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Abstract

We show that the identification problem for a class of dynamic panel logit models with fixed

effects has a connection to the truncated moment problem in mathematics. We use this con-

nection to show that the sharp identified set of the structural parameters is characterized by a

set of moment equality and inequality conditions. This result provides sharp bounds in models

where moment equality conditions do not exist or do not point identify the parameters. We

also show that the sharp identified set of the non-parametric latent distribution of the fixed

effects is characterized by a vector of its generalized moments, and that the number of moments

grows linearly in T . This final result lets us point identify, or sharply bound, specific classes

of functionals, without solving an optimization problem with respect to the latent distribution.

We illustrate our identification result with several examples, and an empirical application on

modeling children’s respiratory conditions.
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1 Introduction

We study the identification of a class of dynamic panel logit models with fixed effects. We show that

the sharp identified set of the structural parameters is characterized by a set of moment equality and

inequality conditions. Most of the literature focuses on finding moment equality conditions. Our

moment inequality conditions provide sharp bounds in models without moment equality conditions,

and sharpen the identified set when moment equality conditions generate multiple solutions. Our

approach is analytic and easy to implement. It also provides some interesting comparisons to

the sufficient statistics approach (e.g. Chamberlain (1985), Honoré and Kyriazidou (2000), Hahn

(2001)) as well as the functional differencing approach (e.g. Johnson (2004), Buchinsky, Hahn,

and Kim (2010), Bajari, Hahn, Hong, and Ridder (2011), Bonhomme (2012), Honoré and Weidner

(2020)).

We also show that the sharp identified set of the non-parametric latent distribution of the

individual fixed effects is characterized by a finite vector of its generalized moments. This last

result allows us to point identify a class of functionals, including average marginal effects of the

lagged choice and other counterfactual parameters (which involve the latent distribution of the

fixed effects), even though the latent distribution itself is not point identified. It also allows us to

characterize conditions under which functionals can be sharply bounded without solving an infinite

dimensional optimization problem with respect to the latent distribution.

The dynamic panel logit model is an indispensable empirical tool for modeling repeated choices

made by households, firms and individual consumers. It is commonly used, in part, because it

can easily account for permanent unobserved heterogeneity, letting us distinguish between true

dynamics, induced by lagged choice dependence, and spurious dynamics, as a result of individual

heterogeneity (Heckman (1981a)). The challenges of these models are mainly due to the well known

incidental parameter problem and the initial condition problem when the number of time periods

T is fixed. The incidental parameter problem makes it difficult to consistently estimate structural

parameters that capture the true dynamics. When T is fixed, it is generally not possible to treat

the individual fixed effects as parameters and estimate them consistently in nonlinear panel models.

Attempting to do so would also contaminate the estimation of structural parameters (Neyman and

Scott (1948)). The initial condition problem states that the joint distribution of the initial value of

the choices and the unobserved heterogeneity is not nonparametrically point identified, making it

hard to estimate counterfactual parameters, like the average marginal effect, and other functionals
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of the distribution of the fixed effects (e.g., Heckman (1981b) and Wooldridge (2005a)).

There are two common approaches to deal with these challenges.1 The (correlated) random

effect approach places a restriction on the joint distribution of the initial condition and the un-

observed heterogeneity through a parametric distribution, or a finite mixture model assumption

(e.g., Chamberlain (1980) and Wooldridge (2005b)). If these assumptions are satisfied, then struc-

tural parameters and functionals of the latent distribution can be point identified and consistently

estimated. However, if they are not satisfied, we can obtain misleading results.

The fixed effect approach is entirely non-parametric with respect to the unobserved hetero-

geneity. For some models, the structural parameters can be identified and consistently estimated

using the conditional maximum likelihood method, pioneered by Andersen (1970) and Chamberlain

(1985). This method involves finding a minimally sufficient statistic for the fixed effect, and con-

structing a partial likelihood that conditions on this statistic. By the definition of sufficiency, this

partial likelihood no longer depends on the fixed effects. If this partial likelihood depends on the

structural parameters, then we obtain moment equality conditions that can be used for identifica-

tion and estimation. Honoré and Kyriazidou (2000) extend this approach to dynamic logit models

with time varying covariates and Aguirregabiria, Gu, and Luo (2020) apply it to structural dynamic

logit models in which agents make forward-looking choices. This method is easy to implement, but

it does not always result in useful moment equality conditions, and even if it does, it can fail to

find all of the relevant moment conditions.2

Indeed, in a recent paper by Honoré and Weidner (2020), the authors apply the functional

differencing approach in Bonhomme (2012) and find new moment equality conditions for the struc-

tural parameters (in addition to those that can be found using the sufficient statistics approach)

in the AR(1) dynamic panel logit model with covariates.3 They also find moment equality condi-

tions in models for which the sufficient statistics approach provides no moment conditions, as in

the AR(2) dynamic panel logit model. The functional differencing approach is able to find more

moment equalities than the sufficient statistics approach because it searches for them using the full

1For a more complete survey of the literature, we refer the readers to Arellano and Honoré (2001).
2There is one exception. If the likelihood of the sufficient statistics no longer depends on the structural parameters,

then the conditional maximum likelihood method guarantees to utilize all relevant information on the structural
parameters. In most cases, as in the dynamic panel logit model, this condition is not satisfied.

3For the AR(1) model, Kitazawa (2021) also derives a set of moment equality conditions using a transformation
method. Neither Honoré and Weidner (2020) or Kitazawa (2021) consider moment inequalities, and they refer to
moment equality conditions as moment conditions. We make the distinction here between moment equality and
inequality conditions for our analysis. Bajari, Hahn, Hong, and Ridder (2011) also use a functional differencing
approach to generate moment equality conditions in static discrete games with complete or incomplete information.
The latent variable in their context is the equilibrium selection mechanism when multiple equilibria exist.
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likelihood.

We propose a new formulation of the full likelihood. This formulation reveals a polynomial

structure for the fixed effects in dynamic panel logit models. It paves the way for an algebraic ap-

proach to constructing all moment equality conditions for the structural parameters. This approach

involves finding the basis of the left null space of a matrix that only depends on the structural pa-

rameters. When the left null space is of zero dimension, the model does not provide any moment

equality conditions. Else, the resulting set of moment equality conditions is proven to coincide

with the set of moment equality conditions derived using the functional differencing approach. Our

results complement Honoré and Weidner (2020) by providing an algebraic way to deduce the num-

ber and the form of the moment equality conditions for the structural parameters, and address the

completeness question (i.e. whether we have found all moment equality conditions from the model

restriction) which stands as a conjecture in Honoré and Weidner (2020).

Our formulation also reveals a connection to the truncated moment problem, dating back to

Chebyshev (1874). This connection leads to the aforementioned moment inequalities, which, with

the moment equalities (if they exist) characterize the sharp identified set of the structural pa-

rameters. Using this result, we are able to (i) construct the sharp identified set of the structural

parameters when moment equality conditions are not available, as in the AR(1) dynamic panel logit

model with two periods, and (ii) rule out false roots in models where moment equality conditions

solve for multiple roots, as in the AR(1) dynamic panel logit model with only a time trend covariate

(see the discussion on multiple roots in Section 2.1.3 in Honoré and Weidner (2020) on the model

with time trend). We further show that the model with time dummies presents a similar feature.

In each of these models, the moment equality conditions pin down a finite set of parameter values

that are observationally equivalent, and the moment inequality conditions can be used to rule out

some of these values, and hence sharpen the identified set. We demonstrate with an empirical

application the usefulness of the moment inequality information in Section 7.

It is equally important to understand the identification of the latent distribution in these mod-

els.4 Researchers are often interested in counterfactual parameters which involve the distribution

of the fixed effects. The literature on dynamic discrete choice models proposes ways to obtain

the sharp identified set of the structural parameters and functionals of the latent distribution via

optimization. For instance, the linear programming approach in Honoré and Tamer (2006), or the

4Both the conditional maximum likelihood approach in Chamberlain (1985) and the functional differencing ap-
proach by Bonhomme (2012) aim at differencing out the fixed effects to derive moment conditions for the structural
parameters, and do not consider the identification of the latent distribution.
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quadratic programming approach in Chernozhukov, Fernández-Val, Hahn, and Newey (2013), can

be applied for this purpose. These optimization approaches search for the existence of a probability

measure for the fixed effects that rationalizes the population choice probabilities for a given value

of the structural parameters. This collects the set of all parameters and latent distributions that

produce an observationally equivalent model. After solving for this set, we can construct sharp

bounds for any integrable functional of the latent distribution of the fixed effects.

The optimization approaches, described above, are widely applicable, and can be used for mod-

els beyond those with a logistic error assumption. However, they can be challenging from a practical

point-of-view, because identification is characterized using an infinite dimensional existence prob-

lem.5 By focusing on dynamic panel logit models, we show that, the sharp identified set of the

latent distribution is characterized by a finite vector of generalized moments and that the length

of this vector grows only linearly in T . Using this result, for a class of functionals, we can convert

the infinite dimensional bounding problem to a much simpler optimization problem with respect

to the finite dimensional structural parameters.

As an example of the results described above, we show that the average marginal effect of the

lagged choice in the dynamic panel logit model is a linear combination of the vector of general-

ized moments, which we can learn directly from the data as soon as the structural parameters

are point identified. This explains why it is possible to point identify the average marginal effect

even when the latent distribution itself is not point identified. This echoes the important findings

in Aguirregabiria and Carro (2020), who are the first to show that the average marginal effect is

point identified in a class of dynamic panel logit models. We generalize their results by providing

a set of conditions on functionals, under which these functionals are point identified and provide

examples of other counterfactual parameters that enjoy point identification. Moreover, while Aguir-

regabiria and Carro (2020) restrict their attention to models in which the structural parameters

are point identified (in order to make use of a sequential identification argument), we are able to

consider models in which the structural parameters are only partially identified, and sharply bound

functionals using a finite dimensional optimization problem.

Lastly, we note that, although we focus on the dynamic logit model throughout the paper, the

polynomial structure with respect to the fixed effects arises in all panel logit models including static

logit models, multinomial choice logit, ordered logit model with individual fixed effects as well as

5Even if one can focus on the set of finite distribution for the latent variable, as pointed out by Chernozhukov,
Fernández-Val, Hahn, and Newey (2013), it still requires a grid in the support of the latent variable to be computa-
tionally feasible, which may impose subtle restrictions on the set of probability measure considered.
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triangular complete information logit game with market level heterogeneity (see an application of

our approach in Aguirregabiria, Gu, and Mira (2021)), and hence the identification approach in

this paper can naturally extend to these models.

The rest of the paper is organized as follows. Section 2 introduces the identification problem, and

provides a simple example in order to illustrate our approach. Section 3 discusses our general results

on the structural parameters. Section 4 includes identification results on the latent distribution and

its functionals. Section 5 provides a collection of informative examples. These examples include

the AR(1) and AR(2) dynamic panel logit models with and without a time trend, time dummies,

and covariates. Section 6 briefly discusses estimation and inference using our identification results

followed by an empirical application in Section 7. Section 8 concludes. Technical details, proofs

and algebraic derivations are gathered in the Appendix.

2 Dynamic Panel Logit Model with Fixed Effects

As our baseline, we consider a dynamic panel logit model with one lag, covariates, and fixed effects,

defined by:

Yit = 1{αi + βYit−1 +X ′itγ ≥ εit}, (2.1)

where we observe outcomes Yit ∈ {0, 1} and covariates Xit, for all individuals i = 1, . . . , n over

time periods t = 0, 1, . . . , T . The latent variable αi characterizes the permanent unobserved het-

erogeneity. This variable is allowed to have a nonparametric distribution that depends on the

initial choice Yi0 and the covariates Xi = (Xi1, . . . , XiT ). Covariates are strictly exogenous with

respect to the error term εit and have discrete support X with cardinality |X |. The error term is

independently and identically distributed with respect to a standard logistic distribution. Since we

focus on identification, the individual index i is dropped for the rest of the paper, unless explicitly

needed. Throughout, our identification analysis is conditional on Y0 taking a fixed value y0.6

Let θ = {β, γ} denote the structural parameters, and let Y denote the set containing all possible

choice histories, Y := {y1, . . . ,yJ}, for which J = 2T . Then, the likelihood of the choice history yj

6By fixing the initial choice at y0, we mute the variation of Y0 so that it becomes clear what is the identifying
content of the model for each fixed values of y0. When there is indeed variation in Y0, it can provide additional
identifying constraints for the structural parameters because they do not change for different values of y0. For
instance, we will take an intersection of the identified set of the structural parameters constructed using y0 = 0 and
y0 = 1. Our results can also be applied to cases where Y0 is not observed, but is assumed to have a degenerate
distribution. This may be a reasonable assumption in certain empirical applications.

5



conditional on (y0,x, α) equals:

P((Y1, . . . , YT ) = yj | Y0 = y0, X = x, α) := Lj(α, θ,x, y0) =
T∏
t=1

exp(α+ βyt−1 + γ′xt)
yt

1 + exp(α+ βyt−1 + γ′xt)
, (2.2)

where yj = (y1, . . . , yT ) and x = (x1, . . . , xT ). Integrating out the fixed effects leads to the

population choice probability, denoted

Pj = P((Y1, . . . , YT ) = yj |Y0 = y0, X = x).

We further denote the vector Px = {P1, . . . ,PJ}. When γ = 0, this model reduces to the model

in Chamberlain (1985). This model can be generalized to incorporate more than one lag.

2.1 Identification Analysis

For exposition we consider the one covariate case. The identification analysis easily extends to

multiple covariates. Define A = exp(α), B = exp(β), and C = exp(γ), and let Q(A | y0,x) denote

the conditional distribution of A with support A = [0,∞). Note here we have transformed α to A

for convenience, because the fixed effect always enters the likelihood through the exponent function.

The vector Px is assumed to be observed for our identification analysis. Let L(A, θ,x, y0) denote

the vector that stacks Lj(A, θ,x, y0), for j = 1, . . . , J . For each tuple (θ, y0,x), the identified set of

the latent distribution of the fixed effects is the set of probability measures Q on A that rationalize

the population choice probability Px:

Q(θ, y0,x) =
{
Q : Px =

∫
A
L(A, θ,x, y0)dQ(A|y0,x)

}
. (2.3)

Definition 2.1 (Identified Set). The identified set of the structural parameter θ is

Θ∗ = {θ : Q(θ, y0,x) 6= ∅, for all x ∈ X}.

Moreover, the joint identified set of the structural parameter θ and the latent distribution is

I∗(y0,x) = {(θ,Q) : θ ∈ Θ∗ and Q ∈ Q(θ, y0,x)}.

If Θ∗ is a singleton, then θ is point identified, and the true distribution of the fixed effects,

denoted Q0(A | y0,x), is known to be a member of Q(θ0, y0,x) where θ0 denotes the true value of

θ. The question of whether a point θ belongs to the identified set Θ∗ can be viewed as an infinite
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dimensional existence problem—it asks whether there exists a probability measure Q such that the

observed vector of choice probabilities can be rationalized by the model given θ. We now show that

we can reduce this infinite dimensional existence problem to a finite set of moment equality and

inequality conditions, for each x ∈ X . Furthermore, for each θ ∈ Θ∗, the set Q(θ, y0,x) defined in

(2.3), can be equivalently characterized by a finite vector of generalized moments of A.

2.2 Simple Case: Two Time Periods without Covariates

We first present this result for the simple case in which T = 2 and γ = 0 to establish intuition. This

simple case reveals a fundamental connection between the identification problem and the truncated

moment problem in mathematics. We use this simple case to motivate our general identification

results in Sections 3 and 4. This simple case is also interesting by itself. Honoré and Weidner

(2020) have shown that there are no moment equality conditions for the structural parameter. We

show that the model still provides information about the structural parameters through a finite

set of moment inequalities that define the sharp identified set. To the best of our knowledge, our

paper is the first to establish this sharp identification result for this model.

For exposition, we fix y0 = 0.7 In this setting, the likelihood vector can be denoted L(A, β)

and written as:8

L(A, β) = G(β)


1

A

A2

A3


1

g(A, β)
, (2.4)

where g(A, β) = (1 +A)2(1 +AB) and the matrix G(β) is defined by:

G(β) =


1 B 0 0

0 1 1 0

0 1 B 0

0 0 B B

 .

Therefore, in this model, we can write:

P = (p0, p1, p2, p3)′ = G(β)

∫
A

(
1 A A2 A3

)′
dQ̄(A | β), (2.5)

where P is the vector of population choice probabilities and dQ̄(A | β) = 1
g(A,β)dQ(A). Since

7The same results derived can be extended to the case where y0 = 1.
8The elements in the set Y is ordered as: {(0, 0), (1, 0), (0, 1), (1, 1)}. See details in Appendix A.4.
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1/g(A, β) is bounded for all A ∈ A, the measure Q̄(A | β) is a finite positive Borel measure on A.

It is easy to check that G(β) is of full rank unless β = 0 (which we rule out).9

There are several features of the formulation in (2.4) that are worth mentioning. The choice

of g(A, β) is natural. Since Lj(A, β) is a ratio of polynomials of A, we can choose g(A, β) to be a

polynomial of A of the smallest degree for which the product Lj(A, β)g(A, β) is a polynomial of A,

for all j = 1, . . . , J . Doing so leads to a matrix G(β) that does not depend on the fixed effects.

Since G(β) is of full rank, we obtain:

r(β) = (r0(β), . . . , r3(β))′ := G(β)−1P =

∫
A

(
1 A A2 A3

)′
dQ̄(A | β).

Notice that, for a given β, the vector r(β) is observed (since P denotes the observed vector of

choice probabilities and G(β)−1 is a known matrix). The right-hand side of this equation is a

vector of moments up to order 3 with respect to the measure Q̄(A | β). Hence, the question of

whether a particular value of β belongs to the identified set translates into the question of whether

there exists a finite positive Borel measure for which the vector r(β) can be written as a vector of

moments up to order 3. This result reveals the fundamental connection to the truncated moment

problem, which we alluded to in the previous section. In particular, one of the questions studied

in the literature on the truncated moment problem is whether there exists a Borel measure that

rationalizes a finite sequence of numbers as its moments.

To this end, we define the moment space of any positive Borel measure µ on [0,∞) to be:

MK =

{
c ∈ RK+1 : there exists µ such that ck =

∫ +∞

0
Akdµ(A), for all k = 0, 1, . . . ,K

}
.

With this definition, we can write Θ∗ = {β : r(β) ∈M3} in this simple case. The unique geometric

structure of the moment space MK leads to the following theorem.

Theorem 2.1. For the dynamic logit model in (2.1) with T = 2 and γ = 0, the value β ∈ Θ∗ if

and only if
∑3

j=0 ηjrj(β) ≥ 0, for every non-trivial real-valued sequence of coefficients {ηj}3j=0 such

that
∑3

j=0 ηjA
j ≥ 0, for all A ∈ [0,∞).

Theorem 2.1 is Theorem 9.1 in Karlin and Studden (1966), applied to our context. The key

insight is that the dual cone10 of the moment space, which is itself a convex cone, can be identified

9If β = 0, then we have a static logit model, also known as the Rasch model by Rasch (1961). Identification of
this model is well understood. See for instance Cressie and Holland (1983). For the static model with T periods, we
also have a polynomial formulation of the full likelihood, although it will involve polynomial of A up to order T . We
can easily test whether β = 0. For instance for T = 2 without covariates, β = 0 if and only if the choice probability
of (1, 0) equals the choice probability of (0, 1).

10For a convex cone C contained in Rd, the dual cone C+ = {λ ∈ Rd | λ′c ≥ 0 for all c ∈ C}.
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as the space of non-negative polynomials of A up to degree K. Now we discuss the implication of

Theorem 2.1. Every non-negative polynomial of A with an odd degree has a represention with the

form:11

2m+1∑
j=0

ηjA
j = Af2(A) + q2(A),

for all A ∈ [0,∞), where f(A) and q(A) are polynomials. In our context, we have m = 1, and

f(A) and q(A) are polynomials of at most degree 1. Therefore, we can write f(A) = ξ0 + ξ1A and

q(A) = λ0 + λ1A, for any coefficients (ξ0, ξ1) and (λ0, λ1) in R2 such that:

3∑
j=0

ηjA
j = A(ξ0 + ξ1A)2 + (λ0 + λ1A)2 ≥ 0.

Retrieving the coefficient ηj and the condition
∑3

j=0 ηjrj(β) ≥ 0 leads to:

λ2
0r0(β) + 2λ0λ1r1(β) + λ2

1r2(β) + ξ2
0r1(β) + 2ξ0ξ1r2(β) + ξ2

1r3(β) ≥ 0,

which can be equivalently stated as:

(
λ0 λ1

)r0(β) r1(β)

r1(β) r2(β)

λ0

λ1

+
(
ξ0 ξ1

)r1(β) r2(β)

r2(β) r3(β)

ξ0

ξ1

 ≥ 0,

for any coefficients (λ0, λ1) and (ξ0, ξ1) in R2.

This last condition, as we show later in Theorems 2.2 and 2.3 (in a more general form), boils

down to checking the non-negativity of the two square matrices above, defined using the elements

of r(β). These are known as Hankel matrices in the truncated moment problem literature. Since

the non-negativity of a square matrix is equivalent to all of its principal minors being non-negative,

and r(β) is a linear combination of choice probabilities with coefficients depend on β (recall r(β) =

G(β)−1P), we obtain moment inequalities for β. In fact, these moment inequalities characterize

all of the information about β implied by this model.

11Every non-negative polynomial up to degree K,
∑K
j=0 ηjA

j , over [0,∞) can be written in the form: (i) if

K = 2m+ 1 (odd case), then
∑2m+1
j=0 ηjA

j = Af2(A) + q2(A) where f(A) and q(A) are polynomial functions of A up

to order m. If K = 2m (even case), then
∑2m
j=0 ηjA

j = f2(A) +Aq2(A) where f(A) are polynomials of A of at most
order m and q(A) is a polynomial of A up to order m − 1. See Karlin and Studden (1966). We are in the odd case
here because we have moments up to order 3.
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Given the form of G(β) in this example, we have:

r(β) :=


r0(β)

r1(β)

r2(β)

r3(β)

 =
1

B − 1


(B − 1)p0 −B2p1 +Bp2

Bp1 − p2

−p1 + p2

p1 − p2 + B−1
B p3


where, once again, B denotes exp(β). Therefore, the non-negativity of the two Hankel matrices is

equivalent to the following set of inequalities:

rj(β) ≥ 0, j = 0, . . . , 3.

r0(β)r2(β)− r1(β)2 ≥ 0

r1(β)r3(β)− r2(β)2 ≥ 0

We derive the analytical sharp bound on β from these inequalities in Appendix A.4 and demonstrate

that the bound on β can be quite informative even though we only observe two periods of choices.

Furthermore, given the reformulation in (3.1), for each β ∈ Θ∗, the set Q(β, y0) defined in (2.3)

can now be written:

Q(β, y0) =
{
Q : r(β) =

∫
A

(
1 A A2 A3

)′ 1

g(A, β)
dQ
}
.

We refer to the vector,
∫
A(1/g,A/g,A2/g,A3/g)dQ, as the generalized moment vector of the random

variable A. Any distribution Q whose generalized moments coincide with r(β) is an element of

Q(β, y0). Since functions in the vector {1/g,A/g,A2/g,A3/g} are linearly independent with support

A, which we prove more generally in Lemma 3.1, the generalized moment vector is all that we can

learn about the latent distribution of the unobserved heterogeneity, for each value of β in Θ∗.

The polynomial structure in this simple example preserves in the dynamic panel logit model,

both with and without covariates, for any finite T . Before we discuss the general result in the next

section, we first present general results on the truncated moment problem.

2.3 Results on the Truncated Moment Problem

The moment problem poses the question: Is a sequence of real numbers equal to the sequence of

moments associated with some finite Borel measure supported on some set K? When the sequence

of real numbers is an infinite sequence, we have the full moment problem. Else, we have the truncated

moment problem. When K = [0,∞), as in our context, the truncated moment problem becomes
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the truncated Stieltjes moment problem. We refer the readers to the authoritative treatments of

the moment problem in Karlin and Studden (1966) and Krein and Nudelman (1977).

In our context, the finite sequence of real numbers is the vector r(β), and we have the following

general theorem. For any m × n matrix A, define Range(A) = {Au,u ∈ Rn}. The symbol � 0

represents a square matrix being positive semidefinite.

Theorem 2.2 (Truncated Stieltjes Moment Problem (Odd Case)). Let r = {r0, r1, . . . , rm} ∈ Rm+1

denote a finite dimensional vector. If m is odd (i.e. m = 2k + 1), define the following matrices:

Hk(r) =


r0 r1 · · · rk

r1 r2 · · · rk+1

...
...

. . .
...

rk rk+1 · · · r2k

 and Bk(r) =


r1 r2 · · · rk+1

r2 r3 · · · rk+2

...
...

. . .
...

rk+1 rk+2 · · · r2k+1


Then r ∈M2k+1 if and only if Hk(r) � 0, Bk(r) � 0 and {rk+1, rk+2, . . . , r2k+1} is in Range(Hk(r)).

Theorem 2.3 (Truncated Stieltjes Moment Problem (Even Case)). Let r = {r0, r1, . . . , rm} ∈

Rm+1 denote a finite dimensional vector. If m is even (i.e. m = 2k), define the following matrices:

Hk(r) =


r0 r1 · · · rk

r1 r2 · · · rk+1

...
...

. . .
...

rk rk+1 · · · r2k

 and Bk−1(r) =


r1 r2 · · · rk

r2 r3 · · · rk+1

...
...

. . .
...

rk rk+1 · · · r2k−1


Then r ∈M2k if and only if Hk(r) � 0, Bk−1(r) � 0 and {rk+1, rk+2, . . . , r2k} is in Range(Bk−1(r)).

Proof. See Curto and Fialkow (1991). �

In Theorems 2.2 and 2.3, Hk(r) is a Hankel matrix, and Bk(r) and Bk−1(r) are localized

verions of Hk(r) (in which the moments are shifted by one index). The condition on the range

is only relevant when Hk(r) is singular. Hankel matrices have a recursive structure, as shown

by Curto and Fialkow (1991). Therefore, if a Hankel matrix is singular and positive, then its

entries are uniquely recursively determined by elements in a non-singular sub-Hankel matrix (of a

smaller dimension). This translates into the range condition of the relevant matrix. See an explicit

discussion of the range condition for model (2.1) with T = 2 and γ = 0 in Section A.4.
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3 General Results for the AR(1) Model

With the results from the dynamic panel logit model in which T = 2 and γ = 0 in hands, we

now generalize. For model (2.1) with T ≥ 2 and θ = (β, γ), there exists a polynomial function

g(A, θ,x, y0) of order 2T − 1 such that:

L(A, θ,x, y0) = G(θ,x)


1

A
...

A2T−1


1

g(A, θ,x, y0)
, (3.1)

where G(θ,x) is a matrix of dimension 2T × 2T . See Appendix A.2 for an explicit formulation of

g(A, θ,x, y0). Therefore, the population choice probabilities have the following representation:

Px =

∫
A
L(A, θ,x, y0)dQ(A|y0,x) = G(θ,x)

∫
A

(
1 A · · · A2T−1

)′
dQ̄(A|y0, θ,x) (3.2)

where dQ̄(A|y0, θ,x) = 1
g(A,θ,x,y0)dQ(A|y0,x). Since 1/g(A, θ,x, y0) is bounded everywhere on A,

the measure Q̄(A|y0, θ,x) is a positive Borel measure supported on A. We further define the set of

vectors:

Mx = {vx ∈ R2T : v′xG(θ,x) = 0}, (3.3)

where the vector vx is implicitly a function of the parameter θ and x. By construction, vx is a

member of the left null space of G(θ,x). Both Px and G(θ,x) (and hence vx) implicitly depend

on the fixed value of y0.

3.1 Identification of Structural Parameters

We now state our main result:

Theorem 3.1. If G(θ,x) is full rank, then θ ∈ Θ∗ if and only if the following conditions hold:

(a) For all x ∈ X , we have v′xPx = 0 for all vx ∈Mx.

(b) For all x ∈ X , we have r(θ,x) ∈M2T−1, where r(θ,x) = H(θ,x)Px and H(θ,x) is a matrix

of dimension 2T × 2T such that H(θ,x)G(θ,x) = I2T .

The requirement on G(θ,x) being full rank can be checked in each specific model. Theorem 3.1

shows that the identification of the structural parameters θ can be formulated as a set of moment

equalities (from condition (a)) and moment inequalities (from condition (b)).
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The moment equality conditions take the form E[v′xY|Y0 = y0, X = x] = v′xPx = 0, for each

x ∈ X , where Y is a vector of length 2T with its elements being 1{(Y1, . . . , YT ) = yj} for yj ∈ Y.

This is due to the fact that v′xG(θ,x) = 0 implies v′xPx = 0 given our representation in (3.2). The

form of these moment equalities can be found as the basis of the left null space of G(θ,x), defined

in Mx.12

The moment inequalities arise from the condition that r(θ,x) has to be a moment sequence,

and the fact that r(θ,x) is a linear combination of the elements in Px. Through the necessary and

sufficient conditions of the truncated moment problem in Theorem 2.2 or Theorem 2.3, we impose

non-negativity on the two Hankel matrices formed from elements in r(θ,x), which is equivalent

to all of its principal minors being non-negative. Since the vector r(θ,x) is of length 2T , the two

Hankel matrices are both of dimension T × T , which then leads to a finite set of principle minors.

These constraints on r(θ,x) lead to the inequality conditions for θ.

For the construction of r(θ,x), in principle, the matrix H(θ,x) can always be chosen to be

(G(θ,x)′G(θ,x))−1G(θ,x)′. In Appendix A.3, we discuss an alternative for ease of implementation.

The inequalities boil down to checking the non-negativity of two square matrices involving elements

in r(θ,x). While all of the examples in this paper have a matrix G(θ,x) with full column rank,

our results can generalize to models for which G(θ,x) is not of full rank. See the discussion in

Appendix A.3.

3.2 Example: Three Periods with a Covariate

We now give the example of T = 3 with a scalar covariate as an application of Theorem 3.1. This

example allows us to compare our results with the results in Honoré and Kyriazidou (2000) as well

as those in Honoré and Weidner (2020). Using the reformulation in (3.2), we have the following

representation:

Px =

∫
A
G(θ,x)

(
1 A · · · A5

)′ 1

g(A, θ,x, y0)
dQ(A | θ, y0,x),

with g(A, θ,x, y0) = (1 +ACx1)(1 +ACx2)(1 +ACx3)(1 +ABCx2)(1 +ABCx3) when y0 = 0. The

vector Px has elements P((Y1, . . . , YT ) = y|Y0 = y0, X = x) with y ∈ Y. The elements in the set

Y are ordered as: {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. We label

12With the symbolic tools in Matlab, the set Mx can be easily constructed. An earlier working paper version of
Buchinsky, Hahn, and Kim (2010) shows that using Johnson (2004) characterization of semiparametric information
bound for discrete choice models one can derive the moment equality conditions for a few examples of dynamic panel
logit models with fixed effects with T ≤ 3. They, however, do not consider a more general dynamic panel logit
specification like model (2.1) with covariates, or the moment inequalities that we develop in this paper.
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Px = (p0, . . . , p7)′. For the complete form of G(θ,x) see Appendix A.6.

The left null space of the matrix G(θ,x) is spanned by the following two vectors:

v1 =



0

Cx3(B − 1)

Cx1(1−BCx3−x2)

Cx1(1− Cx2−x3)

BCx3(1− Cx3−x2)

B(Cx3 − Cx2)

0

0



and v2 =



0

Cx3−x1(BCx2 − Cx3)

Cx3(1−B)

Cx3 − Cx2

−BCx3−x1(Cx3 − Cx2)

0

Cx3 − Cx2

0



. (3.4)

We then have v′kPx = 0 (k = 1, 2), or equivalently E[v′kY|Y0 = 0, X = x] = 0 (k = 1, 2) as our

moment equality restrictions. We further note that using linear combinations of v1 and v2 leads

to the moment conditions in Honoré and Weidner (2020) for the same model. In particular, for

y0 = 0, we have:

m1 ≡
1

B(Cx2 − Cx3)
v1 −

Cx1

BCx3(Cx2 − Cx3)
v2 =

(
0, −1, Cx1−x2 , 0, Cx3−x2 − 1, −1, Cx1−x3/B, 0

)′
,

m2 ≡ −
Cx2

Cx1(Cx2 − Cx3)
v1 +

1

Cx2 − Cx3
v2 =

(
0, Cx3−x1 , −1, Cx2−x3 − 1, 0, BCx2−x1 , −1, 0

)′
.

(3.5)

and note m′kPx = 0 (k = 1, 2) are the two moment conditions in Honoré and Weidner (2020) for

the same model. A similar derivation can be done for y0 = 1.

On the other hand, if we were to impose the restriction x2 = x3 as assumed in Honoré and

Kyriazidou (2000), the basis for the left null space of G(θ,x) leads to the following two vectors:

v1 =
(

0 −Cx2−x1 1 0 0 0 0 0
)′
,

v2 =
(

0 0 0 0 0 −BCx2−x1 1 0
)′
.

Whenever x1 6= x2, the implied moment equalities have a unique solution:

β = log(p1)− log(p2)− log(p5) + log(p6) and γ =
log(p1)− log(p2)

x1 − x2
,

where pj = pj(x) = pj(x1, x2, x2). These moment equalities coincide with the moment conditions

in Honoré and Kyriazidou (2000).

In this example, the two moment equality conditions, based on (3.4) or equivalently (3.5), alone

point identifiy the parameters θ. If the model is correctly specified, then the moment inequalities
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must hold for all values of θ that satisfy the two moment conditions; if they do not, then the logit

model is mis-specified.

Moment equality conditions do not always secure point identification. We discuss two such

cases in Section 5 for model (2.1): one with a time trend variable, and one with time dummies. In

these models, we illustrate the use of moment inequality conditions to sharpen the identified set.

3.2.1 Relationship with Results in Honoré and Weidner (2020)

Honoré and Weidner (2020) derive the moment equality conditions for θ using the functional dif-

ferencing approach in Bonhomme (2012). To be precise, let us define the set:

κx = {mx ∈ R2T : m′xL(A, θ,x, y0) = 0, ∀A ∈ A}. (3.6)

Their moment conditions consist of E[m′xY|Y0 = y0, X = x] = m′xPx = 0, for all mx ∈ κx and all

x ∈ X . We now prove that the set Mx, defined in (3.3), coincides with the set κx, for all x ∈ X .

Lemma 3.1. The functions in Vθ,x,y0(A) =
{

1
g(A,θ,x,y0) ,

A
g(A,θ,x,y0) , · · · ,

A2T−1

g(A,θ,x,y0)

}
are linearly

independent.

Given the formulation in (3.1) for L, the vectors in the set κx are those such that m′xG(θ,x)

are orthogonal to the vector Vθ,x,y0(A) for all A ∈ A. Lemma 3.1 states that the set of functions

in Vθ,x,y0 spans R2T , which implies that m′xG(θ,x) = 0 for all mx ∈ κx. This observation leads to

the next Theorem.

Theorem 3.2. Mx = κx for all x ∈ X .

Theorem 3.2 proves that the moment equality conditions found by our approach coincide with

the moment conditions in Honoré and Weidner (2020). Our moment equality conditions can always

be written as linear combinations of the moment conditions in Honoré and Weidner (2020), and

vice versa.

Given the equivalence in Theorem 3.2, our results provide an algebraic foundation for the results

in Honoré and Weidner (2020). In addition, they use numerical evidence to conjecture there are

2T − 2T moment conditions, for each given x. This result can be easily verified in our framework:

Provided that G(θ,x) is of full rank, the left null space of G(θ,x) is of dimension 2T − 2T , for any

T ≥ 2. As a result, we expect to have 2T − 2T linearly independent vectors that form a basis for

this space, where each vector serves as a moment equality condition for identifying θ. This feature
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can also be used to explain why there are no moment equality conditions available when T = 2, an

impossibility result established in Honoré and Weidner (2020). Naturally, when T = 2, G(θ,x) is a

4× 4 full rank square matrix, implying that its left null space is of zero dimension, and that there

does not exist a vector vx for which v′xG(θ,x) = 0 (with the exception of the null vector). In this

case, all of the identifying content of θ is contained in the moment inequality conditions that we

characterize in Theorem 3.1.

3.3 Connection with the CMLE Approach

The conditional maximum likelihood approach uses sufficient statistics to factorize the likelihood

into a component that depends on the fixed effects, and a component that does not. For instance,

in model (2.1) without covariates, we can write:

P(y | y0, θ) = P(y | S(y), θ)

∫
A
P(S(y) | A, θ)dQ(A | y0), (3.7)

for each y = {y1, . . . , yT } ∈ {0, 1}T , where S(y) is a sufficient statistic for A. In this model, we

can use S(y) = {y0,
∑T−1

t=1 yt, yT }. After factorizing the likelihood, we can derive moment equality

conditions using the first component in (3.7). This procedure leads to point identification in this

particular model as soon as T ≥ 3. The conditional maximum likelihood estimator (CMLE) solves

the empirical counterpart of the system of equations implied by these moment conditions.

While this procedure leads to a
√
n-consistent estimator, the second component in (3.7) depends

on θ, leaving us with an interesting question: Is there useful information in the second component

that is being thrown away by the CMLE approach? This question is related to an open puzzle.

Specifically, Hahn (2001) shows that the CMLE does not achieve the semiparametric efficiency

bound (when T = 3), suggesting that there might exist an estimator that is asymptotically more

efficient, but no such estimator has been found to date.13 We use our framework to revisit this

puzzle. In particular, we apply our methodology to the second component in (3.7) in order to

determine whether it contains any useful information about θ.

Consider model (2.1) without covariates given T ≥ 3 and y0 = 0.14 In this model, the support

of S(y) contains 2T points since
∑T−1

t=1 yt ∈ {0, 1, . . . , T − 1} and yT ∈ {0, 1}. Label these points

13Hahn (2001) also makes use of the polynomial structure of the dynamic panel logit model in his analysis of the
semiparametric efficiency for the CMLE.

14We fix y0 = 0 to be consistent with Hahn (2001).
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s1, . . . , s2T . The likelihood associated with the sufficient statistic S(y) is:

LS(A, θ, y0) =
(
P(S(y) = s1 | A, y0), . . . , P(S(y) = s2T | A, y0)

)′
.

As done in (3.1) for our benchmark model, the second component in (3.7) can be reformulated as:

PS =

∫
A
LS(A, θ, y0)dQ(A | y0) = G̃(θ)

∫
A

(
1 A · · ·A2T−1

) 1

g̃(A, θ, y0)
dQ(A | y0),

where PS denotes the vector of length 2T with elements corresponding to the probabilities of S(y)

taking certain values on its support, and g̃(A, θ, y0) denotes a polynomial function of A of degree

2T − 1. The crucial observation is that the matrix G̃(θ) is a square 2T × 2T matrix of full rank.

Therefore, the second component of (3.7) does not produce any moment equality conditions. All of

the information about θ in this component must be in the form of moment inequality conditions.

This result suggests that there does not exist an asymptotically more efficient estimator than the

CMLE for this particular model.15 The CMLE for this model is in fact semi-parametrically efficient.

A formal proof is provided in the corrigendum by Gu, Hahn, and Kim (2021).

The above discussion of model (2.1) without covariates may leave the reader with the impression

that the CMLE approach always factors the model in the appropriate way, and that focusing on

the component of the likelihood conditional on the sufficient statistic will lead to an asymptotically

efficient estimator. However, when covariates X are introduced, the only sufficient statistic is the

original vector of choice histories such that S(y) = y, unless we impose a support restriction on

X, as in Honoré and Kyriazidou (2000). Hence, the sufficient statistic of the fixed effects does not

reduce the 2T vector Px to the lower dimensional subspace where it lives.16 Fortunately, we can

still apply our methodology to achieve the necessary reduction in dimension, if any.

4 Identification of Functionals of Unobserved Heterogeneity

We now turn to the situation where our parameters of interest are functionals of the latent distri-

bution. Let ψ be some function and define the parameter of interest to be:

EQ0(A|y0,x)[ψ(A, θ0,x)] =

∫
A
ψ(A, θ0,x)dQ0(A|y0,x),

15The constructions of G̃(θ) and g̃(A, θ, y0) are available upon request. Given our finding on the non-existence of
moment equality conditions from PS , we revisit Theorem 1 in Hahn (2001), and have found an error in the proof of
Theorem 1 in Hahn (2001).

16This is likely due to the fact that when sufficiency argument is used, we are viewing the fixed effects as individual
parameters, and each is allowed to have its own distribution. While here, we are accounting for the fact that we are
modeling the fixed effects as random variables from a common distribution Q(· · · |y0,x).
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for some x ∈ X , where θ0 is the true value of the structural parameter, and Q0(A|y0,x) is the true

latent distribution.

Definition 4.1. The sharp identified set for EQ0(A|y0,x)[ψ(A, θ0,x)] is [`b(x), ub(x)] where:

`b(x) = inf
{θ,Q}∈I∗(y0,x)

∫
A
ψ(A, θ,x)dQ(A),

ub(x) = sup
{θ,Q}∈I∗(y0,x)

∫
A
ψ(A, θ,x)dQ(A),

in which I∗(y0,x) is the identified set of (θ,Q) defined in Definition 2.1.

This bounding problem is not always tractable because, although we have characterized the

identified set Θ∗ for θ using a finite set of moment conditions, the bounds in Definition 4.1 involve

optimizing over a set of distributions, and this set can contain infinitely many elements.

However, as illustrated in Section 2.2, we can reduce the characterization of the identified set

of the latent distribution to a finite vector of generalized moments, which are themselves specific

functionals of Q. As soon as the functional of interest can be related to these generalized moments,

we can profile out the distribution Q in the optimization problem defined in Definition 4.1. Addi-

tionally, as soon as the generalized moment is point identified, any functionals that can be written

as an injective function of the generalized moments are also point identified. As we will show, a

number of interesting functionals including the average marginal effect of the lagged choice arise

as such a case.

Formulation (3.1) reveals that we have an equivalent definition of the set in (2.3):

Q(θ, y0,x) =
{
Q : r(θ,x) =

∫
A

(
1 A · · · A2T−1

)′ 1

g(A, θ,x, y0)
dQ
}
, (4.1)

where r(θ,x) = H(θ,x)Px is the transformation of the population probability vector Px defined

in Theorem 3.1. We can use this definition to deduce the result below.

Theorem 4.1. For each x ∈ X , and each value of θ ∈ Θ∗, all distributions Q whose generalized

moments coincide with EQ[Aj/g(A, θ,x, y0)], for j = 1, 2, . . . , 2T −1, are observationally equivalent

in the sense that they generate the same population choice probability as in (2.3).

Note that in the statement of the theorem, the index of the moment sequence starts with 1 in-

stead of 0. This deserves some explanation. By definition, the function g(A, θ,x, y0) is a polynomial

function of A of degree 2T −1. Therefore, there is a linear relationship between a non-zero constant

and {1/g,A/g, · · · , A2T−1/g}, for all A ∈ A (i.e. these are 2T linearly independent functions that
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reside in 2T − 1 dimensional vector space). The moments EQ[Aj/g], j = 1, 2, . . . , 2T − 1 determine

the ‘zero’ moment EQ[1/g]. This result can also be seen from the fact that the choice probabilities

sum to one: 1 = 1′Px. Indeed, this property implies 1 = 1′Px = 1′G(θ,x)EQ[V (A)/g], where

V (A) = (1, A, . . . , A2T−1)′ and 1′G(θ,x) is a known 1× 2T vector given θ.

For the results on functionals, we distinguish between two cases: The case in which the identified

set Θ∗ is a singleton (so that θ is point identified), and the case in which the identified set Θ∗ has

more than one element.

When θ is Point Identified

When Θ∗ = {θ0}, we know, by Definition 2.1, the true distribution Q0(A|y0,x) is a member of

Q(θ0, y0,x), defined in (4.1). Therefore, r(θ0,x) =
∫
A

(
1 A · · · A2T−1

)′
1

g(A,θ0,x,y0)dQ0(A|y0,x),

equals H(θ0,x)Px by Theorem 3.1. Since θ0 is point identified, r(θ0,x) is point identified.

Theorem 4.2. For model (2.1), if θ is point identified, and the product ψ(A, θ0,x)g(A, θ0,x, y0)

is a polynomial function of A with a degree that is no larger than 2T − 1 such that:

ψ(A, θ0,x)g(A, θ0,x, y0) =
2T−1∑
j=0

ηj(θ0,x)Aj ,

for some vector η(θ0,x) = (η0(θ0,x), η1(θ0,x), . . . , η2T−1(θ0,x)), then EQ0(A|y0,x)[ψ(A, θ0,x)] is

point identified and equal to η(θ0,x)′r(θ0,x).

When θ is Partially Identified

When Θ∗ consists of more than one distinct element, then, for each θ ∈ Θ∗, every probability

measure in the set Q(θ, y0,x) produces the same first 2T − 1 generalized moments r(θ,x) as

H(θ,x)Px. This feature leads to a characterization of sharp bounds for EQ0(A|y0,x)[ψ(A, θ0,x)].

Theorem 4.3. For model (2.1), if Θ∗ is a non-singleton set, and the product ψ(A, θ0,x)g(A, θ0,x, y0)

is a polynomial function of A with a degree that is no larger than 2T − 1 such that:

ψ(A, θ0,x)g(A, θ0,x, y0) =
2T−1∑
j=0

ηj(θ0,x)Aj ,

for some vector η(θ0,x) = (η0(θ0,x), η1(θ0,x), . . . , η2T−1(θ0,x)), then the sharp bounds for

EQ0(A|y0,x)[ψ(A, θ0,x)] are given by [`b(x), ub(x)] where:

`b(x) = inf
θ∈Θ∗

η(θ,x)′r(θ,x),
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ub(x) = sup
θ∈Θ∗

η(θ,x)′r(θ,x).

Theorems 4.2 and 4.3 provide sufficient conditions under which a functional of Q0(A|y0,x)

can be point identified, or sharply bounded, without the need to optimize with respect to the

distribution Q. In fact, for Theorem 4.2, no optimization is needed at all, while for Theorem 4.3,

the optimization is with respect to the finite dimensional parameters, whose feasible regions are

defined by a finite set of moment equality and inequality conditions.

4.1 Examples of Functionals

We now give three examples for which either Theorem 4.2 or 4.3 is applicable. In these examples,

it becomes clear how to construct η(θ,x).

4.1.1 Average Marginal Effects

For model (2.1) without covariates, let us define the “transition probability” conditional on A as:

Πk(A, β) =
A(exp(β))k

1 +A(exp(β))k
, k = {0, 1}.

The average marginal effect (AME) of the lagged choice is then defined as

AMEy0 =

∫
A
{Π1(A, β0)−Π0(A, β0)}dQ0(A|y0).

For model (2.1) with covariates, the transition probability needs to be defined conditional on

certain values of the covariates. For exposition let us consider the case with one covariate. For

fixed values x ∈ X and x̃ ∈ R, define:

Πk,x̃,x(A, θ) = P(YiT+1 = 1|YiT = k,XT+1 = x̃, X1:T = x, A, θ), k = {0, 1}.

This quantity is interpreted as the transition probability from period T to period T + 1, for an

individual, whose fixed effect is A, and whose covariates coincide with {x, x̃} = {x1, . . . , xT , x̃}

from period 1 to T + 1. We then define the AME of the lagged choice as:

AMEx̃,x =

∫
A
{Π1,x̃,x(A, θ0)−Π0,x̃,x(A, θ0)}dQ0(A|y0,x).

Proposition 4.1.

1. For model (2.1) with γ = 0, Πk(A, β)g(A, β, y0) is a polynomial function of A with a degree

that is no larger than 2T − 1, for each k ∈ {0, 1}.
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2. For model (2.1) with covariates, if x̃ ∈ {x2, . . . , xT }, then, for k = {0, 1}, Πk,x̃,x(A, θ)g(A, θ,x, y0)

is a polynomial function of A with a degree that is no larger than 2T − 1.

With the result in Proposition 4.1, we can now apply Theorems 4.2 and 4.3 and show that

the aggregated transition probabilities,
∫
AΠk(A, β0)dQ0(A|y0) and

∫
AΠk,x̃,x(A, θ0)dQ0(A|y0,x),

are point identified, as long as T ≥ 3, for each k ∈ {0, 1}. When T = 2, they can be sharply

bounded. Since the average marginal effect is just the difference between these probabilities, the

same conclusion applies. This result echoes those obtained in Aguirregabiria and Carro (2020),

who are the first to point out that the AME of the lagged choice is point identified for the AR(1)

dynamic panel logit model as long as T ≥ 3. Because Aguirregabiria and Carro (2020) take a

sequential identification approach to establish the identification results on AME, they require that

the structural parameters are point identified. Our result extends to cases where the structural

parameters are partially identified.

Example 1. We first consider model (2.1) with T = 2 and no covariates. For this model, as

discussed in Section 2.2, there is no moment equality condition and the inequalities define the

sharp bounds for β. Appendix A.4 provides the analytical forms of these bounds. For the AME of

the lagged choice, we have:

(Π1(A, β)−Π0(A, β))g(A, β, y0) = η(β)′
(

1 A A2 A3
)′

with η(β) =
(

0 B − 1 B − 1 0
)′

for y0 = 0. Applying Theorem 4.3, the sharp bounds for AME

are given by: [
inf
β∈Θ∗

η(β)′r(β), sup
β∈Θ∗

η(β)′r(β)
]

Given the form of r(β) in Section 2.2, we have η(β)′r(β) = (B−1)p1 with p1 = P(Y = {1, 0}|Y0 =

0). With the analytical sharp bounds for β available, the sharp bounds for AME are just a simple

linear transformation. These bounds are often quite narrow, suggesting that moment inequality

conditions are informative about β as well as the AME. We illustrate these bounds in Figure 1.

Example 2. Consider model (2.1) with T = 3 and one covariate, and let y0 = 0. In this model θ

is point identified. Without loss of generality let x̃ = x3, then g(A, θ0,x, y0) = (1 + AB0C
x2
0 )(1 +

AB0C
x3
0 )(1 +ACx1

0 )(1 +ACx2
0 )(1 +ACx3

0 ) in which B0 = exp(β0) and C0 = exp(γ0). We have:

(Π1,x̃,x(A, θ0)−Π0,x̃,x(A, θ0))g(A, θ0,x, y0)

= (B0 − 1)
(

1 A A2 A3 A4 A5
)
η(θ0,x, x̃),
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Figure 1: We illustrate the bounds for both the structural parameter as well as the average marginal effect
for the model with two periods and no covariates as we vary B0. For each values of β0 ranging from log(0.01)
to log(2), the data generating process assumes Q to be discrete with equal mass at −2 and 1 and y0 = 0.
Green solid line illustrates the true value B0 and AME; blue dotted line illustrates the upper bound; black
dotted line illustrates the lower bound.

where η(θ0,x, x̃) = Cx3
0

(
0, 1, Cx1

0 + Cx2
0 +B0C

x2
0 , Cx2

0 (Cx1
0 +B0C

x1
0 +B0C

x2
0 ), B0C

x1+2x2
0 , 0

)′
.

Applying Theorem 4.2, the average marginal effect is point identified as:

AMEx̃,x = (exp(β0)− 1)η(θ0,x, x̃)′r(θ0,x),

with r(θ,x) = H(θ,x)Px, as defined in Theorem 3.1.

In Section 5.1, we also consider model (2.1) with T = 2 and covariates, for which we derive

the sharp bound of the AME in a specific numerical example. In Appendix A.5, similar results are

presented for the case with T = 3 without covariates.

4.1.2 Posterior Mean of the Fixed Effects

In addition to the average marginal effect, researchers may also be interested in the posterior mean

of a function of the fixed effects conditional on the observed choice history. This can be useful to

infer the degree of heterogeneity across individuals, conditional on them making a certain sequence

of choices. For simplicity, we focus on model (2.1) without covariates. For all yj ∈ Y, define:

ϕ(A, θ,yj) = ALj(A, θ, y0).

Proposition 4.2. For model (2.1) with γ = 0, for all yj ∈ Y \ {1, 1, . . . , 1}, ϕ(A, θ,yj)g(A, θ, y0)

is a polynomial function of A with a degree that is no larger than 2T − 1.
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Applying Theorem 4.2 or 4.3, we can once again point identify, or construct sharp bounds for

the following quantity:

E[A|yj ] =

∫
AALj(A, θ0, y0)dQ0(A|y0)∫
A Lj(A, θ0, y0)dQ0(A|y0)

=

∫
A ϕ(A, θ0,y

j)dQ0(A|y0)

Pj
,

for all sequences of choices yj ∈ Y \ {1, 1, . . . , 1}. This quantity is the posterior mean of exp(α)

conditional on a particular choice history yj .

Example 3. For model (2.1) with γ = 0, y0 = 0 and T = 3. Consider the sequence of choices,

y = {0, 1, 0}, and let the observed choice probability be denoted by P0(0, 1, 0), then we can show

that:

E[exp(α)|y] =
1

P0(0, 1, 0)

(
0 0 1 B0 + 1 B0 0

)
r(β0).

This conditional mean is point identified since B0 = exp(β0) and r(β0) = H(β0)P are both point

identified given Theorem 3.1 and P0(0, 1, 0) is directly identified from the data. More details on the

form of H(β0) are provided in Appendix A.5.

4.1.3 Counterfactual Choice Probabilities with No Dynamics

Here we consider, as a counterfactual parameter of interest, the choice probability where there are

no dynamics in the model, keeping everything else unchanged. This parameter contains information

on how much of the choice persistence can be explained by the fixed effects, rather than the lagged

choice dependence (i.e. β 6= 0).

For model (2.1) without covariates, we denote, for any sequence of choices y,

ψ(A,y) =
A

∑T
t=1 yt

(1 +A)T
, (4.2)

and for the same model with one covariate, we denote:

ψ(A,y,x) =
A

∑T
t=1 yt

∏T
t=1C

xtyt∏T
t=1(1 +ACxt)

. (4.3)

Both quantities correspond to the counterfactual choice probability of y ∈ Y, conditional on the

fixed effects taking value A. For the case with covariates, we further condition on the value of the

covariates being x ∈ X .
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Proposition 4.3.

1. For model (2.1) without covariates, if y0 = 0, then ψ(A,y)g(A, β, y0) is a polynomial function

of A with a degree that is no larger than 2T − 1.

2. For model (2.1) with covariates, if y0 = 0, then ψ(A,y,x)g(A, θ,x, y0) is a polynomial func-

tion of A with a degree that is no larger than 2T − 1, for all y ∈ Y, and all x ∈ X .

Applying Theorem 4.2 or 4.3, we can point identify, or construct sharp bounds for, the counterfac-

tual choice probabilities, defined respectively by:

no covariate: P?(y) =

∫
A
ψ(A,y)dQ0(A|y0),

with covariate: P?x(y) =

∫
A
ψ(A,y,x)dQ0(A|y0,x),

for any y ∈ Y and x ∈ X .

Example 4. For model (2.1) with T = 3 and one covariate, we can point identify the structural

parameters, and hence B0 = exp(β0) and C0 = exp(γ0) are known. For y0 = 0, let us consider the

choice history y = {1, 1, 1}. It can be shown that:

ψ(A,y,x)g(A, θ0,x, y0) = A3Cx1+x2+x3
0 +A4B0C

x1+x2+x3
0 [Cx3

0 + Cx2
0 +B0C

x2+x3
0 ],

and, therefore, the counterfactual choice probability,

P?x(1, 1, 1) = Cx1+x2+x3
0

(
0 0 0 1 B0C

x3
0 + Cx2

0 +B0C
x2+x3
0 0

)
r(θ0,x),

is point identified. Denote the observed conditional choice probability as P0,x(1, 1, 1), we can iden-

tify P0,x(1, 1, 1) − P?x(1, 1, 1), which measures how much the state dependence contributes to the

persistent choice.

5 Examples

In this section, we consider several additional examples. For models with very small T , we consider

the two period model with a covariate. As special cases of the AR(1) models, we explicitly discuss

the dynamic panel logit model with a time trend, as well as the model with time dummies. Last, we

discuss extensions to the AR(2) model. Details of the AR(1) model with T = 3 or T = 2 without

covariates are included in Appendices A.4 and A.5.
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5.1 Two Periods with a Covariate

For simplicity, consider the case with one covariate and denote C = exp(γ). Maintain the assump-

tion that y0 = 0 and choose g(A, θ,x, y0) = (1 +ACx1)(1 +ACx2)(1 +ABCx2) so that:17

Px = (p0(x), p1(x), p2(x), p3(x))′ =

∫
A
G(θ,x)

(
1 A · · · A3

)′ 1

g(A, θ,x, y0)
dQ(A | y0,x),

where G(θ,x) is defined by:

G(θ,x) =


1 BCx2 0 0

0 Cx1 Cx1+x2 0

0 Cx2 BC2x2 0

0 0 BCx1+x2 BCx1+2x2

 .

When β 6= 0, the matrix G(θ,x) is of full rank for any γ 6= 0, and any {x1, x2} ∈ R2. Therefore,

the left null space of the matrix G(θ,x) is of zero dimension and there exist no moment equality

conditions. In this setting, the transformed probability vector r(θ,x) is:

r(θ,x) = G−1(θ,x)Px =
1

B − 1


(B − 1)p0 −B2Cx2−x1p1 +Bp2

BC−x1p1 − C−x2p2

−C−(x1+x2)p1 + C−2x2p2

C−(x1+2x2)p1 − C−3x2p2 + B−1
B C−(x1+2x2)p3

 , (5.1)

for every B,C 6= 1. Applying Theorem 2.2 and Theorem 3.1, we get all the moment inequalities

for each value of x. The identified set for θ is the intersection of these inequalities, for all x ∈ X .

In Figure 2, we illustrate the bounds implied by this model given a specific choice for {β0, γ0}

and Q0 under the assumption that X = {x1,x2} = {(1, 0), (0, 0)}. In this figure, we see that the

sharp identified set Θ∗ is rather small, even with only two possible values in the support X .

Now we consider the bound for the average marginal effect in this model. Fix x̃ = 0 and y0 = 0,

and consider the same data generating process used to obtain bounds in Figure 2. The average

marginal effect can be specified as, for each j ∈ {1, 2}:

AMEx̃,xj ,y0 =

∫
A

{ AB0

1 +AB0
− A

1 +A

}
dQ0(A|y0,xj).

17The elements in the set Y are ordered as: {(0, 0), (1, 0), (0, 1), (1, 1)}.
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Figure 2: We illustrate the binding constraints imposed by the moment inequalities given X = {(1, 0), (0, 0)}.
For this figure, we assume that Q0(A|x, y0) is discrete with equal mass at −2 and 1 if x = (1, 0) and is
discrete with equal mass at −1 and −2 if x = (0, 0), and that (β0, γ0) = (0.50, 0.80). The shaded region is
the sharp identified set; the red point illustrates the true parameters; blue dotted line illustrates the upper
bound imposed by r0(β)r2(β) − r1(β)2 ≥ 0 and the black dotted line illustrates the lower bound imposed
by r1(β)r3(β) − r2(β)2 ≥ 0 given x = (0, 0); red dotted line corresponds to the lower bound imposed by
r0(θ)r2(θ)−r1(θ)2 ≥ 0 and the green dotted line depicts the upper bound imposed by r1(θ)r3(θ)−r2(θ)2 ≥ 0
given x = (1, 0). Constraints like rj ≥ 0 for all j are not binding and are not plotted for better visualization.

.

It is easy to verify that:{ AB

1 +AB
− A

1 +A

}
g(A, θ,xj , y0) = η(θ,xj)

′
(

1 A A2 A3
)′
,

where η(θ,x1)′ =
(

0 (B − 1) (B − 1)C 0
)

and η(θ,x2)′ =
(

0 (B − 1) (B − 1) 0
)

. Hence:

η(θ,x1)′r(θ,x1) =
(B
C
− 1
)
p1(x1) + (C − 1)p2(x1),

η(θ,x2)′r(θ,x2) = (B − 1)p1(x2).

Now we can apply Theorem 4.3 to bound the AME. In the particular data generating process

that generates Figure 2, the true value of AMEx̃,x1,y0 is 0.0749 with bounds [0.0655, 0.0934], and

the true value of AMEx̃,x2,y0 is 0.0859, with bounds [0.0828, 0.0979]. Both sharp bounds are very

informative and very simple to construct. The sharp bound for AME can be directly mapped from

the identified set Θ∗.
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5.2 Three Periods with a Time Trend

Now we consider the special case of the AR(1) model with three periods in which the only covariate

is a time trend variable, hence the support of X, given by X , contains elements of {1, 2, 3}. Under

this specification, the likelihood function equals:

Lj(A, θ, y0) =

3∏
t=1

exp(α+ βyt−1 + γt)yt

1 + exp(α+ βyt−1 + γt)
=
A

∑3
t=1 ytB

∑3
t=1 ytyt−1C

∑3
t=1 tyit∏3

t=1(1 +AByt−1Ct)
,

where A = exp(α), B = exp(β), and C = exp(γ). Let θ = {β, γ} and the matrix G(θ) is given by:

1 BC2(1 + C) B2C5 0 0 0

0 C C3(1 +BC) BC6 0 0

0 C2 C4(B + C) BC7 0 0

0 C3 BC5(1 + C) B2C8 0 0

0 0 BC3 BC5(1 + C) BC8 0

0 0 C4 C6(1 +BC) BC9 0

0 0 BC5 BC7(B + C) B2C10 0

0 0 0 B2C6 B2C8(1 + C) B2C11


,

with g(A,x, θ, y0) = (1 +AC)(1 +AC2)(1 +AC3)(1 +ABC2)(1 +ABC3) when y0 = 0.

The left null space of the matrix G(θ) is spanned by the following two vectors:18

v1 =
(

0 C3(B − 1) C(1−BC) (C − 1) −BC3(C − 1) BC2(C − 1) 0 0
)′

v2 =
(

0 C2(B − C) C(1−B) (C − 1) −BC2(C − 1) 0 (C − 1) 0
)′

It is easy to show that this basis cannot point identify (β, γ). The moment equalities implied by

this basis have two non-trivial roots: one at the true parameters (β0, γ0), and one at a false root

(see Figure 3 for an illustration). This model is also analyzed by Honoré and Weidner (2020). They

lead to the same conclusion about false roots. This result implies that the structural parameters

remain under-identified for a fixed value of y0.19 We show in this example how moment inequalities

can help to rule out false roots. To illustrate, we consider a specific example. In particular, assume

that Q0 is discrete with equal mass at −2 and 1, and that (β0, γ0) = (0.50, 0.80). The same DGP

18To construct this basis, we assume that C 6= 1.
19Honoré and Weidner (2020) propose to use the variation of y0 to resolve this issue. It is true that we obtain

two more moment conditions when y0 = 1. Combining the four moment conditions allows one to point identify all
structural parameters. However, our point here is that even if we fix y0 = 0, we may already point identify the
structural parameters by using the information from the moment inequalities. Later, we will also show an example
(time dummy) where even by finding all moment equality conditions with variation in y0, we still obtain multiple
solutions to the system of moment equalities. But the information in the moment inequalities allows us to rule out
false roots, and even yields point identification in some examples.
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Figure 3: Black illustrates the curve on which the first moment equality holds; blue illustrates the curve on
which the second moment equality holds. For this figure, we assume that Q is discrete with equal mass at
−2 and 1, and that (β0, γ0) = (0.50, 0.80). There are three solutions: the trivial root B = C = 1, the correct
root, and the false root. Notice that the trivial root is assumed away in the construction of the moment
equalities, leaving us with two roots.

is used to generate Figure 3. This specification yields the following population choice probabilities:

P '
(

0.0924, 0.0226, 0.0458, 0.1424, 0.0257, 0.0508, 0.1743, 0.4456
)′
.

In this example, the moment equalities produce two non-trivial roots: one at the correct location

θ0 = (0.50, 0.80), and another roughly located at θ̃ = (1.15, 0.30). We can rule out the false root

by checking the non-negativity of the (Hankel) matrices in Theorem 2.2. In fact, in this particular

example, it is sufficient for us to check only the sign of the second element of the transformed

probability r(θ). Indeed, by Theorem 2.2, it must be non-negative. Intuitively, it must be non-

negative because it is the mean of a finite positive Borel measure. When we check these values, we

find:

r1(θ0) ' 0.01 and r1(θ̃) ' −0.24,

where r1(θ) denotes the second element of r(θ). Therefore, ruling out the false root here is as

simple as checking the sign of one transformed probability.
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5.3 Three Periods with Time Dummies

We now consider a more complex example: the three-period dynamic panel logit model with time

dummies. This model is characterized by γxt = γt, for t = 1, 2, 3. For simplicity, define γ = γ2

and δ = γ3 (and γ1 = 0 for normalization) and denote θ = {β, γ, δ}. Under this specification, the

likelihood becomes:

Lj(A, θ, y0) =
3∏
t=1

exp(α+ βyt−1 + γt)
yt

1 + exp(α+ βyt−1 + γt)
=

A
∑3
t=1 ytB

∑3
t=1 ytyt−1Cy2Dy3∏3

t=1(1 +AByt−1C1{t=2}D1{t=3})
,

where A = exp(α), B = exp(β), C = exp(γ), and D = exp(δ). The information content of this

model was studied by Hahn (2001) and an earlier working paper version of Buchinsky, Hahn, and

Kim (2010). They, however, considered only moment equality conditions from which they found

zero information on β in the sense of Chamberlain (1992).20 Using our approach, we are able to

combine moment equality and inequality conditions to obtain sharp bounds for β. Our numerical

illustration shows that the resulting sharp identified set can even be a singleton.

For this model we now have three parameters to consider. After integrating out the fixed effect,

we obtain:21

P = (p1, p2, . . . , p8)′ =

∫
A
G(θ)

(
1 A · · · A5

)′ 1

g(A, θ, y0)
dQ(A | y0),

where the forms of G(θ) and g(A, θ, y0) are included in Appendix A.7.

As before, we focus on y0 = 0. The left null space of the matrix G(θ) is spanned by the following

two vectors:

v1 =
(

0, −BCD +BD2, −BCD, −BCD, C, BD, 0, 0
)′

(5.2)

v2 =
(

0, CD −D2, CD −BCD, CD −D2, D − C/B, 0, −C +D, 0
)′
.

Let us now characterize the set of all solutions to the moment equality conditions defined through

(5.2), and then discuss whether there is any additional information contained in the moment in-

equalities. To start, we consider a linear combination of v1 and v2:

(v1 +Bv2)

B
=
(

0, 0, −BCD, −D2, D, D, −C +D, 0
)′
.

20We reproduce some of the results similar to Buchinsky, Hahn, and Kim (2010) in Appendix A.7, which have
never been published, so to compare with our new results.

21The vector P has elements P((Y1, . . . , YT ) = y|Y0 = y0) with y ∈ Y. The elements in the set Y are ordered as:
{(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)}.
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The moment equality implied by the second vector above yields:

B =
−D2p4 +D(p5 + p6) + (−C +D)p7

CDp3
. (5.3)

Therefore, there exists a deterministic relationship between B and (C,D) given P . Consequently,

the identification problem can be effectively reduced from a three parameter problem to a two

parameter problem. The moment equality implied by the first vector remains. This moment

equality, v′1P = 0, can be written as:

{
(−CD+D2)p2−CD(p3 +p4)+Dp6

}{
−D2p4 +D(p5 +p6)+(−C+D)p7

}
+C2Dp3p5 = 0. (5.4)

This result implies that we can solve for the sharp identified set by finding all of the solutions

(C∗, D∗) to (5.4), which is a polynomial functions of C and D. We can then use (5.3) to deduce

B∗ given each solution (C∗, D∗), and remove false solutions by checking the moment inequalities

induced by r(θ) ∈M5. Details on how to construct r(θ) are included in the Appendix A.7.

We illustrate the power of moment inequalities in Figure 4. In the left panel, we see a curve

in the positive orthant R2
+. This curve contains the solutions (C∗, D∗) to the moment equality in

(5.4) under a specific choice of Q0 and (β0, γ0, δ0). We see that there are an uncountable number

of non-trivial solutions from just the moment equality conditions. Interestingly and importantly,

we find numerically that every false root is ruled out using moment inequalities.

We now investigate whether using variation in Y0 will provide point identification for θ. As

shown in Appendix A.7, for y0 = 1, we find another moment equality condition that involves C

and D, and again B can be written as a deterministic function of (C,D). However, since these

moment equality conditions are polynomial functions of two variables, C and D, it is, in general,

not clear how many real valued roots can be found from these two moment equalities. We can also

not make a conclusive judgement on whether we can find a unique real valued solution. Indeed,

using the Q0 in the previous example, we find that the two moment equality conditions on (C,D)

lead to two roots, one of them a false root. This is illustrated in the right panel of Figure 4. In this

case, we just need to use our moment inequality conditions to check for these two candidate points,

and then rule out the false root. In this example, the false root is (B,C,D) ≈ (1.646, 2.312, 2.308).

Applying Theorem 2.2, we find that the second element of r(θ) equals −0.179 for y0 = 0, and

−0.146 for y0 = 1, at this parameter value, implying that this value of θ does not generate a vector

r(θ) that belongs to the moment space. Therefore, it is not in the identified set. In this example,

combining the moment equality and inequality conditions allows us to reduce the sharp identified
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Figure 4: The left figure: Black illustrates the curve on which the moment equality in (5.4) holds, derived
when y0 = 0; the red point denotes the true solution. The right figure: the added blue curve illustrates the
set of values of (C,D) on which the moment equality in (A.19) holds, derived when y0 = 1 in Appendix A.7.
The red circled point is again the true value. For both figures, we assume that Q0 is discrete with equal
mass at −2 and 1, and that (β0, γ0, δ0) = (0.50, 0.80, 0.30).

set to a singleton.

5.4 AR(2) Model with Three Periods without Covariates

Now, we extend model (2.1) to the dynamic panel logit model with two lags, specified as:

Yit = 1{αi + β1Yit−1 + β2Yit−2 ≥ εit}.

Assume that we observe (Y−1, Y0, Y1, Y2, Y3). For exposition, fix (y−1, y0) = (0, 0). A similar

analysis can be done with any (y−1, y0) ∈ {0, 1}2. Variation in (Y−1, Y0) allows for an extra

identifying constraint on the structural parameters since each value of {y−1, y0} yields a set of

moment conditions. Here, by fixing y−1 and y0 at certain values, we consider the situation that the

researchers do not have access to such variation.

Let A = exp(α), B1 = exp(β1) and B2 = exp(β2). We can represent the likelihood of choice

history (for general T ) as:

Lj(A, θ, y−1, y0) = A
∑T
t=1 ytB

∑T
t=1 ytyt−1

1 B
∑T
t=1 ytyt−2

2 σA(0, 0)m1σA(0, 1)m2σA(1, 0)m3σA(1, 1)m4

with σA(0, 0) = 1
1+A , σA(0, 1) = 1

1+AB1
, σA(1, 0) = 1

1+AB2
and σA(1, 1) = 1

1+AB1B2
and m1 =∑T

t=1(1 − yt−2)(1 − yt−1), m2 =
∑T

t=1(1 − yt−2)yt−1, m3 =
∑T

t=1 yt−2(1 − yt−1) and m4 =
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∑T
t=1 yt−1yt−2.

With T = 3 and {y−1, y0} = {0, 0}, we have m1 ∈ {1, 2, 3} and mj ∈ {0, 1}, for j = 2, 3, 4. By

picking g(A, β1, β2, y−1, y0) = (1+A)3(1+AB1)(1+AB2)(1+AB1B2), Lj(A, θ, y−1, y0)g(A, β1, β2, y−1, y0)

becomes a polynomial function of A with a degree no larger than 6, for all possible choice histories

in the set Y. Therefore, we again have the formulation:

P = G(θ)

∫
A

(1, A, . . . , A6)′
1

g(A, θ, y−1, y0)
dQ(A|y−1, y0),

with G(θ) being a 8 × 7 matrix of full column rank provided β1, β2 6= 0. The particular form of

G(θ) is available upon request.22 The left null space of G(θ) has dimension equals to one, hence

we expect one moment equality condition. Indeed, it takes the form:

−B1P0(1, 0, 0) +B1P0(0, 1, 0)−B1P0(1, 0, 1) + P0(0, 1, 1) = 0,

where P0(y1, y2, y3) denotes the choice probability of the choice history (0, 0, y1, y2, y3). Clearly,

β1 is point identified from this moment equality, but β2 is not. The identified set of θ can be

constructed as:

Θ∗ = {θ = {β1, β2} : exp(β1)(−P0(1, 0, 0) + P0(0, 1, 0)− P0(1, 0, 1)) + P0(0, 1, 1) = 0, r(θ) ∈M6}.

Honoré and Weidner (2020) show that, as we vary the initial values {y−1, y0}, we get more

moment conditions, so that both β1 and β2 may be point identified. Our results do not contradict

their results. When we have variation in the initial choices, we can take the intersection of all

the implied restrictions on the structure parameters, including both the moment equalities and

inequalities. For the case with T = 3, we can point identify θ. However, our result becomes useful

in situations where there is no or limited variation in {Y−1, Y0} in the population, so that the

structural parameters are only partially identified.

We can also consider the identification of the average marginal effect of the lagged choices for

this model. Denote the transition probability, conditional on A, as:

Πk1,k2(A, θ) := P(Yt+1 = 1|Yt = k1, Yt−1 = k2, A, θ) =
ABk1

1 Bk2
2

1 +ABk1
1 Bk2

2

, {k1, k2} ∈ {0, 1}2.

22We use a symbolic toolbox in Matlab to derive the form of G and H for all our examples. These code will be
available on one of the authors’ websites.
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For any {k1, k2, k̃1, k̃2} ∈ {0, 1}4, the average marginal effect can be defined as:

AMEy−1,y0(k1, k2, k̃1, k̃2) =

∫
A

Πk1,k2(A, θ)−Πk̃1,k̃2
(A, θ)dQ0(A|y−1, y0).

It is easy to verify that Πk1,k2(A, θ)g(A, θ, y−1, y0) is a polynomial function of A with a degree

that is no larger than 6. For instance, consider k1 = k2 = 0, then Π0,0(A, θ)g(A, θ, y−1, y0) =

A(1 + A)2(1 + AB1)(1 + AB2)(1 + AB1B2). By applying Theorem 4.2, we can then construct the

sharp bound for the average marginal effect from the sharp identified set Θ∗.

5.5 AR(2) Model with Three Periods and a Covariate

Introducing one covariate in the AR(2) model leads to:

Yit = 1{αi + β1Yit−1 + β2Yit−2 + γXit ≥ εit}.

We restrict attention to one covariate for ease of notation, but the framework easily extends to

multiple regressors. For each value of x ∈ X , again denoting A = exp(α), B1 = exp(β1), B2 =

exp(β2) and C = exp(γ), and fixing {y−1, y0} = {0, 0}, we have the following representation of the

likelihood of a choice history yj :

Lj(A, θ,x, y−1, y0) = A
∑T
t=1 ytB

∑T
t=1 ytyt−1

1 B
∑T
t=1 ytyt−2

2 C
∑T
t=1 ytxt/

T∏
t=1

(1 +AB
yt−1

1 B
yt−2

2 Cxt).

Take g(A, θ,x, y−1, y0) =
∏T
t=1(1 + ACxt)

∏T
t=2(1 + AB1C

xt)
∏T
t=3(1 + AB2C

xt), then it is easy

to show that Lj(A, θ,x, y−1, y0)g(A, θ,x, y−1, y0) is a polynomial function of A, for all j. When

T = 3, it is a polynomial function with a degree that is no larger than 7. Therefore, we again have

the formulation:

Px = G(θ,x)

∫
A

(
1 A · · · A7

)′ 1

g(A, θ,x, y−1, y0)
dQ(A|θ,x, y−1, y0).

When θ 6= 0 (all elements), the matrix G(θ,x) is of dimension 8× 8 and has full rank. Therefore,

the left null space is of zero dimension unless x2 = x3 as observed by Honoré and Weidner (2020).

When x2 = x3, the rank of the matrix G(θ) is seven, and hence the left null space is of dimension

one, yielding one moment equality for each distinct value of x such that x2 = x3. When it is not

possible to impose the equality restriction on the covariate values, we can again consider the partial

identification of the structural parameters using the moment inequalities due to Theorem 3.1. Our

approach will be useful in this particular setting because there are no moment equalities unless
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x2 = x3. This allows us to permit regressors that vary over time (i.e., time trend, age variable, or

time dummies).

6 Estimation and Inference

While our main results concern identification, in this section, we demonstrate that some existing

techniques from the literature can be used for estimation and inference. More specifically, we

use results in Bajari, Benkard, and Levin (2007) and Shi and Shum (2015). One can develop a

minimum distance framework that combines the moment equality and inequality conditions implied

by Theorem 3.1. To illustrate, define a population objective function that combines identifying

restrictions:

Q(θ,P) = m(θ,P)′A′Am(θ,P) +

K∑
j=1

(min{hj(θ,P), 0})2,

where θ denotes the structural parameters, P denotes the vector of (conditional) choice probabili-

ties, m(θ,P) denotes a vector of equality conditions, A′A denotes a nonsingular weighting matrix,

and hj(θ,P) (j = 1, . . . ,K) denotes the inequality conditions. One may use all or only a subset of

the moment inequalities implied by Theorem 3.1 (b).

Here the minimum distance setup is useful because it may facilitate the estimation procedure

using our construction of inequality conditions, by imposing non-negativity on the two Hankel

matrices, for which the generalized moments are written as a function of the choice probabilities.

Without loss of generality, we assume that the inequality conditions hold such that hj(θ,P0) ≥ 0

at the true parameter value θ0, and hence the second term in Q(θ,P) becomes zero when θ satisfies

the inequality conditions. Otherwise, it captures the departure from the inequality conditions when

they are violated.

If the moment equality conditions alone can point identify the parameter (as in the AR(1)

dynamic panel logit with T ≥ 3), or all inequality conditions are slack so that they do not influence

the asymptotic distribution of the estimator, one can instead use a GMM framework without using

the inequality conditions at all. In this case, the estimation and inference can follow a standard

GMM framework, but we consider a general setting for which both moment equality and inequality

conditions are all potentially relevant.

Given this construction of the objective function, the true parameter vector θ0 is a solution to:

min
θ∈Θ

Q(θ,P0).
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Our estimator then can be defined based on the sample analog of the criterion function, for the

dynamic panel logit model without covariates, or with time trends or dummies, as:

Qn(θ, P̂n) = m(θ, P̂n)′A′nAnm(θ, P̂n) +

K∑
j=1

(min{hj(θ, P̂n), 0})2

or, for models with covariates xi, as:

Qn(θ, P̂n) =
1

n

∑
i

m(θ, P̂n(xi))
′A′n(xi)An(xi)m(θ, P̂n(xi)) +

1

n

∑
i

K∑
j=1

(min{hj(θ, P̂n(xi)), 0})2,

and solves:

θ̂n = argminθ∈ΘQn(θ, P̂n)

where P̂n denotes the vector of the estimated probabilities, which are sample frequencies or can be

estimated using a sieve approach (e.g. Newey (1997), Chen (2007) ) for models with covariates xi.

For inference, we consider two cases. First, when θ0 is point-identified, we can follow a standard

inference method for extremum estimation. Second, when θ0 is set-identified, one may derive the

confidence bound using an existing method from the partial identification literature (e.g. Cher-

nozhukov, Hong, and Tamer (2007), Romano and Shaikh (2010), Andrews and Shi (2013), Pakes,

Porter, Ho, and Ishii (2015) among others).

For the point-identified case, we assume the following conditions hold for all parameters in a

small neighborhood of θ0 (with probability approaching to one):

1. B0 = B(θ0) where supθ∈Θ0

∥∥∥ ∂2

∂θ∂θ′Qn(θ, P̂n)−B(θ)
∥∥∥ = op(1)

2. ∂
∂θQn(θ, P̂n) = ∂

∂θQn(θ0, P̂n) + (B0 + op(1))(θ − θ0)

3.
√
n ∂
∂θQn(θ0, P̂n)→d N(0,Ω0)

We then have:
√
n(θ̂n − θ0)→d N(0, B−1

0 Ω0(B−1
0 )′).

These conditions can be verified straightforwardly under standard regularity conditions (see Newey

and McFadden (1994)). For example, for the models such as the dynamic panel logit without

covariates, or with time trend or dummy, following standard arguments, we get Ω0 = Λ0Σ0Λ′0

where supP∈P0

∥∥∥ ∂2

∂θ∂P ′Qn(θ0, P̂n)− Λ0

∥∥∥ = op(1) and
√
n(P̂n−P0)→d N(0,Σ0) which we utilize for

our empirical application in Section 7.

For the partially identified case, we describe how one can use a subsampling method to construct
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confidence regions following Romano and Shaikh (2010), similar to Bajari, Benkard, and Levin

(2007), among others. The resulting confidence set for the true parameter θ0 should satisfy the

coverage probability as

lim inf
n→∞

Pr(θ ∈ Θ̂(1−α)) ≥ 1− α

where 1 − α is a chosen confidence level. In the context of our minimum distance estimation, the

subsample procedure is given as follows:

1. Choose a parameter set Θ such that it is certain that θ0 ∈ Θ23

2. Construct B subsamples of size nb and compute Qn,b(θ, P̂n,b) for each subsample b and the

parameter θ

3. For each θ ∈ Θ, compute a critical value ĉn(1− α, θ) such that

ĉn(1− α, θ) = inf

{
c :

1

B

B∑
b=1

1{nbQn,b(θ, P̂n,b) ≤ c} ≥ 1− α

}

4. Compute Θ̂(1−α) =
{
θ : nQn(θ, P̂n) ≤ ĉn(1− α, θ)

}
There are several interesting estimation and inference questions that can be further explored.

For instance, when only moment equality restrictions are considered, even though they are derived

as conditional moment equalities, they can be converted into unconditional moment restrictions. For

this case it is well known that, using the results from Chamberlain (1987), one can construct optimal

instruments in the GMM framework to achieve the semiparametric efficiency bound. However, in

our problem the identification restrictions can also include moment inequalities, which are in the

form of conditional moment inequalities for models with covariates. In this case an efficiency result

that combines both (conditional) moment equality and inequality restrictions are not developed

yet to the best of our knowledge. Furthermore, when the support of X is rich or when we have

continuous covariates, we may also face the usual curse of dimensionality. How one can utilize

identification information from inequalities in an efficient way for estimation is an open question

that we leave for future research.

23One can obtain a consistent estimator for the identified set, e.g. following Manski and Tamer (2002), as Θ̂n ={
θ : Qn(θ, P̂n) ≤ minθ∈Θ Qn(θ, P̂n) + κn

}
for some chosen κn > 0, such that κn → 0.
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7 Application

To demonstrate the use of our identification argument, we revisit the data analysis in Fitzmaurice

and Laird (1993) on modeling children’s respiratory conditions over a short period of time. The

dataset, as part of the well known Harvard’s Six Cities study conducted in the 1980s to study

the association of air pollution and health outcomes, contains records on the wheezing condition

(value 1 indicates yes, and value 0 indicates no) of 537 children from Steubenville, Ohio.24 Each

child is followed annually between the ages of 7 and 10. We also have information on whether the

mother is a smoker in the first year of the study. We are interested in distinguishing between state

dependence and the effect of age. It is plausible that respiratory diseases in young children may

mitigate over age, in which case, we expect a downward time trend on the probability of having

the wheezing condition for the sample of children. Not controlling for this time trend effect (or

equivalently, the age effect) leads to biased estimates of the effect of state dependence that is, the

persistence of wheezing. In addition, it is crucial to control for individual fixed effects in order to

distinguish unobserved heterogeneity from the true dynamics. As the data also provides information

on mother’s smoking behaviour, we report estimation results for sub-samples depending on whether

the mother is a smoker. Throughout the analysis, we focus on those children who have no wheezing

condition in the initial period (at age 4), which consists of about 85% of the whole sample.

The model of interest is the same as in Section 5.2:

yit = 1{αi + βyit−1 + γt ≥ εit}, t = 1, 2, 3

where εit are i.i.d random variables following the logistic distribution. We observe data {yi0, yi1, yi2, yi3}

for each child, and we are interested in the parameter (β, γ), while treating the αi’s as the incidental

parameters. As illustrated in Section 5.2, there are two moment equality conditions for the param-

eter (B,C) := (exp(β), exp(γ)), and there are two solutions of (B,C) both satisfying the moment

equality conditions. Denote P̂ = 1
n

∑n
i=1 1{(yi1, yi2, yi3) = y} := {p̂1, p̂2, . . . , p̂8}, where the order of

the choice history y = (y1, y2, y3) is {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

The two moment equality conditions can then be written as25:

B =
p̂7

−Cp̂3 + C2(p̂1 + p̂6) + (C3 − C2)p̂5
,

24The dataset is publically available in the R package geepack.
25We simplify the moment equality conditions presented in Section 5.2 and solve for B as a function of C. In

particular, the first moment equality condition is derived from (v1−v2)′P̂ = 0 and the second is from (Cv1−v2)′P̂ = 0
where v1 and v2 are those presented in Section 5.2.
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B =
(C − 1)p̂4 + C(p̂3 + p̂7)− C3p̂2

C2p̂6
.

Figure 5 illustrates these conditions. The black line represents points of (B,C) that satisfy the first

moment equality, while the red line represents the points of (B,C) that satisfy the second moment

equality. The crossing points are the two roots that satisfy both moment equality conditions.

Applying Theorem 3.1, as well as the estimation and inference method discussed in Section 6, we

rule out one of the roots and get a unique solution combining information from moment equalities

and inequality restrictions.

Results are reported in Table 1, labeled with Logit Full. The false root based on the full sample

is (β̂, γ̂) = (−0.088,−0.019). These estimates, while they satisfy the moment equality condition,

they fail to satisfy the moment inequality conditions discussed in Theorem 3.1. In particular, the

transformed probability r(β̂, γ̂) based on the false root has its second entry equaling −4.82, which

suggests that the vector r(β̂, γ̂) cannot be a valid moment vector, since elements in the vector r

are all supposed to be positive, representing moments of a non-negative measure supported on the

positive real line. Checking non-negativity of the two Hankel matrices discussed in Theorem 2.2

confirms this finding.

As a comparison, we also report the estimates of the dynamic effect without controlling for

a time trend. This reduces the model to a simple AR(1) model without covariates with T = 3.

As we can see, we underestimate the persistence of the wheezing conditions substantially without

controlling for time trend. The estimation results based on the sub-samples distinguishing whether

a mother is a smoker or not presents a similar pattern, although they are estimated with more

noise, as expected.

We also report results for several benchmark models, including the logit model without con-

trolling for unobserved heterogeneity (labeled as Logit), as well as the logit fixed effect estimators

(labeled as Logit FE ML), where all parameters, including the incidental parameters, are estimated

with the maximum likelihood method. These estimates suggest that, without controlling for unob-

served heterogeneity, the effects on persistence, and on the age effect, are over-estimated. For the

logit FE ML estimates that control for individual effects, the incidental parameter problem leads

to inconsistent estimates of (β, γ).
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Figure 5: Illustration of multiple roots from the moment equality conditions of the AR(1) model with
time trend. The left panel is for the whole sample, while the second and third panel is for sub-samples
corresponding to mother as a smoker and a non-smoker respectively.

Logit Full Logit Full Logit Logit Logit FE ML Logit FE ML

All Sample (n = 450)

lagged y 1.301 0.693 2.08 1.772 -2.918 -2.736
(0.671) (0.707) (0.258) (0.238) (0.690) (0.503)

time trend -0.276 - 1.05 - 1.666 -
(0.321) - (0.162) - (0.260) -

Subsample: Smoker (n = 156)

lagged y 1.210 0.693 2.189 1.809 -2.951 -2.889
(1.937) (1.225) (0.400) ( 0.359) (1.17) (0.856)

time trend -0.464 - 1.082 - 1.654 -
(0.338) - (0.254) - (0.412) -

Subsample: Non-smoker (n = 294)

lagged y 1.118 0.693 1.972 1.708 -2.902 -2.649
(1.101) (0.866) (0.342) (0.320) (0.855) (0.623)

time trend -0.135 - 1.038 - 1.674 -
(0.513) - (0.211) - (0.335) -

Table 1: Estimation results: Logit Full estimates the model using Theorem 3.1 and the estimation method
discussed in Section 6. Logit estimates the model without individual fixed effects and Logit FE ML estimates
all parameters in the model with the full likelihood, including the incidental parameters. Numbers in the
brackets are standard errors.

8 Concluding Remarks

We characterize the sharp identified set for the structural parameters in a class of dynamic panel

logit models. By reformulating the identification problem as a truncated moment problem, we

show that all information on the structural parameters can be characterized by a set of moment

equality and inequality conditions. We use this result to identify sharp bounds in models where
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structural parameters are not point identified, rule out false roots in models that cannot be identified

using only moment equalities. We then characterize the observationally equivalent set of the latent

distribution of fixed effects and show that we can only identify a finite vector of generalized moment

of the latent distribution. Nevertheless, we provide conditions for a class of functionals of the latent

distribution that can be point identified as soon as the structural parameters are point identified.

We also discuss cases where functionals can be sharply bounded by only solving a simple finite

dimensional optimization problem. We illustrate the usefulness of our results using a series of

examples.

The connection to the truncated moment problem is due to the polynomial structure of the logit

distribution with respect to the fixed effects. All panel logit models we consider enjoy this structure.

Any other model beyond the logit model that has a similar polynomial structure can make use of

our results. Our analytical approach to find moment equality conditions may be generalized to

models with multi-dimensional fixed effects. These include the multinomial panel logit model and

the bivariate models in which we consider choices of multiple interactive individuals (i.e., those

considered in Honoré and Kyriazidou (2019), Honoré and de Paula (2021) and Aguirregabiria, Gu,

and Mira (2021)). In these more complicated models, however, it can be challenging to generalize

the results on the equivalence between model constraints on the generalized moment vector and a

set of moment inequalities. This is due to the fact that the sum of square representation of non-

negative polynomial functions only holds for the one-dimensional case. Nevertheless, the connection

of the identification problem to the truncated moment problem may still be useful. We leave this

for future research.
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A Appendix

A.1 Proofs of Lemmas, Theorems, and Propositions

Proof of Theorem 3.1

It suffices to prove the theorem for a specific value of x ∈ X . To show necessity, we fix a pair

(θ,Q) ∈ I∗(y0,x) defined in Definition 2.1 and we show that conditions (a) and (b) have to hold.

In particular, we know from (3.1) that

Px = G(θ,x)

∫
A

(
1 A · · ·A2T−1

)′ 1

g(A, θ,x, y0)
dQ(A)

with g(A, θ,x, y0) specified in Appendix A.2. Then it is easy to verify condition (a) by the definition

of the set Mx. Condition (b) can be verified by the fact that 1/g(A, θ,x, y0) is bounded on the sup-

port A as well as the fact that we can always construct H(θ,x) = (G(θ,x)′G(θ,x))−1G(θ,x)′ such

that we can find a finite positive Borel measure µ supported on A with dµ(A) = 1
g(A,θ,x,y0)dQ(A)

whose total mass and the first 2T − 1 moments are represented by r(θ,x).

To show sufficiency, fix an arbitrary pair (θ, r(θ,x)) that satisfies the conditions (a) and (b)

in Theorem 3.1. If there exists no moment equality condition, then this (θ, r(θ,x)) satisfies the

condition (b) only. We will show we can always construct a probability measure Q supported on

A, given (θ, y0,x), consistent with r(θ,x), a vector of moments with respect to a Borel measure µ.

In particular, we show that the constructed Q can generate the generalized moments, defined later,

such that they are made identical to r(θ,x). For this constructed Q, we also show the following

(A.1) holds

Px =

∫
A
L(A, θ,x, y0)dQ(A) = G(θ,x)

∫
A

(
1 A · · · A2T−1

)′ 1

g(A, θ,x, y0)
dQ(A). (A.1)

This implies (θ,Q) ∈ I∗(y0,x).

For ease of notation, below we suppress the dependence on these values (θ, y0,x) in Q,G,H, r

and g. First, note that the logit model (A.1) implies Px has the following representation as

Px = G × c where c ∈ M2T−1, and hence Px is a linear projection on G. We will show (1)

Px = G × r if r ∈ M2T−1, r = HPx, and HG = I, and (2) we can construct a probability

measure Q supported on A such that it generates a set of the generalized moments that match r,

and hence this Q and θ, satisfying the conditions (a) and (b), generate the model (A.1), concluding

this (θ,Q) must be in I∗(y0,x).
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For (1), note that r = HPx = HG× c for some c ∈M2T−1 since Px is a linear projection on

G. It then follows that r = HG× c = c since HG = I, and hence Px = G× r.

For (2), letQ follow a discrete distribution supported on 2T distinct values, denoted as {a1, . . . , a2T }

with a probability measure πj = P(A = aj) such that
∑2T

j=1 πj = 1. Note we are not fixing these

values, any set of distinct support points work for our construction. Without loss of generality let

0 < a1 < a2 < . . . < a2T < ∞, then we show we can recover πj ’s such that Q generates a set of

generalized moments
∫
A

(
1 A · · · A2T−1

)′
/g(A)dQ such that they have identical values to the

vector r. We write a linear system of equations

Agπ ≡


1 1 · · · 1

a1/g(a1) a2/g(a2) · · · a2T /g(a2T )
...

...
...

...

a2T−1
1 /g(a1) a2T−1

2 /g(a2) · · · a2T−1
2T /g(a2T )




π1

π2

...

π2T

 =


1

r1

. . .

r2T−1

 ≡ r, (A.2)

where rj denotes the j + 1-th element in the vector r, the j-th moment with respect to a Borel

measure µ. Here note that the zero-th moment EQ[1/g(A)] is redundant because the probabilities

sum to one

1 = 1′Px = 1′G

∫
A

(
1 A · · · A2T−1

)′
/g(A)dQ

for any Q, and in the system of equations we replace it with the condition
∑2T

j=1 πj = 1, so that

the resulting πj ’s construct a proper distribution Q.

We know that Ag is nonsingular (a similar argument to Lemma 3.1), and we obtain π = (Ag)−1r.

Finally, note that 1 = 1′Px = 1′G
∫
A

(
1 A · · · A2T−1

)′
/g(A)dQ = 1′Gr implies EQ[1/g(A)] =

r0 given Q matches the 2T − 1 generalized moments with (r1, . . . , r2T−1) in (A.2). This concludes

(2).

Proof of Lemma 3.1

The set of functions in Vθ,x,y0(A) are linearly independent if
∑2T

j=1 cj−1A
j−1/g(A, θ,x, y0) = 0 holds

only with constants (c0, . . . , c2T−1) = 0. Therefore, to prove the claim, it suffices to show that the
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determinant of the following 2T × 2T matrix:

1
g(a0)

1
g(a1) · · · 1

g(a2T−1)

a0
g(a0)

a1
g(a1) · · · a2T−1

g(a2T−1)
...

... . . .
...

a2T−1
0
g(a0)

a2T−1
1
g(a1) · · · a2T−1

2T−1

g(a2T−1)


where we write g(a) = g(A = a, θ,x, y0) given (θ,x, y0) for ease of notation, is non-zero for some

distinct set of points a0, a1, . . . , a2T−1. Now take any distinct set of points such that 0 < a0 < a1 <

. . . < a2T−1 <∞, the determinant of the above matrix can be written as
(∏2T−1

j=0
1

g(aj)

)∏
0≤s<u≤2T−1(au−

as), which is not equal to zero by construction.

Proof of Theorem 3.2

Given the representation (3.1) we have that L(A, θ,x, y0) = G(θ,x)Vθ,x,y0(A) for each A ∈ A.

The vectors in set κx satisfy that m′xG(θ,x) is orthogonal to the vector Vθ,x,y0(A) for all A ∈ A.

Since the functions in Vθ,x,y0 are linearly independent as shown in Lemma 3.1, the set of vectors

Vθ,x,y0(A) spans R2T , hence the only vector of length 2T that can be orthogonal to R2T is the null

vector, i.e. m′xG(θ,x) = 0, which precisely defined the set Mx.

Proof of Theorem 4.1

For ease of notation, given (θ, y0,x), we write the choice probabilities, through (3.1), as

P = G

∫
A
D(A)dQ(A) ≡ GD, (A.3)

where Q is a probability distribution supported on A, G is a 2T × 2T matrix, D is a 2T × 1 vector,

and D(A) = (1/g,A/g, . . . , A2T−1/g)′ in our representation. In this case P can be spanned by only

(at most) 2T number of linearly independent vectors that span D since D is a 2T × 1 vector. We

then have

P = G
2T∑
l=1

πlD(al) ≡ G
∫
A
D(A)dQ̃(A), (A.4)

for some distinct values {a1, . . . , a2T } in the support A and weights {π1, . . . , π2T } that sums to 1

such that D(al)’s are linearly independent. Such a set exists because of Lemma 3.1. This implies

for any given Q(A) in (A.3) and a finite vector P we can always construct an equivalent model

to (A.3) using a finite mixture Q̃. Now note that, following a similar construction to the system

47



of equations (A.2), once we know 2T − 1 generalized moments of Q(A), we can find a discrete

distribution Q̃ that satisfies (A.4). Therefore knowing 2T − 1 generalized moments of Q(A) from

(A.3) exhausts all information of Q(A) we can learn from the model (A.3).

Proof of Theorem 4.2

The parameter of interest EQ0(A|y0,x)[ψ(A, θ0,x)] can be represented as

EQ0(A|y0,x)[ψ(A, θ0,x)] =

2T−1∑
j=0

ηj(θ0,x)EQ0(A|y0,x)[A
j/g(A, θ0,x, y0)].

Since θ is point identified, then we know θ0. From Theorem 4.1, we know all measures in the

set Q(θ0, y0,x) defined in (4.1) have the same vector of generalized moments. Since Q0(A|y0,x) ∈

Q(θ0, y0,x) by construction, we have rj(θ0,x) = EQ0(A|y0,x)[A
j/g(A, θ0,x, y0)], for j = 0, . . . , 2T−1,

which are observed quantities: given θ0, r(θ0,x) = H(θ0,x)Px. Therefore EQ0(A|y0,x)[ψ(A, θ0,x)] =

η(θ0,x)′r(θ0,x).

Proof of Theorem 4.3

We show the argument for sharp lower bound since the argument for the sharp upper bound is the

same. By Definition 4.1, the lower bound of EQ0(A|y0,x)[ψ(A, θ0,x)] can be written as

`b(x) = inf
θ∈Θ∗,Q∈Q(θ,y0,x)

∫
A
ψ(A, θ,x)dQ(A)

= inf
θ∈Θ∗,Q∈Q(θ,y0,x)

∫
A
η(θ,x)′

(
1 A . . . , A2T−1

)′ 1

g(A, θ,x, y0)
dQ(A)

= inf
θ∈Θ∗

η(θ,x)′r(θ,x),

where the second equality is due to the fact that ψ(A, θ,x)g(A, θ,x, y0) can be represented as a

polynomial funciton of A up to degree 2T − 1 with coefficients η(θ,x). The last equality is due to

the fact that all measures in the set Q(θ, y0,x), defined in (4.1), have the same vector of generalized

moments, represented as r(θ,x), which we observe for each given θ ∈ Θ∗.

Proof of Proposition 4.1

For the first result, using the form of g(A, β, y0) in Appendix A.2, for k = 0, we have Π0(A, β)g(A, β, y0) =

A(1 +A)T−1−y0(1 +AB)T−1+y0 , which is a polynomial function of A of degree 2T − 1. For k = 1,

we have Π1(A, β)g(A, β, y0) = AB(1+AB)T−2+y0(1+A)T−y0 , which is again a polynomial function
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of A of degree 2T − 1.

For the second result, we discuss four cases. If k = 0 and y0 = 0, then

ABkC x̃

1 +ABkC x̃
g(A, θ,x, y0) =

AC x̃

(1 +AC x̃)

T∏
t=2

(1 +ABCxt)

T∏
t=1

(1 +ACxt).

Since x̃ ∈ {x2, . . . , xT }, the right hand side is a polynomial function of A up to degree 2T − 1. If

k = 0 and y0 = 1, then

ABkC x̃

1 +ABkC x̃
g(A, θ,x, y0) =

AC x̃

(1 +AC x̃)

T∏
t=1

(1 +ABCxt)

T∏
t=2

(1 +ACxt),

which is again a polynomial function of A up to degree 2T − 1. Similar argument applies for the

case k = 1, y0 = 0 and k = 1, y0 = 1. We omit their forms for brevity.

Proof of Proposition 4.2

Note that

Lj(A, β, y0) =
An

11+n01
Bn11

(1 +AB)n11+n10(1 +A)n01+n00 ,

with nkj =
∑T

t=1 1{yt−1 = k, yt = j} for k, j ∈ {0, 1}. Since maxyj∈Y\{1,...,1}

{
n11 + n01

}
≤ T − 1

and the denominator of Lj(A, β, y0) is always a polynomial function of A of degree T , then

Lj(A, β, y0)g(A, β, y0) is polynomial ofA up to degree 2T−2, which implies thatALj(A, β, y0)g(A, β, y0)

is a polynomial of A up to degree 2T − 1.

Proof of Proposition 4.3

For the model (2.1) without covariates, given g(A, β, y0) = (1 + AB)T−1+y0(1 + A)T−y0 , we can

verify

ψ(A,y)g(A, β, y0) = A
∑
t yt(1 +AB)T−1+y0(1 +A)−y0 .

Since
∑

t yt ∈ [0, T ], when y0 = 0, it is a polynomial function of A up to degree 2T − 1. For the

model (2.1) with covariates, given g(A, θ,x, y0) =
∏T
t=2−y0

(1 +ABCxt)
∏T
t=1+y0

(1 +ACxt), we can

verify

ψ(A,y,x)g(A, θ,x, y0) = A
∑T
t=1 yt

T∏
t=1

Cxtyt
T∏

t=2−y0

(1 +ABCxt)(1 +ACx1)−y0 .

Then when y0 = 0, it is a polynomial function of A up to degree 2T − 1 for any x ∈ X .
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A.2 Generalized Moments Representation of AR(1) Model with General T

We first consider the dynamic logit model with T periods without covariates. The likelihood

function for yj = {y1, . . . , yT } can be represented by

Lj(A, β, y0) =
An

11+n01
Bn11

(1 +AB)n11+n10(1 +A)n01+n00 ,

with nkj =
∑T

t=1 1{yt−1 = k, yt = j} for k, j ∈ {0, 1}. Since maxyj∈Y{n11+n10} = maxyj∈Y
∑T

t=1 1{yt−1 =

1} and maxyj∈Y{n01+n00} = maxyj∈Y
∑T

t=1 1{yt−1 = 0}, we can take g(A, β, y0) = (1+AB)T−1+y0(1+

A)T−y0 . With this choice of g(A, β, y0), we can construct the matrix G(β) of dimension 2T × 2T

such that:

P = G(β)

∫
A

(
1 A · · · A2T−1

)′ 1

g(A, β, y0)
dQ(A|y0).

For model (2.1) with covariates, we allow the distribution of A to depend arbitrarily on the

covariates, hence all the analysis is conditioned on X = x = {x1, x2, . . . , xT } (note we do not need

to assume x to be a vector taking the same values, it can take any value in the support X ⊂ RT ).

Here the derivation is made for one covariate. It can be easily generalized to multiple covariates

with additional notation. The likelihood of yj = {y1, y2, . . . , yT } ∈ Y is then

Lj(A, θ,x, y0) =
A

∑T
t=1 ytB

∑T
t=1 ytyt−1C

∑T
t=1 xtyt∏T

t=1(1 +AByt−1Cxt)
=

A
∑T
t=1 ytB

∑T
t=1 ytyt−1C

∑T
t=1 xtyt

(1 +ABCx1)y0(1 +ACx1)1−y0
∏T
t=2(1 +AByt−1Cxt)

with B = exp(β) and C = exp(γ). By taking g(A, θ,x, y0) =
∏T
t=2−y0

(1 + ABCxt)
∏T
t=1+y0

(1 +

ACxt), we can construct G(θ,x) of dimension 2T × 2T such that:

Px = G(θ,x)

∫
A

(
1 A · · · A2T−1

)′ 1

g(A, θ,x, y0)
dQ(A|x, y0).

A.3 Additional Discussion of Theorem 3.1

A.3.1 Alternative Construction of H(θ, x)

In principle, the matrix H(θ,x) can always be constructed by (G(θ,x)′G(θ,x))−1G(θ,x)′ to fulfill

condition (b) in Theorem 3.1. However, sometimes it is more convenient to consider an alternative

construction for H(θ,x) via the following procedure especially for T > 2.

Device a matrix H0 of dimension 2T × 2T boolean matrix which picks 2T rows out of 2T rows

of the matrix G(θ,x), denote it as the reduced square matrix G̃(θ,x) := H0G(θ,x). Since G(θ,x)

is full rank, so is the reduced G̃(θ,x). Perform LU factorization and write G̃(θ,x) = LU and
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let H(θ,x) = U−1L−1H0. This is more convenient because both U and L are upper or lower

traingular matrices, which are easier to invert symbolically. Depending on the set of 2T rows one

picks, there can exist multiple H(θ,x). That said, we do not need to check all possible choices

of H(θ,x). To see this, given (3.1), we always have the relationship, Px = G(θ,x)D(θ,x), where

D(θ,x) =
∫
A

(
1 A · · · A2T−1

)′
1

g(A,θ,x,y0)dQ(A|y0,x) is the generalized vector of moments of

A. Choosing any H such that HG(θ,x) = I2T leads to r(θ,x) = HPx = D(θ,x). We may have

multiple form of H that fulfills the condition HG(θ,x) = I2T , which will just lead to different

expression of HPx in terms of the elements in Px. This is possible because some equations are

redundant in the system Px = G(θ,x)D(θ,x).

A.3.2 Generalization to Situations Without the Full Rank Condition

For this discussion, we suppress the possible dependence of G,P , and g on (θ, y0,x). If G is

not of full column rank, then we can always write it as G = G0C where G0 is comprised of

linearly independent column vectors (i.e., a basis), and reformulate the choice probability equation

(When G has full column rank we set C to be an identity matrix). Specifically, for the purpose

of discussion, let G0 be a 2T by 2T − m matrix with 0 < m < 2T (so the rank of G equals

to 2T − m), and hence C is a 2T − m by 2T matrix. Let the vector of polynomials in A be

V (A) = (1, A, . . . , A2T−1)′ and the vector of the generalized moments be Vg = EQ[V (A)/g(A)].

Then the choice probability is given by P = GVg = G0CVg similar to (3.2), and we can rewrite

this as P = G0Ṽg where Ṽg = CEQ[V (A)/g(A)] = EQ[CV (A)/g(A)]. By construction CV (A) is

another vector of polynomials in A.

Given this formulation, we can also decompose the degrees of freedom in P . The left null space

of G0 is of dimension 2T − (2T −m) for any T ≥ 2. Therefore, we can find 2T − (2T −m) linearly

independent vectors that form a basis for this space, where each vector serves as a moment equality

condition for identifying θ. Note that this decomposition is now equal to the number of rows in P

(i.e., 2T ) minus the number of rows in Ṽg (i.e., 2T −m).
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A.4 Details of the Model with Two Periods and No Covariates

For model (2.1) with T = 2 and γ = 0, we have

L(A, β, y0) =


P((Y1, Y2) = (0, 0) | Y0 = y0, α)

P((Y1, Y2) = (1, 0) | Y0 = y0, α)

P((Y1, Y2) = (0, 1) | Y0 = y0, α)

P((Y1, Y2) = (1, 1) | Y0 = y0, α)

 =



1
(1+AB)y0 (1+A)2−y0

ABy0
(1+AB)1+y0 (1+A)1−y0

A
(1+AB)y0 (1+A)2−y0

A2By0+1

(1+AB)1+y0 (1+A)1−y0

 .

By choosing g(A, β, y0) = (1 +A)2−y0(1 +AB)1+y0 , we get:

L(A, β, y0) =


1 B 0 0

0 By0 By0 0

0 1 B 0

0 0 By0+1 By0+1




1

A

A2

A3


1

g(A, β, y0)
.

Now take the integral with respect to A and evaluate at y0 = 0, and we get the expression in (2.4)

as well as the form of the matrix G(β).

Now, let P = (p0, p1, p2, p3)′, such that:

r(β) = G(β)−1P =
1

B − 1


(B − 1)p0 −B2p1 +Bp2

Bp1 − p2

−p1 + p2

p1 − p2 + B−1
B p3

 , (A.5)

for every B 6= 1. By Theorem 3.1 and Theorem 2.2, a value of β is in the identified set Θ∗ if and

only if when evaluated at β, the following two (Hankel) matrices are non-negative:

H1(r(β)) =

 r0(β) r1(β)

r1(β) r2(β)

 and B1(r(β)) =

 r1(β) r2(β)

r2(β) r3(β)


together with the range condition which states {r2(β), r3(β)} is in Range(H1(r(β))). The range

condition deserves some extra explanation.

We distinguish two cases. The first case is when H1(r(β)) is singular (i.e., det(H1(r(β))) =

0). In this case, there exists a constant c0 > 0 such that rj(β) = c0rj−1(β) for j = 1, 2. For

{r2(β), r3(β)} to be in Range(H1(r(β))), we would have r3(β) = c0r2(β). Since we can rule

out r(β) = 0 for any β 6= 0, then the non-negativity of H1(r(β)) and B1(r(β)) implies that
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r0(β) > 0. To summarize, the constraints on r(β) in this case include: r0(β) > 0, c0 > 0 and

rj(β) = c0rj−1(β) for j = 1, 2, 3. These conditions impose very strong restrictions on r(β). Yet, if

r(β) is a moment sequence with det(H1(r(β))) = 0, then we can only have a degenerate distribution

Q since det(H1(r(β))) = r0r2 − r2
1 is the variance of a probability measure.26 If this variance is

zero, then the measure must be degenerate.

The second case to consider is when H1(r(β)) is non-singular. In this case the range condition

always holds, because we can solve the system of equations H1(r(β))w = (r2, r3)′ and get a unique

w which represents (r2, r3)′ as a linear combination of columns of H1(r(β)). It is also easy to

show that in this case rj > 0 for all j = 0, 1, 2, 3. To summarize, the conditions for r(β) to be a

moment sequence include: rj > 0, r0r2− r2
1 > 0, r1r3− r2

2 ≥ 0. These constraints on r(β) map into

constraints on the original vector P which then lead to the following theorem.

Proposition A.1. For model (2.1) with T = 2 and γ = 0, (i) the sign of β0 is identified, and (ii)

the following two cases define the sharp identified set Θ∗:

1. If β0 > 0, then β ∈ Θ∗ if, and only if:

q0 +
√
q2

0 − 4p1p2p3(p1 − p2 + p3)

2p1(p1 − p2 + p3)
≤ B ≤ q1 +

√
q2

1 + 4p1p2(p0p1 − p0p2 − p2
2)

2p1p2
; (A.6)

2. If β0 < 0, then β ∈ Θ∗ if, and only if:

max

{
0,
q1 −

√
q2

1 + 4p1p2(p0p1 − p0p2 − p2
2)

2p1p2

}
≤ B ≤ q0 −

√
q2

0 − 4p1p2p3(p1 − p2 + p3)

2p1(p1 − p2 + p3)
;

(A.7)

where B = exp(β), q0 = p2
1 − p1p2 + p1p3 + p2p3 and q1 = p0p2 − p0p1 + p1p2 + p2

2.

The proof is given in the Appendix A.4.1.

A.4.1 Proof of Proposition A.1

We discuss the non-singular case when det(H1(r(β))) > 0 and comment on the singular case where

det(H1(r(β))) = 0 at last.

For the non-singular case, as discussed in Section A.4, the identifying condition is rj > 0 for

j = 0, . . . , 3, r0r2− r2
1 > 0 and r1r3− r2

2 ≥ 0. The sign of β0 is identified because r2 > 0 if and only

26Recall rj(β) =
∫
AA

jdQ̄(A, β) with Q̄(A, β) being some finite positive Borel measure and it can be made into

a probability measure, denoted as Q̃(A, β) by dividing Q̄(A, β) by r0. Then consider r0r2 − r2
1 = r2

0( r2
r0
− ( r1

r0
)2) =

r2
0(
∫
AA

2dQ̃(A, β)− (
∫
AAdQ̃(A, β))2). Since r0 > 0 and the only possibility for r0r2 − r2

1 = 0 is Q̃(A, β) having zero

variance, which means Q̃(A, β) is a degenerate probability measure.
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if B − 1 has the same sign as B0− 1. This result follows directly from the fact that B0 > 1 implies

p2 > p1, and B0 < 1 implies p2 < p1. Since the sign of B0 − 1 is identified, we can, without loss of

generality, restrict our attention to two distinct cases: (a) B and B0 larger than 1, and (b) B and

B0 smaller than 1.

Since in each case, B and B0 have the same sign, the argument above implies r2 > 0. Further-

more, the condition r1r3 − r2
2 ≥ 0 implies r1, r3 > 0. Similarly, r1 > 0 and r0r2 − r2

1 > 0 implies

r0 > 0. Consequently, we only need to check r0r2 − r2
1 > 0 and r1r3 − r2

2 ≥ 0.

Consider case (a), B and B0 are larger than 1. In this case r0r2 − r2
1 > 0 if and only if:

−B2p1p2 +B(p0p2 − p0p1 + p1p2 + p2
2) + (p0p1 − p0p2 − p2

2) > 0. (A.8)

This expression is a quadratic equation with a discriminant equal to:

(p0p2 − p0p1 + p1p2 + p2
2)2 + 4p1p2(p0p1 − p0p2 − p2

2) > 0.

This discriminant is strictly positive because p0, p1, p2 6= 0 and p2 6= p1. Therefore, the quadratic

equation in (A.8) has two distinct real-valued roots, and the quadratic formula implies that its

roots have the form:

(p0p2 − p0p1 + p1p2 + p2
2)±

√
(p0p2 − p0p1 + p1p2 + p2

2)2 + 4p1p2(p0p1 − p0p2 − p2
2)

2p1p2
. (A.9)

Since the quadratic equation in (A.8) defines a parabola that opens down, the parameter B must

be between these roots. Similarly, in this case, r1r3 − r2
2 ≥ 0 if and only if:

B2p1(p1 − p2 + p3)−B(p2
1 − p1p2 + p1p3 + p2p3) + p2p3 ≥ 0. (A.10)

The discriminant of this quadratic equation equals:

(p2
1 − p1p2 + p1p3 + p2p3)2 − 4p1p2p3(p1 − p2 + p3) > 0.

This discriminant is again strictly positive because p0, p1, p2 6= 0 and p2 6= p1. Therefore, the

quadratic equation in (A.10) has two distinct real-valued roots, and the quadratic formula implies

that its roots have the form:

(p2
1 − p1p2 + p1p3 + p2p3)±

√
(p2

1 − p1p2 + p1p3 + p2p3)2 − 4p1p2p3(p1 − p2 + p3)

2p1(p1 − p2 + p3)
. (A.11)

Since the quadratic equation in (A.10) defines a parabola that opens up, the parameter B cannot
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be between these roots. Finally, not all of these roots are needed: In particular, we can show that

(i) the smaller root in (A.9) is equal to 1, (ii) the smaller root in (A.11) is smaller than 1, and (iii)

the larger root in (A.11) is larger than 1. Together, these results imply the bounds in (A.6).

Define C0 = p0(p2−p1) +p2(p1 +p2) and D0 = 4p1p2(p0p1−p0p2−p2
2). To see that the smaller

root in (A.9) is equal to 1, notice that, this root is equal to:

C0 −
√
C2

0 +D0

2p1p2
,

and that this root is equal to 1 if and only if C0 − 2p1p2 =
√
C2

0 +D0. Indeed, we can show that

the left-hand side of this equality is strictly positive whenever B0 > 1. Consequently, this root is

equal to 1 if and only if:

−4p1p2C0 + 4p2
1p

2
2 = D0.

It is easy to verify that this equality always holds by simply plugging in C0 and D0. Furthermore,

it can be shown that B0 > 1 implies p3 > p2, which, in turn, implies that the smaller root in (A.11)

is smaller than 1. It is, therefore, left to show that the larger root in (A.11) is larger than 1. To

see this result, let us define C1 = p1D1 + p2p3, where D1 = p1 − p2 + p3, and assume that this root

is, in fact, no larger than 1 such that:

C1 +
√
C2

1 − 4p1p2p3D1

2p1D1
≤ 1.

This inequality leads to a contradiction because it holds if and only if:√
C2

1 − 4p1p2p3D1 ≤ 2p1D1 − C1 = p1D + p2p3 = (p1 + p3)(p1 − p2) < 0.

Last we know the identified set is not empty because it has to contain the true points B0.

Therefore, we can rule out the case where the larger root of in (A.11) is located to the right of the

larger root in (A.9), which will render an empty set for the identified set.

Consider case (b) where both B and B0 are smaller than 1. In this case, r0r2 − r2
1 > 0 if and

only if

−B2p1p2 +B(p0p2 − p0p1 + p1p2 + p2
2) + (p0p1 − p0p2 − p2

2) < 0. (A.12)

and r1r3 − r2
2 ≥ 0 if and only if:

B2p1(p1 − p2 + p3)−B(p2
1 − p1p2 + p1p3 + p2p3) + p2p3 ≤ 0. (A.13)

We know that these quadratic equations have two distinct real-valued roots each, with the forms
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in (A.9) and (A.11). Because the quadratic equation in (A.12) defines a parabola that opens down,

the parameter B cannot be between the roots in (A.9). Similarly, because the quadratic equation

in (A.13) defines a parabola that opens up, the parameter B must be between the roots in (A.11).

Like before, not all of these roots are needed: It can be shown that B0 < 1 implies p3 < p2,

which, in turn, implies that the larger root in (A.11) is larger than 1. We can, therefore, ignore

this root. Moreover, since r0r2 − r2
1 > 0 and r1r3 − r2

2 ≥ 0 implies B < 1, it must be the case that

these bounds, when considered together, yield an upper bound no larger than 1, implying that we

can also ignore the larger root in (A.9).

Lastly for the singular case where det(H1(r(β))) = 0, the condition for B ∈ Θ∗ is that there

exists c0 > 0 such that rj = c0rj−1 for j = 1, 2, 3. This implies that det(B1(r(β))) = 0. When

B0 > 1, there are only two possibilities for the identification condition to hold, either B equals to

the larger root of (A.9) or the larger root of (A.11). Likewise, under the singular case if B0 < 1,

then there are only two possibilities for the identification condition to hold, either B equals to the

smaller root of (A.9) or the smaller root of (A.11).

A.5 Details for AR(1) Logit Model with Three Periods and No Covariates

The choice probability for model (2.1) with T = 3 and γ = 0 can be written as

P =

∫
A
G(β)

(
1 A · · · A5

)′ 1

g(A, β, y0)
dQ(A|y0),

with G(β) taking the form:

G(β) =



1 2B B2 0 0 0

0 1 1 +B B 0 0

0 1 1 +B B 0 0

0 1 2B B2 0 0

0 0 B 2B B 0

0 0 1 1 +B B 0

0 0 B B(1 +B) B2 0

0 0 0 B2 2B2 B2



,

and g(A, β, y0) = (1 +A)3(1 +AB)2 for y0 = 0.

56



The left null space of the matrix G(β) is spanned by the following two vectors:27

v1 =
(

0 −1 1 0 0 0 0 0
)′

v2 =
(

0 0 0 0 0 −B 1 0
)′

The moment equality condition implied by the second vector in this basis directly provides the

point identification of β:

β0 = log (P0(0, 1, 1))− log (P0(1, 0, 1)) .

To construct r(β), consider the matrix H(β) to be

1

(B − 1)2



(B − 1)2 0 −B2(2B − 3) B(B − 2) B3 −B3 0 0

0 0 B(B − 2) 1 −B2 B2 0 0

0 0 1 −1 B −B 0 0

0 0 −1 1 −1 1 0 0

0 0 1 −1 1/B B − 2 0 0

0 0 −1 1 B−2
B 3− 2B 0 (B−1)2

B2


,

and we can verify H(β)G(β) = I6.

Since β is point identified, we can apply Theorem 4.2 to show that the average marginal effect

is point identified. The AME is defined as:28

AMEy0 =

∫
A

AB0

1 +AB0
dQ0(A|y0)−

∫
A

A

1 +A
dQ0(A|y0),

where B0 = exp(β0). When y0 = 0, the AME can be written:

AME0 = (B0 − 1)

∫
A
A(1 +A)2(1 +AB0)

1

g(A, β0, y0)
dQ(A | y0).

There is a similar expression if y0 = 1. We can verify

AME0 = (B0 − 1)

∫
A
A(1 +A)2(1 +AB0)

1

g(A, β0, y0)
dQ(A | y0)

=
(

0 B0 − 1 (2 +B0)(B0 − 1) (1 + 2B0)(B0 − 1) B0(B0 − 1) 0
)
r(β0)

= (B0 − 1)(P0(0, 1, 0) + P0(1, 0, 1))

Since β is point identified, the coefficients of this linear combination are known, and the AME

27To construct this basis, we assume that B 6= 1.
28We define the AME conditioning on Y0. If the researcher wants to learn the AME without conditioning on Y0

and if Y0 is observed, then we may take an approach to integrate it out.
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is point identified. Note that since there are multiple forms of H(β) that satisfy the requirement

H(β)G(β) = I6, we may have different representation of AME0. For example, we can also verify

that AME0 = (B0 − 1)P0(0, 1, 0) + B0−1
B0

P0(0, 1, 1). But their values have to be the same if the

model is correct, since we should have the same value for the generalized moments r(β) as long as

H(β)G(β) = I6.

A.6 Details for Section 3.2: AR(1) with Three Periods and a Covariate

For the example with three periods and one covariate in Section 3.2, the likelihood has the following

form:

Lj(A, θ,x, y0) =
3∏
t=1

exp(α+ βyt−1 + γxt)
yt

1 + exp(α+ βyt−1 + γxt)
=
A

∑3
t=1 ytB

∑3
t=1 ytyt−1C

∑3
t=1 xtyt∏3

t=1(1 +AByt−1Cxt)
,

where A = exp(α), B = exp(β), and C = exp(γ).

When y0 = 0, the matrix G(θ,x) has the following form:

1 B(Cx2 + Cx3 ) B2Cx2+x3 0 0 0

0 Cx1 Cx1 (Cx2 +BCx3 ) BCx1+x2+x3 0 0

0 Cx2 Cx2 (BCx2 + Cx3 ) BC2x2+x3 0 0

0 Cx3 BCx3 (Cx2 + Cx3 ) B2Cx2+2x3 0 0

0 0 BCx1+x2 BCx1+x2 (Cx2 + Cx3 ) BCx1+2x2+x3 0

0 0 Cx1+x3 Cx1+x3 (Cx2 +BCx3 ) BCx1+x2+2x3 0

0 0 BCx2+x3 BCx2+x3 (BCx2 + Cx3 ) B2C2x2+2x3 0

0 0 0 B2Cx1+x2+x3 B2Cx1+x2+x3 (Cx2 + Cx3 ) B2Cx1+2x2+2x3


.

A.7 Details for Section 5.3

A.7.1 Information on β by Chamberlain (1992)

As in Section 5.3, we fix y0 = 0. For the two basis vectors displayed in (5.2), we now show that

there is no information on β using the Chamberlain (1992) approach. We begin by writing down the

GMM representation induced by the moment equalities. Because of redundancy, we only need to

consider the first 7 elements of Y. Without loss of generality, let Ỹ denote the first 7 elements of the

vector Y with elements 1{(Y1, . . . , YT ) = y} for y ∈ Y and denote the corresponding probabilities

as P̃ . The moment restriction has the form:

E[v∗
′

1 Ỹ|Y0 = y0] = 0 (A.14)

E[v∗
′

2 Ỹ|Y0 = y0] = 0,
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where v∗1 and v∗2 denote the first 7 elements of v1 and v2 defined in (5.2), respectively. By Chamber-

lain (1992)’ argument on semiparametric information, we know that the information for (B,C,D)

implied by (A.14) is given by ∆′Ω−1∆, where:

Ω =

 v∗1
′

v∗2
′

(diag
(
P̃
)
− P̃P̃ ′

)
(v∗1 v

∗
2) and ∆ =

 P̃ ′V1

P̃ ′V2

 ,
in which we make use of the notation:

V1 =



0 0 0

D(D − C) −BD B(2D − C)

−CD −BD −BC

−CD −BD −BC

0 1 0

D 0 B

0 0 0


and V2 =



0 0 0

0 D C − 2D

−CD D −BD C −BC

0 D C − 2D

1
B2C − 1

B 1

0 0 0

0 −1 1


.

Now, notice that, ∆ can be decomposed into [∆1,∆2,∆3], where:

∆1 =

 −CD(p2 + p3 + p4) +D(Dp2 + p6)

−CDp3 + 1
B2Cp5

 , ∆2 =

 p5 −BD(p2 + p3 + p4)

−p7 +D(p2 + p3 + p4 −Bp3)− 1
Bp5

 ,

and ∆3 =

 −BC(p2 + p3 + p4) +B(2Dp2 + p6)

p5 + p7 + C(p2 + p3 + p4)− 2D(p2 + p4)−BCp3

 .

(A.15)

Therefore, with a little bit of algebra, it can be shown that, if we take the vector: λ1

λ2

 = [∆2 ∆3]−1 ∆1,

then we must obtain the following equality:

∆
(

1 λ1 λ2

)′
= 0.

This result implies that the partial information for β contained in the moment equalities implied

by (5.2) must be equal to zero, as the partial information for B implied by ∆′Ω−1∆ is characterized

by the minimum:

min
λ1,λ2

(
1 λ1 λ2

)
∆′Ω−1∆

(
1 λ1 λ2

)′
,
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which must equal zero.

A.7.2 Detailed Construction for AR(1) Logit Model with the Time Dummy

In this part, we explicitly let results depend on y0. For the time dummy case considered in Section

5.3, let

Py0 =



P((Y1, Y2, Y3) = (1, 1, 1)|Y0 = y0)

P((Y1, Y2, Y3) = (1, 1, 0)|Y0 = y0)

P((Y1, Y2, Y3) = (1, 0, 1)|Y0 = y0)

P((Y1, Y2, Y3) = (1, 0, 0)|Y0 = y0)

P((Y1, Y2, Y3) = (0, 1, 1)|Y0 = y0)

P((Y1, Y2, Y3) = (0, 1, 0)|Y0 = y0)

P((Y1, Y2, Y3) = (0, 0, 1)|Y0 = y0)

P((Y1, Y2, Y3) = (0, 0, 0)|Y0 = y0)



:=



py0
1

py0
2

py0
3

py0
4

py0
5

py0
6

py0
7

py0
8



.

When y0 = 0, the matrix G(θ), now denoted as G0(θ) to explicitly reflect its dependency on y0,

is defined by:

G0(θ) =



0 0 0 B2CD B2CD(C +D) B2C2D2

0 0 BC BC(C +D) BC2D 0

0 0 D CD +BD2 BCD2 0

0 1 C +BD BCD 0 0

0 0 BCD BCD(BC +D) B2C2D2 0

0 C C(BC +D) BC2D 0 0

0 D BD(C +D) B2CD2 0 0

1 B(C +D) B2CD 0 0 0



,

and g(A, θ, y0) = (1 +A)(1 +AC)(1 +AD)(1 +ABC)(1 +ABD).

The vector r0(θ) in this case can be constructed from H0(θ)P0 where H0(θ)G0(θ) = I6. For
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instance consider H0(θ) to be

0 B2(C2+D2+CD)
C(B−1)

B2CD−(C+D−BC)B2(C+D)
(B−1)(D−C) 0 − (BD−C−D)B(C+D)+BCD

D(B−1)(D−C) 0 −B(C+D)
D 1

0 −B(C+D)
C(B−1)

BC+BD−B2C
(B−1)(D−C) 0 BD−C−D

D(B−1)(D−C) 0 1/D 0

0 1
C(B−1) − 1

(B−1)(D−C) 0 1
BD(B−1)(D−C) 0 0 0

0 0 1
D(B−1)(D−C) 0 − 1

BCD(B−1)(D−C) 0 0 0

0 −1
BC2D(B−1)

− 1
D2(B−1)(D−C)

0 1
BC2D(B−1)(D−C)

0 0 0

1
B2C2D2

D+C
BC3D2(B−1)

1
D3(B−1)(D−C)

0 −1
BC3D(B−1)(D−C)

0 0 0


.

The basis vectors of the left null space of G0(θ) reduce to the moment condition for (C,D), as

discussed in Section 5.3,

0 = (−CD +D2)p0
2 − CD(p0

3 + p0
4) +Dp0

6 +
C2Dp0

3p
0
5

−D2p0
4 +D(p0

5 + p0
6) + (−C +D)p0

7

(A.16)

and B has a deterministic relationship with (C,D) as

B =
−D2p0

4 +D(p0
5 + p0

6) + (−C +D)p0
7

CDp0
3

. (A.17)

Also, the moment inequality conditions are imposed through r0(θ) = H0(θ)P0 ∈M5.

When y0 = 1, we can make a similar derivation and have G1(θ) as

0 0 0 B3CD B3CD(C +D) B3C2D2

0 0 B2C B2C(C +D) B2C2D 0

0 0 BD BCD +B2D2 B2CD2 0

0 B B(C +BD) B2CD 0 0

0 0 BCD BCD(BC +D) B2C2D2 0

0 C C(BC +D) BC2D 0 0

0 D BD(C +D) B2CD2 0 0

1 B(C +D) B2CD 0 0 0



,

and the left null space of the matrix G1(θ) is spanned by the following two vectors:

v1 =
(

0 −(C −D)/B −C/B −C/B C/BD 1 0 0
)′

v2 =
(

0 −D/B −(CD −BCD)/B(C −D) −D/B (C −BD)/B(C −D) 0 1 0
)′

or equivalently
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v1 =



0

−(C −D)/B

−C/B

−C/B

C/BD

1

0

0



and − v1D + v2(C −D) =



0

0

CD

D2/B

−D

−D

C −D

0



.

From 0 = Bv′1P1 it follows that

B =
(C −D)p1

2 + C(p1
3 + p1

4)− Cp1
5/D

p1
6

. (A.18)

Also we obtain

0 = (−v1D + v2(C −D))′ P1 = CDp1
3 +

D2p1
4

B
−D(p1

5 + p1
6) + (C −D)p1

7 (A.19)

= CDp1
3 −D(p1

5 + p1
6) + (C −D)p1

7 +
D3p1

4p
1
6

(C −D)Dp1
2 + CD(p1

3 + p1
4)− Cp1

5

where the third equality is obtained from (A.18).

Here to construct the vector of generalized moments r1(θ), we can take H1(θ) as:

0 CBD−B(C+D)2

C(1−B)
BCD−{(C+D)−BC}B(C+D)

(B−1)(D−C) 0 −{BD−C−D}B(C+D)+BCD
D(B−1)(D−C) 0 −B(C+D)

D 1

0 (C+D)
C(1−B)

(C+D)−BC
(B−1)(D−C) 0 BD−C−D

D(B−1)(D−C) 0 1/D 0

0 −1
BC(1−B)

−1
B(B−1)(D−C) 0 1

BD(B−1)(D−C) 0 0 0

0 0 1
BD(B−1)(D−C) 0 − 1

BCD(B−1)(D−C) 0 0 0

0 1
B2C2D(1−B)

− 1
BD2(B−1)(D−C)

0 1
BC2D(B−1)(D−C)

0 0 0

1
B3C2D2

C+D
B2C3D2(B−1)

1
BD3(B−1)(D−C)

0 1
BC3D(1−B)(D−C)

0 0 0


,

such that H1(θ)G1(θ) = I6 and r1(θ) = H1(θ)P1. The moment inequality is imposed through

r1(θ) ∈M5.
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