Estimating Causal Effects of Discrete and Continuous Treatments with Binary Instruments

> Victor Chernozhukov, Iván Fernández-Val, Sukjin Han, Kaspar Wüthrich

> MIT, Boston U, U of Bristol, UC San Diego

September 2024

Endogeneity and Heterogeneity

Endogeneity and heterogeneity are key challenges in causal inference

- \triangleright accounting for them in estimating treatment effects is crucial to answer policy questions
- \triangleright e.g. how to allocate social resources and combat inequalities

This paper proposes a flexible IV modeling framework for identifying heterogeneous treatment effects under endogeneity

 \blacktriangleright that vields straightforward semiparametric estimation and inference procedures

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

Example: Effects of Sleep on Well-Being

- \triangleright Y: well-being index of workers in a developing country
- \triangleright D: sleep hours per night
- \blacktriangleright Y_d: counterfactual well-being with sleep level d
	- causal object of interest (e.g., $\partial E[Y_d]/\partial d$)
- \triangleright Z: randomly assigned sleep support from RCT
	- affects D but independent of Y_d
- \triangleright D_z : counterfactual sleep level with assignment z
- \triangleright X: observed characteristics of worker (e.g., gender, age)

Example: Effects of Sleep on Well-Being

- \triangleright Y: well-being index of workers in a developing country
- \triangleright D: sleep hours per night
- \blacktriangleright Y_d: counterfactual well-being with sleep level d
	- causal object of interest (e.g., $\partial E[Y_d]/\partial d$)
- \triangleright Z: randomly assigned sleep support from RCT
	- affects D but independent of Y_d
- \triangleright D_z : counterfactual sleep level with assignment z
- \triangleright X: observed characteristics of worker (e.g., gender, age)
- \Rightarrow D is endogenous (e.g., underlying health conditions)
	- Y_d and D_z are dependent, even after controlling for X

KORKAR KERKER EL VOLO

Previous Approaches

IV alone cannot point-ID meaningful treatment effects

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Previous Approaches

IV alone cannot point-ID meaningful treatment effects

Two approaches:

- 1. Restricting structure/heterogeneity of potential outcomes
	- ▶ IV approach: Newey & Powell 03; Chernozhukov & Hansen 05; Vuong & Xu 17
- 2. Restricting structure/heterogeneity of treatment assignment
	- ► CF approach: Newey et al 99; Imbens & Newey 09
	- **I LATE/MTE approa[c](#page-4-0)h:** Imbens & Angrist [94;](#page-4-0) [He](#page-6-0)c[km](#page-5-0)[a](#page-6-0)[n](#page-0-0) [& V](#page-59-0)[ytl](#page-0-0)[aci](#page-59-0)[l 0](#page-0-0)[5](#page-59-0)

This Paper's Approach

We explore an intermediate route:

- \Rightarrow imposing structure on relationship between treatment assignment and potential outcomes
	- \triangleright achieve point ID of various heterogeneous treatment effects

KORKA BRADE KORA

This Paper: Local Copula Representation

Basis of our approach: Local Gaussian Representation (LGR)

- \triangleright copula representing the joint distribution of the potential outcomes Y_d and treatment assignment unobservables D_z
- \blacktriangleright this representation is fully *nonparametric* (Chernozhukov, Fernández-Val & Luo 24)
	- by treating the correlation parameter as an implicit function

KID KA KERKER KID KO

• not require (Y_d, D_z) being jointly or marginally Gaussian

Use this representation to introduce an assumption that has not been previously considered for ID of treatment effects:

\triangleright copula invariance

 \blacktriangleright restricts the shape of local dependence

This Paper: Expands Modeling Trade-Offs

We show that, even with a $binary IV$, copula invariance identifies...

- \triangleright quantile and average treatment effects (QTE and ATE) of binary and ordered treatments
- \triangleright quantile and average structural functions (QSF and ASF) of continuous treatment

We expand the directions of modeling trade-offs:

- \triangleright compared to IV, CF, LATE approaches...
- \triangleright we impose more restrictions on the dependence structure (i.e., the form of endogeneity),

 \triangleright while allowing for richer patterns of effect heterogeneity

Our identification strategy is constructive

 \blacktriangleright leads to simple semiparametric estimation procedures

Related Literature

Identification and estimation in nonparametric models with endogenous explanatory variables:

- ▶ nonparametric IV approach: Newey & Powell 03; Hall & Horowitz 05; Chernozhukov & Hansen 05; Blundell, Chen & Kristensen 07; Vuong & Xu 17; Chen & Christensen 18
- ▶ nonparametric CF approach: Newey, Powell & Vella 99; Das, Newey & Vella 03; Blundell & Powell 04; Imbens & Newey 09; D'Haultfoeuille, Hoderlein & Sasaki 21; Newey & Stouli 21

\blacktriangleright related approaches:

- Chesher 03
- D'Haultfoeuille & Février 15; Torgovitsky 15

Inductive monotonicity assumption with binary or discrete D: Imbens $\&$ Angrist 94; Abadie et al 02; Heckman & Vytlacil 05

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

Related Literature

Copula in identification and estimation:

- ▶ Han & Vytlacil 17; Han & Lee 19: a class of single-parameter copulas to model endogeneity for binary outcome & treatment
- \blacktriangleright Han & Lee 24: dynamic treatment effect models using copula
- ▶ Chen et al 22, Chen et al 24; Ghanem, Kédagni & Mourifié 24: use of copula in TS and DiD settings
- \triangleright Arellano & Bonhomme 17: real analytical copula and continuous instrument in sample selection model
- ▶ Chernozhukov, Fernández-Val & Luo 24: use of LGR in sample selection model
- \Rightarrow this paper:
	- two-way sample selection in the binary treatment case
	- general selection model without threshold-crossing
	- completely new results with ordered a[nd](#page-9-0) [co](#page-11-0)[nt](#page-9-0)[in](#page-10-0)[u](#page-11-0)[ous](#page-0-0) [tr](#page-59-0)[ea](#page-0-0)[tm](#page-59-0)[en](#page-0-0)[ts](#page-59-0)

I. Setup and Assumptions

K ロ X (日) X 등 X X 등 X 등 등 10 0 0 0

Variables

- $Y \in \mathcal{Y} \subseteq \mathbb{R}$ scalar outcome (continuous, discrete or mixed)
- $D \in \mathcal{D} \subseteq \mathbb{R}$ scalar treatment
	- \triangleright $\mathcal{D} = \{0, 1\}$ for binary D
	- $D = \{1, ..., K\}$ for ordered D
	- \triangleright D uncountable for continuous D
- $Z \in \{0,1\}$ binary IV
	- \triangleright most challenging case; extends to discrete or continuous Z

KORK EX KEY CONC.

- Y_d potential outcome given $d \in \mathcal{D}$; and $Y = Y_D$
- D_z potential treatment given $z \in \{0,1\}$; and $D = D_z$
- $X \in \mathcal{X} \subseteq \mathbb{R}^{d_\mathsf{x}}$ vector of covariates (explicit in estimation)

Generalized Treatment Equation

General treatment assignment equation:

$$
D_z = h(z, V_z)
$$

- ► $V_z \sim U[0, 1]$ as normalization
- permit D to be a function of vector (V_0, V_1)
- \triangleright (even this is not necessary but simplifies the exposition)

Parameters of Interest

Interested in identifying $\mathsf{F}_{\mathsf{Y}_d}$ for $d \in \mathcal{D}$ and functionals of $\mathsf{F}_{\mathsf{Y}_d}$

 \blacktriangleright quantile and average structural functions:

$$
QSF_{\tau}(d) \equiv Q_{Y_d}(\tau) = Q_{\tau}(F_{Y_d}),
$$

ASF(d) $\equiv E[Y_d] = \mathcal{E}(F_{Y_d}),$

- ► $QSF_{\tau}(d) QSF_{\tau}(d')$ and $ASF(d) ASF(d')$ for binary or ordered treatment
- \triangleright ∂QSF_T(d)/∂d and ∂ASF_T(d)/∂d for continuous treatment

Local Gaussian Representation

Let $C(u_1, u_2; \rho)$ be Gaussian copula

Lemma (LGR) (Chernozhukov et al 24)

For any r.v.'s Y , V and Z, the joint distribution admits the representation:

$$
F_{Y,V|Z}(y,v | z) = C(F_{Y|Z}(y | z), F_{V|Z}(v | z); \rho_{Y,V;Z}(y,v; z))
$$

for all (y, v, z) , where $\rho_{Y, V, Z}(y, v, z)$ is the unique solution in ρ to

$$
F_{Y,V|Z}(y,v\mid z)=C(F_{Y|Z}(y\mid z),F_{V|Z}(v\mid z); \rho).
$$

- Gaussianity is not essential for the local representation, but convenient
- \triangleright other (comprehensive) copulas can be used for representation
	- e.g., Clayton copula, Frank copula, t copula

Assumptions

Assumption EX For $d \in \mathcal{D}$ and $z \in \{0, 1\}$, $Z \perp Y_d$ and $Z \perp Y_z$.

Assumption REL (i) $Z \in \{0, 1\}$; (ii) $0 < \Pr(Z = 1) < 1$; and (iii) Z is relevant.

Assumption CI For $d \in \mathcal{D}$, $\rho_{Y_d, V_z, Z}(y, v; z)$ is a constant function of (v, z) , that is $\rho_{Y_d, V_z;Z}(y, v; z) = \rho_{Y_d}(y),$ and $\rho_{Y_d}(y) \in (-1,1)$.

 \triangleright Under joint independence of Z and rank invariance in selection, CI holds if $\tilde{C}(u_1 | u_2) = C(u_1 | u_2; \rho(u_1))$ (more later)

Examples of Distributions under Copula Invariance

Figure: Joint Distributions under Copula Invariance

Notes: We depict joint distributions of (Y_d, V) under CI with Gaussian marginals (left) and nonparametric marginals (right).

イロト 不優 トイ磨 トイ磨 トー 磨っ

II. Identification Analysis

K ロ X (日) X 등 X X 등 X 등 등 10 0 0 0

Binary Treatment

Suppose $D \in \mathcal{D} = \{0, 1\}$ and consider

$$
D_z = h(z, V_z) = 1\{V_z \leq \pi(z)\}\
$$

with propensity score (by EX)

 $Pr[D = 1 | Z = z] = Pr[D_z = 1 | Z = z] = Pr[V_z < \pi(z)] = \pi(z)$

In LATE monotonicity if $V_1 = V_0$

For ID analysis, consider

$$
Pr[Y \le y, D = 1 | Z = z] = Pr[Y_1 \le y, D_z = 1 | Z = z]
$$

= $C(F_{Y_1|Z}(y|z), \pi(z); \rho_{Y_1, V_z; Z}(y, \pi(z); z))$
= $C(F_{Y_1}(y), \pi(z); \rho_{Y_1}(y))$

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

by LGR, EX and CI

Binary Treatment

By varying $Z \in \{0, 1\}$, a system nonlinear equations:

$$
Pr[Y \le y, D = 1 | Z = 0] = C(F_{Y_1}(y), \pi(0); \rho_{Y_1}(y))
$$

$$
Pr[Y \le y, D = 1 | Z = 1] = C(F_{Y_1}(y), \pi(1); \rho_{Y_1}(y))
$$

Then, the system has unique solution for $(\mathsf{F}_{\mathsf{Y}_1}(y), \rho_{\mathsf{Y}_1}(y))$ by Gale & Nikaido 65's global univalence [Gale & Nikaido 65](#page-57-0)

 \triangleright because its Jacobian is P-matrix under REL

Theorem 1

Suppose $D_z = 1\{V_z \leq \pi(z)\}\$ for $z \in \{0,1\}$. Under EX, REL and CI, the functions $y \mapsto \mathit{F}_{Y_d}(y)$ and $y \mapsto \rho_{Y_d}(y)$ are identified on $y \in \mathcal{Y}$ for $d \in \{0, 1\}$.

KORKAR KERKER EL VOLO

Suppose $D \in \mathcal{D} = \{1, ..., K\}$ and consider

$$
D_z = h(z, V_z) = \begin{cases} 1, & \pi_0(z) < V_z \leq \pi_1(z) \\ 2, & \pi_1(z) < V_z \leq \pi_2(z) \\ \vdots & \vdots \\ K, & \pi_{K-1}(z) < V_z \leq \pi_K(z) \end{cases}
$$

where $\pi_0(z) = 0$ and $\pi_K(z) = 1$

 \triangleright this model generalizes Heckman & Vytlacil 07 who consider

$$
D_z = \begin{cases} 1, & \pi_0 < \mu(z) + V \leq \pi_1 \\ 2, & \pi_1 < \mu(z) + V \leq \pi_2 \\ \vdots & \vdots \\ K, & \pi_{K-1} < \mu(z) + V \leq \pi_K \end{cases}
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

For ID analysis, consider

$$
Pr[Y \le y, D = d | Z = z]
$$

= $Pr[Y_d \le y, \pi_{d-1}(z) < V_z \le \pi_d(z) | Z = z]$
= $C(F_{Y_d}(y), \pi_d(z); \rho_{Y_d}(y)) - C(F_{Y_d}(y), \pi_{d-1}(z); \rho_{Y_d}(y))$

by LGR, EX and CI

► for $d \in \{1, K\}$, REL identifies $F_{Y_d}(y)$ and ρ_{Y_d} (as before)

KORKA BRADE KORA

► but, for $d \in \mathcal{D}\backslash\{1,K\}$, Gale & Nikaido 65 doesn't apply

To apply different global univalence, we assume:

Assumption U_{OC}

Either $F_{D|Z}(d | 0) > F_{D|Z}(d | 1)$ for all $d \in \mathcal{D}\backslash\{K\}$ or $F_{D|Z}(d | 0) < F_{D|Z}(d | 1)$ for all $d \in \mathcal{D} \backslash \{K\}.$

 $\blacktriangleright \bigcup_{\Omega \subset \Gamma}$ is directly testable from data

 \blacktriangleright Heckman & Vytlacil 07's model satisfies U_{OC}

ightharpoonup when V_0 and V_1 are exchangeable, U_{OC} (with $>$) implies

 $Pr[$ all complier groups $] > Pr[$ all defier groups $]$

- cf. de Chaisemartin 17 with binary D
- ightharpoonup when $V_0 = V_1$, U_{OC} (with $>$) implies

Pr[all defier groups $]=0$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Then, we apply the inverse theorem in Ambrosetti & Prodi 95 by showing...

- 1. the system has a unique solution when $\rho_{Y_d}(y) = 0$ (locally no endogeneity)
- 2. the function that defines the system is proper
- 3. the Jacobian has full-rank (by U_{OC}) \longrightarrow [Ambrosetti & Prodi 95](#page-58-0)

KORKAR KERKER EL VOLO

Theorem 2

Suppose D_z , $z \in \{0, 1\}$, satisfies the ordered selection model. Under EX, REL, CI and U $_{OC}$, the functions $\mathsf y \mapsto \mathsf F_{\mathsf Y_d}(\mathsf y)$ and $y\mapsto\rho_{\mathsf{Y}_d}(y)$ are identified on $y\in\mathcal{Y}$ for $d\in\mathcal{D}.$

Suppose $D \in \mathcal{D} \subseteq \mathbb{R}$ and $F_{D|Z}(\cdot | z)$ is strictly increasing on \mathcal{D} Consider

$$
D_z = h(z, V_z) = F_{D|Z}^{-1}(V_z | z)
$$

For ID analysis, consider

$$
F_{Y|D,Z}(y \mid d,z) = F_{Y_d|D_z,Z}(y \mid d,z) = F_{Y_d|Y_z,Z}(y \mid F_{D|Z}(d \mid z),z)
$$

By LGR, EX and properties of cond'l CDF and Gaussian copula,

$$
F_{Y_d|V_z,Z}(y | v, z) = \frac{(\partial/\partial v) F_{Y_d,V_z|Z}(y, v | z)}{(\partial/\partial v) F_{V_z|Z}(v | z)} = \Phi \left(\frac{\mu_{d,y} - \rho_{Y_d,V_z,Z}(y, v; z) \eta_v}{\sqrt{1 - \rho_{Y_d,V_z,Z}(y, v; z)^2}} \right) + \phi_2(\mu_{d,y}, \eta_v; \rho_{Y_d,V_z;Z}(y, v; z)) (\partial/\partial v) \rho_{Y_d,V_z;Z}(y, v; z)
$$

where $\mu_{d,\mathsf y}\equiv\Phi^{-1}(\mathsf F_{\mathsf Y_d}(\mathsf y))$ and $\eta_\mathsf v\equiv\Phi^{-1}(\mathsf v)$

$$
F_{Y|D,Z}(y \mid d,z) = \Phi\left(\frac{\mu_{d,y} - \rho_{Y_d,Y_z;Z}(y, F_{D|Z}(d \mid z); z)\eta_v}{\sqrt{1 - \rho_{Y_d,Y_z;Z}(y, F_{D|Z}(d \mid z); z)^2}}\right)
$$

 $+\phi_2(\mu_{d,y},\eta_{v};\rho_{Y_d,V_z;Z}(y,\mathsf{F}_{D|Z}(d\mid z);z))(\partial/\partial v)\rho_{Y_d,V_z;Z}(y,\mathsf{F}_{D|Z}(d\mid z);z)$

CI implies

$$
\rho_{Y_d, V_z;Z}(y, F_{D|Z}(d | z); z) = \rho_{Y_d}(y)
$$

$$
(\partial/\partial v)\rho_{Y_d, V_z;Z}(y, F_{D|Z}(d | z); z) = 0
$$

Therefore, for $z \in \{0, 1\}$,

$$
\Phi^{-1}(F_{Y|D,Z}(y \mid d,z)) = a_{d,y} + b_{d,y}\Phi^{-1}(F_{D|Z}(d \mid z))
$$

with $a_{d,y} \equiv \mu_{d,y}/\sqrt{1-\rho_{Y_d}(y)^2}, \ b_{d,y} \equiv -\rho_{Y_d}(y)/\sqrt{1-\rho_{Y_d}(y)^2}$

KORKA BRADE KORA

$$
\Phi^{-1}(F_{Y|D,Z}(y \mid d,z)) = a_{d,y} + b_{d,y} \Phi^{-1}(F_{D|Z}(d \mid z)) \text{ for } z \in \{0,1\}
$$

This is a linear system of two equations on two unknowns, which has solution

$$
a_{d,y} = \frac{\Phi^{-1}(F_{Y|D,Z}(y \mid d,0))\Phi^{-1}(F_{D|Z}(d \mid 1)) - \Phi^{-1}(F_{Y|D,Z}(y \mid d,1))\Phi^{-1}(F_{D|Z}(d \mid 0))}{\Phi^{-1}(F_{D|Z}(d \mid 1)) - \Phi^{-1}(F_{D|Z}(d \mid 0))}
$$

$$
b_{d,y} = \frac{\Phi^{-1}(F_{Y|D,Z}(y \mid d,1)) - \Phi^{-1}(F_{Y|D,Z}(y \mid d,0))}{\Phi^{-1}(F_{D|Z}(d \mid 1)) - \Phi^{-1}(F_{D|Z}(d \mid 0))}
$$

Then, we can ID $\mu_{d,\mathsf y}\equiv\Phi^{-1}(\mathsf F_{\mathsf Y_d}(\mathsf y))$ and $\rho_{\mathsf Y_d}(\mathsf y)$ from

$$
a_{d,y} \equiv \mu_{d,y}/\sqrt{1-\rho_{Y_d}(y)^2}, \quad b_{d,y} \equiv -\rho_{Y_d}(y)/\sqrt{1-\rho_{Y_d}(y)^2}
$$

KID KORK KERKER E KORCH

Theorem 3

Suppose D_z , $z\in\{0,1\}$, satisfies $D_z={F}_{D|Z}^{-1}$ $\overline{D}|Z(V_z | z)$. Under EX, REL and CI, the functions $\mathsf{y} \mapsto \mathsf{F}_{\mathsf{Y}_d}(\mathsf{y})$ and $\mathsf{y} \mapsto \rho_{\mathsf{Y}_d}(\mathsf{y})$ are identified on $y \in \mathcal{Y}$ for $d \in \mathcal{D}$ by

$$
F_{Y_d}(y) = \Phi\left(\frac{a_{d,y}}{\sqrt{1+b_{d,y}^2}}\right), \quad \rho_{Y_d}(y) = \frac{-b_{d,y}}{\sqrt{1+b_{d,y}^2}}.
$$

- \triangleright unlike Imbens & Newey 09, this approach does not require large support IV nor rank invariance in selection $(V_1 = V_0)$
	- instead, it imposes CI
- \triangleright unlike D'Haultfoeuille & Février 15; Torgovitsky 15, CI does not impose any structural models for Y and D nor restrictions on the dimension of unobservables

III. Discussions on Copula Invariance

K ロ X (日) X 등 X X 등 X 등 등 10 0 0 0

Sufficient Conditions for CI

Recall

$$
\blacktriangleright
$$
 EX: $Z \perp Y_d$ and $Z \perp Y_z$

•
$$
\bullet \ \mathsf{Cl} : \rho_{Y_d, V_z; Z}(y, v; z) = \rho_{Y_d}(y)
$$

Assumption EX2

For $d \in \mathcal{D}$ and $z \in \{0, 1\}$, $Z \perp \!\!\!\perp (Y_d, V_z)$.

Assumption RI_S $V_1 = V_0 = V$ a.s.

Assumption CI2

 $\rho_{Y_d,V}(y,v) = \rho_{Y_d}(y).$

 \triangleright CI2 is CI in treatment propensity

Proposition 1

Under EX2 and RI_S , CI2 implies CI.

Equivalent Condition for CI

Recall Cl2:
$$
\rho_{Y_d,V}(y,v) = \rho_{Y_d}(y)
$$

Assumption SI

For $d \in \mathcal{D}$.

$$
F_{Y_d|V}(y | v) = \Phi (a_{d,y} + b_{d,y} \Phi^{-1}(v)), \quad (y, v) \in \mathcal{Y} \times \mathcal{V},
$$

where $a_{d,y} = \Phi^{-1}(F_{Y_d}(y))/\sqrt{1 - \rho_{Y_d}(y)^2}$ and $b_{d,y} = -\rho_{Y_d}(y)/\sqrt{1 - \rho_{Y_d}(y)^2}$.

- In SI is single index restriction on local relationship btw (Y_d, V)
- \triangleright SI does not require Gaussianity
- ► still, e.g., sign of $(\partial/\partial v)F_{Y_d|V,Z}(y | v)$ should not depend on v , but can change with v

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Proposition 1 CI2 is equivalent to SI.

Local Dependence as Implicit Function

LGR can be expressed for arbitrary copula \tilde{C} :

$$
\tilde{C}(u_1, u_2 | z) = C(u_1, u_2; \rho(u_1, u_2; z))
$$

where C is Gaussian copula

For simplicity, maintain EX2 so that

$$
\tilde{C}(u_1, u_2) = C(u_1, u_2; \rho(u_1, u_2))
$$

By implicit function theorem, ρ is differentiable and

$$
\tilde{C}(u_1 \mid u_2) = C(u_1 \mid u_2; \rho(u_1, u_2)) + C_{\rho}(u_1, u_2; \rho(u_1, u_2)) \frac{\partial \rho(u_1, u_2)}{\partial u_2}
$$

Proposition 2

Under EX2, CI holds if $\widetilde{C}(u_1 | u_2) = C(u_1 | u_2; \rho(u_1))$.

Examples of Distributions under Copula Invariance

Figure: Joint Distributions under CI2

Notes: We depict joint distributions of (Y_d, V) under CI with Gaussian marginals.

活 299 **K ロ ト K 御 ト K 君 ト K 君 ト**

Examples of Distributions under Copula Invariance

Figure: Joint Distributions under CI2

Notes: We depict joint distributions of (Y_d, V) under CI with Gaussian marginals (left) and nonparametric marginals (right).

イロト 不優 トイ磨 トイ磨 トー 磨っ

Examples of Selection Patterns under Copula Invariance

Suppose $Y = \mu + \varepsilon$ and $D = 1\{V \leq \pi(Z)\}\$

ightharpoonup which yields $E[Y|D = 1, Z] = \mu + E[\varepsilon|V \leq \pi(Z)]$

We depict $E[\varepsilon|V \leq \pi]$ as a function of $\pi...$

 \triangleright under Gaussian joint distribution (left) and CI (right)

Figure: Control Functions under CI2

KORKA BRADE KORA

Comparison to Previous Approaches

Chernozhukov & Hansen 05's IVQR model assumes:

$$
\blacktriangleright \ \ Y_d = Q_{Y_d}(U_d) \text{ for } U_d \sim U[0,1]
$$

$$
\triangleright \text{ rank similarity: } U_1 \stackrel{d}{=} U_0 \mid Z, V
$$

Then, IVQR yields a conditional moment restriction:

$$
\tau = \Pr[Y_1 \leq Q_{Y_1}(\tau), D_z = 1|z] + \Pr[Y_0 \leq Q_{Y_0}(\tau), D_z = 0|z]
$$

which can be rewritten as

$$
\tau = \Pr[Y_1 \le Q_{Y_1}(\tau), V_z \le \pi(z)|z] + \tau - \Pr[Y_0 \le Q_{Y_0}(\tau), V_z \le \pi(z)|z]
$$

or equivalently

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

$$
Pr[Y_1 \leq Q_{Y_1}(\tau), V_z \leq \pi(z)|z] = Pr[Y_0 \leq Q_{Y_0}(\tau), V_z \leq \pi(z)|z]
$$

Comparison to Previous Approaches

$$
\Pr[Y_1 \leq Q_{Y_1}(\tau), V_z \leq \pi(z)|z] = \Pr[Y_0 \leq Q_{Y_0}(\tau), V_z \leq \pi(z)|z]
$$

Using LGR, we can further rewrite above as

 $C(\tau, \pi(z); \rho_{Y_1, V_2; Z}(Q_{Y_1}(\tau), \pi(z); z)) = C(\tau, \pi(z); \rho_{Y_0, V_2; Z}(Q_{Y_0}(\tau), \pi(z); z))$

This shows that the IVQR also relies on copula invariance:

$$
\rho_{Y_1,V_2;Z}(Q_{Y_1}(\tau),\pi(z);z)=\rho_{Y_0,V_2;Z}(Q_{Y_0}(\tau),\pi(z);z),\quad z\in\{0,1\}
$$

In the paper, we also make comparison to other approaches, such **as** D'Haultfoeuille & Février 15; Torgovitsky 15

KORKA BRADE KORA

IV. Estimation and Inference

KOX KOR KEX KEX E YORO

Estimation Algorithms

Assume a random sample $\left\{\left(Y_{i},D_{i},Z_{i},X_{i}\right)\right\}_{i=1}^{n}$ $i=1$ Notation:

- \blacktriangleright $B(X_i)$, $B(X_i, Z_i)$, and $B(D_i, X_i, Z_i)$: vectors of transformations
- If $I_i(y) \equiv 1\{Y_i \leq y\}$ and $J_i(d) \equiv 1\{D_i \leq d\}$
- \triangleright $\bar{\mathcal{D}}$ and $\bar{\mathcal{Y}}$: finite grids covering \mathcal{D} and \mathcal{Y}
- \triangleright Φ ₂ and Φ are bivariate and univariate Gaussian CDFs

We provide an algorithm for each case

 \triangleright two-step ML estimation based on distribution regression

KORKAR KERKER EL VOLO

Estimation Algorithm: Binary D

Algorithm 1 (Binary D)

1. (Treatment eq.) Estimate π using a Probit regression

$$
\widehat{\pi} = \arg \max_{c} \sum_{i=1}^{n} \left[D_i \log \Phi(B(X_i, Z_i)'c) + (1 - D_i) \log(1 - \Phi(B(X_i, Z_i)'c)) \right].
$$

2. (Outcome eq.) For $y \in \overline{Y}$ and $d \in \{0, 1\}$,

 $\widehat{F}_{Y_d|X}(y|x) = \Phi(B(x)'\widehat{\beta}_d(y))$ and $\widehat{\rho}_{Y_d;X}(y;x) = \rho(B(x)'\widehat{\gamma}_d(y)),$

where $\rho(u) = \tanh(u) \in (-1, 1)$ and

$$
(\widehat{\beta}_{1}(y), \widehat{\gamma}_{1}(y)) = \arg \max_{b, g} \sum_{i=1}^{n} D_{i}[l_{i}(y) \log \Phi_{2}(B(X_{i})' b, B(X_{i}, Z_{i})' \widehat{\pi}, \rho(B(X_{i})' g))
$$

+ $(1 - l_{i}(y)) \log \Phi_{2}(-B(X_{i})' b, B(X_{i}, Z_{i})' \widehat{\pi}, \rho(B(X_{i})' g))],$
 $(\widehat{\beta}_{0}(y), \widehat{\gamma}_{0}(y)) = \arg \max_{b, g} \sum_{i=1}^{n} (1 - D_{i})[l_{i}(y) \log \Phi_{2}(B(X_{i})' b, -B(X_{i}, Z_{i})' \widehat{\pi}, -\rho(B(X_{i})' g))]$
+ $(1 - l_{i}(y)) \log \Phi_{2}(-B(X_{i})' b, -B(X_{i}, Z_{i})' \widehat{\pi}, -\rho(B(X_{i})' g))].$

Estimation Algorithm: Ordered D

Algorithm 2 (Ordered D)

1. (Treatment eq.) Set $\widehat{\pi}_0(z, x) = 0$ and $\widehat{\pi}_K(z, x) = 1$ for all (z, x) . For $d \in \{1, \ldots, K-1\}$, $\widehat{\pi}_d(z, x) = \Phi(B(z, x)'\widehat{\pi}(d))$, where

 $\widehat{\pi}(d) \in \arg\max\limits_{\rho} \sum_{i=1}^n$ $i=1$ $[J_i(d)\log \Phi(B(Z_i,X_i)'\rho) + (1-J_i(d))\log \Phi(-B(Z_i,X_i)'\rho)]$.

2. (Outcome eq.) for $y \in \overline{Y}$ and $d \in \overline{D}$,

 $\widehat{F}_{Y_d|X}(y|x) = \Phi(B(x)'\widehat{\beta}_d(y))$ and $\widehat{\rho}_{Y_d;X}(y;x) = \rho(B(x)'\widehat{\gamma}_d(y)),$

where

$$
(\widehat{\beta}_{d}(y), \widehat{\gamma}_{d}(y)) \in \arg \max_{b, g} \sum_{i=1}^{n} 1\{D_{i} = d\} \left[I_{i}(y) \log g_{d,i}(b, g) + (1 - I_{i}(y)) \log \bar{g}_{d,i}(b, g) \right],
$$

\n
$$
g_{d,i}(b, g) \equiv \Phi_{2}(B(X_{i})' b, \Phi^{-1}(\widehat{\pi}_{d}(Z_{i}, X_{i})), \rho(B(X_{i})' g)) - \Phi_{2}(B(X_{i})' b, \Phi^{-1}(\widehat{\pi}_{d-1}(Z_{i}, X_{i})), \rho(B(X_{i})' g)),
$$

\n
$$
\bar{g}_{d,i}(b, g) \equiv \widehat{\pi}_{d}(Z_{i}, X_{i}) - \widehat{\pi}_{d-1}(Z_{i}, X_{i}) - g_{d,i}(b, g).
$$

Estimation Algorithm: Continuous D

Algorithm 3 (Continuous D)

1. (Observable conditional dist.) For
$$
y \in \overline{Y}
$$
 and $d \in \overline{D}$,
\n
$$
\widehat{F}_{Y|D,Z,X}(y|d, z, x) = \Phi(B(d, z, x)'\widehat{\beta}(y)) \text{ and}
$$
\n
$$
\widehat{F}_{D|Z,X}(d|z, x) = \Phi(B(z, x)'\widehat{\pi}(d)), \text{ where}
$$
\n
$$
\widehat{\beta}(y) = \arg \max_{b} \sum_{i=1}^{n} [I_i(y) \log \Phi(B(D_i, Z_i, X_i)'b) + (1 - I_i(y)) \log(1 - \Phi(B(D_i, Z_i, X_i)'b))]
$$
\n
$$
\widehat{\pi}(d) = \arg \max_{p} \sum_{i=1}^{n} [J_i(d) \log \Phi(B(Z_i, X_i)'\rho) + (1 - J_i(d)) \log(1 - \Phi(B(Z_i, X_i)'\rho))]
$$

2. (Potential outcome dist.) For $y \in \overline{Y}$ and $d \in \overline{D}$, $\widehat F_{Y_d|X}(y|x) = \Phi(\widehat \mu_{d,y;x})$ and $\widehat \rho_{Y_d;X}(y;x) = - \widehat b_{d,y;x}/\sqrt{1+\widehat b_{d,y;x}^2},$ where $\widehat{\mu}_{d,y;\varkappa} = \widehat{a}_{d,y;\varkappa}/\sqrt{1+\widehat{b}_{d,y;\varkappa}^2}$ and

$$
\begin{aligned}\n\widehat{a}_{d,y;x} &= \frac{(B(d,0,x)'\widehat{\beta}(y))(B(1,x)'\widehat{\pi}(d)) - (B(d,1,x)'\widehat{\beta}(y))(B(0,x)'\widehat{\pi}(d))}{B(1,x)'\widehat{\pi}(d) - B(0,x)'\widehat{\pi}(d)},\\
\widehat{b}_{d,y;x} &= \frac{B(d,1,x)'\widehat{\beta}(y) - B(d,0,x)'\widehat{\beta}(y)}{B(1,x)'\widehat{\pi}(d) - B(0,x)'\widehat{\pi}(d)}.\n\end{aligned}
$$

Estimation Algorithm: F_{Y_d} , QSF and ASF

Algorithm 4 $(F_{Y_d}$, QSF and ASF)

1. Unconditional distribution: for $y \in \bar{Y}$ and $d \in \bar{D}$,

$$
\widehat{F}_{Y_d}(y) = \frac{1}{n} \sum_{i=1}^n \widehat{F}_{Y_d|X}(y \mid X_i).
$$

For $y \in \mathcal{Y} \setminus \bar{\mathcal{Y}}$ and $d \in \bar{\mathcal{D}}$,

$$
\widehat{F}_{Y_d}(y) = \max{\{\widehat{F}_{Y_d}(\bar{y}) : \bar{y} < y, \bar{y} \in \bar{\mathcal{Y}}\}}.
$$

2. Quantile and average structural functions:

$$
\widehat{QSF}_{\tau}(d) = \widehat{Q}_{Y_d}(\tau) = \mathcal{Q}_{\tau}(\widehat{F}_{Y_d}),
$$

$$
\widehat{ASF}(d) = \widehat{E}[Y_d] = \mathcal{E}(\widehat{F}_{Y_d}).
$$

KORKA BRADE KORA

Inference

Denote the functional parameters by

$$
u\mapsto \delta_u,\quad u\in\mathcal{U}
$$

• e.g., if we are interested in
$$
\tau \mapsto QSF_{\tau}(d)
$$
 on [.05, .95], then $u = \tau$, $\delta_u = QSF_u(d)$ and $\mathcal{U} = [.05, .95]$

in practice, we approximate U using a fine grid \bar{U}

Let $\widehat{\delta}_u$ be the estimator of δ_u obtained from Algorithms 1–4 Then, we establish FCLT that

$$
\sqrt{n}(\widehat{\delta}_u-\delta_u)\leadsto Z_\delta \text{ in } \ell^\infty(\mathcal{U})
$$

where Z_{δ} is a mean-zero Gaussian process and that the bootstrap is consistent for estimating Z_{δ}

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

Inference

Algorithm 5 (Bootstrap for Uniform Confidence Band)

1. For $u\in\bar{\mathcal{U}}$, obtain B bootstrap draws $\{\widehat{\delta}_u^{(b)}:1\leq b\leq B\}$ of the estimator δ_{μ} .

2. For $u \in \overline{\mathcal{U}}$, compute the robust standard error,

$$
SE(\widehat{\delta}_u) = (\widehat{Q}_{\delta}(0.75, u) - (\widehat{Q}_{\delta}(0.25, u)) / (\Phi^{-1}(0.75) - (\Phi^{-1}(0.25)),
$$

where $\widehat{Q}_{\delta}(\tau,u)$ is the τ -quantile of $\{\widehat{\delta}_{u}^{(b)}: 1 \leq b \leq B\}$.

3. Compute the critical value as

$$
cv(1-\alpha)=(1-\alpha)\text{-quantile of }\left\{\max_{u\in\mathcal{\overline{U}}}\frac{|\widehat{\delta}_u^{(b)}-\widehat{\delta}_u|}{SE(\widehat{\delta}_u)}:1\leq b\leq B\right\}.
$$

4. Compute the $(1 - \alpha)$ uniform confidence band as

$$
CB_{(1-\alpha)}(\delta_u) = [\widehat{\delta}_u \pm cv(1-\alpha)SE(\widehat{\delta}_u)], \quad u \in \overline{\mathcal{U}}.
$$

Inference

The uniform confidence bands $\textit{CB}_{(1-\alpha)}(\delta_u)$ satisfies

$$
\lim_{n \to \infty} \Pr[\delta_u \in CB_{(1-\alpha)}(\delta_u) \text{ for all } u \in \mathcal{U}] = 1 - \alpha
$$

For bootstrap in Step 1, we recommend...

 \triangleright binary and ordered D: multiplier bootstrap (based on influence function)

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

- as nonlinear optimization is involved
- \triangleright continuous D: standard empirical bootstrap

V. Empirical Application with Continuous Treatment

K ロ → K 個 → K 할 > K 할 > → 할 → 9 Q Q →

Bessone et al 2021 analyzed the effects of randomized interventions to increase sleep of low-income adults in India

Bessone et al 2021; Dong & Lee 2023 used TSLS

- \triangleright we estimate the distributional effects of sleep on well-being
- Y : overall index of individual well-being
- D: sleep per night, in hours (continuous)
- Z: randomly assigned experimental treatments (binary)
	- \blacktriangleright Z₁: devices + encouragement
	- \blacktriangleright Z_2 : devices + incentives
	- \blacktriangleright $Z = Z_1 + Z_2$ (= 1: any treatment; = 0 none)

 $X:$ gender, three age indicators, baseline well-being index

KORKAR KERKER EL VOLO

Figure: Distributional First Stage

Notes: Control for gender, three age indicators, and baseline well-being index. $n = 226$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 \Rightarrow -990

Figure: Quantile Treatment Effects

Notes: We report the normalized QTE, $(Q_\tau(\widehat{F}_{Y_{d''}}) - Q_\tau(\widehat{F}_{Y_{d'}}))/(d'' - d')$ with d'' and d' being 75% and 25% quantiles of sleep. Pointwise CIs are computed using empirical bootstrap with 5000 repetitions. We control for gender, three age indicators, and baseline well-being index. $n = 226$ $n = 226$ $n = 226$. B

 $2Q$

Figure: Quantile Treatment Effects (uniform CIs with combined IV)

Notes: We report the normalized QTE, $(Q_\tau(\widehat{F}_{Y_{d''}}) - Q_\tau(\widehat{F}_{Y_{d'}}))/(d'' - d')$ with d'' and d' being 75% and 25% quantiles of sleep. Uniform CIs are computed using empirical bootstrap with 5000 repetitions. We control for gender, three age indicators, and baseline well-being index. $n = 226$ $n = 226$ $n = 226$. \equiv

 $2Q$

Figure: Local Dependence Functions

Notes: We report the average of $\hat{\rho}_{Y_d}(y; X_i)$ with d being 25%, 50%, 75% quantiles of sleep. We control for gender, three age indicators, and baseline well-being index.

 $n = 226$.

イロト イ押 トイヨ トイヨト \Rightarrow QQ

Figure: Comparison to Estimators under Conditional Exogeneity

Notes: We report the normalized QTE, $(Q_\tau(\widehat{F}_{Y_{d''}}) - Q_\tau(\widehat{F}_{Y_{d'}}))/(d'' - d')$ with d'' and d' being 75% and 25% quantiles of sleep. Conditional exogeneity assumes $Y_d \perp\!\!\!\perp D|X$. Pointwise CIs with empirical bootstrap with 5000 repetitions. We control for gender, three age indicators, and baseline well[-be](#page-52-0)i[ng](#page-54-0) [in](#page-52-0)[de](#page-53-0)[x.](#page-54-0) $n = 226$ $n = 226$ $n = 226$ $n = 226$ $n = 226$ [.](#page-59-0) Þ

 QQ

VI. Conclusions

Conclusions

In identifying treatment effects under endogeneity, researchers face modeling trade-offs

This paper proposes a new direction to explore modeling trade-offs

- \blacktriangleright based on LGR
- \triangleright impose assumption on local dependence parameter
- \triangleright allow rich heterogeneity in outcome and treatment processes
- \blacktriangleright lead to simple estimation and inference procedures, appealing to practitioners

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

 \triangleright can also estimate the dependence function (which reveals patterns of endogeneity)

Thank You! ©

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \$

Global Univalence by Gale & Nikaido 65

Definition (P-matrix)

A square matrix J is called a P-matrix if all its principal minors are positive.

 \triangleright a principal minor is the determinant of a submatrix obtained from J when the same set of rows and columns are deleted

Theorem (Global Univalence by Gale & Nikaido 65)

If $F: \Omega \to \mathbb{R}^n$, where Ω is a closed rectangular region of \mathbb{R}^n , is a differentiable mapping such that the Jacobian matrix $J(x)$ is a P-matrix for all x in Ω , then F is univalent in Ω .

 \blacktriangleright Jacobian of our mapping Π : $\theta \rightarrow p$ is P-matrix by the properties of Gaussian copula

[Return](#page-20-0)

KORKAR KERKER EL VOLO

Global Identification Using Ambrosetti & Prodi 95

Theorem (Ambrosetti & Prodi 95)

Suppose $F: X \rightarrow Y$ is continuous, proper and locally invertible in X and let Y be connected. Then, the cardinality of $F^{-1}(\{y\})$ is constant for all $y \in Y$.

- \triangleright our mapping $\Pi : \theta \to p$ is proper by the properties of copula
- \triangleright local invertibility is guaranteed by full rank Jacobian of Π
- ► take the value of θ such that $\rho = 0$; then $\left| \Pi^{-1}(\{\Pi(\theta)\}) \right| = 1$ for such θ

KORKAR KERKER EL VOLO

Comparison to Torgovitsky 10

Both CCI and CI restrict the dependence of (Y_d, D) on Z...

by requiring $\rho(\cdot)$ not to depend on $Z = z$

But Torgovitsky 10 maintains RI...

 \triangleright so restricting the copula of (U, D) is sufficient

Our strategy does not depend on RI...

- In such that we need to impose CI for both Y_1 and Y_0
- ightharpoonup as trade-off of not assuming RI, we require CI that $\rho(\cdot)$ is not a function of $F_{D|Z}$ [Return](#page-37-0)