Entry Deterrence in Procurement Auctions

Yuki Ito

University of California, Berkeley

January 22, 2025

Motivation

Procurement auction is a widely used tool:

Exploit competitive behavior and allocate projects efficiently

In competitive environments, impact of information disclosure may be substantial (Milgrom 2008)

Entry disclosure:

- ▶ Pre-communication before entry decisions has impacts on market outcomes (Farrell 1987)
- ▶ If entry is costly, a firm's entry disclosure may deter entry from others

We study how entry disclosure affect market outcomes by studying procurement auctions

Trade-off of Entry Disclosures

Procurement auction: Sealed-bid first price auction

Suppose that set of entrants is not announced when firms bid.

If Firm A *credibly* discloses its entry:

Trade-off of Entry Disclosures

Procurement auction: Sealed-bid first price auction

Suppose that set of entrants is not announced when firms bid.

If Firm A *credibly* discloses its entry:

Entry Deterrence:

▶ Firm B's entry value $\downarrow \Rightarrow$ Deter B's entry (B's entry prob. \downarrow)

Trade-off of Entry Disclosures

Procurement auction: Sealed-bid first price auction

Suppose that set of entrants is not announced when firms bid.

If Firm A *credibly* discloses its entry:

Entry Deterrence:

▶ Firm B's entry value $\downarrow \Rightarrow$ Deter B's entry (B's entry prob. \downarrow)

Inviting in More Aggressive Bids:

- ► If Firm B also enters,
 - Firm B is certain about A's entry
 - \Rightarrow B may bid more aggressively than in the case where A was silent

Procurement Auctions: Montana Department of Transportation

- ▶ Sealed-bid first price auction, where the lowest bid wins and gets paid the lowest bid
- Entry is costly: document preparation and negotiation with subcontractors
- ▶ Would there be entry disclosure...?
- ▶ Unique feature: Q&A forum gets continuously updated

Procurement Auctions: Montana Department of Transportation

- ▶ Sealed-bid first price auction, where the lowest bid wins and gets paid the lowest bid
- ▶ Entry is costly: document preparation and negotiation with subcontractors
- ▶ Would there be entry disclosure...?
- ▶ Unique feature: Q&A forum gets continuously updated

MDOT: Q&A forum as entry disclosure device

We consider Q&A forum as an entry disclosure device

Posted questions serve as a *credible signal* of entry

- ightharpoonup > 99% of questions come from actual entrants
- "It's safe to assume that contractors would not be asking questions unless they are going to bid the project."

Questions are posted **strategically**:

➤ "There is always a **strategical consideration** to the questions we ask and is **not solely determined by us needing the information**. It can be gamesmanship with the other bidders."

The Economic Impact of Q&A Forum (Entry Disclosure)

The world spent 12% of global GDP (>\$10T/yr) on public procurement (Bosio et al. 2022)

Our estimates suggest: Introduction of Q&A forum reduces government's payment by 6.3%.

Suppose 10% of public procurement is done through first price auctions

- Back-of-the-envelope calculation suggests:
- ▶ Introducing a Montana-like Q&A forum would reduce payment by \$70B worldwide

This Paper

Descriptive evidence - Correlation patterns

▶ Disclosure & entry prob.; Disclosure (timing) & bids

This Paper

Descriptive evidence – Correlation patterns

▶ Disclosure & entry prob.; Disclosure (timing) & bids

Build a model of procurement auction with costly entry and option to disclose entry

- Firms sequentially and randomly arrive at the market
- Firms make decisions on entry AND disclosure, before bidding
- ► Trade-off of disclosure:
 - (+) Entry deterrence v.s. (−) Inviting in more aggressive bids
- ▶ Methodological contribution: Non-parametric identification of the model

This Paper

Descriptive evidence – Correlation patterns

▶ Disclosure & entry prob.; Disclosure (timing) & bids

Build a model of procurement auction with costly entry and option to disclose entry

- Firms sequentially and randomly arrive at the market
- Firms make decisions on entry AND disclosure, before bidding
- ► Trade-off of disclosure:
 - (+) Entry deterrence v.s. (−) Inviting in more aggressive bids
- ▶ Methodological contribution: Non-parametric identification of the model

Estimate the model to quantify the value of disclosure and disclosure device

► Auctioneer's payment, Efficiency (winner's cost & entry cost)

Value of disclosure for a bidder:

▶ Early disclosure is beneficial, while last minute disclosure is costly

Value of disclosure for a bidder:

▶ Early disclosure is beneficial, while last minute disclosure is costly

▶ If Firm A discloses at t = 0, A may deter entry from X, Y, and Z.

Value of disclosure for a bidder:

▶ Early disclosure is beneficial, while last minute disclosure is costly

- If Firm A discloses at t = 0, A may deter entry from Firms X, Y, and Z.
- ▶ If Firm A discloses at t = 1, A cannot deter entry from others.
 - \Rightarrow Deterrence effect diminishes over time Trade-off: (+) Deterrence vs. (-) Inviting in More Aggressive Bids

Value of disclosure for a bidder:

▶ Early disclosure is beneficial, while last minute disclosure is costly

Disclosure also provides info on strength of firms:

▶ Stronger bidders (low construction costs) are more likely to disclose

Value of disclosure for a bidder:

Early disclosure is **beneficial**, while **last minute** disclosure is **costly**

Disclosure also provides info on strength of firms:

▶ Stronger bidders (low construction costs) are more likely to disclose

Introduction of the device **decreases** auctioneer's payment by 6.3%

- Firms give up information to deter entry Information rent ↓ → payment ↓
- ▶ Firms can coordinate entry behavior Firms enter w/ high likelihood when likely to have small #entrant #Auctions with small #bidder \downarrow → payment \downarrow

Value of disclosure for a bidder:

▶ Early disclosure is beneficial, while last minute disclosure is costly

Disclosure also provides info on strength of firms:

▶ Stronger bidders (low construction costs) are more likely to disclose

Introduction of the device **decreases** auctioneer's payment by 6.3%

- Firms give up information to deter entry Information rent ↓ → payment ↓
- Firms can coordinate entry behavior
 Firms enter w/ high likelihood when likely to have small #entrant
 #Auctions with small #bidder ↓ → payment ↓

Introduction of the device increases winner's construction cost by 4.5%

► Asymmetry in beliefs: Disclose vs Not disclose ⇒ inefficient winners: winner's cost ↑

Related Literature

1. Strategic entry deterrence:

- Theory: Salop (1979); Dixit (1980); Milgrom & Roberts (1982); Bernheim (1984); Farrell (1987)
- Empirical: Morton (2000); Goolsbee & Syverson (2008); Ely & Hossain (2009); Ellison & Ellison (2011); Sweeting et al. (2020)
- \rightarrow This paper: Study entry disclosure as a tool to deter entry

2. Auctions with costly entry:

- Ye (2007); De Silva et al. (2008); Ely & Hossain (2009); Li and Zheng (2009, 2012);
 Krasnokutskaya & Seim (2011); Athey et al. (2011); Athey et al. (2013); Roberts (2013); Roberts & Sweeting (2013); Bhattacharya et al. (2014); Gentry & Li (2014); Quint & Hendricks (2018)
- → Incorporating costly entry is important for understanding auction outcomes
- \rightarrow This paper: Study how the option to disclose entry affect outcomes

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

MDOT Procurement auction: Setting

Procurement: Construction projects

A sealed-bid first price auction: lowest bid wins and gets paid the lowest bid

- Question becomes publicly observable immediately after getting posted
- ightharpoonup > 99% of Qs come from actual entrants
 - We will assume firms post Qs only if they enter
- ▶ The set of entrants is not announced until the final result gets revealed
 - Firms do NOT know the exact set of entrants when they bid

Data

Our data covers auctions from 2017 - 2022

Bids:

- ▶ All bids with identity of the firm, Engineer's (government's) estimate of total cost
 - We normalize the bids by the estimated cost
- ▶ 434 auctions
- ▶ 12.5 potential entrants, 2.85 actual entrants on average
 - potential entrant: placed a bid at lease once within same (district,type)-pair
- Median estimated cost: \$1.3M

Q&A forum:

- ▶ Identity of the firm, Timestamp for when the question was posted
- 0.83 Qs per auction on average

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

Descriptive Evidence: Entry Deterrence

If disclosure deters others' entry (Entry Deterrence)

▶ *Negative* correlation btw Q being posted from others and entry prob.

Entry prob. of firm who see Qs is lower:

▶ than those who see none by 14% (3.4pp)

Descriptive Evidence: Inviting in More Aggressive Bids

If others' disclosure affects your bidding behavior (Inviting in More Aggressive Bids)

Positive correlation btw facing Q from others and strength of own bid

Bidders who face Qs make more aggressive bids

Seeing one more Q is related with a more aggressive bid by 4%* of estimated cost

▶ Q as info

Timing of Q: Entry Deterrence vs. Inviting in More Aggressive Bids

Best bid from opponents is weaker for a firm who post a Q early (t=0) than:

▶ those who never post by 8% of estimated cost

Best bid from opponents is **stronger** for a firm who post a Q **at the last minute** than:

those who never post by 1% of estimated cost

In light of the trade-off...

- ► Early disclosure: Deterrence > Inviting in more aggressive bids
- ► Late disclosure: Deterrence < Inviting in more aggressive bids

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

Model: Trade-off of Entry Disclosure

We consider a game where firms sequentially decide whether they enter the auction:

- Firms observe the Q&A forum, i.e., disclosures, before deciding whether they enter
- Entry disclosure is *credible*

Trade-off for disclosure:

- 1. May deter entry of firms who are still on the sideline
- 2. Entrants may bid more aggressively b/c they know that you are in

Model

Firms randomly arrive at the market within time [0,1] w/o knowing when others arrive

Model

Firms randomly arrive at the market within time [0,1] w/o knowing when others arrive

When a firm arrives at $t=\tau$, they make decisions at $t=\tau$ in the following order: (1) (2) (3):**If they enter**Observe disclosures Draw entry cost c_i^E Draw construction cost c_i A sees nothing Decide enter/not enter (a) With prob. p^Q , MUST disclose w/o cost (b) With prob. $1-p^Q$:

 $\begin{array}{l} \text{Draw disclosure cost } c_i^Q \\ \text{Decide disclose/not disclose} \end{array}$

Model: Second stage – Bid

- ► Entrants observe if A/B/C disclosed
- ightharpoonup Entrants bid b_i simultaneously

Payoff of firm i is:

$$\pi_i = (b_i - c_i) \mathbb{1}\{i \text{ wins}\} - c_i^E \mathbb{1}\{i \text{ enters}\} - c_i^Q \mathbb{1}\{i \text{ discloses}\}$$

Equilibrium

We consider Perfect Bayesian Equilibrium of this game.

Requirements (given consistent beliefs):

- lacktriangle Enter iff expected value from entry > cost of entry (c_i^E)
- \blacktriangleright Disclose iff expected value of disclosure > cost of disclosure c_i^Q
- lacktriangle Bid b_i that max. expected profit, cond. on entire disclosure history h^T and constr. cost c_i

$$b_i = rg \max_b \mathbb{E}[(b - c_i)\mathbb{1}\{i \text{ wins}\}|h^T, c_i]$$

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

Identification: roadmap I

We provide non-parametric identification results:

Dist'n of (i) arrival timing; (ii) entry costs; (iii) disclosure costs; and (iv) constr. costs.

Challenge in identification: Arrival timing is observed only for those who posted a Q

- 1. Construction costs c_i and dist'n of construction costs F_c
 - Follow Guerre, Perrigne, & Vuong (2000), exploiting optimality of bids

Identification: roadmap II

- 2. Firm's beliefs on evolution of Q history: $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ disclose/not disclose})$
 - If i discloses, belief $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ disclose})$ is directly identified from data
 - If i does not disclose, belief $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ not disclose})$ is identified by:

Identification: roadmap II

- 2. Firm's beliefs on evolution of Q history: $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ disclose/not disclose})$
 - If i discloses, belief $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ disclose})$ is directly identified from data
 - If i does not disclose, belief $\Pr^i(h^T|h^\tau, \tau_i = \tau, \text{ not disclose})$ is identified by:

Suppose that two firms i and j have not disclosed under h^{τ} .

- ▶ Consider the time until the first disclosure after h^{τ} :
- ► This is the minimum of two objects:
 - Time until *i* discloses if *j* stays silent
 - Time until *j* discloses if *i* stays silent
- ▶ Dist'n of these two objects are identified
 - Exploiting idea from survival analysis literature
 - Events: disclosures; Competing risk: multiple firms
- Dist'n of the latter object is what we want

Identification: roadmap III

- 3. Value fn with/without disclosure and value of disclosure $\Delta v(h^{\tau_i}; c_i)$
 - lacktriangle Given the values from bidding under h^T and beliefs on evolution of Qs
- 4. Dist'n of disclosure costs F_Q
 - Compare amount of disclosure under same history h^{τ} but diff constr costs c
 - Amount of disclosure ↔ Value of disclosure
- 5. Value of Entry $V(h^{\tau})$
 - lacksquare Given value fn with/without disclosure and dist'n of disclosure costs F_Q
- 6. Dist'n of entry timing F_{τ} and entry costs F_{E}
 - Compare amount of disclosure at same time τ but with different history h^{τ} \Rightarrow F_E is identified
 - ★ Amount of disclosure ↔ (Value of Entry, Value of disclosure)
 - \blacksquare Compare amount of disclosure across time $\tau \Rightarrow F_{\tau}$ is identified

Estimation closely follows the identification argument.

Estimation: parametric assumptions

We assume:

- Firms are ex-ante symmetric
- ▶ Arrival timing: $F_{\tau} \sim Beta(\alpha_{\tau}, \beta_{\tau})$
- ► Entry:
 - lacktriangle With prob. p^E , each firm considers entering the auction
 - When they consider, entry costs: $c^E \sim F_E$ F_E follows truncated normal on $[0,\infty)$ with parameters μ_E and σ_E
- Disclosure:
 - \blacksquare With prob. p^Q , firm is in need for posting a Q and MUST disclose without any cost.
 - If not, firm can pay cost $c^Q \sim F_Q$ and disclose: F_Q follows truncated normal on $[0,\infty)$ with parameters μ_Q and σ_Q

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

Value of Disclosure: Who discloses? Timing matters?

- ▶ **Stronger** bidders tend to have **higher** values of disclosure
 - lacksquare Bidders with 25%-tile cost has 3 times larger value than bidders with 75%-tile cost at t=0
- ▶ Last minute disclosure has negative value

Value of Entry

- ▶ If we fix the #disclosures available, value of entry ↑ over time
- ▶ With more disclosures, value of entry \downarrow (Entry prob: 4-6% \downarrow)

Early Mover Advantage

Suppose you only know arrival timing τ_i , but nothing else

- \blacktriangleright Expected profit **decreases** over time τ_i
- Firm i with $\tau_i=0$ has **7.3% higher** expected profit than firm j with $\tau_j=1$

Intuition:

Gains from deterrence when arrive early > More information from late arrival

Outline

- 1. Setup and Data
- 2. Descriptive Evidence
- 3. Model
- 4. Identification
- 5. Results
- 6. Counterfactual Analysis

Counterfactuals

We run **counterfactuals** to:

Study the impact of entry disclosure device on auction outcomes

- ► Entry disclosure has impacts through two channels:
 - 1. Entry value \downarrow and deter entry from others
 - 2. Additional information at the bidding stage

Counterfactuals: Scenarios

We compare outcomes from three scenarios:

Counterfactual	Description	Entry	Additional
		Deterrence	Info at Bid
(0) Shutdown	Q&A never becomes public		
(1) Last minute disclosure	Q&A revealed publicly at $t=1$ No info provided during $t\in [0,1)$		√
(2) Status quo	Current Q&A forum	✓	✓

We measure:

▶ Auctioneer's payment; Winner's construction cost; #Entrants; Total entry cost

Shutdown → Last minute disclosure

No deterrence effect:

- ► Some still disclose from exog. reasons
- No costly disclosure
 - \Rightarrow No additional info on constr. costs
- ► Info only on entry does not (essentially) affect payment (McAfee & McMillan 1987)

Firms are in asymmetric positions when bid: Disclosed vs. Not disclosed

- ⇒ Inefficient winners: winner's cost ↑
- \Rightarrow payment slightly changes (\uparrow)

Expected profit from entry $\uparrow \Rightarrow$ Entry \uparrow

$\mathsf{Shutdown} \to \mathsf{Last} \ \mathsf{minute} \ \mathsf{disclosure} \to \mathsf{Status} \ \mathsf{quo}$

Possibility of deterrence

► Costly disclosure⇒ additional info on constr. costs

Firms who disclose:

▶ Giving up info rents based on entry info + constr. costs

Coordination on entry:

- ► Entry prob↑ if small #disclosures
 - \Rightarrow #Auctions w/ small #entrants \downarrow

Shutdown \rightarrow Last minute disclosure \rightarrow Status quo

Overall effect on payment: Coordination on entry push $\downarrow\downarrow$ + Info rent $\downarrow\downarrow$ > Less entrants push \uparrow

Stronger asymmetry among firms when bid ⇒ Efficiency loss: winner's cost ↑↑

Expected profit from entry $\downarrow \downarrow \Rightarrow$ Entry $\downarrow \downarrow \downarrow$

Concluding remarks

- 1. The option to disclose entry and deter entry has a sizable impact on auction outcomes
 - + Auctioneers' payment \downarrow (6.3%) and entry cost \downarrow (11.1%)
 - Winner's cost \uparrow (4.5%)
- 2. Information during the entry period must be carefully handled
 - Information about entry
 - Information about strength of agents

Asymmetry in Beliefs

Suppose that there are two firms X and Y. Both enter into the auction.

Consider a case where X discloses and Y does not disclose.

- Y employs a more aggressive bidding strategy than X
- Y may win the auction even when Y has higher costs than X
 - ⇒ Inefficient winner

Alternative stories: Q reduces uncertainty

Suppose that disclosure has **no** deterrence effect

Questions reduce uncertainty in the costs

- entry cost: will be incorporated in the model
- construction cost:
 - If posting Q reduces your own cost w/o spillovers,
 - ⇒ No effect on others' bids
 - ⇒ We see changes in others' bids
 - If your Q reduces others' costs,
 - ⇒ Positive correlation btw posting Q and strength of opponents' best bid
 - \Rightarrow We see *Negative* correlation

Alternative stories: Unobs. heterogeneity in uncertainty

Suppose that disclosure has **no** deterrence effect/inviting in more aggressive bids

Unobs. heterogeneity in level of uncertainty across auctions:

If #Qs act as a "good" proxy for quality of the government proposal,

- ▶ Negative corr. btw #Qs and the strength of bids, across auctions \Rightarrow We see positive corr.
- \triangleright Having one more Q is related with a decrease in bid by 2.5%* of estim. cost
- ▶ Having one more Q is related with a decrease in bid by 3.8%* of estim. cost, within firm

Alternative stories: Unobs. heterogeneity in uncertainty

Suppose that disclosure has **no** deterrence effect

Unobs. heterogeneity in level of uncertainty across auctions

- ► Negative corr. btw #Qs and the strength of bids, across auctions ⇒ We see positive corr.
- ▶ Having one more Q is related with a decrease in bid by 2.5%* of estim. cost
- ightharpoonup Having one more Q is related with a decrease in bid by 3.8%* of estim. cost, within firm

Unobs. heterogeneity in level of uncertainty across auctions + Q reduces constr. costs

- \triangleright Correlation above suggests that the latter effect dominates \cdots (*)
- Compare bid from:
 - (i) Firms who posts a Q vs. (ii) Firms who does not
 - (i) places a weaker bid ⇒ This goes against (*)

Correlation: Seeing Q and entry probability (additional)

If disclosure deters others' entry

▶ *Negative* correlation btw Q being posted from others and entry prob.

Entry prob. of firm who see Qs is **lower**:

► than those who see none by 14% (3.4pp)

Entry prob. and Seeing Q

Parameter estimates: primitives

	Estimate	S.E.
Entry		
Prob. of considering entry: p^E		
Const.	0.851	0.146
$\ln(\#$ Pot bidder)	-0.231	0.093
μ_E	-2.926	0.120
σ_E	0.383	0.182
Disclosure		
Prob. of Always Disclose: p^Q	0.268	0.139
μ_Q	-2.416	0.501
σ_Q	0.642	1.102
Entry Timing		
$lpha_ au$	1.227	0.314
$igl eta_{ au}$	0.661	0.227

► Entry Timing ► Entry Prob.

▶ Disclosure Prob.

Primitives of the model

Primitives of the model are the following:

- ▶ Dist'n of entry timing: $\tau_i \sim F_{\tau}$
- ▶ Dist'n of entry cost: $c_i^E \sim F_E$
- ▶ Dist'n of question cost: $c_i^Q \sim F_Q$
 - We allow this to be positive or negative
- ▶ Dist'n of construction cost: $c_i \sim F_c$

We assume that draws are iid, and these 4 objects are mutually independent.

Parameter estimates: Opponents' best bid

We assume that opponents' best bid follows log-normal:

Variables	Estimate	S.E.
$\overline{\mu}$		
Disclosed	0.044*	0.027
Disclosed $ imes au$	-0.045	0.033
#Discl. from others	-0.037*	0.010
Auction-level characteristics	Yes	
$\log \sigma$		
# Discl. from others	-0.207*	0.039
Auction-level characteristics	Yes	
w: n < 0.1		

^{*:} p < 0.1

Entry timing

Probability of disclosure

Probability of Entry

Model

We consider a two-stage model:

- First stage: Entry and Disclosure
 - Firms sequentially arrive
 - Observes the disclosure history up to their arrival time
 - Decide enter/ not enter
 - Upon entry, decide disclose or not
- ► Second stage: Bid
 - Firms place bids after the first stage period ends
 - Given the entire disclosure history, entrants bid

Model: First-stage – Entry and Disclosure

- ightharpoonup N risk neutral firms who are potential entrants
- ▶ Each firm draws entry timing $\tau_i \in [0, T]$ (T = 1)
- ▶ Firm i makes decisions at τ_i in the following order:
 - 1. Observe disclosure history h^{τ_i}
 - 2. Draws entry cost c_i^E and makes entry decision $a_i^E \in \{0,1\}$
 - 3. If they enter, they observe disclosure cost c_i^Q and construction cost c_i
 - ★ Disclosure c_i^Q may be positive OR negative
 - 4. Make decision on disclosure $a_i^Q \in \{0,1\}$
 - \star If they disclose, it becomes public at au_i , and disclosure history gets updated

Estimation

Estimation closely follows the identification argument

- 1. Using bidding data and disclosure history at T:
 - **E**stimate costs c_i
- 2. Using the observed evolution of disclosure histories:
 - Estimate beliefs $\Pr^i(h^T|h^{\tau}, \tau_i = \tau, a_i^Q)$
- 3. Given the estimated objects:
 - **E** Estimate value function $v(h^{\tau}; c_i, A_i^Q)$ and value of disclosure $\Delta v(h^{\tau_i}; c_i)$
- 4. Using the entire data:
 - lacksquare Estimate $F_{ au}, F_{Q}, F_{E}$ via maximum likelihood

Counterfactual - Status Quo

Model Fit: Opponent's best bid

Model Fit: Bid

Model Fit: Number of Qs

Model Fit: Number of Entrants

Model Fit: Disclosure Timing

Value of Disclosure: Change over Time

Value of Disclosure: by Question History

What can the auctioneer do?: Optimal signal

Suppose that the auctioneer:

- knows firms' entry status
- send a private signal to bidders, conditional on the number of entrants
- can commit to how this signal is created

The optimal signal (Bergemann & Morris (2019)):

- Send a bid schedule to each entrant (a map from constr costs to bids)
- Design a joint distribution of tuples of bid schedules
- Designed with "Obedience constraint"
 - Optimal for the entrants to follow the bid schedule they received