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Endogeneity and Heterogeneity

Endogeneity and heterogeneity are key challenges in causal
inference

I accounting for them in estimating treatment effects is crucial
to answer policy questions

I e.g. how to allocate social resources and combat inequalities

This paper proposes a flexible IV modeling framework for
identifying heterogeneous treatment effects under endogeneity

I that yields straightforward semiparametric estimation and
inference procedures



Example: Effects of Sleep on Well-Being

I Y : well-being index of workers in a developing country

I D: sleep hours per night

I Yd : counterfactual well-being with sleep level d
• causal object of interest (e.g., ∂E [Yd ]/∂d)

I Z : randomly assigned sleep support from RCT
• affects D but independent of Yd

I Dz : counterfactual sleep level with assignment z

I X : observed characteristics of worker (e.g., gender, age)

⇒ D is endogenous (e.g., underlying health conditions)
• Yd and Dz are dependent, even after controlling for X
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Previous Approaches
IV alone cannot point-ID meaningful treatment effects

Two approaches:

1. Restricting structure/heterogeneity of potential outcomes

I IV approach: Newey & Powell 03; Chernozhukov & Hansen 05; Vuong
& Xu 17

2. Restricting structure/heterogeneity of treatment assignment

I CF approach: Newey et al 99; Imbens & Newey 09

I LATE/MTE approach: Imbens & Angrist 94; Heckman & Vytlacil 05



This Paper’s Approach

We explore an intermediate route:

⇒ imposing structure on relationship between treatment
assignment and potential outcomes

I achieve point ID of various heterogeneous treatment effects



This Paper: Local Copula Representation

Basis of our approach: Local Gaussian Representation (LGR)

I copula representing the joint distribution of the potential
outcomes Yd and treatment assignment unobservables Dz

I this representation is fully nonparametric (Chernozhukov,
Fernández-Val & Luo 24)
• by treating the correlation parameter as an implicit function

• not require (Yd ,Dz) being jointly or marginally Gaussian

Use this representation to introduce an assumption that has not
been previously considered for ID of treatment effects:

I copula invariance

I restricts the shape of local dependence



This Paper: Expands Modeling Trade-Offs
We show that, even with a binary IV, copula invariance identifies...

I quantile and average treatment effects (QTE and ATE) of
binary and ordered treatments

I quantile and average structural functions (QSF and ASF) of
continuous treatment

We expand the directions of modeling trade-offs:

I compared to IV, CF, LATE approaches...

I we impose more restrictions on the dependence structure (i.e.,
the form of endogeneity),

I while allowing for richer patterns of effect heterogeneity

Our identification strategy is constructive

I leads to simple semiparametric estimation procedures



Related Literature

Identification and estimation in nonparametric models with
endogenous explanatory variables:

I nonparametric IV approach: Newey & Powell 03; Hall & Horowitz
05; Chernozhukov & Hansen 05; Blundell, Chen & Kristensen 07; Vuong
& Xu 17; Chen & Christensen 18

I nonparametric CF approach: Newey, Powell & Vella 99; Das, Newey
& Vella 03; Blundell & Powell 04; Imbens & Newey 09; D’Haultfoeuille,
Hoderlein & Sasaki 21; Newey & Stouli 21

I related approaches:
• Chesher 03

• D’Haultfoeuille & Février 15; Torgovitsky 15

I monotonicity assumption with binary or discrete D: Imbens &
Angrist 94; Abadie et al 02; Heckman & Vytlacil 05



Related Literature
Copula in identification and estimation:

I Han & Vytlacil 17; Han & Lee 19: a class of single-parameter
copulas to model endogeneity for binary outcome & treatment

I Han & Lee 24: dynamic treatment effect models using copula

I Chen et al 22, Chen et al 24; Ghanem, Kédagni & Mourifié 24: use of
copula in TS and DiD settings

I Arellano & Bonhomme 17: real analytical copula and continuous
instrument in sample selection model

I Chernozhukov, Fernández-Val & Luo 24: use of LGR in sample
selection model

⇒ this paper:
• two-way sample selection in the binary treatment case

• general selection model without threshold-crossing

• completely new results with ordered and continuous treatments



I. Setup and Assumptions



Variables

Y ∈ Y ⊆ R scalar outcome (continuous, discrete or mixed)

D ∈ D ⊆ R scalar treatment

I D = {0, 1} for binary D

I D = {1, ...,K} for ordered D

I D uncountable for continuous D

Z ∈ {0, 1} binary IV

I most challenging case; extends to discrete or continuous Z

Yd potential outcome given d ∈ D; and Y = YD

Dz potential treatment given z ∈ {0, 1}; and D = DZ

X ∈ X ⊆ Rdx vector of covariates (explicit in estimation)



Generalized Treatment Equation

General treatment assignment equation:

Dz = h(z ,Vz)

I Vz ∼ U[0, 1] as normalization

I permit D to be a function of vector (V0,V1)

I (even this is not necessary but simplifies the exposition)



Parameters of Interest

Interested in identifying FYd
for d ∈ D and functionals of FYd

I quantile and average structural functions:

QSFτ (d) ≡ QYd
(τ) = Qτ (FYd

),

ASF (d) ≡ E [Yd ] = E(FYd
),

I QSFτ (d)− QSFτ (d ′) and ASF (d)− ASF (d ′) for binary or
ordered treatment

I ∂QSFτ (d)/∂d and ∂ASFτ (d)/∂d for continuous treatment



Local Gaussian Representation

Let C (u1, u2; ρ) be Gaussian copula

Lemma (LGR) (Chernozhukov et al 24)

For any r.v.’s Y , V and Z , the joint distribution admits the
representation:

FY ,V |Z (y , v | z) = C (FY |Z (y | z),FV |Z (v | z); ρY ,V ;Z (y , v ; z))

for all (y , v , z), where ρY ,V ;Z (y , v ; z) is the unique solution in ρ to

FY ,V |Z (y , v | z) = C (FY |Z (y | z),FV |Z (v | z); ρ).

I Gaussianity is not essential for the local representation, but
convenient

I other (comprehensive) copulas can be used for representation
• e.g., Clayton copula, Frank copula, t copula



Assumptions

Assumption EX
For d ∈ D and z ∈ {0, 1}, Z ⊥⊥ Yd and Z ⊥⊥ Vz .

Assumption REL
(i) Z ∈ {0, 1}; (ii) 0 < Pr(Z = 1) < 1; and (iii) Z is relevant.

Assumption CI
For d ∈ D, ρYd ,Vz ;Z (y , v ; z) is a constant function of (v , z), that is

ρYd ,Vz ;Z (y , v ; z) = ρYd
(y),

and ρYd
(y) ∈ (−1, 1).

I Under joint independence of Z and rank invariance in selection,
CI holds if C̃ (u1 | u2) = C (u1 | u2; ρ(u1)) (more later)



Examples of Distributions under Copula Invariance
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Figure: Joint Distributions under Copula Invariance

Notes: We depict joint distributions of (Yd ,V ) under CI with Gaussian marginals
(left) and nonparametric marginals (right).



II. Identification Analysis



Binary Treatment
Suppose D ∈ D = {0, 1} and consider

Dz = h(z ,Vz) = 1{Vz ≤ π(z)}

with propensity score (by EX)

Pr[D = 1 | Z = z ] = Pr[Dz = 1 | Z = z ] = Pr[Vz ≤ π(z)] = π(z)

I LATE monotonicity if V1 = V0

For ID analysis, consider

Pr[Y ≤ y ,D = 1 | Z = z ] = Pr[Y1 ≤ y ,Dz = 1 | Z = z ]

= C (FY1|Z (y |z), π(z); ρY1,Vz ;Z (y , π(z); z))

= C (FY1(y), π(z); ρY1(y))

by LGR, EX and CI



Binary Treatment

By varying Z ∈ {0, 1}, a system nonlinear equations:

Pr[Y ≤ y ,D = 1 | Z = 0] = C (FY1(y), π(0); ρY1(y))

Pr[Y ≤ y ,D = 1 | Z = 1] = C (FY1(y), π(1); ρY1(y))

Then, the system has unique solution for (FY1(y), ρY1(y)) by Gale &
Nikaido 65’s global univalence Gale & Nikaido 65

I because its Jacobian is P-matrix under REL

Theorem 1
Suppose Dz = 1{Vz ≤ π(z)} for z ∈ {0, 1}. Under EX, REL and
CI, the functions y 7→ FYd

(y) and y 7→ ρYd
(y) are identified on

y ∈ Y for d ∈ {0, 1}.



Ordered Treatment

Suppose D ∈ D = {1, ...,K} and consider

Dz = h(z ,Vz) =


1, π0(z) < Vz ≤ π1(z)

2, π1(z) < Vz ≤ π2(z)
...

...
K , πK−1(z) < Vz ≤ πK (z)

where π0(z) = 0 and πK (z) = 1

I this model generalizes Heckman & Vytlacil 07 who consider

Dz =


1, π0 < µ(z) + V ≤ π1

2, π1 < µ(z) + V ≤ π2
...

...
K , πK−1 < µ(z) + V ≤ πK



Ordered Treatment

For ID analysis, consider

Pr[Y ≤ y ,D = d | Z = z ]

= Pr[Yd ≤ y , πd−1(z) < Vz ≤ πd(z) | Z = z ]

= C (FYd
(y), πd(z); ρYd

(y))− C (FYd
(y), πd−1(z); ρYd

(y))

by LGR, EX and CI

I for d ∈ {1,K}, REL identifies FYd
(y) and ρYd

(as before)

I but, for d ∈ D\{1,K}, Gale & Nikaido 65 doesn’t apply



Ordered Treatment
To apply different global univalence, we assume:

Assumption UOC

Either FD|Z (d | 0) > FD|Z (d | 1) for all d ∈ D\{K} or
FD|Z (d | 0) < FD|Z (d | 1) for all d ∈ D\{K}.

I UOC is directly testable from data

I Heckman & Vytlacil 07’s model satisfies UOC

I when V0 and V1 are exchangeable, UOC (with >) implies

Pr[ all complier groups ] > Pr[ all defier groups ]

• cf. de Chaisemartin 17 with binary D

I when V0 = V1, UOC (with >) implies

Pr[ all defier groups ] = 0



Ordered Treatment

Then, we apply the inverse theorem in Ambrosetti & Prodi 95 by
showing...

1. the system has a unique solution when ρYd
(y) = 0 (locally no

endogeneity)

2. the function that defines the system is proper

3. the Jacobian has full-rank (by UOC ) Ambrosetti & Prodi 95

Theorem 2
Suppose Dz , z ∈ {0, 1}, satisfies the ordered selection model.
Under EX, REL, CI and UOC , the functions y 7→ FYd

(y) and
y 7→ ρYd

(y) are identified on y ∈ Y for d ∈ D.



Continuous Treatment

Suppose D ∈ D ⊆ R and FD|Z (· | z) is strictly increasing on D

Consider

Dz = h(z ,Vz) = F−1
D|Z (Vz | z)

For ID analysis, consider

FY |D,Z (y | d , z) = FYd |Dz ,Z (y | d , z) = FYd |Vz ,Z (y | FD|Z (d | z), z)

By LGR, EX and properties of cond’l CDF and Gaussian copula,

FYd |Vz ,Z (y | v , z) =
(∂/∂v)FYd ,Vz |Z (y , v | z)

(∂/∂v)FVz |Z (v | z)
= Φ

(
µd,y − ρYd ,Vz ;Z (y , v ; z)ηv√

1− ρYd ,Vz ;Z (y , v ; z)2

)
+ φ2(µd,y , ηv ; ρYd ,Vz ;Z (y , v ; z))(∂/∂v)ρYd ,Vz ;Z (y , v ; z)

where µd ,y ≡ Φ−1(FYd
(y)) and ηv ≡ Φ−1(v)



Continuous Treatment

FY |D,Z (y | d , z) = Φ

(
µd,y − ρYd ,Vz ;Z (y ,FD|Z (d | z); z)ηv√

1− ρYd ,Vz ;Z (y ,FD|Z (d | z); z)2

)
+ φ2(µd,y , ηv ; ρYd ,Vz ;Z (y ,FD|Z (d | z); z))(∂/∂v)ρYd ,Vz ;Z (y ,FD|Z (d | z); z)

CI implies

ρYd ,Vz ;Z (y ,FD|Z (d | z); z) = ρYd
(y)

(∂/∂v)ρYd ,Vz ;Z (y ,FD|Z (d | z); z) = 0

Therefore, for z ∈ {0, 1},

Φ−1 (FY |D,Z (y | d , z)
)

= ad ,y + bd ,yΦ−1(FD|Z (d | z))

with ad ,y ≡ µd ,y/
√

1− ρYd
(y)2, bd ,y ≡ −ρYd

(y)/
√

1− ρYd
(y)2



Continuous Treatment

Φ−1 (FY |D,Z (y | d , z)
)

= ad ,y+bd ,yΦ−1(FD|Z (d | z)) for z ∈ {0, 1}

This is a linear system of two equations on two unknowns, which
has solution

ad,y =
Φ−1(FY |D,Z (y | d , 0))Φ−1(FD|Z (d | 1))− Φ−1(FY |D,Z (y | d , 1))Φ−1(FD|Z (d | 0))

Φ−1(FD|Z (d | 1))− Φ−1(FD|Z (d | 0))

bd,y =
Φ−1(FY |D,Z (y | d , 1))− Φ−1(FY |D,Z (y | d , 0))

Φ−1(FD|Z (d | 1))− Φ−1(FD|Z (d | 0))

Then, we can ID µd ,y ≡ Φ−1(FYd
(y)) and ρYd

(y) from

ad ,y ≡ µd ,y/
√

1− ρYd
(y)2, bd ,y ≡ −ρYd

(y)/
√

1− ρYd
(y)2



Continuous Treatment

Theorem 3
Suppose Dz , z ∈ {0, 1}, satisfies Dz = F−1

D|Z (Vz | z). Under EX,
REL and CI, the functions y 7→ FYd

(y) and y 7→ ρYd
(y) are

identified on y ∈ Y for d ∈ D by

FYd
(y) = Φ

 ad ,y√
1 + b2

d ,y

 , ρYd
(y) =

−bd ,y√
1 + b2

d ,y

.

I unlike Imbens & Newey 09, this approach does not require large
support IV nor rank invariance in selection (V1 = V0)
• instead, it imposes CI

I unlike D’Haultfoeuille & Février 15; Torgovitsky 15, CI does not
impose any structural models for Y and D nor restrictions on
the dimension of unobservables



III. Discussions on Copula Invariance



Sufficient Conditions for CI
Recall

I EX: Z ⊥⊥ Yd and Z ⊥⊥ Vz

I CI: ρYd ,Vz ;Z (y , v ; z) = ρYd
(y)

Assumption EX2
For d ∈ D and z ∈ {0, 1}, Z ⊥⊥ (Yd ,Vz).

Assumption RIS
V1 = V0 = V a.s.

Assumption CI2
ρYd ,V (y , v) = ρYd

(y).

I CI2 is CI in treatment propensity

Proposition 1
Under EX2 and RIS , CI2 implies CI.



Equivalent Condition for CI
Recall CI2: ρYd ,V (y , v) = ρYd

(y)

Assumption SI
For d ∈ D,

FYd |V (y | v) = Φ
(
ad ,y + bd ,yΦ−1(v)

)
, (y , v) ∈ Y × V,

where ad,y = Φ−1(FYd
(y))/

√
1− ρYd

(y)2 and bd,y = −ρYd
(y)/

√
1− ρYd

(y)2.

I SI is single index restriction on local relationship btw (Yd ,V )

I SI does not require Gaussianity

I still, e.g., sign of (∂/∂v)FYd |V ,Z (y | v) should not depend on
v , but can change with y

Proposition 1
CI2 is equivalent to SI.



Local Dependence as Implicit Function

LGR can be expressed for arbitrary copula C̃ :

C̃ (u1, u2 | z) = C (u1, u2; ρ(u1, u2; z))

where C is Gaussian copula

For simplicity, maintain EX2 so that

C̃ (u1, u2) = C (u1, u2; ρ(u1, u2))

By implicit function theorem, ρ is differentiable and

C̃ (u1 | u2) = C (u1 | u2; ρ(u1, u2)) + Cρ(u1, u2; ρ(u1, u2))
∂ρ(u1, u2)

∂u2

Proposition 2

Under EX2, CI holds if C̃ (u1 | u2) = C (u1 | u2; ρ(u1)).



Examples of Distributions under Copula Invariance

Figure: Joint Distributions under CI2

Notes: We depict joint distributions of (Yd ,V ) under CI with Gaussian marginals.
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Notes: We depict joint distributions of (Yd ,V ) under CI with Gaussian marginals
(left) and nonparametric marginals (right).



Examples of Selection Patterns under Copula Invariance

Suppose Y = µ+ ε and D = 1{V ≤ π(Z )}

I which yields E [Y |D = 1,Z ] = µ+ E [ε|V ≤ π(Z )]

We depict E [ε|V ≤ π] as a function of π...

I under Gaussian joint distribution (left) and CI (right)
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Figure: Control Functions under CI2



Comparison to Previous Approaches

Chernozhukov & Hansen 05’s IVQR model assumes:

I Yd = QYd
(Ud) for Ud ∼ U[0, 1]

I rank similarity: U1
d
= U0 | Z ,V

Then, IVQR yields a conditional moment restriction:

τ = Pr[Y1 ≤ QY1(τ),Dz = 1|z ] + Pr[Y0 ≤ QY0(τ),Dz = 0|z ]

which can be rewritten as

τ = Pr[Y1 ≤ QY1(τ),Vz ≤ π(z)|z ] + τ − Pr[Y0 ≤ QY0(τ),Vz ≤ π(z)|z ]

or equivalently

Pr[Y1 ≤ QY1(τ),Vz ≤ π(z)|z ] = Pr[Y0 ≤ QY0(τ),Vz ≤ π(z)|z ]



Comparison to Previous Approaches

Pr[Y1 ≤ QY1(τ),Vz ≤ π(z)|z ] = Pr[Y0 ≤ QY0(τ),Vz ≤ π(z)|z ]

Using LGR, we can further rewrite above as

C (τ, π(z); ρY1,Vz ;Z (QY1(τ), π(z); z)) = C (τ, π(z); ρY0,Vz ;Z (QY0(τ), π(z); z))

This shows that the IVQR also relies on copula invariance:

ρY1,Vz ;Z (QY1(τ), π(z); z) = ρY0,Vz ;Z (QY0(τ), π(z); z), z ∈ {0, 1}

In the paper, we also make comparison to other approaches, such
as D’Haultfoeuille & Février 15; Torgovitsky 15 More



IV. Estimation and Inference



Estimation Algorithms

Assume a random sample {(Yi ,Di ,Zi ,Xi )}ni=1

Notation:

I B(Xi ), B(Xi ,Zi ), and B(Di ,Xi ,Zi ): vectors of transformations

I Ii (y) ≡ 1{Yi ≤ y} and Ji (d) ≡ 1{Di ≤ d}

I D̄ and Ȳ: finite grids covering D and Y

I Φ2 and Φ are bivariate and univariate Gaussian CDFs

We provide an algorithm for each case

I two-step ML estimation based on distribution regression



Estimation Algorithm: Binary D

Algorithm 1 (Binary D)
1. (Treatment eq.) Estimate π using a Probit regression

π̂ = arg max
c

n∑
i=1

[
Di log Φ(B(Xi ,Zi )

′c) + (1− Di ) log(1− Φ(B(Xi ,Zi )
′c))

]
.

2. (Outcome eq.) For y ∈ Ȳ and d ∈ {0, 1},

F̂Yd |X (y |x) = Φ(B(x)′β̂d(y)) and ρ̂Yd ;X (y ; x) = ρ(B(x)′γ̂d(y)),

where ρ(u) = tanh(u) ∈ (−1, 1) and

(β̂1(y), γ̂1(y)) = arg max
b,g

n∑
i=1

Di [Ii (y) log Φ2(B(Xi )
′b,B(Xi ,Zi )

′π̂, ρ(B(Xi )
′g))

+ (1− Ii (y)) log Φ2(−B(Xi )
′b,B(Xi ,Zi )

′π̂, ρ(B(Xi )
′g))],

(β̂0(y), γ̂0(y)) = arg max
b,g

n∑
i=1

(1− Di )[Ii (y) log Φ2(B(Xi )
′b,−B(Xi ,Zi )

′π̂,−ρ(B(Xi )
′g))

+ (1− Ii (y)) log Φ2(−B(Xi )
′b,−B(Xi ,Zi )

′π̂,−ρ(B(Xi )
′g))].



Estimation Algorithm: Ordered D

Algorithm 2 (Ordered D)
1. (Treatment eq.) Set π̂0(z , x) = 0 and π̂K (z , x) = 1 for all (z , x).
For d ∈ {1, . . . ,K − 1}, π̂d(z , x) = Φ(B(z , x)′π̂(d)), where

π̂(d) ∈ arg max
p

n∑
i=1

[
Ji (d) log Φ(B(Zi ,Xi )

′p) + (1− Ji (d)) log Φ(−B(Zi ,Xi )
′p)
]
.

2. (Outcome eq.) for y ∈ Ȳ and d ∈ D̄,

F̂Yd |X (y |x) = Φ(B(x)′β̂d(y)) and ρ̂Yd ;X (y ; x) = ρ(B(x)′γ̂d(y)),

where

(β̂d (y), γ̂d (y)) ∈ arg max
b,g

n∑
i=1

1{Di = d}
[
Ii (y) log gd,i (b, g) + (1− Ii (y)) log ḡd,i (b, g)

]
,

gd,i (b, g) ≡ Φ2(B(Xi )
′b,Φ−1(π̂d (Zi ,Xi )), ρ(B(Xi )

′g))

− Φ2(B(Xi )
′b,Φ−1(π̂d−1(Zi ,Xi )), ρ(B(Xi )

′g)),

ḡd,i (b, g) ≡ π̂d (Zi ,Xi )− π̂d−1(Zi ,Xi )− gd,i (b, g).



Estimation Algorithm: Continuous D
Algorithm 3 (Continuous D)

1. (Observable conditional dist.) For y ∈ Ȳ and d ∈ D̄,
F̂Y |D,Z ,X (y |d , z , x) = Φ(B(d , z , x)′β̂(y)) and
F̂D|Z ,X (d |z , x) = Φ(B(z , x)′π̂(d)), where

β̂(y) = arg max
b

n∑
i=1

[
Ii (y) log Φ(B(Di ,Zi ,Xi )

′b) + (1− Ii (y)) log(1− Φ(B(Di ,Zi ,Xi )
′b))

]
π̂(d) = arg max

p

n∑
i=1

[
Ji (d) log Φ(B(Zi ,Xi )

′p) + (1− Ji (d)) log(1− Φ(B(Zi ,Xi )
′p))

]

2. (Potential outcome dist.) For y ∈ Ȳ and d ∈ D̄,
F̂Yd |X (y |x) = Φ(µ̂d ,y ;x) and ρ̂Yd ;X (y ; x) = −b̂d ,y ;x/

√
1 + b̂2

d ,y ;x ,

where µ̂d,y ;x = âd,y ;x/
√

1 + b̂2
d,y ;x and

âd,y ;x =
(B(d , 0, x)′β̂(y))(B(1, x)′π̂(d))− (B(d , 1, x)′β̂(y))(B(0, x)′π̂(d))

B(1, x)′π̂(d)− B(0, x)′π̂(d)
,

b̂d,y ;x =
B(d , 1, x)′β̂(y)− B(d , 0, x)′β̂(y)

B(1, x)′π̂(d)− B(0, x)′π̂(d)
.



Estimation Algorithm: FYd
, QSF and ASF

Algorithm 4 (FYd
, QSF and ASF)

1. Unconditional distribution: for y ∈ Ȳ and d ∈ D̄,

F̂Yd
(y) =

1
n

n∑
i=1

F̂Yd |X (y | Xi ).

For y ∈ Y \ Ȳ and d ∈ D̄,

F̂Yd
(y) = max{F̂Yd

(ȳ) : ȳ < y , ȳ ∈ Ȳ}.

2. Quantile and average structural functions:

Q̂SF τ (d) = Q̂Yd
(τ) = Qτ (F̂Yd

),

ÂSF (d) = Ê [Yd ] = E(F̂Yd
).



Inference

Denote the functional parameters by

u 7→ δu, u ∈ U

I e.g., if we are interested in τ 7→ QSFτ (d) on [.05, .95], then
u = τ , δu = QSFu(d) and U = [.05, .95]

I in practice, we approximate U using a fine grid Ū

Let δ̂u be the estimator of δu obtained from Algorithms 1–4

Then, we establish FCLT that
√
n(δ̂u − δu) Zδ in `∞(U)

where Zδ is a mean-zero Gaussian process and that the bootstrap is
consistent for estimating Zδ



Inference
Algorithm 5 (Bootstrap for Uniform Confidence Band)

1. For u ∈ Ū , obtain B bootstrap draws {δ̂(b)
u : 1 ≤ b ≤ B} of the

estimator δ̂u.
2. For u ∈ Ū , compute the robust standard error,

SE (δ̂u) = (Q̂δ(0.75, u)− (Q̂δ(0.25, u))/(Φ−1(0.75)− (Φ−1(0.25)),

where Q̂δ(τ, u) is the τ -quantile of {δ̂(b)
u : 1 ≤ b ≤ B}.

3. Compute the critical value as

cv(1− α) = (1− α)-quantile of

{
max
u∈Ū

|δ̂(b)
u − δ̂u|
SE (δ̂u)

: 1 ≤ b ≤ B

}
.

4. Compute the (1− α) uniform confidence band as

CB(1−α)(δu) = [δ̂u ± cv(1− α)SE (δ̂u)], u ∈ Ū .



Inference

The uniform confidence bands CB(1−α)(δu) satisfies

lim
n→∞

Pr[δu ∈ CB(1−α)(δu) for all u ∈ U ] = 1− α

For bootstrap in Step 1, we recommend...

I binary and ordered D: multiplier bootstrap (based on influence
function)
• as nonlinear optimization is involved

I continuous D: standard empirical bootstrap



V. Empirical Application with Continuous Treatment



Distributional Effects of Sleep on Well-Being

Bessone et al 2021 analyzed the effects of randomized interventions to
increase sleep of low-income adults in India

Bessone et al 2021; Dong & Lee 2023 used TSLS

I we estimate the distributional effects of sleep on well-being

Y : overall index of individual well-being

D: sleep per night, in hours (continuous)

Z : randomly assigned experimental treatments (binary)

I Z1: devices + encouragement

I Z2: devices + incentives

I Z = Z1 + Z2 (= 1: any treatment; = 0 none)

X : gender, three age indicators, baseline well-being index



Distributional Effects of Sleep on Well-Being
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Figure: Distributional First Stage

Notes: Control for gender, three age indicators, and baseline well-being index.
n = 226.
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Figure: Quantile Treatment Effects

Notes: We report the normalized QTE, (Qτ (F̂Yd′′
)−Qτ (F̂Yd′

))/(d ′′ − d ′) with d ′′

and d ′ being 75% and 25% quantiles of sleep. Pointwise CIs are computed using
empirical bootstrap with 5000 repetitions. We control for gender, three age indicators,

and baseline well-being index. n = 226.



Distributional Effects of Sleep on Well-Being
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Figure: Quantile Treatment Effects (uniform CIs with combined IV)

Notes: We report the normalized QTE, (Qτ (F̂Yd′′
)−Qτ (F̂Yd′

))/(d ′′ − d ′) with d ′′

and d ′ being 75% and 25% quantiles of sleep. Uniform CIs are computed using
empirical bootstrap with 5000 repetitions. We control for gender, three age indicators,

and baseline well-being index. n = 226.
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Figure: Local Dependence Functions

Notes: We report the average of ρ̂Yd
(y ;Xi ) with d being 25%, 50%, 75% quantiles of

sleep. We control for gender, three age indicators, and baseline well-being index.
n = 226.



Distributional Effects of Sleep on Well-Being

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
2

−
1

0
1

2

Quantile level

Q
T

E

QTE (and 90% CI)
QTE cond. exog. (and 90% CI)

Figure: Comparison to Estimators under Conditional Exogeneity

Notes: We report the normalized QTE, (Qτ (F̂Yd′′
)−Qτ (F̂Yd′

))/(d ′′ − d ′) with d ′′

and d ′ being 75% and 25% quantiles of sleep. Conditional exogeneity assumes
Yd ⊥⊥ D|X . Pointwise CIs with empirical bootstrap with 5000 repetitions. We control

for gender, three age indicators, and baseline well-being index. n = 226.



VI. Conclusions



Conclusions

In identifying treatment effects under endogeneity, researchers face
modeling trade-offs

This paper proposes a new direction to explore modeling trade-offs

I based on LGR

I impose assumption on local dependence parameter

I allow rich heterogeneity in outcome and treatment processes

I lead to simple estimation and inference procedures, appealing
to practitioners

I can also estimate the dependence function (which reveals
patterns of endogeneity)



Thank You! ,



Global Univalence by Gale & Nikaido 65

Definition (P-matrix)
A square matrix J is called a P-matrix if all its principal minors are
positive.

I a principal minor is the determinant of a submatrix obtained
from J when the same set of rows and columns are deleted

Theorem (Global Univalence by Gale & Nikaido 65)
If F : Ω→ Rn, where Ω is a closed rectangular region of Rn, is a
differentiable mapping such that the Jacobian matrix J(x) is a
P-matrix for all x in Ω, then F is univalent in Ω.

I Jacobian of our mapping Π : θ → p is P-matrix by the
properties of Gaussian copula

Return



Global Identification Using Ambrosetti & Prodi 95

Theorem (Ambrosetti & Prodi 95)
Suppose F : X → Y is continuous, proper and locally invertible in
X and let Y be connected. Then, the cardinality of F−1({y}) is
constant for all y ∈ Y .

I our mapping Π : θ → p is proper by the properties of copula

I local invertibility is guaranteed by full rank Jacobian of Π

I take the value of θ such that ρ = 0; then
∣∣Π−1({Π(θ)})

∣∣ = 1
for such θ

Return



Comparison to Torgovitsky 10

Both CCI and CI restrict the dependence of (Yd ,D) on Z ...

I by requiring ρ(·) not to depend on Z = z

But Torgovitsky 10 maintains RI...

I so restricting the copula of (U,D) is sufficient

Our strategy does not depend on RI...

I such that we need to impose CI for both Y1 and Y0

I as trade-off of not assuming RI, we require CI that ρ(·) is not
a function of FD|Z Return


