Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

September 25th

¹Northwestern University ²University of Göttingen and Universitat Jaume I ³St. Louis Fed ⁴ Drexel University

Disclaimer: The following views are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of St. Louis or the Federal Reserve System. Cross-border Patenting, Globalization, and Development Cross-border Patenting, Globalization, and Development

Evolution of Cross-border Patenting

Between 1995 and 2018, foreign patent applications grew by 136% outpacing domestic applications (27%) – excluding those from China.

Most of the increase is driven by cross-border patenting from developed (North) to developing (South) economies (542%!!).

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

This Paper

- What are the drivers of the large increase in cross-border patenting, especially from North to South?
- What are the implications of cross-border patenting from North to South for global income inequality?

Contributions and Outline

- 1. New Data: Build a novel, comprehensive panel dataset of cross-border patents and domestic patents across sectors (we also include citations).
- 2. **Theory:** Develop a model that yields a structural equation for cross-border patenting and guides our empirical analysis.
- 3. **Econometric Analysis:** Employ established methods to estimate the determinants of cross-border patenting.
- 4. **Quantitative Analysis:** Use our model, new data, and partial equilibrium estimates to conduct counterfactual analysis.

Cross-border Patenting, Globalization, and Development

"International Patent and Citations across Sectors" INPACT-S Dataset

Cross-border Patenting, Globalization, and Development

INPACT-S: Construction

- 1. DATA SOURCE: PATSTAT Global Autumn 2021
- 2. **KEY VARIABLES:** patent applications by origin country, application authority, IPC codes (4-digit), and filing year (1980-2018)
- 3. FRACTIONAL COUNTING METHOD Addresses multiple applicants/inventors from different countries and multiple IPC classifications per patent
- 4. **REGIONAL PATENT AUTHORITY APPLICATIONS** Dispersed to individual member states using a weighted-dispersion method

5. IMPUTATION MISSING ORIGIN COUNTRIES

- INDUSTRY DIMENSION: Conversion of IPC codes to ISIC Rev 3 2-digit industries
- 7. FAMILY PATENTS: Consider all the patents of the family

Cross-border Patenting, Globalization, and Development

イロト イヨト イヨト ヨー シック

INPACT-S: Dimensions and Key Features

- PATENTS COVERAGE: Over 49 million cross-border patent applications
- ► TIME COVERAGE: 39 years, over the period 1980–2018
- COUNTRY COVERAGE: 213 countries of origin and 91 patent authorities
- SECTOR COVERAGE: 31 sectors, classified according to ISIC Rev.3
- DOMESTIC PATENTS: Consistently constructed data for domestic patents
- CITATIONS: Detailed cross-country and cross-sector citation data
- RELATED DATA: More comprehensive than any other public dataset

INPACT-S is freely available for downloads.

Cross-border Patenting, Globalization, and Development

Salient Data Patterns

Europe and North America are the traditional hubs for innovation.

- Asia has been a very popular destination for patent applications.
- Asian countries (e.g., China, Japan, Korea) have emerged as leaders too.
- China is an outlier with an unprecedented growth of domestic patents.
- Patents concentrated in Chemicals, Computers, and Medical Equipment.
- Cross-border patenting has grown faster than domestic applications.
- Most cross-border patents are from 'North' to 'South' (542% increase!).

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

A Theory of Patent Flows

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Cross-border Patenting, Globalization, and Development

Assumptions

- 1. M countries, indexed by i and n; discrete time, indexed by t
- 2. Trade in intermediate goods, subject to iceberg transport costs
- 3. Innovators invest in R&D to create new ideas
- 4. Ideas diffuse, exogenously, to produce intermediate goods, creating returns to R&D, but imperfect IPR (i.e., imitation)
- 5. Innovators file patent applications to protect diffused ideas; patenting is costly

6. Key Dynamics:

- Productivity driven by variety of goods
- Trade affects diffusion and incentives for innovation
- IPR protection influences patenting decisions and returns to innovation

Production

Final producers buy T_{it} differentiated intermediate goods produced from each country i with a CES production function

$$Y_{nt} = \sum_{i=1}^{M} \left(\int_{j=1}^{T_{it}} X_{ni,t}^{\frac{\sigma-1}{\sigma}}(j) dj \right)^{\frac{\sigma}{\sigma-1}}$$

Intermediate goods are produced by monopolistic competitors with labor

$$y_{nt}(j) = \Omega_{nt}I_{nt}(j)$$

Intermediate goods are traded and subject to iceberg transport costs, din

Import share of country i from country n:

$$\pi_{in,t} = \Omega_{nt}^{\sigma-1} T_{nt} \frac{\left(\frac{\sigma}{\sigma-1} W_{nt} \mathsf{d}_{in}\right)^{1-\sigma}}{P_{it}^{1-\sigma}}$$

► T_{nt} evolves endogenously though innovation and diffusion

Cross-border Patenting, Globalization, and Development

Jesse LaBelle 1 , Inmaculada Martinez-Zarzoso 2 , Ana Maria Santacreu 3 , Yoto Yotov 4

Innovation and International Diffusion

Innovators in country n create new technologies at the rate:

$$Z_{nt} = \gamma_{nt} \left(\frac{H_{nt}}{Y_t^w}\right)^\eta$$

with γ_{nt} innovation efficiency and η diminishing returns to R&D

- An idea is a blueprint that can be used to produce a differentiated intermediate good (all ideas have the same quality)
- In every period t, a fraction ε_{in,t} of ideas created by country n diffuses to each other country i
- Number of intermediate goods produced in country *i* at time *t*:

$$T_{it} = \sum_{n=1}^{M} \varepsilon_{ni,t} Z_{nt}$$

Cross-border Patenting, Globalization, and Development

メロト メポト メヨト メヨト ヨー ろくで

Cross-border Patenting

- Innovators patent in each jurisdiction where their idea has diffused to reduce imitation, but patenting is a costly activity
- Innovators choose the fraction $\lambda_{in,t}$ to patent that maximizes

$$\underbrace{\frac{\lambda_{in,t}V_{in,t}^{\text{pat}} - C(\lambda_{in,t})P_{it}}_{\text{Value of patenting}} + \underbrace{(1 - \lambda_{in,t})V_{in,t}^{\text{nopat}}}_{\text{Value of not patenting}}$$

The value of a patented technology is given by:

$$V_{in,t}^{pat} = \varepsilon_{\mathrm{in,t}} \phi_{\mathrm{in,t}} rac{\prod_{it}}{T_{it}}$$

with $\phi_{\text{in,t}}$ IP enforcement; $\Pi_{it} = \sum_{n=1}^{M} \pi_{ni,t}(d_{ni,t})Y_{nt}$ intermediate producers' profits

The FOC for the share of patented technologies is:

$$C'(\lambda_{in,t})P_{it} = V_{in,t}^{pat} - V_{in,t}^{nopat}$$

Cross-border Patenting, Globalization, and Development

Cross-border Patenting

Assume V^{nopat}_{in,t} = 0 (all unpatented technologies are imitated) and cost of patenting:

$$\mathcal{C}(\lambda_{\textit{in},t}) = rac{1}{\xi} au_{\textit{in}}(\lambda_{\textit{in},t})^{\xi}, \quad \xi > 1$$

The share of patented technologies can be expressed as:

$$\lambda_{in,t} = \tau_{in}^{-1/(\xi-1)} \left(\frac{V_{in,t}^{pat}}{P_{it}}\right)^{1/(\xi-1)}$$

The number of patented technologies is:

$$\mathsf{Pat}_{in,t} = \lambda_{in,t} \varepsilon_{in,t} Z_{nt}$$

Optimal innovation:

$$H_{nt} = \eta \frac{V_{nt} Z_{nt}}{P_{nt}}$$

with
$$V_{nt} = \sum_{i=1}^{M} V_{in,t}^{\text{pat}}$$

Cross-border Patenting, Globalization, and Development

Jesse LaBelle 1 , Inmaculada Martinez-Zarzoso 2 , Ana Maria Santacreu 3 , Yoto Yotov 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Structural Equation Cross-border Patenting

Cross-border patenting from country n to country i at time t is given by:

$$\mathsf{Pat}_{in,t} = \underbrace{\frac{H_{nt}P_{nt}}{\eta V_{nt}}}_{\mathsf{Source innovation Destination Attractiveness}} \underbrace{\left(\frac{\Pi_{it}}{P_{it}T_{it}}\right)^{1/(\xi-1)}}_{\mathsf{Bilateral patenting frictions}} \underbrace{\left(\tau_{in}\right)^{-1/(\xi-1)}}_{\mathsf{Diffusion}} \underbrace{\varepsilon_{\mathsf{in},\mathsf{t}}^{\frac{\xi}{\xi-1}}}_{\mathsf{Diffusion}} \underbrace{\left(\phi_{\mathsf{in},\mathsf{t}}\right)^{1/(\xi-1)}}_{\mathsf{Policy}}.$$

Structural Estimating Equation

$$\mathsf{Pat}_{in,t} = \exp[\pi_{n,t} + \chi_{i,t} + \overrightarrow{\gamma_{in}} + \sum_{t} \gamma_t \mathsf{BRDR}_{\mathsf{in},t} + \mathsf{POLICY}_{\mathsf{in},t}\beta] \times \epsilon_{in,t} \quad \forall i, n$$

Cross-border Patenting, Globalization, and Development

Jesse LaBelle 1, Inmaculada Martinez-Zarzoso 2, Ana Maria Santacreu 3, Yoto Yotov 4

Structural Equation for Cross-border Patents

 $\mathsf{Pat}_{\mathit{in},t} = \exp[\pi_{\mathit{n},t} + \chi_{\mathit{i},t} + \overrightarrow{\gamma_{\mathit{in}}} + \sum_{t} \gamma_t BRDR_{\mathit{in},t} + POLICY_{\mathit{in},t}\beta] \times \epsilon_{\mathit{in},t} \quad \forall i, n$

- Estimate equation with PPML.
- Use panel data.
- Use domestic patents.
- Use source-time and destination-time fixed effects.
- Use directional pair fixed effects.
- Account for globalization (diffusion, policy) trends.
- Obtain estimates of the effects of policies, e.g., RTAs, TRIPS, PCT.
- Cluster standard errors by pair and/or three-way.

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

メロト メポト メヨト メヨト ヨー ろくで

Diffusion & Patent Flows

Globalization has increased patent flows from developed to developing countries by 300% between 1995-2018

Cross-border Patenting, Globalization, and Development

Policy & Patent Flows

	RTA	TECH	TRIPS	РСТ
RTA_S_N	0.175			
	(0.064)**			
RTA_N_N	0.239			
	(0.044)**			
RTA_TECH_S_N		0.196	0.201	0.196
		(0.053)**	(0.052)**	(0.053)**
$RTA_TECH_N_N$		0.221	0.209	0.208
		(0.043)**	(0.041)**	(0.042)**
RTA_NO_TECH_N_N		1.178	1.159	1.157
		(0.159)**	(0.155)**	(0.155)**
TRIPS_S_S			0.502	0.514
			(0.228)*	(0.207)*
$TRIPS_N_N$			0.209	0.210
			(0.126)+	(0.126)+
PCT_S_S				1.271
				(0.319)**
PCT_N_N				0.177
				(0.083)*
Ν	63846	63846	63846	< ≥ 63846 ≥

Cross-border Patenting, Globalization, and Development

Diffusion, Policy & Patent Flows

- 1. RTAs boost cross-border patent flows, especially South to North.
- 2. Effects are heterogeneous across:
 - 2.1 Agreement types (those with and without technology provisions)
 - 2.2 Country groupings
- 3. Other policies like TRIPS and PCT show varied impacts across different country groups.
- 4. Policy had non significant effect on patents from North to South
- 5. Diffusion explains about 55% of the increase in cross-border patenting from North to South

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Quantitative Analysis

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Cross-border Patenting, Globalization, and Development

Connecting Back to Theory (1/2)

We have found the increase in N-S patent flows is driven by diffusion ($\uparrow \varepsilon_{SN,t}$), not policy ($\phi_{SN,t}$):

- 1. $\uparrow \varepsilon_{\rm SN,t}$ and $\uparrow \phi_{\rm SN,t}$ increase patenting; different implications for inequality
- 2. Technology Transfer: $T_{SN,t} = \varepsilon_{SN,t} Z_{Nt}$
 - (+) Diffusion: Direct benefit to South through increased tech transfer; indirect effect through Z_{Nt}
 - ► (≈) Policy: Limited direct effect on tech transfer; indirect effect through Z_{Nt}

3. Patent Share:
$$\lambda_{SN,t} = \tau_{SN}^{-1/(\xi-1)} \left(\frac{\varepsilon_{SN,t}\phi_{SN,t}\Pi_{St}}{T_{St}P_{Nt}}\right)^{1/(\xi-1)}$$

▶ (+) Diffusion: More tech for South, some increase in royalties

► (-) Policy: Higher royalties without necessarily more tech

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Connecting Back to Theory (2/2)

Implications for Inequality:

Diffusion: South gains more technology, both patented and unpatented

$$\varepsilon_{SN,t}\lambda_{SN,t}Z_{Nt} + \varepsilon_{SN,t}(1-\lambda_{SN,t})Z_{Nt}$$

Policy: Increases patented share without expanding tech base

 Diffusion leads to productivity gains in South, potentially reducing inequality

 \Rightarrow Policy may exacerbate inequality by increasing costs without transfer gains

Key Insight: While both diffusion and policy increase patenting, diffusion-driven flows may reduce global inequality.

Cross-border Patenting, Globalization, and Development

Counterfactual Analysis

- Our empirical analysis shows that globalization has been particularly important for cross-border patenting from North to South.
- We use our model, data, and partial equilibrium estimates to ask:
- 1. What would have been the trajectory of cross-border patenting from North to South between 1995 and 2018 if globalization trends had remained at their 1995 levels?
- 2. What are the implications of cross-border patenting from North to South for global income inequality?

 ${} \longleftrightarrow {} \flat {} \leftarrow \textcircled{} \flat {} \leftarrow \textcircled{} \flat {} \bullet \textcircled{} \flat {} \leftarrow \textcircled{} \flat {} \bullet \textcircled{} \bullet \rule{} \bullet \r{} \bullet \r$

Cross-border Patenting, Globalization, and Development

Calibration Strategy

Parameters from Previous Studies and Data

Armington elasticity (σ): 5 (trade elasticity of 4)

Elasticity of innovation (η) : 0.5

Population: Taken from CEPII database

Iceberg transport costs and productivity parameters: Calibrated using data on trade flows, geography measures, GDP, and population from CEPII; Gravity methods using PPML

Elasticity of patenting costs (ξ): 2 (increasing marginal costs)

Diffusion 1995 ($\varepsilon_{in,1995}$): Cross-section structural equation of cross-border patents

Foreign IP enforcement (ϕ_{in}): 0.25 (innovators receive 25% of profits from foreign adopters, except for South paying one-tenth to North)

Domestic IP enforcement (ϕ_{ii} **):** 0.5 (domestic innovators and adopters split surplus equally)

Cross-border Patenting, Globalization, and Development

Jesse LaBelle 1 , Inmaculada Martinez-Zarzoso 2 , Ana Maria Santacreu 3 , Yoto Yotov 4

 $\mathsf{Pat}_{in} = \exp[\pi_n + \chi_i + \gamma BRDR_{in} + GRAV_{in}\alpha] \times \epsilon_{in} \quad \forall i, n$

	1995	1995	2006	2018
LN_DIST				
CNTG				
LANG				
CLNY				
BRDR				
BRDR_N_N				
BRDR_N_S				
BRDR_S_S				
BRDR_S_N				
N				
			4 🗆	

Cross-border Patenting, Globalization, and Development

 $\mathsf{Pat}_{\mathit{in}} = \exp[\pi_{\mathit{n}} + \chi_{\mathit{i}} + \gamma BRDR_{\mathit{in}} + GRAV_{\mathit{in}}\alpha] \times \epsilon_{\mathit{in}} \quad \forall \mathit{i}, \mathit{n}$

1995 1995 2006 2018
LN_DIST -0.350
(0.072)**
CNTG -0.186 (0.222)
LANG 1 403
(0.202)**
CLNY 0.025
(0.270)
οπυπ -2.404 (0.366)**
BRDR_N_N
BRDR_N_S
BRDR S S
BRDR_S_N
N 2326
1V 2.320

Cross-border Patenting, Globalization, and Development

 $\mathsf{Pat}_{\mathit{in}} = \exp[\pi_{\mathit{n}} + \chi_{\mathit{i}} + \gamma BRDR_{\mathit{in}} + GRAV_{\mathit{in}}\alpha] \times \epsilon_{\mathit{in}} \quad \forall \mathit{i}, \mathit{n}$

	1005	1005	2006	2010
	1992	1992	2006	2018
LN_DIST	-0.350	-0.418		
	(0.072)**	(0.075)**		
CNTG	-0.1 86	`-0.37́0		
	(0.223)	(0.231)		
LANG	1.403	1.313		
	(0.202)**	(0.187)**		
CLNY	0.025	-0.120		
	(0.270)	(0.282)		
BRDR	-2.404	(**=*=)		
	(0.366)**			
BRDR N N	(0.000)	-1 939		
BRBRERE		(0 391)**		
		-3 050		
DRDR_N_5		(0.407)**		
BBUBSS		(0.431)		
01/01/_3_3		-4.440 (0 EE2)**		
		(0.553)***		
RKDK-2-N		-5.740		
		(0.667)**		
N	2326	2326		
			4 🗆	

Cross-border Patenting, Globalization, and Development

Jesse LaBelle 1 , Inmaculada Martinez-Zarzoso 2 , Ana Maria Santacreu 3 , Yoto Yotov 4

 $\mathsf{Pat}_{\mathit{in}} = \exp[\pi_{\mathit{n}} + \chi_{\mathit{i}} + \gamma BRDR_{\mathit{in}} + GRAV_{\mathit{in}}\alpha] \times \epsilon_{\mathit{in}} \quad \forall \mathit{i}, \mathit{n}$

	1995	1995	2006	2018
LN_DIST	-0.350	-0.418	-0.314	
	(0.072)**	(0.075)**	(0.071)**	
CNTG	-0.186	-0.370	-0.458	
	(0.223)	(0.231)	(0.268)+	
LANG	1.403	1.313	1.315	
	(0.202)**	(0.187)**	(0.198)**	
CLNY	0.025	-0.120	-0.430	
	(0.270)	(0.282)	(0.246)+	
BRDR	-2.404	· · ·	· · ·	
	(0.366)**			
BRDR_N_N	. ,	-1.939	-1.736	
		(0.391)**	(0.356)**	
BRDR_N_S		`-3.0 5 0	`-2.85́1	
		(0.497)**	(0.661)**	
BRDR_S_S		-4.440	-4.724	
		(0.553)**	(0.570)**	
BRDR_S_N		-5.740	`-3.74́1	
		(0.667)**	(0.790)**	
N	2326	2326	2782	
			4 □	

Cross-border Patenting, Globalization, and Development

 $\mathsf{Pat}_{in} = \exp[\pi_n + \chi_i + \gamma BRDR_{in} + GRAV_{in}\alpha] \times \epsilon_{in} \quad \forall i, n$

	1995	1995	2006	2018
LN_DIST	-0.350	-0.418	-0.314	-0.218
	(0.072)**	(0.075)**	(0.071)**	(0.071)**
CNTG	-0.186	-0.370	-0.458	-0.682
	(0.223)	(0.231)	(0.268)+	(0.333)*
LANG	1.403	1.313	1.315	1.363
	(0.202)**	(0.187)**	(0.198)**	(0.161)**
CLNY	0.025	-0.120	-0.430	-0.359
	(0.270)	(0.282)	(0.246)+	(0.234)
BRDR	-2.404	· · ·	· /	· · · ·
	(0.366)**			
BRDR_N_N	· · ·	-1.939	-1.736	-2.023
		(0.391)**	(0.356)**	(0.360)**
BRDR_N_S		`-3.05́0	`-2.851	`-2.89́3
		(0.497)**	(0.661)**	(0.843)**
BRDR_S_S		-4.440	`-4.72́4	`-4.4Ó1
		(0.553)**	(0.570)**	(0.334)**
BRDR_S_N		-5.740	`-3.74́1	`-3.25́3
		(0.667)**	(0.790)**	(0.814)**
N	2326	2326	2782	2488

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Calibrated Parameters

Parameter	Value	Description
σ	5	Armington elasticity
d _{NS}	6.60	Iceberg trade costs from S to N
d _{SN}	6.13	Iceberg trade costs from N to S
η	0.50	Elasticity of innovation
LN	0.71	Population N
Ls	1	Population S
ξ	2	Elasticity in the cost of patenting
ϕ_{SN}	0.25	Santacreu (2023)
ϕ_{NS}	0.025	Santacreu (2023)
ϕ_{NN}	0.5	Santacreu (2023)
ϕ_{SS}	0.5	Santacreu (2023)
ε _{NS}	0.48	Gravity 1995
εsn	0.52	Gravity 1995
$\varepsilon_{SN,t}$		Calibrated to match globalization trends
γ_{nt}		Calibrated to match R&D data

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Calibration Strategy Remaining Parameters

Innovation efficiency (γ_{nt}) and diffusion forces (ε_{SN,t}): Calibrated to match data on R&D intensity and border effect from main specification

Cross-border Patenting, Globalization, and Development

External Validation: Royalty Payments

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

▲ 同 ▶ ▲ 国 ▶

< ∃⇒

э

Cross-border Patenting without Globalization

Counterfactual: Set the trajectory for $\varepsilon_{SN,t}$ to its 1995 value $\forall t$

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Cross-border Patenting, Globalization, and Development

Cross-border Patenting and Inequality

	1995-2018	2000-2018
Cross-border patenting	38%	46%
Income inequality	-12.6%	-15.6%

Cross-border patents from North to South would have been 38% lower.

Globalization has benefited both 'North' and 'South', but it has made poor countries relatively richer.

Income inequality 12.6% lower due to globalization forces!

Cross-border Patenting, Globalization, and Development

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Concluding Remarks

- Both diffusion and policy increase cross-border patenting
- However, their implications for inequality differ:
 - **Diffusion:** Increases tech transfer, reduces inequality
 - **Policy:** May increase costs without commensurate tech gains
- Key insight: Diffusion-driven flows more effectively promote technology transfer and reduce global inequality
- Quantitative result: Globalization reduced income inequality by 12.6% (1995-2018)

Cross-border Patenting, Globalization, and Development

Jesse LaBelle¹, Inmaculada Martinez-Zarzoso², Ana Maria Santacreu³, Yoto Yotov⁴

Construction of INPACT-S Dataset

- Data source: PATSTAT Global Autumn 2021
- Key variables: patent applications by origin country, application authority, IPC codes (4-digit), and filing year (1980-2018)
- Concordance tables used to convert IPC codes to ISIC Rev 3 2-digit industry codes
- Final dataset dimensions: 91 patent authorities, 213 origin countries, 39 years, and 31 ISIC Rev 3 2-digit codes

Back

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Data Adjustments and Imputation

- 1. Fractional counting method:
 - Addresses multiple applicants/inventors from different countries and multiple IPC classifications per patent
 - Avoids double-counting by assigning fractional values based on the number of applicants/inventors and IPC codes
- 2. Regional patent authority applications:
 - Dispersed to individual member states using a weighted-dispersion method
 - Weights based on the share of direct patent applications from each origin country to each member state

Back

Cross-border Patenting, Globalization, and Development

Data Adjustments and Imputation

- 1. Imputation of missing origin countries:
 - Step 1: Use the method by De Rassenfosse et al. to impute missing values using familial linkages between worldwide applications
 - Step 2: Disperse remaining "origin missing" applications using aggregate bilateral data from WIPO as weights
- 2. Conversion of IPC codes to ISIC Rev 3 2-digit industries:
 - Use crosswalk from Lybbert and Zolas (2012)
 - Multiply patent numbers by probability weights and sum by industries

Back

Cross-border Patenting, Globalization, and Development

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Key Assumptions and Limitations

- 1. All patents from the same family are considered, not just the first patent
- 2. Weighted-dispersion method assumes that not all member states of a regional authority attract patent applications equally
- Imputation of missing origin countries assumes that probabilities are constant across all technology classes for each origin/authority/year relationship
- 4. Conversion to ISIC industries relies on the accuracy of the crosswalk and probability weights

Back

Cross-border Patenting, Globalization, and Development

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●