpopulation. For the ith unit:

Xi = observed covariates ∈ Rp

Di = treatment status ∈ D = {1, . . . , |D|}

Yi(d) = potential outcome if treament status were d

Yi = observed outcome =
∑
d∈D

Yi(d)I{Di = d} .

LetQ denote the distr. of (Yi(1), Yi(2), . . . , Yi(|D|), Xi).

For each random vectorA, defineA(n) = (A1, . . . , An)
′.
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setup and notation (cont.)

Example from Fafchamps, McKenzie, Quinn & Woodruff (2014):

They study effects of capital aid program on profits of small businesses.

Xi: sector, capital stock, pre-treatment profits.

Di ∈ {1, 2, 3}: control, in-kind grants, cash transfer.

Yi: profits.
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setup and notation (cont.)

Parameter of interest

Define Γ(Q) = (Γ1(Q), . . . ,Γ|D|(Q)) with Γd(Q) = EQ[Yi(d)].

Let ν bem× |D|matrix.

Parameter of interest is∆ν(Q) = νΓ(Q) ∈ Rm.

e.g.,D = {1, 2}, ν = (−1, 1),∆ν(Q) = EQ[Yi(2)− Yi(1)].

Also includes main and interaction effects in factorial designs (see later).
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setup and notation (cont.)

Assumptions on distributionQ:

(a) EQ[Y
2
i (d)] < ∞.

(b) EQ[Yi(d)|Xi = x] andEQ[Y
2
i (d)|Xi = x] are Lipschitz for d ∈ D.
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setup and notation (cont.)

Blocking

First stratify sample into n blocks of size |D| based onX(n).

For example, if dim(Xi) = 1, order and block adjacent |D| units.

Denote jth block by λj .

Assumption on blocks:

1

n

∑
1≤j≤n

∑
i,k∈λj

|Xi −Xk|2
P→ 0 .

If dim(Xi) = 1, then satisfied whenE[X2
i ] < ∞.

Cases with more covariates are discussed in paper.
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setup and notation (cont.)

Assumption on treatment assignment:

(a) (Y (n)(d) : d ∈ D) ⊥⊥ D(n)|X(n).

(b) Conditional onX(n),

{(Di : i ∈ λj) : 1 ≤ j ≤ n}

are i.i.d. and each uniformly distributed over all permutations of

{1, 2, . . . , |D|} .
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main results

Estimator

For d ∈ D, estimate Γd(Q) = EQ[Yi(d)] by

Γ̂n(d) =
1

n

∑
1≤i≤|D|n

I{Di = d}Yi .

Under previous assumptions,

(
√
n(Γ̂n(d)− Γd(Q)) : d ∈ D)

d→ N(0,V) ,

where V = V1 + V2 for

V1 = diag(E[Var[Yi(d)|Xi]] : d ∈ D)

V2 =

(
1

|D|Cov[E[Yi(d)|Xi], E[Yi(d
′)|Xi]]

)
d,d′∈D

.
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main results (cont.)

Efficiency property

Compare with large strata design: stratify ith unit into S strata based onXi.

Example: {capital stock > x, capital stock ≤ x}.
Represented by discrete-valued h : support(X) → {1, . . . , S}.
Limiting variance is as above, but withXi replaced by h(Xi).

Theorem For 1× |D| vector ν, variance of νΓ̂n under matched tuples design

is smaller than that under stratified design.

14



main results (cont.)

Variance estimator

Can show Γ̂n(d)
P→ Γd(Q) = EQ[Yi(d)].

Can also show

σ̂2
n(d) =

1

n

∑
1≤i≤|D|n

(Yi − Γ̂n(d))
2I{Di = d} P→ Var[Yi(d)] .

For V1, note

E[Var[Yi(d)|Xi]] = Var[Yi(d)]− Var[E[Yi(d)|Xi]]

= Var[Yi(d)]− E[E[Yi(d)|Xi]
2] + E[Yi(d)]

2
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main results (cont.)

Variance estimator (cont.)

Without additional assumption,

E[E[Yi(d)|Xi]
2]

is hard to estimate—it requires two units with treatment d in same block.

Assumption on adjacent blocks:

1

n

∑
1≤j≤n/2

∑
i∈λ2j−1,k∈λ2j

|Xi −Xk|2
P→ 0 .

Then, take products of units with treatment d in adjacent blocks.
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main results (cont.)

Variance estimator (cont.)

Define

ρ̂n(d, d) =
2

n

∑
1≤j≤n/2

( ∑
i∈λ2j−1

YiI{Di = d}
)( ∑

i∈λ2j

YiI{Di = d}
)
.

Under previous assumptions, can show

ρ̂n(d, d)
P→ E[E[Yi(d)|Xi]

2] .
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main results (cont.)

Variance estimator (cont.)

For

E[E[Yi(d)|Xi]E[Yi(d
′)|Xi]] ,

sufficient to look within same block:

ρ̂n(d, d
′) =

2

n

∑
1≤j≤n/2

( ∑
i∈λ2j−1

YiI{Di = d}
)( ∑

i∈λ2j

YiI{Di = d′}
)
.
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main results (cont.)

Variance estimator (cont.)

In summary, V̂n = V̂1,n + V̂2,n
P→ V, where

V̂1,n(d) = σ̂2
n(d)− (ρ̂n(d, d)− Γ̂2

n(d))

V̂2,n(d, d
′) =

1

|D| (ρ̂n(d, d
′)− Γ̂n(d)Γ̂n(d

′)) .
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main results (cont.)

Variance estimator (cont.)

Example: D = {1, 2, 3}. Parameter νΓ(Q) = EQ[Yi(2)− Yi(1)], with

ν = (−1, 1, 0) .

Limiting variance is

E[Var[Yi(1)|Xi]] + E[Var[Yi(2)|Xi]]

+
1

3
E[(E[Yi(2)|Xi]− E[Yi(2)]− (E[Yi(1)|Xi]− E[Yi(1)]))

2]

Q: Focusing on units withDi ∈ {1, 2}, can we treat problem as matched pairs?

In Bai, Romano & Shaikh ’22, limiting variance has 1
2
instead of 1

3
.

As a result, their variance estimator is conservative here!
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main results (cont.)

The following tests are also conservative:

Two-sample t-test: compare two samples withDi = 2 andDi = 1.

Two samples are not independent.

“Matched triplets” t-test: treat difference in each triplet as an observation.

We don’t draw triplets but draw units and block them into triplets.
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main results (cont.)

Variance estimator (cont.)

Common practice in applications: estimateE[Yi(d)]− E[Yi(1)] via OLS

Yi =
∑

d∈D\{1}

β(d)I{Di = d}+
∑

1≤j≤n

δjI{i ∈ λj}+ ϵi .

Use heteroskedasticity-robust variance estimator for testing

H0 : E[Yi(d)]− E[Yi(1)] = ∆0 versusH1 : E[Yi(d)]− E[Yi(1)] ̸= ∆0 .

See Bruhn and McKenzie (2009), Glennester and Takavarasha (2013).

Theorem Limiting rejection probability of this test may> nominal level.

Intuition: number of regressors∝ sample size!
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main results (cont.)

Recap

We propose asymptotically exact methods of inference for linear constrasts.

Test in Bai, Romano & Shaikh (2019) is conservative.

As a result, two-sample t-test and “matched pairs” t-test are conservative.

Test based on block fixed effects is invalid.
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factorial designs

Setup and Notation

K factors, each with two levels: −1 (off),+1 (on).

D = {−1,+1}K .

Main effect of factor 1: [(+1,+1)− (−1,+1)] + [(+1,−1)− (−1,−1)].

Interaction effect: [(+1,+1)− (−1,+1)]− [(+1,−1)− (−1,−1)].

Factor Combination Factor 1 Factor 2 Factor 1/2 Interaction

1 -1 -1 +1

2 -1 +1 -1

3 +1 -1 -1

4 +1 +1 +1

Table: Example of a 22 factorial design.
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factorial designs

Example: Karlan et al. (2014)

Factor 1: cash grant (no, yes)

Factor 2: insurance grant (no, yes)

Four levels of treatment

(no cash, no insurance)

(no cash, insurance)

(cash, no insurance)

(cash, insurance)

In lab experiment, also arises as “crossover” designs.

e.g., factors 1 and 2 are of interest, factor 3 is order of their appearances.
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factorial designs (cont.)

Proposal: fully blocked factorial designs with |D| = 2K units in each block.

Previous results all apply with different choices of ν.

e.g., main effect of factor 1, ν = (−1,−1,+1,+1).

Alternative design: Large strata.

As before, limiting variance under large strata≥ fully blocked designs.
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factorial designs (cont.)

Alternative design: pair units for factor 1, coin flips on all others.

Motivation: may be interested in main effect of factor 1 only.

Theorem Such design has limiting variance≥ fully blocked design.

UnlessE[Yi(d)|Xi] is the same for all d with factor 1= 1 (and−1).

Takeaway: even if only interested in one factor, block on all factors!
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factorial designs (cont.)

Alternative design: re-randomization

Branson et al. (2016), Dasgupta et al. (2015), Li et al. (2020)

Draw treatment assignment from a set until it satisfies criterion.

e.g., Mahalanobis distances in covariates across groups≤ threshold.

We have no formal results on comparison vs. ours, but see simulations.
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simulations

Data generating process

Consider factorial design withK = 2. Sample size 4n = 1000.

Yi(d) = µd + µd(Xi) + σd(Xi)ϵd,i.

µd(Xi) has zero mean, linear/sin/quadratic/combination.

Focus on the model withXi ∼ N(0, 1) and

µd(Xi) = sin(γdXi) +X2
i − 1 .

Parameters

Main effects of factors 1 and 2.

Interaction effect between factors 1 and 2.

Partial effect of factor 1 fixing factor 2= 1 or−1 (shown in paper).
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simulations (cont.)

Treatment assignment mechanism

B-B: Bernoulli for both factors.

C: completely randomized.

MP-B: matched pair for factor 1, bernoulli for factor 2.

MT: fully blocked design.

Large-2: two large strata.

Large-4: four large strata.

RE: re-randomization design with criterion in Branson et al. (2016).
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simulations (cont.)

One covariate, two factors: MSE

Parameter B-B C MP-B MT Large-2 Large-4 RE

∆ν1
19.771 19.301 2.866 1.000 16.282 11.322 16.995

∆ν2
11.288 10.677 10.473 1.000 10.443 6.611 10.887

∆ν1,2 20.901 21.778 19.943 1.000 19.382 12.819 19.556

Table: Ratio of MSE under all designs against those under matched tuples in one model. ν1:

main effect of factor 1. ν2: main effect of factor 2. ν1,2: interaction effect.
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simulations (cont.)

One covariate, two factors: rej. prob.

Takeaway: despite conservativeness, MT may exhibit high power.

This is the only model where MT is conservative when dim(Xi) = 1.

UnderH0 UnderH1

Parameter B-B C MT Large-2 Large-4 B-B C MT Large-2 Large-4

∆ν1 0.044 0.058 0.034 0.052 0.056 0.102 0.107 0.694 0.107 0.140

∆ν2
0.046 0.053 0.033 0.046 0.051 0.062 0.068 0.224 0.070 0.069

∆ν1,2
0.064 0.052 0.021 0.050 0.045 0.060 0.053 0.048 0.058 0.059

Table: Rejection probabilities under the null and alternative hypotheses in one model. ν1: main
effect of factor 1. ν2: main effect of factor 2. ν1,2: interaction effect.
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simulations (cont.)

Experiments with moreK and more covariates

Same model is fixed throughout:

Yi(d) =


τd(1) + (X̃i − 1/2)′β + ϵi, ifK = 1

τ ·
(
d(1) +

∑
k≥2 d(k)

K−1

)
+ γd(X̃i − 1/2)′β + ϵi, ifK ≥ 2 ,

where d(k) denotes the value of the kth factor.

dim(X̃i) ≡ 10. Observed number of covariates dim(Xi) varies.

γd = 1 if d(2) = 1 and γd = −1 otherwise.

β = (1, 0.9, . . . , 0.1).

K varies from 1 to 6, sample size 26n = 64n = 1280.

Parameter of interest is main effect of factor 1.
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simulations (cont.)

Experiments with moreK and more covariates (cont.)

In terms of MSE, matched tuples is always the lowest.

Yet blocking on more observed covariates ̸⇒ lower MSE.

dim(Xi) Method K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

1

MT

1.000 0.957 0.952 0.985 0.986 0.974

2 0.714 0.725 0.732 0.700 0.723 0.741

4 0.374 0.369 0.410 0.464 0.523 0.601

8 0.205 0.289 0.384 0.505 0.646 0.793

10 0.251 0.353 0.460 0.589 0.735 0.910

Table: Ratio of MSE against matched tuples with single factor and covariate.
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simulations (cont.)

Experiments with moreK and more covariates (cont.)

Also consider “replicate” design MT2: double # units per block.

MT displays some conservativeness while replicate design MT2 doesn’t!

UnderH0

Method dim(Xi) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

MT

1 0.049 0.051 0.050 0.056 0.051 0.049

2 0.052 0.051 0.056 0.048 0.045 0.038

4 0.045 0.042 0.037 0.030 0.025 0.023

8 0.026 0.019 0.014 0.016 0.016 0.020

10 0.026 0.022 0.015 0.017 0.019 0.026

MT2

1 0.050 0.049 0.054 0.048 0.054 0.048

2 0.053 0.051 0.048 0.051 0.048 0.053

4 0.048 0.045 0.052 0.055 0.050 0.050

8 0.046 0.048 0.049 0.050 0.052 0.050

10 0.051 0.049 0.049 0.047 0.057 0.048

Table: Rejection probability when testingH0 : ∆ν1 = 0 under more factors and covariates.
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simulations (cont.)

Experiments with moreK and more covariates (cont.)

Q: Why does replicate design control size better?

A: Because quality of variance estimator is higher.

Instructive to consider matched-pair design. Fix four units {1, 2, 3, 4}.

Component to estimate

E[E[Y (1) + Y (0)|X]2]

is (average across all)

(Y1 + Y2)(Y3 + Y4) .

Design that put four units in one strata=mixing of three matched-pair designs.

Effectively, average over three variance estimator instead of one.
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simulations (cont.)

Large strata designs overreject with largeK.

WithK = 6, each block has only 1280/64/4 = 5 units assigned to each d.

UnderH0

Method dim(Xi) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

C

1 0.044 0.056 0.064 0.046 0.051 0.063

2 0.062 0.057 0.053 0.037 0.054 0.073

4 0.061 0.053 0.049 0.058 0.047 0.047

8 0.051 0.049 0.043 0.048 0.061 0.052

10 0.055 0.050 0.048 0.050 0.051 0.067

Large-4

1 0.045 0.050 0.050 0.048 0.071 0.091

2 0.043 0.055 0.046 0.058 0.065 0.093

4 0.059 0.059 0.061 0.062 0.054 0.087

8 0.055 0.054 0.065 0.064 0.068 0.073

10 0.054 0.058 0.055 0.061 0.063 0.079

Table: Rejection probability when testingH0 : ∆ν1 = 0 under more factors and covariates.
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empirical application

Fafchamps, McKenzie, Quinn & Woodruff (2014)

D ∈ {control, cash transfer, in-kind grants}.

Y = profit of small business in Ghana.

Slight complication with double control per block, but can modify our procedure.
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empirical application

All High initial Low initial

Firms Males Females Profit women Profit women

(1) (2) (3) (4) (5)

Cash treatment 19.64 24.84 16.30 33.09 7.01

OLS (15.42) (27.29) (18.13) (42.56) (11.58)

(standard t-test) In-kind treatment 20.26 4.48 30.42 65.36 11.10

(15.67) (18.42) (22.83) (53.28) (15.31)

Cash=in-kind (p-val) 0.975 0.493 0.600 0.610 0.817

Cash treatment 19.64 24.84 16.30 33.09 7.01

Difference-in-means (14.24) (26.05) (15.21) (39.27) (11.15)

(adjusted t-test) In-kind treatment 20.26 4.48 30.42 65.36 11.10

(15.24) (17.79) (21.97) (48.27) (14.99)

Cash=in-kind (p-val) 0.974 0.468 0.567 0.576 0.815

Table: Point estimates and standard errors for testing the treatment effects of cash and in-kind
grants using different methods (wave 6).
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recommendations for practice

With multiple treatments, use small blocks instead of large strata.

+ our adjusted variance estimator.

For inference, do not use regression with strata fixed effects.

With multiple covariates, consider designs with “replicates.”
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details of simulations

µ1,1 = 2µ1,−1 = 4µ−1,1 = 2τ for τ ∈ {0, 0.05}, µ−1,−1 = 0.

γ1,1 = 2, γ−1,1 = 1, γ1,−1 = 1/2, γ−1,−1 = −1.

(ϵd,i)d∈D ⊥⊥ Xi and∼ N(0, 1).

σd(Xi) ≡ 1.
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