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Motivation
• Many regulatory policies impose thresholds or minimum/maximum standards on outcomes of interest:

- minimum wages
- minimum/maximum working time
- minimum safety standards
- minimum energy efficiency standards
- reporting and action thresholds in pollution monitoring

• These policies tend to induce behavioral responses, such as bunching, that lead to mixed outcome
distributions, e.g. Cengiz et al (2019, QJE)

• Since these policies target specific parts of the outcome distribution, identifying the impact on the
distribution and specifically the parts targeted by the policy is crucial to properly assess its impact
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Motivation

• Existing (fully nonparametric) approaches to identify counterfactual distributions in DiD settings cannot
allow for mixed outcomes, nonrandom selection into treatment and time variability in the potential
outcome distribution for the same subpopulation

• Distributional DiD requires one of the following (Roth and Sant’Anna 2023):
- random assignment
- time homogeneity
- mixture of the two (one subpopulation that obeys random assignment and another that obeys time
homogeneity)

• Changes-in-changes (Athey and Imbens 2006) allows for nonrandom selection into treatment and time
heterogeneity in their identification results for continuous and discrete outcomes, but their approach does
not apply to mixed outcome distributions

2 / 34



Contributions

• We propose a unifying (partial) identification approach:

- applies to any type of distribution: mixed, continuous, discrete

- does not restrict variability of marginal distribution across time

- invariant to monotonic transformations

- applies to repeated cross-sections or panel data

• Our bounding approach is valid under a novel assumption: “Copula Stability”

- stability of dependence between treatment assignment and the untreated potential outcome over time

• We also propose social welfare treatment effect parameters suitable for quantifying the impact on social
welfare and inequality in the lower or upper tail of the distribution
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Related Literature

• Classical and recent DiD Literature

e.g. Ashenfelter (1978), Ashenfelter and Card (1985), Heckman and Robb (1985), Card and Krueger (1994),
Callaway and Sant’Anna (2021), deChaisemartin and d’Hautefoeulille (2020), Goodman-Bacon (2021), Sun
and Abraham (2021), Borusyak, Jaravel and Spiess (2023)

• Parallel trends assumption

invariance to monotonic transformations (e.g. Athey and Imbens 2006, Roth and Sant’Anna 2023)

connection to selection into treatment (e.g. Ghanem, Sant’Anna and Wuthrich 2023, Marx, Tamer and Tang
2023)

• Alternatives to parallel trends assumptions

identifying counterfactual distributions (e.g. Athey and Imbens 2006, Bonhomme and Sauder 2011, Botosaru
and Muris 2017, Callaway and Li 2019, Gunsilius 2023)

bounds based on parallel trends violations (e.g. Manski and Pepper 2018, Rambachan and Roth 2023, Ban
and Kédagni 2023)

combining parallel trends and restrictions on assignment (e.g. Arkhangelsky, Imbens, Lei and Luo 2021,
Arkhangelsky and Imbens 2022)

• Copulas in policy evaluation

e.g. Rothe (2012), Mourifie (2015), Arellano and Bonhomme (2017), Callaway and Li (2019)
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Setup and Notation

• Consider 2-period/2-group POM:
Y0 = Y00

Y1 = Y11D + Y10(1−D)

where Ytd denotes the potential outcome in period t ∈ {0, 1} with treatment status d ∈ {0, 1}

• q ≡ P(D = 0), p ≡ P(D = 1) = 1− q

• X = SuppX

• FX(x) = P(X ≤ x), FX(x−) ≡ P(X < x)

• QT,−
X (u) ≡ inf{x ∈ T : FX(x) ≥ u}

• QT,+
X (u) ≡ sup{x ∈ T ∪ {−∞} : FX(x) ≤ u}

• RanH ≡ {H(y) : y ∈ R}
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Setup and Notation: Copula

For random variables Yt0 and D,

FYt0,D(y, d) = CYt0,D(FYt0(y), FD(d))

• A (sub)copula is the “link” between the joint and marginal distributions of Yt0 and D

• As such, it is a scale-free measure of dependence

Background
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Setup and Notation: Copula

Gaussian Example with Roy-style Selection
Y0 = Y00

Y1 = ηD + Y10

D = 1{η ≥ 0}

where (
Yt0

η

)
∼ N

(
0,

(
σ2
t ρtσt

ρtσt 1

))

FYt0,D(y, 0) = CYt0,D︸ ︷︷ ︸
Φ2(Φ−1(·),Φ−1(·);ρt)

FYt0(y)︸ ︷︷ ︸
Φ
(

y
σt

)
, Fη(0)︸ ︷︷ ︸

Φ(0)

 , y ∈ R

• CYt0,D(u, v) depends on ρt, the scale-free correlation coefficient between Yt0 and η
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Main Identifying Assumption: Copula Stability

• Copula Stability (CS): Time-invariant horizontal copula between Yt0 and D at q

CY00,D(u, q) = CY10,D(u, q), ∀u ∈ [0, 1]

• CS is crucial for our identification goals:

- No restrictions on the type of FYt0
(→ unifying result)

- No restrictions on variability in FYt0
across time

- Invariance to monotonic transformations

Cg(Yt0),D(u, q) = CYt0,D(u, q) ∀g strictly increasing & right-continuous

Distinct from Callaway and Li (2019)
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Main Identifying Assumption: Intuition
By definition, for t = 0, 1,

FYt0|D=0(y) = δt(FYt0(y)), where δt(·) = CYt0,D(·, q)/q

Then, we have

FYt0|D=1(y) =
1

1− q

(
δ−1
t

(
FYt0|D=0(y)

)
− FYt0|D=0(y)

)
FYt0|D=1(y)︸ ︷︷ ︸

Unob′counterfactual

= Ht

FYt0|D=0(y)︸ ︷︷ ︸
factual


where

Copula Stability: δ(·) ≡ δ0(·) = δ1(·) ⇐⇒ H0(·) = H1(·).

Intuition: The relationship between the rank of the factual and its corresponding unob’ counterfactual
remains stable over time.

Parallel to PT

10 / 34



Main Identifying Assumption: CS vs. PT

Comparison to parallel trends (PT) for a given transformation g:

E[g(Y10)− g(Y00)|D = 1] = E[g(Y10)− g(Y00)|D = 0]

⇕
Cov(g(Y00), D) = Cov(g(Y10), D) (Covariance Stability)

Remarks

• Our CS assumption can be interpreted as a dependence version of PT

• CS is invariant to monotonic transformations and does not restrict the marginals
• In general, PT and CS are nonnested, e.g. in Gaussian example

- copula stability: ρ0 = ρ1
- parallel trends on Yt0: ρ0σ0 = ρ1σ1

more details
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Time
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t = 1

Control Group Treatment Group

t = 0

To identify counterfactual expectation E[Y10|D = 1]
Step 1: Use Period 0 to recover ∆ between T&C
Step 2: Transport difference to Period 1
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(Partial) Identification through Copula Stability: Intuition

Minimum Wage (MW) Example DGP

FY00|D=0 FY10|D=0
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(Partial) Identification through Copula Stability: Intuition

Step 1: Use Period 0 to recover the dependence structure from the observable FY00 and FY00|D=0

FY00|D=0(y) =
1
q
FY00,D(y, q) = 1

q
CY00,D(FY00(y), q)

Sklar’s Theorem: There exists a unique subcopula
C : RanFY00

× {0, q, 1} → [0, 1]:

FY00,D(y, 0) = CY00,D(FY00 (y), q), y ∈ [−∞,∞].

MW Example
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(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by

inverting the copula to recover FY10
(y) ⇒ FY10|D=1(y)

Continuous Outcome: RanFY00 = [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by

inverting the copula to recover FY10
(y) ⇒ FY10|D=1(y)

Continuous Outcome: RanFY00 = [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by

inverting the copula to recover FY10
(y) ⇒ FY10|D=1(y)

Continuous Outcome: RanFY00 = [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by

inverting the copula to recover FY10
(y) ⇒ FY10|D=1(y)

Continuous Outcome: RanFY00 = [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by
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• If RanFY00 ⊂ [0, 1], one-to-one transport technique
works only over RanFY00|D=0 ∩RanFY10|D=0

MW Example: RanFY00 ⊂ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition

Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1

Observed in Period 1︷ ︸︸ ︷
FY10|D=0(y)

Skar
=

1

q
CY10,D(FY10

(y), q)

CS
=

1

q
CY00,D(FY10

(y), q),

• If RanFY00
= [0, 1], point-identification follows by

inverting the copula to recover FY10(y) ⇒ FY10|D=1(y)

• If RanFY00
⊂ [0, 1], one-to-one transport technique

works only over RanFY00|D=0 ∩RanFY10|D=0

• Outside RanFY00|D=0 ∩RanFY10|D=0, we can extend
the copula

MW Example: RanFY00 ⊂ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Y00

C
on

tr
ol

 G
ro

up
 C

D
F

 o
f Y

00

16 / 34



(Partial) Identification through Copula Stability: Intuition
Step 2: Invoke copula stability, transport the dependence structure to Period 1 to bound FY10|D=1
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inverting the copula to recover FY10
(y) ⇒ FY10|D=1(y)

• If RanFY00
⊂ [0, 1], one-to-one transport technique

works only over RanFY00|D=0 ∩RanFY10|D=0

• Outside RanFY00|D=0 ∩RanFY10|D=0, we can extend
the copula
⇒ Set identification due to multiple extensions

Note: Our bounds assume strict monotonicity of copula

MW Example: RanFY00 ⊂ [0, 1]
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(Partial) Identification through Copula Stability: Main Result

Theorem: Under the CS assumption as well as regularity conditions, the bounds on FY10|D=1(.) are:

lim
ỹ↓y

sup
{
FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0(t)

)
−
)
: t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤ FY10|D=1(y) ≤ lim

ỹ↓y
sup

{
FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0(t)

))
: t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
, y ∈ R.

Remarks

• The structure of the lower and upper
bound is meant to guarantee their
right-continuity

• The bounds are sharp assuming
RanFY00 is closed

MW Ex: Bounds on FY10|D=1
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LB/UB denote the CS LB/UB.
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(Partial) Identification Result: Numerical Examples

Discrete (Poisson) Bottom-coding Top-coding Bunching

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

LB−AI2006
UB−AI2006
LB
UB
CF

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

LB
UB
CF

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

LB
UB
CF

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

LB
UB
CF

DGP Poisson Bottom-coding (c0 ̸= c1) Top-coding Bunching
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(Partial) Identification through Copula Stability: Multiple Pre-treatment Periods

Theorem
If the CS assumption and regularity conditions hold for multiple pre-treatment periods t ∈ {−T0, . . . , 0}, then
the bounds for FY10|D=1(y) for y ∈ R are given by:

lim
ỹ↓y

sup
{
maxt∈{−T0,...,0}FYt|D=1

(
QR,+

Yt|D=0

(
FY1|D=0

(s)
)
−
)
: s ≤ ỹ & s ∈ Y10|0 ∪ {−∞}

}
≤ FY10|D=1(y)

≤ lim
ỹ↓y

sup
{
mint∈{−T0,...,0}FYt|D=1

(
QR,−

Yt|D=0

(
FY1|D=0

(s)
))

: s ≤ ỹ & s ∈ Y10|0 ∪ {−∞}
}
,

Skip

Corollary (Testable Restriction)

If the CS assumption and regularity conditions hold for multiple pre-treatment periods t ∈ {−T0, . . . , 0}, then
the following inequalities must be satisfied:

∆(y) ≤ 0 ∀y ∈ Y10|0, where

∆(y) ≡ maxt∈{−T0,...,0} FYt

(
QR,+

Yt|D=0

(
FY1|D=0

(y)
)
−
)
−mint∈{−T0,...,0} FYt

(
Q

Yt|0,−
Yt|D=0

(
FY1|D=0

(y)
))

.
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(Partial) Identification through Copula Stability: Multiple Pre-treatment Periods

• If CS holds for multiple pre-treatment periods ⇒ Identification Gain!

CS bounds in MW Example with CS holding for t ∈ {−1, 0, 1}

A. Using t ∈ {−1, 1} B. Using t ∈ {0, 1} C. Using t ∈ {−1, 0, 1}
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(Partial) Identification through Copula Stability: Multiple Pre-treatment Periods

• If CS does not hold for all pre-treatment periods ⇒ Testable Implication

CS bounds in MW Example with CS holding for t ∈ {0, 1} only

A. Using t ∈ {−1, 1} B. Using t ∈ {0, 1} C. Using t ∈ {−1, 0, 1}
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(Partial) Identification Result: Connection to CiC (Athey and Imbens, 2006)

• For continuous cdfs, bounds simplify to point-identification case of CiC

FY10|D=1(y) = FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0(y)

))
y ∈ R

CS ⇔ CiC conditions for continuous, strictly increasing cdfs

• For discrete outcomes, CS can be compatible with multi-dimensional heterogeneity

• For mixed outcomes, CiC point estimand will coincide with the CS upper bound

equivalence binary outcome mixed outcome
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Social Welfare Treatment Effect on the Treated (SWTT)

Broad class of SWTT parameters

SWTTω ≡ SWω(FY11|D=1)− SWω(FY10|D=1),

=

∫ 1

0

ω(τ)
(
QR,−

Y11|D=1(τ)−QR,−
Y10|D=1(τ)

)
dτ

where SWω(FX) =

∫ 1

0

ω(τ)QR,−
X (τ)dτ

Examples: Overall SWTT

• Utilitarian SWTT (ATT): ω(τ) = 1

−→ SWω(FX) = E[X]

• Gini SWTT: ω(τ) = 2(1− τ)

−→ SWω(FX) = E[X](1− IGini(FX))

Related Literature: Mehran 1976, Weymark 1981, Aaberge, Havnes and Mogstad 2013, Kitagawa and Tetenov 2021
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Social Welfare Treatment Effect on the Treated (SWTT)

Examples: Lower-tail SWTT

Define Xu = QR,−
X (V ), where V ∼ U [0, u] for (u, 1]

• Lower-tail ATT(u): ω(τ) = 1{τ ≤ u}/u

−→ SWω(FX) = E[Xu]

• Lower-tail Gini SWTT(u): ω(τ) = 2(u− τ)1{τ ≤ u}/u2

−→ SWω(u)(FX) = E[Xu](1− IGini(FXu))

Remark: Extension to any interquantile SWTT (−→ paper)
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Empirical Illustration

Cengiz et al (2019, QJE) examine the impact of 138 state-level minimum wage (MW) changes:

- using individual-level NBER Merged Outgoing Rotation Group of the CPS for 1979-2016
- conducting their analysis on the quarterly-state-level distribution of hourly wages

To keep our illustration succinct, we consider a subsample of their data:

- two years: 2010 (t = 0) and 2015 (t = 1)
- treatment group (D = 1): increase in minimum wage by at least $0.25
- subsample: states with pre-treatment (2010) MW ≥$8 (remaining subsample → paper)

Pre-treatment (2010) Post-treatment (2015)

Mean S.D. # Obs Mean S.D. # Obs

States with Pre-Treatment Minimum Wage ≥ $8
Control 20.12 13.96 4,737 22.30 15.48 4,454
Treatment 23.13 17.42 19,877 25.83 18.74 18,039

Wage Bins
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Empirical Illustration: Observed Distributions
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Empirical Illustration

In the following, we will be comparing CS bounds with distributional DiD in terms of the following:

- Counterfactual Distribution

- ATT and Gini SWTT

- Lower-tail ATT and Gini SWTT

- Parameters from Cengiz et al (2019) measuring employment changes around new MW

Recall that under the distributional DiD assumption,

FY10|D=1(y) = FY0|D=1(y) + FY1|D=0(y)− FY0|D=0(y)

⇒ Testable restriction: monotonicity of FY10|D=1 (Roth and Sant’Anna 2023)
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Empirical Illustration: Counterfactual Distribution

CS Bounds + Observed DistDiD + Observed DistDiD + CS Bounds
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Notes: Obs denotes FY11|D=1. CF-LB/CF-UB denote the CS LB/UB on FY10|D=1. DistDiD denotes the distributional

DID estimate of FY10|D=1. CiC-PE denotes the CiC point estimand that assumes continuity of the observed distribution.

Remarks:

• Distributional DiD exhibits clear monotonicity violation around the pre-treatment MW

• CiC point estimaotr equals the CS upper bound as expected

Skip CiC figure
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Empirical Illustration: Bounds on Gini SWTT

Decomposing Gini SWTT:

SWTTω = ATT (1− IGini(FY11|D=1
))︸ ︷︷ ︸

Mean Component (∆M )

−E[Y10|D = 1](IGini(FY11|D=1)− IGini(FY10|D=1))︸ ︷︷ ︸
Inequality Component (∆I )

ATT and Gini SWTT Results

F̂Y1|D=1 SWTT

CS-LB CS-UB DiD DistDiD CiC-PE

Mean (ATT ) 25.83 0.12 0.56 0.53 -0.10 0.56
Gini SWF 16.89 0.06 0.36 – 0.25 0.36

∆M – 0.08 0.37 – -0.07 0.37

∆†
I – -0.28 0.30 – -0.32 0.00

† The bounds on ∆I outerset bounds

Remarks:

• CS bounds are proportionately small,
but positive for ATT and Gini SWF

• DiD and DistDiD provide opposite
signs for ATT
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Empirical Illustration: Bounds on Lower-Tail Gini SWTT

F̂Y1|D=1 SWTT

CS-LB CS-UB DistDiD CiC-PE

Lower-tail Mean (ATT (u))
u = 0.01 3.63 1.59 1.68 1.90 1.68
u = 0.025 6.15 0.95 1.06 1.06 1.06
u = 0.05 7.57 0.60 0.91 1.06 0.91

Lower-tail Gini SWF (SWTTω(u) = ∆M (u) − ∆I(u))
u = 0.01 2.10 1.39 1.44 1.53 1.44
∆M (u) – 0.92 0.97 1.10 0.97

∆I(u)
† – -0.53 -0.42 -0.43 -0.47

u = 0.025 4.58 1.26 1.34 1.44 1.34
∆M (u) – 0.71 0.79 0.79 0.79

∆I(u)
† – -0.63 -0.47 -0.65 -0.55

u = 0.05 6.38 0.85 1.04 1.01 1.04
∆M (u) – 0.51 0.76 0.63 0.76

∆I(u)
† – -0.54 -0.09 -0.38 -0.28

Remarks:

• CS bounds suggest substantive positive
increases in lower-tail means and Gini SWF

• Decomposition of lower-tail Gini SWF
suggests positive bounds on ∆M and
negative (outerset) bounds) ∆I for lowest
values of u
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Empirical Illustration: Bounds on Parameters from Cengiz et al (2019)

F̂Y1|D=1 CS-LB CS-UB DistDiD CiC-PE

∆b 2.27% -2.89% 0.31% -1.18% -2.89%

∆a (W = 11) 16.61% -0.93% 2.31% 1.71% 2.27%

∆e (W = 11) 18.88% -0.62% -0.59% 0.53% -0.62%

Remark: Our bounds are consistent with the conceptual framework in Cengiz et al (2019)
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Conclusion

• Regulatory policies induce behavioral responses that lead to mass points in outcome distributions

• We propose a unifying partial identification result for the counterfactual distribution in DiD designs:
- our method is invariant to monotone transformations of the outcome
- applies to any type of outcome distribution, whether continuous, discrete, or mixed
- valid under a Copula Stability (CS) assumption

• Our bounds on the counterfactual distribution can be used to bound a broad class of SWTTs

• We illustrate the empirical relevance of our approach and the SWTT parameters in the context of a
recent minimum-wage study (Cengiz et al 2019)

THANK YOU!
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Appendix



(Sub)copula definition and Sklar’s theorem

The horizontal copula at q is CYt0,D(FYt0(y), q) = FYt0,D(y, 0).

Sklar’s Theorem: There exists a unique subcopula C : RanFYt0 × {0, q, 1} → [0, 1]:

FYt0,D(y, 0) = CYt0,D(FYt0
(y), q), y ∈ [−∞,∞].

• The subcopula CYt0,D(u, q) is uniquely identified from FYt0,D for u ∈ RanFYt0

• If RanFYt0 = [0, 1], the subcopula CYt0,D(u, q) is a copula and unique for u ∈ [0, 1]

Back

Definition of a Subcopula (Nelson 2006)
A two-dimensional subcopula is a function C with the following properties:

1. DomC = S1 × S2, where S1 and S2 are subsets of [0, 1] containing 0 and 1;

2. For all u, u′ ∈ S1, and v, v′ ∈ S2 such that u ≤ u′, and v ≤ v′, we have:

C(u
′
, v

′
) + C(u, v) ≥ C(u

′
, v) + C(u, v

′
);

3. C(0, v) = C(u, 0) = 0 for all (u, v) ∈ S1 × S2, and C(1, v) = v, C(u, 1) = u for all (u, v) ∈ S1 × S2.

A copula is a subcopula with S1 = S2 = [0, 1]

Back
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Callaway and Li (2019)

Main Identification Assumptions

• Distributional DiD Assumption:
∆Y0t ⊥ D

• Copula stability between changes and levels:

C∆Y0t,Y0(t−1)|D=1(·, ·) = C∆Y0(t−1),Y0(t−2)|D=1(·, ·)

Note: Identification result requires 3 time periods of panel data as well as additional regularity conditions
(continuity of random variables)

Back to Contributions Back to Assumptions



Main Identifying Assumption: Copula Stability

Comparison to PT in Gaussian Example


Y0 = Y00

Y1 = ηD + Y10

D = 1{η ≥ 0}

where  Y00

Y10

η

 ∼ N(0,Σ) with Σ =

 σ2
0 δσ0σ1 ρ0σ0

δσ0σ1 σ2
1 ρ1σ1

ρ0σ0 ρ1σ1 1

 .

• Copula Stability: ρ0 = ρ1

• 1-Parallel Trends: ρ0σ0 = ρ1σ1

Back



Binary Example with Multidimensional Heterogeneity

Suppose that

Yt0 = 1− 1{Ut ≤ ct, Ũt ≤ c̃t}, t = 0, 1,

D = 1{V > q},

where (V,U0, U1, Ũ0, Ũ1) is a latent random vector, and (ct, c̃t) is a constant vector. For simplicity, we
normalize Ut, Ũt and V to be uniformly distributed on [0, 1].

Suppose CUt,Ũt,V
(u, ũ, v) = Ct

(
CUt,Ũt

(u, ũ), v
)
where Ct and CUt,Ũt

are two-dimensional Archimedean

copulas. Define CYt0,D(u, q) ≡ Ct(u, q). Then, the stability of the copula of (Ut, Ũt, V ) implies the stability
of the copula of (Yt0, D).

Back
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Selection on Lagged Outcomes
Consider the following model 

Y0 = Y00,
Y1 = Y11D + Y10(1−D),
D = 1{Y00 > c}.

Assume that Y00 is continuous and has strictly increasing cdf. Then, from the Sklar theorem, we have for any
u ∈ [0, 1] and q ≡ P(D = 0) = FY00(c)

CY00,D(u, q) = P
(
Y00 ≤ QR,−

Y00
(u), D ≤ QR,−

D (q)
)
= P

(
FY00(Y00) ≤ FY00(Q

R,−
Y00

(u)), D = 0
)
,

= P (FY00(Y00) ≤ u, Y00 ≤ c)

= P (FY00(Y00) ≤ u, FY00(Y00) ≤ q)

= P (FY00(Y00) ≤ min(u, q)) = min(u, q) since FY00(Y00) ∼ U[0,1].

Remarks:
• Selection on lagged outcomes requires a specific dependence structure that rules out our strict

monotonicity assumption
• Note however that selection on outcomes implies unconfoundedness which should be used to identify the

counterfactual distribution
Back
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Parallel to PT

Parallel Trends: stable difference in expected outcome between control group and marginal distribution

E[Yt0|D = 1] − E[Yt0|D = 0] = ∆~w�
E[Yt0|D = 0] = E[Yt0]− ∆̃, for t = 0, 1

where ∆̃ = −∆(1− q)

Object of Interest: E[Y10|D = 1] = 1
1−q

(E[Y10]− qE[Y10|D = 0])

Back



Proof Sketch

• For any RV X, we have the following sharp bounds:

FX

(
QR,+

X (u)−
)

≤ u ≤ FX

(
QR,−

X (u)
)

for all u ∈ [0, 1]

• Apply inequality with X = Y0|D = 0 and u = FY1|D=0(y) for y ∈ Y10|0, which yields the following

FY0|D=0

(
y
)

≤ FY1|D=0(y) ≤ FY0|D=0 (y) ,

where y < QR,+
Y0|D=0(FY1|D=0(y)) and y = QR,−

Y0|D=0(FY1|D=0(y)).

(Sklar) CY0,D

(
FY0

(
y
)
, q
)

≤ CY10,D (FY10(y), q) ≤ CY0,D (FY0 (y) , q) ,

(CS) CY0,D

(
FY0

(
y
)
, q
)

≤ CY0,D (FY10(y), q) ≤ CY0,D (FY0 (y) , q) ,

(Strictly ↑ C) FY0

(
y
)

≤ FY10(y) ≤ FY0 (y) .

Back



Proof Sketch

• Apply monotonic transformation v − CY0,D(v, q) on the last inequality and divide by p:

FY0|D=1

(
y
)

≤ FY10|D=1(y) ≤ FY0|D=1 (y) .

• Take supremum over y < QR,+
Y0|D=0(FY1|D=0(y)) for y ∈ Y10|0:

FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0(y)

)
−
)
≤ FY10|D=1(y) ≤ FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0(y)

))
.

• Then we apply a transformation to ensure the bounds are right-continuous:

lim
ỹ↓y

sup
{
FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0(t)

)
−
)
: t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤ FY10|D=1(y) ≤ lim

ỹ↓y
sup

{
FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0(t)

))
: t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
, y ∈ R.

Back



DGPs
We generate the conditional potential outcome distirbution by the following

FYt0|D=0(y) =
1

q
CY0,D(FYt0

(y), q) (1)

FYt0|D=1(y) =
1

p

(
FYt0

(y) − CY0,D(FYt0
(y), q)

)
(2)

where FYt0
is the marginal distribution and CY0,D(u, q) = (max(u−θ + q−θ − 1, 0))−1/θ .

Our baseline results rely on θ = 1, which fulfils our strict monotonicity condition on the horizontal copula.

Table: Numerical Examples: Outcome Distributions

I. Left-censoring

FYt0
(y) =

{
0 if y < ct
Λt(y) if y ≥ ct

,

where Λt(·) is the χ2 cdf with kt degrees of freedom.

II. Poisson FYt0
(y) = Πt(y), where Πt(·) is the Poisson cdf with mean λt.

III. Right-censoring

FYt0
(y) =

{
Λt(y) if y < ct
1 if y ≥ ct

,

where Λt(·) is the χ2 cdf with kt degrees of freedom.

IV. Bunching

FYt0
(y) =

 Φt(y) if y ̸∈ [ct, wt)
Φt(ct) + bt(Φt(wt) − Φt(ct)) if y = ct
Φt(ct) + bt(Φt(wt) − Φt(ct)) + (1 − bt)(Φt(y) − Φt(ct) if y ∈ (ct, wt)

where Φt(.) is the standard normal cdf with mean µt and standard deviation σt.

V. Minimum Wage FYt0
(y) = FY ∗

t0
(y) + (1 − bt)(FY ∗

t0
(y) − FY ∗

t0
(w))1{y ∈ (w, c]},

where Y ∗
td ∼ χ2(ktd) for (t, d) ∈ {(0, 0), (1, 0)}.

Back to MW Ex Back to Num Examples Right-censoring (c0 = c1) Left-censoring (c0 ̸= c1) Poisson Right-censoring Bunching



Bottom-coding: c0 = c1 = 5, k0 = 3, k1 = 5
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Bottom-coding: c0 = 5, c1 = 10, k0 = 5, k1 = 3
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Poisson with time-varying parameter
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Top-coding Example with Time-varying Cutoff
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Bunching Example with Time-varying Cutoff and Proportion
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CS and CiC Assumptions

Claim (Continuous, Strictly Increasing CDF)
Assume the cdfs FYt0 (.), t ∈ {0, 1} are continuous and strictly increasing, then the two following statements are
equivalent:

(i) CY00,D(u, q) = CY10,D(u, q) for all u ∈ [0, 1].

(ii) There exist two strictly increasing functions ht(.) = QR,−
Yt0

(·) and Ut0 = FYt0 (Yt0) ∼ U [0, 1] for t ∈ {0, 1}, such
that Yt0 = ht(Ut0) and U00|D = d ∼ U10|D = d for d ∈ {0, 1}.

Intuition: If FYt0(·) is continuous and strictly increasing, then

Yt0 = QR,−
Yt0

(FYt0(Yt0))

= QR,−
Yt0

(Ut0)

where Ut0 = FYt0(Yt0) ∼ U [0, 1] has a time-invariant distribution by definition

Stability of CYt0,D(·, q) ⇔ Stability of Ut|D = d

Note: Result extends to continuous outcomes where the above representation of Yt0 holds
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Binary Example with Multidimensional Heterogeneity

Suppose that

Yt0 = 1− 1{Ut ≤ ct, Ũt ≤ c̃t}, t = 0, 1,

D = 1{V > q},

where (V,U0, U1, Ũ0, Ũ1) is a latent random vector, and (ct, c̃t) is a constant vector. For simplicity, we
normalize Ut, Ũt and V to be uniformly distributed on [0, 1].

Suppose CUt,Ũt,V
(u, ũ, v) = Ct

(
CUt,Ũt

(u, ũ), v
)
where Ct and CUt,Ũt

are two-dimensional Archimedean

copulas. Define CYt0,D(u, q) ≡ Ct(u, q). Then, the stability of the copula of (Ut, Ũt, V ) implies the stability
of the copula of (Yt0, D).
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CiC Point-Estimand in the Minimum-Wage Numerical Example

CiC Point-Estimand using t ∈ {0, 1} CS Bounds using t ∈ {0, 1}
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Remarks

- CiC point-estimand equals CS upper bound

- CiC upper and lower bounds for discrete outcomes are equal to each other
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CiC Bounds for Discrete Outcomes in the Minimum Wage Numerical Example

• CiC upper and lower bounds will be equal and not equal to the counterfactual outcome distribution
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FUB
CiC(s) = FY0|D=1︸ ︷︷ ︸

||

(Q
Y0|0,−
Y0|D=0(FY1|D=0(y))︸ ︷︷ ︸

||

)

FLB
CiC(s) =

||︷ ︸︸ ︷
FY0|D=1(

||︷ ︸︸ ︷
Q

Y0|0,+

Y0|D=0(FY1|D=0(s)))

for s ∈ Y0|1

• CS lower bound differs from CiC lower bound

FLB(s) = FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0

(s)
)
−
)
= P

(
Y0<QR,+

Y0|D=0(FY1|D=0
(s))|D = 1

)
for s ∈ Y0|1
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Construction of Outcome Variable in Cengiz et al (2019)

Our outcome variable is Yist denote the wage reported by survey respondent i in state s in quarter t

The outcome variable in Cengiz et al (2019) is the employment-to-population ratio in $ 0.25 wage bins
{Binj}Jj=1

empbinj
st =

∑nst
i=1 1{Yist ∈ Binj}earnwtist∑nst

i=1 earnwtist

where earnwtist is the earnings weight for each survey respondent and nst is the number of survey
respondents in state s in quarter t, which equals the total population above 16 in the state that year
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CiC Point Estimator in Application

CS Bounds + Observed CiC + Observed
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Notes: Obs denotes FY11|D=1. CF-LB/CF-UB denote the CS LB/UB on FY10|D=1. CiC-PE denotes the CiC point estimand

that assumes continuity of the observed distribution.
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