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Sequential experiments

Sequential experiments are widely used in a number of fields

Online advertising, clinical trials, economic interventions...

Allow one to target and achieve optimal balance of welfare, ethical, and economic
criteria

E.g., since 2006, the FDA has actively recommended using sequential experiments in
clinical trials

Now commonplace to run multiple sequential experiments

Questions:

How do we perform estimation and make decisions following these experiments?

Can we use information across experiments to improve decision-making?

2 / 46 Jiaying Gu EB for Adaptive Experiment: April, 2025



Estimation following sequential experiments

Consider question of estimation of treatment effects following sequential experiments

Classical methods: MLE/using sample means does not work

Sample size is random and dependent on data

MLE can be badly biased due to selection

Solution 1: De-bias MLE, e.g, through inverse probability weighting (Hadad et al,
2021)

Restores asymptotic normality and unbiasedness of MLE.

This only works for restrictive classes of algorithms (e.g., deterministic algorithms are
excluded)

Moreover, we need to know the algorithm.
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Solution 2: Use Bayesian methods

Probably the most common approach in practice

Start with a prior, then estimate treatment effects through posterior mean

By likelihood principle (proper stopping rule), posterior does not depend on how data
is obtained

But how should we choose the prior?
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Empirical Bayes (EB) methods

EB methods

Aim to improve decision making across a collective by ‘learning from the experience of
others’

Specifically, they let us learn the ‘prior’ from data

Two main approaches to EB modeling (Efron, 2014): g -modeling and f -modeling

Our contribution: extend EB methodology to sequential experiments

Short summary: g -modeling works but f -modeling fails

In fact, we can simply employ g -modeling by pretending data is exogenously
generated!
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What is g -modeling?

Suppose Yi |θi ∼ N(θi , 1), θi ∈ Θ = R and θi ∼ G , i = 1, . . . , n.

If we know G , the optimal Bayes estimator minimizes

E[(δ(Yi )− θi )
2] =

∫ ∫
(δ(y)− θ)2φ(y − θ)dydG(θ)

and takes the form

θ̂∗i = E[θ|Yi ] =

∫
θφ(Yi − θ)dG(θ)∫
φ(Yi − θ)dG(θ)

g-modeling: estimate G via deconvolution, then plug in.
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What is f -modeling?

For any G , given the base density belongs to exponential family, we have the
Tweedie formula:

E[θ|Y = y ] = y +
f ′(y)

f (y)

with

f (y) =

∫
φ(y − θ)dG(θ)

f -modeling: estimate f and f ′ from the sample Y1, . . . ,Yn, then plug in

Under iid sampling, both f and g -modeling can lead to good EB estimator.
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EB for adaptive sampling

We show that g -modeling works for adaptive experiments, but not f -modeling.

g -modeling has some remarkable properties under adaptive experiments:

Does not require knowledge of algorithms used to generate the data.

Algorithms could even vary across experiments

We analyze parametric g-modeling method, e.g. linear shrinkage, Simple GMM

We also analyze non-parametric g-modeling methods, specifically, NPMLE
(non-parametric maximum likelihood) to estimate G .

We provide finite sample regret analysis on both.
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Related literature

Adaptive experiments: Bandit experiments, optimal stopping, p-hacking,...

See Lattimore & Szepesvari (2020), Wassmer & Brannath (2016)

Our contribution: New way to analyze multiple adaptive experiments

Empirical Bayes: Large literature

See Efron (2016), Walters (2024), Koenker and Gu (2024) for surveys

Our contribution: Extension to adaptive experiments, new interpretation of g -modeling

Statistical gaurantee for NP-g-modeling: Jiang and Zhang (2009), Polyanskiy & Wu
(2020), Jiang (2020), Chen (2024)

Our contribution: Extension of regret analysis to adaptive setting
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Motivating example; the likelihood principle
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OCEs

Online controlled experiment (OCEs):

Web-based randomized controlled trials for evaluating digital products and services

Users are randomly assigned to a control group or one of the K treatment groups

When K = 1, they are called A/B tests

OCEs use adaptive stopping algorithms to determine when to stop experimentation

E.g., Wald’s stopping rule: stop if average treatment differences multiplied by time
exceeds a threshold
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The ASOS digital experiments dataset

Between 2019-20 fashion retailer ASOS conducted n = 61 A/B tests (web designs).

In each dataset, arms were sampled in exactly equal proportions

However: algorithms used to stop are proprietary and unknown

Could even have differed across experiments!

We are interested in estimating treatment effects for all experiments
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Data generating model

Experiments indexed by i

Data in each experiment collected in stages j = 1, 2, . . .

Each stage: observe difference

Yj,i = Y
(1)
j,i − Y

(0)
j,i

between a single treatment and single control observation

Outcomes are Gaussian with known variance

Yj,i ∼ N (θi , ω
2
i )

θi is unknown treatment effect we want to estimate
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Likelihood for Each Experiment

Let Aj,i ∈ {0, 1} indicate whether we stop or continue sampling in stage j

Information set until period j denoted Ij,i ≡ {Y1,i ,A1,i , . . . ,Yj−1,i ,Aj−1,i}

Actions determined by algorithm (which could be experiment specific)

πj,i : Ij,i → [0, 1]

At the end of experiment, define

Ni : number of observations sampled

Zi = N−1
i

∑
j Yj,i : sample mean of observations

14 / 46 Jiaying Gu EB for Adaptive Experiment: April, 2025



Likelihood for Each Experiment

Likelihood of data Di is:

p(Di |θi ) =
Ni∏
j=1

p(Aj,i ,Yj,i |θi , Ij,i )

=

Ni−1∏
j=1

p(Aj,i = 1|Ij,i , θi )p(ANi ,i = 0|INi ,i , θi ) ·
Ni∏
j=1

p(Yj,i |Aj−1,i = 1, Ij,i , θi )

∗
=

[
Ni∏
j=1

πj,i (Aj,i |Ij,i )

]
·

[
Ni∏
j=1

p(Yj,i |θi )

]

(*): whether to draw one more sample only depends on Ij,i , not θi .

(*): Conditional on drawing (Aj−1,i = 1), the distribution of Yj,i only depends on θi ,
not Ij,i .
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Likelihood for Each Experiment

Likelihood is proportional to
∏Ni

j=1 φ(yj,i − θi )

That is, Ni is exogenously fixed, and Yj,i are iid draws.

By normality,

p(Di |θi ) = c(Di ) ·
1

σi
φ

(
Zi − θi

σi

)
with σ2

i = ω2
i /Ni .
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Working likelihood and likelihood principle

If parallel experiments are independent, then full likelihood

p(D|θ1, . . . , θn) = c(D) ·
n∏

i=1

1

σi
φ

(
Zi − θi

σi

)

Consider a scenario where Ni are determined exogenously for all i .

And Zi |θi ∼ N (θi , σ
2
i ) and likelihood of observations (Z1, . . . ,Zn) would be given by

the working likelihood ∏
i

1

σi
φ

(
Zi − θi

σi

)

The Likelihood principle: Given a prior over θ1, . . . , θn, posterior is same whether we
use true likelihood or working one!
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Working likelihood and likelihood principle

This equivalence goes beyond the ASOS example; it applies to, e.g.,

Multi-armed experiments: each arm is treated as its own experiment (as long as arm
label doesn’t contain information about true effect).

Panel data with attrition and missing observations (missing at random given past
outcomes)

Multiple ‘p-hacked’ experiments
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Empirical Bayes methdology
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The Empirical Bayes strategy

Key EB assumption: θi are iid draws from some unknown prior G0

Aim of EB methods: Estimate G0, and mimic oracle Bayes performance

Marginal distribution of data for a given prior G is

pG (D) =

∫
p(D|θ1, . . . , θn)dG (n) = c(D) ·

∏
i

fG ,i (Zi )

where

fG ,i (Zi ) =

∫
1

σi
φ

(
Zi − θi

σi

)
dG(θi )

Note: true marginal likelihood is proportional to ‘working marginal likelihood’, but
not equal!
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g -modeling

Estimate G0 by maximizing marginal likelihood over family of priors G:

Ĝ = argmaxG∈G ln pG (D) = argmaxG∈G

∑
i

ln fG ,i (Zi )

Examples of candidate classes G:
Parametric: G is some exponential family, e.g., G ≡ {N (0, γ−1) : γ > 0}
Non-parametric: G is unrestricted leading to NPMLE

Clearly g -modeling is numerically invariant to how data is generated

But what ‘information’ is being used to obtain these estimates?

And why is it still statistically valid under adaptive sampling?
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The variational interpretation of Bayesian updating

The Donsker-Varadhan variational formula: for a given G , and fix (Zi , σi )

ln fG ,i (Zi ) = max
qi

{
Eqi

[
ln

1

σi
φ

(
Zi − θi

σi

)]
−KL (qi || G)

}
KL() is KL-divergence and qi is any distribution over θi

Optimum occurs at q∗i,G (·), the posterior (given Zi , σi ) corresponding to G

Hence,

max
G∈G

∑
i

ln fG ,i (Zi ) = max
G∈G

max
{qi}i

∑
i

{
Eqi

[
ln

1

σi
φ

(
Zi − θi

σi

)]
−KL (qi || G)

}
The two max operations are just the E-step and M-step in EM (see also Neal &
Hinton, 1998).
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Interpretation of g -modeling

At optimum Ĝ , EM reaches a fixed point, and we can show

Ĝ = argminG∈GKL (q̄G || G), where q̄G :=
1

n

∑
i

q∗
i,G

Note that q̄G is average posterior

Consider exponential family G with sufficient statistic u(·):
Minimizing KL divergence is equivalent to matching moments of sufficient statistic:

EĜ [u(θ)] = Eq̄
Ĝ
[u(θ)|D]

This is just sample analogue of law of iterated expectations (LIE):

EG0 [u(θ)] = EG0 [EG0 [u(θ)| D]]
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Parametric Example

Say G is Gaussian family N (0, 1
γ
), with true γ being γ0

Posterior θi |Di ∼ N
(

Zi

1+γ0σ
2
i
,

σ2
i

1+γ0σ
2
i

)
Sufficient statistic is u(θ) = θ2

Moment-matching: estimated γ solves

1

n

∑
i

m(Zi , σi ; γ̂) = 0, where

m(Zi , σi ; γ) =

(
Zi

1 + γσ2
i

)2

+
σ2
i

1 + γσ2
i

−
1

γ

Note common EB practise (e.g. James-Stein) of estimating γ via Varn(Zi )− En(σ
2
i )

is inconsistent for γ−1.
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Interpretation of NPMLE

For NPMLE, moment-matching requires:

Ĝ = q̄i,Ĝ

Self Consistency Property: i.e., Ĝ is prior s.t it is the same as the average posterior

Again a consequence of LIE: prior must equal expected posterior

And the validity of LIE is algorithm independent.
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Tweedie’s formula and failure of f -modeling

Tweedie’s formula applies to the working likelihood:

σ2
i ∇z ln fG ,σi (z)

∣∣
z=Zi = EG [θi |D]− Zi

In classical settings fG0,σi (z) equals marginal density pσi (z) of Zi

But f -modeling fails in adaptive settings

Under adaptive sampling, fG0,σi
(z) does not equal pσi (z)

The true conditional distribution Zi |θi is not really N (θi , σ
2
i )

The actual joint density of (Zi , σi ) is very complicated and algorithm dependent.
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Theoretical properties
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Compound Bayes risk and regret

Aim: provide statistical guarantees for EB estimates of θ = (θ1, . . . , θn)

Recall EB assumption: θi ∼i.i.d G0

Let δi (D) denote some proposed estimator of θi and denote
δ(D) = (δ1(D), . . . , δn(D))

Compound Bayes risk under MSE loss:

R(δ,G0) = E
G
(n)
0

[
1

n

∑
i

|δi (D)− θi |2
]

An Oracle who knows G0 would choose δ∗i (D) = EG0 [θi |D]
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Compound Bayes risk and regret

Compound Bayes regret: difference in Bayes risk between candidate δ and oracle

R(δ,G0) = R(δ,G0)− R(δ∗,G0)

This will be our evaluation criterion

Straightforward to show

R(δ,G0) = E
G
(n)
0

[
1

n

∑
i

|δi (D)− δ∗i (D)|2
]

EB strategy: replace G0 with Ĝ to obtain δ̂EB
i = EĜ [θi |D]

Regret consistency: we say δ is regret consistent if its regret goes to 0 as n → ∞
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Regret consistency under Gaussian priors

Suppose G0 lies in Gaussian prior family G ≡ {N (0, γ−1) : γ > 0}
We saw true γ0 can be estimate using method of moment procedure

We have a simple proof of regret consistency under leave-one-out-estimation

Leave-one-out EB:

Assume experiments i are independent of each other

Estimate γ0 using data excluding experiment i ; term estimate γ̂−i

Compute EB estimate of θi using γ̂−i :

δ̃EB
i =

Zi

1 + γ̂−iσ2
i

Compare to MLE estimate: δMLE
i = Zi
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A non-asymptotic bound on regret ratio:

R(δ̃EB,G0)

R(δ̂MLE,G0)
≤ sup

i
EG0,i

[(
γ̂−i − γ0

γ0

)2
]

Standard GMM arguments: RHS is O(n−1)

Subject to regularity conditions: compact support of γ̂−i etc.

Denominator in LHS is finite as long as EG0
[Z2

i ] < ∞

So R(δ̃EB,G0) = O(n−1) under mild conditions

Leave one-out-estimation not really needed, nor is independence of algorithms; more
generally,

R(δ̃EB,G0) ≤ E
G
(n)
0

[(
1

n

∑
i

Z 2
i

σ2
i

)(
1

γ̂
− 1

γ0

)2
]

R(δ̃EB,G0) = O(n−1) under some stronger regularity conditions
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Non-parametric EB

The non-parametric EB (NPEB) estimator δ̂NPEB
i = EĜ [θi |D]

Uses NPMLE estimate Ĝ in place of G0

No parametric requirements on G0 but regularity conditions more stringent:

Experiments are all independent of each other

G0 is compactly supported

σi ’s are uniformly bounded away from 0 and ∞
There exists c̄ < ∞ such that for all zi , σi

p(zi , σi |θi = 0) ≤
c̄

√
2πσi

e−z2i /2σ
2
i
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Main result

Theorem: Regret consistency of NPEB

Under the regularity conditions described previously,

R(δ̂NPEB,G0) ≲
(ln n)5

n

Remarks:

Regret rate same as in classical setting (Soloff et al (2023), Chen (2023))

We pay only a small price (ln n)5 for estimate G non-parametrically.
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Simulations
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Data generating process

Simulate multiple one-armed bandit experiments

Algorithms used: Thompson sampling and Upper Confidence Bound algorithm

These are commonly used algorithm that balances exploration and exploitation, to
maximize expected reward.

Outcomes drawn from Gaussian N (θi , 1)

Maximum rounds Ni ≤ 50.

Consider two priors over θi :

Gaussian: G0 ≡ N (0, 1/4)

Two-point prior: G0 ≡ 1
2
δ−1 +

1
2
δ3
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Gaussian prior

Oracle NPMLE James-Stein L-loo L-posterior MLE
Thompson Sampling

n = 100 0.0560 0.0686 0.0646 0.0574 0.0572 0.1744
n = 500 0.0561 0.0605 0.0641 0.0564 0.0564 0.1790

n = 1000 0.0562 0.0586 0.0637 0.0564 0.0564 0.1770
n = 5000 0.0562 0.0570 0.0635 0.0563 0.0563 0.1775

UCB algorithm
n = 100 0.0605 0.0717 0.0720 0.0623 0.0622 0.1959
n = 500 0.0605 0.0647 0.0715 0.0608 0.0608 0.1976

n = 1000 0.0605 0.0628 0.0716 0.0606 0.0606 0.1986
n = 5000 0.0607 0.0613 0.0716 0.0607 0.0607 0.1983

Notes: Gaussin prior θi ∼ N(0, 1
4 ). Results are based on 500 simulations.

L-loo: Leave-one-out Gaussian g -modeling

L-posterior: Gaussian g -modeling
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Two-point prior

Oracle NPMLE James-Stein L-loo L-posterior MLE
Thompson Sampling

n = 100 0.0000 0.0139 0.1267 0.1227 0.1243 0.2096
n = 500 0.0000 0.0029 0.1222 0.1196 0.1199 0.2037

n = 1000 0.0000 0.0016 0.1227 0.1202 0.1204 0.2047
n = 5000 0.0000 0.0004 0.1228 0.1205 0.1205 0.2047

UCB algorithm
n = 100 0.0000 0.0104 0.1039 0.1013 0.1023 0.1654
n = 500 0.0000 0.0032 0.1049 0.1030 0.1033 0.1683

n = 1000 0.0000 0.0018 0.1050 0.1032 0.1033 0.1684
n = 5000 0.0000 0.0004 0.1046 0.1029 0.1029 0.1682

Notes: Two point prior: θi ∼ 1
2 δ−1 +

1
2 δ3. 500 simulation repetitions.

L-loo: Leave-one-out Gaussian g -modeling

L-posterior: Gaussian g -modeling
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Performance of Hadad et al

n= Oracle NPMLE J-S L-pos MLE MLEH J-SH NPMLEH

100 0.0470 0.0553 0.0564 0.0481 0.1566 0.1443 0.0594 0.0833
500 0.0474 0.0498 0.0555 0.0476 0.1547 0.1430 0.0578 0.0764
1K 0.0475 0.0488 0.0556 0.0476 0.1557 0.1443 0.0580 0.0758
5K 0.0475 0.0479 0.0556 0.0476 0.1554 0.1438 0.0577 0.0743

Thompson sampling, with lower bound on sampling probability (Hadad et al
condition)

Maximum Round N = 150.

G0 = N(0, 1/8), Y |θ ∼ N(θ, 4).

Takeaway: Hadad et al corrects bias, but sacrifice on variances.
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Empirical Illustration
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ASOS digital experiments dataset

Dataset was described earlier:

n = 61 A/B tests

Sampled in equal proportions, but stopping time adaptive and unknown

Outcomes are actually binary instead of Gaussian

Specifically, Y
(a)
j,i ∼ Bernoulli(θ̃

(a)
i )

We are interested in scaled treatment effects θi =
√
N
(
θ̃
(1)
i − θ̃

(0)
i

)
We employ local asymptotics

Reasonable since N ≈ 105

Take Zi to be (scaled) difference in sample means
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Estimated prior from NPMLE
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EB estimates
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EB estimates

−5 0 5 10 15

Nonparametric Shrinkage

z

−5 0 5 10 15

Parametric Shrinkage

z

44 / 46 Jiaying Gu EB for Adaptive Experiment: April, 2025



Conclusion

We extend EB methodology to adaptive experiments

g -modeling remains valid: simply pretend data was generated exogenously

We do not need any knowledge of algorithms used to sample data

In contrast, f -modeling fails

Further work and open questions:

What is efficient way to estimate prior? (does knowing algorithm help?)

How can we use estimated prior to design future experiments?
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Thank you!
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Why can we learn the prior?

Let’s revisit the very first EB paper: Robbins (1951).

Consider a random sample Y from N(θ, 1) with θ ∈ Θ = {−1, 1}.

Goal is to estimate θ.

R.A. Fisher: θ̂MLE = argmax
θ∈Θ

lnφ(y − θ) = sgn(y). This is also the minimax

estimator.

Bayesian: Given prior p = P(θ = 1), θ̂Bayes = sgn(y − 1
2
log 1−p

p
).

MLE, being the minimax estimator, uses the least favorable prior p = 1/2.
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Why can we learn the prior?

Now imagine we have in parallel n such experiments, Yi ∼ N(θi , 1) and θ1, . . . , θn
are iid draws from a distribution supported on Θ.

If we see most of the outcome Y1, . . . ,Yn to be positive, then more likely p > 1/2.

The n collective experiment provides an opportunity to learn about the properties of
the bulk of parameters {θ1, . . . , θn}.

Robbins proposed to estimate p̂ = Ȳ+1
2

.
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Empirical Bayes (EB)

The EB estimator is θ̂EBi = sgn(yi − 1
2
log 1−p̂

p̂
).

Performs better, for p ̸= 1/2, than the MLE when evaluated based on

1

n
E
∑
i

|θ̂i − θi |
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Proof sketch

Basic strategy similar to Jiang and Zhang (2009), Zhang (2020), Soloff et al (2023):

By Tweedie’s formula,

R(δ̂NPEB,G0) = E
G
(n)
0

[
1

n

∑
i

(
σ2
i

f ′
Ĝ ,i

(Zi )

fĜ ,i (Zi )
− σ2

i

f ′G0,i
(Zi )

fG0,i (Zi )

)2]

Recall that fG0,i and fĜ ,i are marginals under working likelihood

Step 1: Show that fG0,i and fĜ ,i are close to each other in some ‘average’
Hellinger-distance sense

Step 2: Convert Hellinger distance bound to bound between ∇z ln fĜ ,i and ∇z ln fG0,i

Novelty vis-a-vis classical setting: true marginal of Zi is not fG0,i (Zi )
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Group Sequential Clinical Trials

We have fixed number of patients N, split equally into K rounds.

Y11, . . . ,Y1n1︸ ︷︷ ︸
n1 observations

,Y21, . . . ,Y2n2︸ ︷︷ ︸
n2 observations

, . . . ,YK1, . . . ,YKnK︸ ︷︷ ︸
nK observations

Draws from N(µ, σ2).

Cumulative mean up to round k

Ȳ (k) =
1∑k

k̃=1 nk̃

k∑
k̃=1

nk̃ Ȳk̃

with Ȳk the mean at round k.

At each round, we test using

Z∗
k =

X̄ (k) − µ0

σ

√√√√ k∑
k̃=1

nk̃

Stop at round k if |Z∗
k | ≥ ck .
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One arm Thompson Sampling

Let cumulative rewards be X .

Arm distribution N(θ, σ2).

Specify a prior θ ∼ N(µ, σ2) = N(0, 1/τ)

Let qj be the number of samples collected up to round j .

In round j , update

µpost
j =

xj−1

qj−1 + τ

sepostj =
σ

qj−1 + τ

Calculate sampling probabiity πj = P(θ > 0|D) = Φ( µpost

sepost
).

Sample decision aj ∼ Bernounlli(πj).

Sample if aj = 1 and see reward.

qj = qj−1 + aj .
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g-modelling: Non-informative stopping rule

θi ∈ {−1, 1} with equal probability: G0 =
1
2
δ1 +

1
2
δ−1. (EG0(θ) = 0,EG0(θ

2) = 1).

Sampling distribution: Yj,i ∼ N(θi , 1).

Noninformative stopping rule: stop when | 1
N

∑N
j=1 Yj,i | ≥ k/

√
N, k = 0.25.

Histogram of Sample Mean
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g-modelling: Informative stopping rule

θi ∈ {−1, 1} with equal probability: G0 =
1
2
δ1 +

1
2
δ−1. (EG0(θ) = 0,EG0(θ

2) = 1).

Sampling distribution: Yj,i ∼ N(θi , 1).

Informative stopping rule: stop when | 1
N

∑N
j=1 Yj,i | ≥ ki/

√
N.

ki =

{
0.25 θi = −1

5 θi = 1

Histogram of Sample Mean
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g-modelling: Heterogenous non-informative stopping rule

θi ∈ {−1, 1} with equal probability: G0 =
1
2
δ1 +

1
2
δ−1. (EG0(θ) = 0,EG0(θ

2) = 1).

Sampling distribution: Yj,i ∼ N(θi , 1).

Heterogeneous non-informative stopping rule: stop when | 1
N

∑N
j=1 Yj,i | ≥ ki/

√
N.

ki ∼ Unif [0.25, 5].

Histogram of Sample Mean
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