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Abstract

We design mechanisms for maintaining public goods which require periodic

non-monetary contributions. Utilitarian welfare is maximized by concentrat-

ing contributions among low-cost group members, but such policies generally

induce some members to leave the group or misreport their preferences. To

forestall exit, contributions should be shifted from members with intermedi-

ate costs to some high-cost members. To deter misreporting, members should

be screened using up to two membership tiers, which reward larger contribu-

tions with increased access to the good. We apply our results to the design

of crowd-sourced recommendation engines hosted by platforms such as Netflix

and TikTok, which function as public goods supported by user feedback about

new content.
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1 Introduction

Social and economic groups commonly band together to provide public goods by pool-

ing contributions from individual group members. A collective action problem arises

whenever the group benefits of these contributions exceed their private benefits to the
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contributor. In these situations, institutions are needed to coordinate contributions

and ensure that group members internalize their collective benefits.

A large literature has studied the design of such institutions when group mem-

bers make monetary contributions. In some contexts, however, members may make

“in-kind” or other nonmonetary contributions. An important example involves crowd-

sourced recommendation engines maintained by online platforms such as Netflix and

TikTok. Those platforms rely on customer feedback about new content to make

informed recommendations to other members. Feedback is costly for customers to

provide, both because it requires consuming content of uncertain quality and because

evaluating one’s experience takes time and energy. Further, some of the value from

this feedback accrues to other customers, who benefit from improved recommenda-

tions. Feedback is therefore effectively a contribution to a public good, and a platform

wishing to efficiently elicit it must solve a collective action problem.

We study the design of mechanisms for solving such problems. We formalize our

analysis through a model of collective upkeep (Section 2). In our model, a machine

provides services to a large group of agents over a long time horizon. The machine

periodically breaks, rendering it useless until sufficient contributions have been col-

lected to fix it. All agents benefit from the services provided by a working machine

but dislike contributing to fix it, with potentially heterogeneous preferences for both

activities. A designer seeking to maximize the group’s long-run welfare crafts a mech-

anism, which regulates access to the machine’s services and solicits contributions from

group members.

We model the relationship between contributions and the uptime of the machine in

a flexible, reduced-form way admitting multiple interpretations. To demonstrate our

results and facilitate comparisons with existing work, we describe two interpretations

in detail: a fluid setting featuring a large population of long-lived agents participating

simultaneously (Section 6), and a Poisson setting featuring a sequence of short-lived

agents participating asynchronously (Section 7).

Our setting can be viewed as a variant of classic public goods provision problems,

with the twist that contributions are nonmonetary. In particular, they can be made at

a limited rate and only when the machine is broken, and they cannot be stored for later

use. Since the designer commits to directives based on information (the state of the

machine) that is not available to agents, our model additionally has an information-

design interpretation. Formally, it can be viewed as an information design problem
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in which the designer’s information and payoff function are endogenously determined

by the mechanism. (We elaborate on these relationships in Section 2.3.)

Under a first-best mechanism (Section 3), the designer asks all agents with suf-

ficiently low contribution costs to contribute whenever the machine is broken. Un-

fortunately, when agents have heterogeneous preferences, this mechanism generally

induces some agents with low usage benefits to leave the group. Participation con-

straints must therefore be incorporated into the mechanism design problem.

If the designer can observe agents’ preferences (Section 4), the optimal mechanism

ensures participation of all agents by customizing their contribution requirements. In

general, optimal contributions drop with an agent’s contribution cost and rise with

their usage benefit. When agent preferences satisfy a total ordering condition, optimal

contributions exhibit a tripartite structure: High types contribute fully and low types

contribute nothing, while intermediate types make partial contributions. Notably,

participation constraints bind only for intermediate types, and so an agent’s payoff is

non-monotone in his type.

If the designer cannot observe agents’ preferences (Section 5), the mechanism must

restrict access to the machine in order to truthfully elicit preferences. We show that

the optimal screening mechanism offers at most two distinct participation levels. In

one, the agent enjoys full access to to the machine. In the other, the agent enjoys

only limited access while incurring a reduced responsibility for contributions. Under

this mechanism, some agents opt out of the group.

These results suggest new lessons for the design of recommendation engines.

Purely voluntary feedback leaves an unresolved collective action problem, and the

average user’s experience could be improved by collecting additional mandatory feed-

back from some users. However, this policy may lead some users to stop participating.

Our results indicate that platforms may be able to more efficiently elicit feedback by

mandating a small amount from users as a baseline, while simultaneously offering a

premium membership tier with better-tailored recommendations in return for addi-

tional feedback.

1.1 Related literature

Our collective upkeep model is most closely related to work studying mechanisms for

provision of excludable public goods, notably Hellwig (2003) and Norman (2004). Our
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model differs from those in two key respects. First, group members may differ in their

cost of contribution. This heterogeneity creates a utilitarian motive for concentrating

contributions on low-cost group members, an objective absent from existing work.

Second, group members face bounds on their ability to contribute. This constraint

drives the optimality of mechanisms with multiple access and contribution levels. By

contrast, a posted price would be optimal in a model with atomistic agents and no

contribution limits, as in the large-population limit of Norman (2004).

Recent work by Battaglini and Palfrey (2024b) similarly features heterogeneous

contribution costs and bounds on contribution levels. Unlike our model, their agents

cannot be excluded from the public good, so must be incentivized to contribute

through the possibility that their contribution is pivotal. In the large-population

limit, optimal public goods provision therefore converges to zero unless the per-capita

cost of the public good vanishes. By contrast, in our setting the additional instru-

ment of excludability allows non-vanishing contributions to be extracted from a large

population. An additional distinction is that in our model, the contribution bound

is endogenously determined and tightens as more of the public good is provisioned.

This feature has no analog in their model.

Our setting also bears similarities to the literature studying dynamic contribu-

tion models (Admati and Perry 1991; Battaglini and Palfrey 2024a; Compte and

Jehiel 2003; Deb, Oery, and Williams 2024; Fershtman and Nitzan 1991; Marx and

Matthews 2000; Matthews 2013). In these models, players make incremental contri-

butions toward the provision of a public good. Unlike in our setting, they cannot

commit to contribution plans before observing the state of the public good, creat-

ing incentives for dynamic freeriding. We instead focus on how dynamics constrain

players’ opportunities to contribute.

Our paper additionally joins a recent literature studying mechanism design under

redistributionary motives. Existing work has focused on the allocation of private

goods: See, for instance, Akbarpour, Dworczak, and Kominers (2023), Condorelli

(2013), and Pai and Strack (2024) for one-sided problems; Dworczak, Kominers, and

Akbarpour (2021) for a two-sided problem; and Kang (2023) for a problem involving

a mechanism run alongside an unregulated market. In these settings, agents have

differing, privately observed social values of money, endowing a utilitarian designer

with a preference for redistribution. In our setting, agents’ heterogeneous contribution

costs induce an analogous motive in a public goods provision context.
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As applied to crowd-sourced recommendation engines, our paper contributes to

recent work in economics (Che and Hörner 2018; Kremer, Mansour, and Perry 2014)

and computer science (Frazier et al. 2014; Immorlica et al. 2019; Mansour, Slivkins,

and Syrgkanis 2015) studying their incentive compatibility. In these studies, recom-

mendation engines face constraints on their ability to foster experimentation when

agents can observe the time that new content has been available. In particular,

potential early adopters expect the underlying algorithm to have little information

and distrust the engine’s recommendations. By contrast, the designer in our setting

can obscure the time since new content has arrived. She is instead constrained in

her ability to preferentially select agents for experimentation on the basis of their

preferences.

Methodologically, our analysis shares important features with recent studies of

long-run or steady-state mechanism design, especially in queuing (Che and Tercieux

2021; Margaria 2023) and matching (Baccara, Lee, and Yariv 2020). In these settings,

agents view themselves as participating in a stationary system with an endogenous

state whose distribution is the same for all agents. This assumption contrasts with

the prevalent classical framework in which the initial state is exogenous and agents’

incentives change systematically with calendar time. The stationary perspective plays

a central role in our dynamic model interpretations. (See Sections 6 and 7 for details.)

2 Model

2.1 Setting

A group of agents enjoy the services provided by an excludable public good, which

for concreteness we refer to as a machine, in continuous time over a doubly infinite

horizon. At each moment the machine is either working or broken. The machine

provides services only when it is working, and a working machine breaks periodically.

A broken machine must be fixed through contributions from group members. Each

agent can contribute only when the machine is broken and faces a limit on his rate

of contribution, which without loss we normalize to 1.

Agents value the machine according to the frequency with which they use its

services and contribute to fixing it. Agents have heterogeneous preferences over these

two outcome metrics, summarized by types θ drawn from a probability measure λ
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over a Borel space Θ. If an agent of type θ uses the machine a fraction r ∈ [0, 1] of

the time and contributes a fraction p ∈ [0, 1] of the time, he enjoys total utility

r · u(θ)− p · c(θ), (1)

where u(θ) > 0 is the agent’s usage benefit and c(θ) > 0 is his contribution cost. We

assume that u, c ∈ L 1(λ).

2.2 Design problem

A designer oversees the machine’s upkeep. To do so, she collects contributions from

agents and regulates their access to the machine’s services. Concretely, she chooses an

allocation (R,P ) consisting of long-run usage levels R : Θ → [0, 1] and contribution

levels P : Θ → [0, 1] for all agents. Her goal is to maximize utilitarian social welfare

W (R,P ) =

∫ (
R(θ) · u(θ)− P (θ) · c(θ)

)
λ(dθ). (2)

The set of feasible allocations is limited by physical constraints related to the pro-

cess by which the machine breaks and is fixed. We implement these constraints in a

reduced-form way consistent with multiple interpretations. Because these interpreta-

tions do not add any further formal content to our analysis, we defer describing them

until Sections 6 and 7.

Let Q ∈ [0, 1] denote the long-run fraction of time the machine is working, which

we refer to as the machine’s uptime. Then the physical constraints are given by

ρ ·Q =

∫
P dλ (B)

R(θ) ≤ Q, P (θ) ≤ 1−Q (S-θ)

The balance condition (B) says that the long-run rate at which the machine breaks

(on the left-hand side) balances the long-run rate at which agents contribute to fixing

it (on the right-hand side). The parameter ρ > 0 can be interpreted as the machine’s

breakage rate. The simplex bounds (S-θ) say that each agent’s usage and contributions

are bounded by the respective frequencies with which the machine is working and

broken.

The set of feasible allocations may additionally be limited by economic constraints

6



related to agents’ freedom of action. These constraints encode familiar interim par-

ticipation and incentive compatibility requirements. Formally, the participation con-

straints are

R(θ) · u(θ)− P (θ) · c(θ) ≥ 0. (P-θ)

The left-hand side captures an agent’s payoff from participating in the mechanism,

while the lower bound of 0 is an agent’s outside option obtained by never using or con-

tributing to fix the machine. Meanwhile, the incentive-compatibility (IC) constraints

are

R(θ) · u(θ)− P (θ) · c(θ) ≥ R(θ′) · u(θ)− P (θ′) · c(θ). (IC-θθ′)

That is, each agent can obtain any other agent’s usage and contribution levels by

misreporting his type. Under incentive compatibility, no agent should prefer to do

so.

Given a feasible allocation (R,P ), the machine’s uptime Q is pinned down by

the balance condition (B). Nonetheless, as we will demonstrate later, it is technically

convenient to includeQ as an additional design variable and enforce (B) by imposing it

as a constraint on the designer’s welfare maximization problem. We therefore study

the designer’s problem of choosing a mechanism (R,P,Q) to maximize utilitarian

welfare (2) subject to the physical constraints (B) and (S-θ), as well as potentially

the economic constraints (P-θ) and (IC-θθ′).

2.3 Relationship to existing models

Our model is closely related to static models of public goods provision and informa-

tion design. We now describe the precise relationship between these settings. Both

the similarities and differences are instructive for understanding our results and con-

tribution to the literature, in particular the role played by our physical constraints.

2.3.1 Public goods provision

In a static public goods provision problem, a designer must raise contributions simul-

taneously from a group of heterogeneous agents in order to produce a collective good.

As a benchmark, consider the following static model, which is a closest approach to

our collective upkeep model. The group is a continuum of mass 1 with preferences

described by a measure λ over the type space Θ. Let P be the vector of contributions;
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R be the vector of allocations of the public good; and Q be the quantity of the public

good, which is determined by total contributions through the linear production func-

tion (B). Agent payoffs are linear in allocations and contributions, as in (1). The

public good is excludable, so that any R such that 0 ≤ R(θ) ≤ Q is feasible.

This static benchmark is very close to the setting studied by Hellwig (2003) and

Norman (2003). The main distinction between their setting and our benchmark is

that here agents are atomistic (i.e., infinitesimal). As a result, the designer faces no

aggregate uncertainty over group preferences. Otherwise, the benchmark is a special

case of their setting, with linear production and consumption utility.

Payoffs for all players are the same in the static benchmark and our model of

collective upkeep. Additionally, the constraints on feasible allocations in the former

model are a subset of the ones in the latter. In particular, the economic constraints

on participation and incentive compatibility are identical in the two settings. Fur-

thermore, the balance condition and the simplex bound R(θ) ≤ Q are required for

feasibility in both settings. The key difference between the settings is that the col-

lective upkeep model requires the additional simplex bound P (θ) ≤ 1−Q.

This extra constraint not only limits each agent’s ability to contribute, but it

imposes an endogenous bound governed by overall provision of the public good. In

a static setting, exogenous contribution bounds could be justified through budget

constraints or the contribution of a scarce non-monetary resource like labor. (For

an example of a public goods problem in which exogenous contribution bounds are

imposed, see Battaglini and Palfrey (2024b).) However, in static settings there is no

natural microfoundation for contribution bounds which depend on the contributions

of other agents. In our collective upkeep setting, by contrast, such bounds arise

naturally.

2.3.2 Information design

In a static information design problem, a sender attempts to persuade a receiver

to take their preferred action by disclosing information about an underlying state.

As a benchmark, consider the following problem, which is a closest approach to our

collective upkeep model. The receiver who can take one of two actions, “Interact”

(I) or “Avoid” (A). He receives payoff 0 from choosing a = A and a state- and

type-dependent payoff from choosing a = I, where the state space is Ω = {W,B} and

he receives payoff u(θ) if ω = W and −c(θ) if ω = B. The sender’s payoffs agree with
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the receiver’s except when (ω, a) = (B, I), in which case the sender receives payoff

y − c(θ) for some y > 0. The state is W with prior probability Q.

With observable agent types, this problem is similar to the binary-action informa-

tion design problems studied in Kamenica and Gentzkow (2011). With unobserved

types, it is akin to models studied in Kolotilin et al. (2017) and Guo and Shmaya

(2019). Standard arguments from these settings imply that the binding incentive

constraints involve obedience to a recommendation of a = I and (if types are unob-

served) truthful reporting. As a result, the incentive constraints can be reduced to

the economic constraints appearing in the collective action model. In particular, the

participation constraint ensures obedience to recommendations of a = I, while the

IC constraint ensures truthful type reporting.

The key difference between the two settings is that in the collective upkeep prob-

lem, the variables Q and y are endogenously determined by the balance condition. In

particular, the rate at which the receiver chooses a = I when ω = B pins down Q via

the balance condition, and this linkage in turn determines the social value y to the

planner of interacting with a broken machine. This feedback loop has no analog in

static information design settings, where payoffs and state realizations are exogenous.

3 First-best mechanism

We now solve for the designer’s optimal mechanism satisfying the physical constraints,

without imposing any economic constraints. Formally, the designer chooses (R,P,Q)

to maximize aggregate welfare (2) subject to the balance condition (B) and simplex

bounds (S-θ) for all θ ∈ Θ.

3.1 Characterizing the optimum

An immediate observation is that welfare is increasing in agents’ usage of the machine,

while usage levels do not appear in the constraints. As a result, at the optimum all

agents should enjoy full access to the machine. Formally, R(θ) = Q for all types

at the optimum, saturating the corresponding simplex bounds. Going forward, we

enforce this choice of R and drop it from the optimization problem.

We next establish that the first-best contribution levels exhibit a threshold struc-

ture: Low-cost members, whose contribution cost falls below a threshold yfb, con-
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tribute the maximum amount, while members with higher costs do not contribute at

all. Let ū =
∫
u dλ be the group’s aggregate usage benefit from a working machine.

Proposition 1. Let yfb be the unique y solving

ū− ρ · y =

∫
(y − c)+ dλ, (3)

and let W fb be the common value in (3) evaluated at yFB. Then the mechanism

(P fb, Qfb) defined by

ρ · Qfb

1−Qfb
= Prλ(c < yfb), and (4)

P fb(θ) = (1−Qfb)1[c<yfb](θ)

solves the first-best problem and yields welfare W fb.

(All proofs omitted from the body of the paper are collected in Section 8.)

To prove the optimality of a threshold contribution structure, we consider the

Lagrangian relaxation of the problem with respect to the balance condition. Assigning

a Lagrange multiplier y to that constraint yields the Lagrangian

L (P,Q; y) = Q · (ū− ρ · y) +
∫

P (θ) · (y − c(θ))λ(dθ) (5)

Holding (Q, y) fixed, the Lagrangian factorizes over types, allowing P to be optimized

pointwise. Note that this factorization relies on the inclusion of Q as an auxiliary

optimization variable, motivating its introduction.

The optimal multiplier yfb measures the social value of fixing the machine. Indeed,

yfb is the amount of money the designer would be willing to pay to fix the machine

immediately when it breaks down. While this idea can be made formal using dynamic

programming principles, such techniques are not easily generalized to incorporate

economic constraints. By contrast, the Lagrangian approach taken in our proof is

readily adapted to these constraints, as we will demonstrate shortly.

3.2 Comparative statics

We now examine how the optimal mechanism is shaped by the breakage rate ρ.

Increasing ρ reduces the machine’s average lifespan and decreases the social value of

fixing it. Then since yfb tracks this social value, it follows that:
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Corollary. The first-best contribution threshold yfb is decreasing in the breakage rate

ρ.

Proof. The left-hand side of (3) is decreasing in y while the right-hand side is increas-

ing. Since an increase in ρ induces a downward shift in the former, yfb must decrease

in ρ.

A lower contribution threshold means that the machine is fixed more slowly when

it breaks. As a result, machine uptime must decline with ρ:

Corollary. Machine uptime Qfb under the first-best mechanism is nonincreasing in

the breakage rate ρ and decreasing whenever Qfb > 0.

Proof. (4) implies thatQfb is nonincreasing in ρ and decreasing whenever it is positive,

while it is and nondecreasing in yfb. Since the previous corollary established that yfb

is decreasing in ρ, it follows that Qfb is as well.

In spite of these two results, the long-run aggregate contribution level
∫
P dλ can

increase in ρ. Recall that the bound on each agent’s contribution level is endogenously

determined by the machine’s downtime 1 − Qfb. Since downtime increases in ρ, all

agents asked to contribute do so more often. This force can overwhelm the counter-

vailing reduction in yfb. For instance, if Θ = {θ0} is a singleton, then (3) implies

that yfb = (u(θ0) + c(θ0))/(1 + ρ) > c(θ0) for sufficiently small ρ. In that regime, the

aggregate contribution level is 1−Qfb, which is increasing in ρ in light of the previous

corollary.

4 Mechanisms with participation constraints

When agents are homogeneous, the first-best mechanism of a utilitarian designer de-

livers all agents a non-negative payoff and therefore satisfies participation. However,

when agents have heterogeneous preferences, the first-best mechanism generally vi-

olates the participation constraints of some agents. We now solve for an optimal

mechanism under the additional economic constraint that all agents must prefer the

mechanism to their outside option. Formally, we impose the participation constraints

(P-θ) for all θ ∈ Θ. For the time being, we continue to assume that the designer

observes agents’ types.
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4.1 Characterizing the optimum

As in the first-best solution, there is no reason to restrict any agent’s access to a work-

ing machine. Indeed, such restrictions would lower social welfare while simultaneously

tightening participation constraints. Hence R(θ) = Q for all types at the optimum.

Going forward, we enforce this choice of R and drop it from the optimization problem.

In this reduced problem, the participation constraint may be rearranged to obtain

an upper bound on each agent’s contribution level:

P (θ) ≤ Q · ν(θ),

where

ν(θ) = u(θ)/c(θ)

captures an agent’s rate of substitution between usage and contributions. We will

refer to this quantity as the valuation of an agent of type θ. This representation

allows the two constraints (S-θ) and (P-θ) to be combined into the single constraint

P (θ) ≤ min(1−Q,Q · ν(θ)) (SP-θ)

Since participation constraints merely tighten the upper bound on feasible contri-

bution levels, a threshold contribution structure is optimal for the same reasons as in

the first-best problem. The new feature of the problem with participation constraints

is that agents who are asked to contribute may do so at different levels. Since the

constraints (SP-θ) are type-dependent, types for whom ν(θ) < (1−Q)/Q contribute

a type-dependent amount less than their feasible maximum. These are precisely the

agent types for whom participation constraints bind.

Let

ℓ(Q; y) = Q · (ū− ρ · y) +
∫

min(1−Q,Q · ν(θ))(y − c(θ))+ λ(dθ) (6)

be the designer’s reduced Lagrangian under the optimal threshold contribution rule,

where recall that y is the Lagrange multiplier on the balance condition. The following

theorem establishes that an optimal mechanism under participation constraints can

be obtained by solving the minimax problem associated with ℓ.
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Theorem 1. Let W ∗ be the value and (Q∗, y∗) be the smallest1 saddle point of the

concave-convex minimax problem

min
y≥0

max
Q∈[0,1]

ℓ(Q; y) = max
Q∈[0,1]

min
y≥0

ℓ(Q; y),

with y∗ defined as +∞ if the minimum is not attained. Then the mechanism (P ∗, Q∗)

with

P ∗(θ) = min(1−Q∗, Q∗ · ν(θ))1[c<yfb](θ)

solves the designer’s problem under participation constraints and delivers welfare W ∗.

Moreover, y∗ ≥ yfb, and this inequality is strict if W ∗ < W fb.

The cost threshold y∗ is the optimized value of the Lagrange multiplier on the bal-

ance condition. As a result, it has a natural interpretation as the (marginal) shadow

value of fixing the machine. When participation constraints bind, this value is larger

than under the first-best mechanism. Indeed, fixing the machine not only generates

usage benefits for other agents (as in the unconstrained problem) but additionally

loosens their participation constraints by raising the machine’s uptime. As a result,

the designer can concentrate contributions on a narrower set of low-cost agents.

Surprisingly, this latter force can be powerful enough to induce more frequent

repairs under participation constraints than without them. (Of course, this higher

uptime cannot improve social welfare over the first-best outcome.) The following

example illustrates this possibility.

Example. Consider a three-type environment Θ = {L,M,H} with

L M H

u 3 4 10

c 3 2 1.25

λ 1/3 1/3 1/3

The machine breaks at rate ρ = 5.5. In this setting, yFB = 2.7 and QFB = 4/15,

while y∗ = 45/14 and Q∗ = 2/7 > QFB.

1The selection of the smallest saddle point is not needed for optimality, but we adopt it as a
convention for comparability with the mechanism characterized in Proposition 1.
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4.2 Ordered types

In general, the set of participation-constrained agents are those with low contribution

costs and valuations. When costs and benefits comove, this set takes a particularly

simple form.

Definition 1. Agent types are ordered if Θ = R− and ν is increasing in θ while

c(θ) = −θ.

The substantive content of ordered types is that the type structure is one-dimensional

and valuations are increasing while costs are decreasing along this dimension. The

identification of θ with the agent’s cost is simply a convenient normalization. It is

without loss, since types can always be relabeled to achieve this identity.

Recall that the first-best mechanism requires agents with sufficiently low costs to

contribute. For ordered types c is decreasing, and therefore the first-best mechanism

can be characterized by a type threshold θfb = −yfb above which agents are asked

to contribute. Meanwhile, because ν is increasing under ordered types, participation

constraints are active on an interval of intermediate types. Indeed, the designer’s

incentives are aligned with both high-type agents (who don’t mind contributing)

and low-type ones (for whom contributing is too costly to be socially valuable). A

conflict arises only for intermediate-type agents, who generate a large social value

from contributing but do not sufficiently enjoy using the machine.

The following proposition formalizes this reasoning. It additionally establishes

that the interval on which participation constraints bind includes the first-best con-

tribution threshold.

Proposition 2. Suppose that types are ordered and first-best welfare is not achievable

under participation constraints. Then there exists an optimal mechanism in which

participation constraints are active on an interval of types containing θfb.

4.3 Comparative statics

Unlike the first-best solution, the optimal threshold y∗ under participation constraints

does not exhibit unambiguous comparative statics in the breakage rate ρ. There are

two contrasting forces here. On the one hand, as in the first-best problem, frequent

breakdowns reduce the usage benefits generated by fixing the machine. On the other

hand, participation constraints tighten as breakdowns become frequent, and fixing the

14



machine more often loosens these constraints. Fixing the machine therefore allows

the designer to concentrate contributions on lower-cost agents, yielding an aggregate

cost savings.

The tension between these forces is illustrated by the limiting behavior of y∗ as ρ

grows large. Depending on the thickness of the right tail of the valuation distribution,

contributions may become narrowly concentrated on low-cost types (i.e., the first force

dominates) or else dispersed throughout the population of agents (the second force

dominates).

Proposition 3. Suppose that Eλ[ν] = ∞ and the distribution of c under λ has full

support on R+.

• If limv→∞ v Prλ(ν > v) = 0, then limρ→∞ y∗ = ∞.

• If limv→∞ v Prλ(ν > v) = ∞ and ν and c are negatively associated under λ,

then limρ→∞ y∗ = 0.

The condition that ν have infinite expectation ensures that the optimal mechanism

under participation constraints generates positive welfare even for large ρ. It is not a

particularly restrictive assumption given that ν is a ratio of usage benefits to costs.

It is satisfied, for instance, if lim infε→0 Prλ(c < ε)/ε > 0 and usage benefits are

bounded away from zero. The assumption is also compatible with both tail conditions

appearing in the proposition. For instance, if Prλ(ν > v) ∼ 1/(v · (log v)α) for large
v for some α ≥ 1, then Eλ[ν] = ∞ while limv→∞ v Prλ(ν > v) = 0. On the other

hand, if Prλ(ν > v) ∼ 1/vα for large v for some α ∈ (0, 1), then Eλ[ν] = ∞ while

limv→∞ v Prλ(ν > v) = ∞.

When types are ordered, the tail conditions on ν can be recast in terms of the

density of costs at zero. This is because under ordered types, valuations are high

when θ is large, which is also when costs are low. As a result, a thick right tail is

equivalent to an unbounded cost density near zero, while conversely a thin right tail

is equivalent to a vanishing cost density.

Proposition 4. Under the assumptions of Proposition 3, suppose additionally that

types are ordered and lim supθ→0 u(θ) < ∞ while lim infθ→0 u(θ) > 0.

• If limε→0 Prλ(c < ε)/ε = 0, then limρ→∞ y∗ = ∞.
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• If limε→0 Prλ(c < ε)/ε = ∞, then limρ→∞ y∗ = 0.

The machine’s uptime is a function both of the breakage rate and of aggregate

contribution levels. As discussed in our analysis of the first-best mechanism, aggregate

contributions need not shrink with ρ. Nonetheless, it turns out that contribution

levels never grow fast enough to outweigh the higher breakage rate, and the machine’s

uptime decreases in ρ.

Proposition 5. Q∗ is nonincreasing in ρ.

While the assertion is intuitive, we are not aware of any standard results regarding

comparative statics of saddle points which directly imply it. The difficulty arises

from the fact that the function ℓ of which (Q∗, y∗) is a saddle point is neither sub- nor

supermodular in (Q, y, ρ). To prove the result, we identify an appropriate modification

of ℓ which is submodular and apply standard results to that function.

5 Incentive-compatible mechanisms

We now solve for an optimal mechanism when the designer must induce agents not

just to participate, but also to truthfully report their preferences. Formally, we impose

the participation constraints (P-θ) as well as the IC constraints (IC-θθ′) for all θ, θ′ ∈
Θ. We refer to a mechanism which satisfies both sets of constraints as a screening

mechanism.

As we have seen, when agents’ types are observable, there is no benefit to restrict-

ing any agent’s access to the machine. However, when agents must self-report their

contribution costs, access restrictions become crucial for screening. The usage levels

R must therefore be designed in tandem with the contribution levels P .

The following result characterizes the main qualitative features of an optimal

screening mechanism.

Theorem 2. There exists an optimal screening mechanism (R∗, P ∗, Q∗) which satis-

fies

(R∗(θ), P ∗(θ)) =


(Q∗, 1−Q∗), if ν̄ ≤ ν(θ)

(R̂, P̂ ), if ν ≤ ν(θ) < ν̄

(0, 0), if ν(θ) < ν
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for some 0 < ν ≤ ν̄ ≤ ∞ and 0 < R̂ ≤ Q∗ and 0 < P̂ ≤ 1−Q∗. Moreover, if ν̄ = ∞
then R̂ = Q∗.

In words, the designer screens agents by offering up to two distinct membership

tiers: a full-access tier with high contribution requirements, and potentially also a

partial-access tier with reduced contributions. Whenever multiple membership tiers

are optimal, the high tier demands the maximum contribution from all members in

that tier. Finally, all agents have the ability to opt out of the group and receive the

(0, 0) allocation. Unlike the case of observable preferences, in general some agents do

opt out of the group under an optimal screening mechanism.

The proof of this result relies on a reduction of the mechanism design problem to a

Myersonian monopoly-sale problem. In this reduction, buyers have quasilinear utility

with valuations ν(θ) for the good. The quantity R(θ) becomes the probability with

which a buyer of type θ receives the good while P (θ) is the price he pays for it. The

seller’s objective is a weighted average of revenue, reflecting a Lagrange multiplier on

the balance condition, and the utility of each buyer type. Unlike a classic monopoly-

sale problem, the simplex bound P (θ) ≤ 1 − Q imposes an upper bound on the

price that each buyer can pay for the good. As a result, a posted-price mechanism

may not be optimal and fractional allocations can be beneficial for screening buyers.

(We provide an analysis of the monopoly-sale problem under a payment bound in

Appendix A.)

We show that an optimal allocation rule corresponds to an extreme point in the

set distribution functions which satisfy a moment inequality equivalent to the budget

constraint. In general, extreme points may involve one additional point of support for

each moment inequality, implying our result. The same argument drives the findings

of Le Treust and Tomala (2019) and Doval and Skreta (2024), who show that in

an information design context, each additional constraint adds up to one additional

point of support in the set of posteriors induced by an optimal mechanism.

Theorem 2 ensures that no more than two membership tiers are required at the

optimum. The following example exhibits a setting in which exactly two tiers are

required.

Example. Suppose that Θ = {L,M,H}, with equal probability of each type. All

types have contribution cost c(θ) = 1, while usage utilities are u(H) = 5, u(M) =

1, u(L) = 0.1. The breakage rate is ρ = 1.
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Under the first-best mechanism, Qfb = 0.5, and all types fully contribute, so that

(Rfb(θ), P fb(θ)) = 0.5 for all types.

Under the optimal screening mechanism, Q∗ = 0.3. Type H receives full access in

return for a full contribution, type M receives partial access in return for a reduced

contribution, and type L leaves the group. The optimal allocations are R∗(H) =

0.3, R∗(M) = 0.2, R∗(L) = 0 and P ∗(H) = 0.7, P ∗(M) = 0.2, P ∗(L) = 0.

6 Model interpretation: Fluid interaction with long-

lived agents

In this section, we show how our reduced-form model can be interpreted as a club

comprised of a large population of long-lived agents, who use and contribute to the

machine in an incremental manner. We describe this interpretation and derive the

reduced-form physical constraints from it in Section 6.1. We then relate it to the

design of crowdsourced recommendation platforms in Section 6.2.

6.1 Microfounded model

The group is comprised of a mass of atomistic (i.e., infinitesimal), long-lived agents.

Agents live for a random period of time drawn from a (type-dependent) distribution

F (· | θ) with expectation 1/κ for each type. (For simplicity, we assume that κ is

the same for all types.) Deaths are balanced by an inflow of new agents at rate κ.

We assume that the population of agents is in steady state, so that the empirical

distribution of agent ages G is time-invariant with density g(z | θ) = 1 − F (z | θ).
Agent types are drawn from the distribution λ. Because all types have the same

expected lifespan, λ is also the empirical distribution of agent types in steady state.

At each moment when the machine is working, each agent can use its services,

enjoying a flow benefit u(θ) from (full) access. At each moment when the machine is

broken, each agent can contribute to fixing it, incurring a flow cost c(θ) from (fully)

contributing. Agents evaluate the payoff of participating in the mechanism according

to the expected cumulative usage benefits minus contribution costs over their lifespan.

When the machine breaks, a random contribution quantum (i.e., a cumulative

contribution aggregated across agents and time) is required to fix it. The size of

this quantum is drawn from a fixed distribution with expectation normalized to 1,
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independent of the machine’s history. When the machine is fixed, it breaks after a

random lifespan drawn from a fixed distribution with expectation 1/ρ, independent

of the machine’s history.

A mechanism assigns personalized (type- and age-dependent) usage and contri-

bution levels, varying based on the current machine state as well as potentially the

history of the system. We restrict attention to mechanisms that induce a stationary

environment for agents born at different calendar times. Formally, a mechanism must

be compatible with a stationary system process Xt = (ωt, rt, pt), where:

• ωt ∈ {W,B} is the state of the machine at time t

• rt : Θ×R+ → [0, 1] records the time-t usage level rt(θ, z) of each agent of type

θ and age z

• pt : Θ×R+ → [0, 1] records the time-t contribution level pt(θ, z) of each agent

Note that the information in X is sufficient to derive the entire history of the system,

including the lifespans of the machine (using the transition times of ω from W to B)

and the contribution quanta (using the transition times of ω from B to W plus the

contribution levels r).

Given any stationary system process, let r̄t(θ) =
∫
rt(θ, z)g(z | θ) dθ and p̄t(θ) =∫

pt(θ, z)g(z | θ) dθ be the group-average usage and contribution levels for each type.

The associated reduced form (R,P,Q) is well-defined, where R(θ) = Er̄t(θ), P (θ) =

Ep̄t(θ), Q = Pr(ωt = W ) and each of these expressions is independent of t by station-

arity.

The normalized expected payoff for an agent of type θ born at time t can be

written in terms of this reduced form as

κ ·E
∫ ∞

0

dF (τ | θ)
∫ τ

0

(
rt+z(θ, z) ·u(θ)−pt+z(θ, z) ·c(θ)

)
dz = R(θ) ·u(θ)−P (θ) ·c(θ),

as in (1), where the inner integral aggregates the agent’s flow payoffs over his lifespan

and the outer one averages over possible lifespans. It follows that utilitarian welfare,

defined as the average welfare of a randomly-selected agent, equals (2). (By the

ergodic theorem, this objective is equivalent to an alternative specification of welfare

as the long-run average flow payoffs of group members.)

Markovian mechanisms condition current usage and contribution levels only on

the current state of the machine. Formally, a Markovian mechanism is characterized
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by a Borel function σ : Θ× {W,B} → [0, 1], with the interpretation that an agent of

type θ is assigned usage level σ(θ,W ) when the machine is working and contribution

level σ(θ, B) when the machine is broken. We do not formally describe more general

mechanisms, as we will show that any system process satisfying certain necessary

conditions is payoff-equivalent to one induced by a Markovian mechanism.

Definition 2. A stationary system process is admissible if:

1. Machine lifespans are i.i.d. with expectation 1/ρ.

2. Contribution quanta are i.i.d. with expectation 1.

3. rt(θ) ≤ 1[ωt=W ] and pt(θ) ≤ 1[ωt=B] for all t.

Every stationary system process compatible with some (not necessarily Marko-

vian) mechanism is admissible. The first two requirements of admissibility ensure

that the process respects the independence of successive lifespans and cumulative

contributions. The last requirement ensures that the machine is used only when it is

working and contributions are collected only when the machine is broken.

The following result establishes that every reduced form of an admissible system

process satisfies the physical constraints. Furthermore, all triples (R,P,Q) satisfying

the physical constraints can be achieved via a Markovian mechanism. In particular,

the physical constraints are necessary and sufficient for feasibility of an allocation.

Proposition 6. 1. Fix an admissible system process. Then its reduced form sat-

isfies the physical constraints.

2. Suppose that the triple (R,P,Q) satisfies the physical constraints. Then there

exists a Markovian mechanism σ and a stationary system process X such that

σ is compatible with X and (R,P,Q) is the reduced form of X.

6.2 Application: Crowdsourced recommendation platforms

The fluid interpretation of our model can be applied as a stylized model of digital

content platforms such as Netflix and Tiktok, which rely on user feedback to make

content recommendations.

In this application, the agents are users of the platform, while the machine is a

recommendation algorithm which makes personalized content suggestions to users.
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The machine is working when it is well-informed about the attributes of its current

content library, for instance each Netflix movie’s overall quality as well as its fit

for particular user demographics. The machine breaks when the library of available

content turns over, for instance because Netflix loses the rights to previously-available

shows and movies and licenses a new batch.

The machine is fixed by showing new content to users and eliciting feedback on

their experiences. Feedback is costly for users to give for two reasons. First, users

do not enjoy untested content on average, for instance because match value is an

important component of the user experience. Second, users find it costly to explicitly

report their experiences through ratings or more detailed surveys.

This application can be formally mapped onto our abstract model in the fol-

lowing way. Uncertainty about the available content on a recommendation plat-

form is summarized by a state ω ∈ Ω pertaining to a content library X. Each

user receives a flow payoff v(θ, x, ω) from consuming content x ∈ X from the li-

brary when the library’s state is ω. When ω is known, the algorithm recommends

x∗(θ, ω) ∈ argmaxx∈X v(θ, x, ω), generating a usage benefit u(θ) = v(θ, x∗(θ, ω), ω)

for each user. Since consumers may consume content repeatedly over time, a choice

x from the content library should be interpreted as a bundle of individual pieces of

content.

When the machine breaks, ω is drawn anew from some known distribution µω.

(For notational simplicity, the set X of content is held fixed, with the understanding

that elements of X are merely labels that carry no informational content.) A mass

of content of random size must be consumed by users before ω is revealed, at which

point the algorithm can once again make informed recommendations.

While the algorithm is learning ω, users are served content from the library accord-

ing to some (potentially type-dependent) distribution µx(θ). Hence in the learning

regime, users receive a usage benefit v0(θ) = Eω,x(v(θ, x, ω) | θ). We assume that

v0(θ) < 0 to capture the costs of consuming poorly-targeted content. Direct costs

of providing feedback are captured by an additional flow cost c0 ≥ 0 of providing

ratings. Each user’s net cost of contributing is c(θ) = c0 − v0(θ) > 0.

A user’s commitment to provide feedback in return for access could be imple-

mented in several ways. The platform could bundle tested and untested content

together in its recommendations, preventing a user who accepts the platform’s rec-

ommendations from using the algorithm without simultaneously contributing. The
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platform could additionally prompt the user to periodically provide ratings in a way

which is difficult to skip.

7 Model interpretation: Sequential interaction with

short-lived agents

In this section, we show how our model can be interpreted as a sequence of interactions

with a population of short-lived agents, who each use and contribute to the machine

exactly once. We describe this interpretation and derive the reduced-form constraints

from it in Section 7.1. We then relate it to the design of incentive-aware bandit

exploration models in Section 7.2.

7.1 Microfounded model

Short-lived agents arrive according to a Poisson process with rate normalized to 1.

Arriving agents’ types are drawn i.i.d. from the distribution λ. An arriving agent

can use the machine if it is working and can contribute to fix the machine if it is

broken, after which he departs forever. Using a working machine gives an agent of

type θ usage benefit u(θ), while contributing to fix a broken machine incurs a cost

c(θ). A contribution fixes the machine with a probability we normalize to 1. When

the machine is fixed, it breaks after a random lifespan drawn from a fixed distribution

with expectation 1/ρ, independent of the machine’s history.

As in our fluid interpretation (section 6), we focus on mechanisms which are

compatible with a stationary system process. In a sequential arrival environment,

the system process tracks agent arrivals, their types, the actions they took, and the

state of the machine. Every stationary system process induces a well-defined reduced

form (R,P,Q), where:

• Q is the long-run proportion of time that the machine is working. Equivalently,

it is the probability that the machine is working at any given time.

• P : Θ → [0, 1] is the long-run density of machine usage. That is, for every Borel

set B ⊂ Θ, the long-run frequency of agents who are of types θ and use the

machine is
∫
B
P dλ. Equivalently, the probability that an arriving agent has a

type drawn from B and uses the machine is
∫
B
P dλ.
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• R : Θ → [0, 1] is the long-run density of contributions. That is, for every Borel

set B ⊂ Θ, the long-run frequency of agents who are of types θ and contribute is∫
B
R dλ. Equivalently, the probability that an arriving agent has a type drawn

from B and contributes is
∫
B
P dλ.

Given these definitions, the expected payoff for an agent of type θ who is born

at type t can be written in terms of this reduced form as in (1), and the long-run

expected welfare of an arriving agent is as in (2).

Markovian mechanisms stochastically direct arriving agents to use or fix the ma-

chine with probabilities that depend only on their type and the current state of the

machine. Formally, a Markovian mechanism is characterized by a Borel function

σ : Θ×{W,B} → [0, 1], with the interpretation that an arriving agent of type θ uses

the machine with probability σ(θ,W ) if it is working and fixes it with probability

σ(θ, B) if it is broken, with independent randomization across agents.

As in our analysis of the fluid interpretation, we explicitly impose only a few

necessary conditions on admissible system processes. These conditions will imply the

physical constraints and ensure implementability using Markovian mechanisms.

Definition 3. A system process is admissible if:

1. Conditional on the history of the system process before time 0, agent arrivals

after time 0 follow a Poisson process with arrival rate 1 and arriving agent types

are i.i.d. with distribution λ.

2. Machine lifespans are i.i.d. with expectation 1/ρ.

3. Arriving agents use the machine only when it is working and contribute only

when it is broken.

The first requirement ensures ensures that the agent arrival process is exogenous,

and in particular that it is independent of the machine state. This assumption can

also be viewed as a nonanticipation constraint on the designer, who does not know

the future arrival process when deciding how to direct an arriving agent. The second

requirement ensures that the system process encodes the physical breakage process

described above. The final requirement ensures that agents can use and fix the ma-

chine only when it is working or broken, respectively.

The following result is an analog of Proposition 6 for the sequential arrival envi-

ronment. It establishes that every admissible system process induces a reduced-form
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satisfying the physical constraints. Further, all triples (R,P,Q) satisfying the phys-

ical constraints can be achieved via some Markovian mechanism. As a result, the

physical constraints are necessary and sufficient for feasibility of an allocation.

Proposition 7. 1. Fix a stationary process that satisfies Assumption 3. The re-

duced form (R,P,Q) induced by this process satisfy (B) and (S-θ) for all θ ∈ Θ.

2. Suppose that the triple (R,P,Q) satisfies (B) and (S-θ) for all θ ∈ Θ. Then

there exists a Markovian mechanism that induces the reduced-form (R,P,Q).

7.2 Connection to incentivized bandit exploration

The sequential interpretation described in Section 7.1 can be used to build a bridge

between our reduced-form setting and models of bandit exploration, for instance

Kremer, Mansour, and Perry (2014) (hereafter KMP). To complete the bridge, we

supplement the interpretation with a microfoundation of payoffs and state transitions.

The machine is a bandit arm, which each arriving agent can choose to pull or not.

The payoff to pulling the arm is controlled by a state variable ω ∈ Ω, which renews

at random times following a Poisson process with rate ρ. When renewal occurs,

a new state is drawn from a probability distribution π over states, independent of

the history of the system. The designer does not directly observe the state process.

However, whenever an agent pulls the arm, its current state is revealed to the designer.

Additionally, the designer observes when renewals occur.

An agent of type θ who pulls the arm in state ω ∈ Ω obtains a type- and state-

dependent payoff v(ω, θ), where v ∈ L1(π × λ). If the agent does not pull the arm,

he receives a payoff of 0. Let u, c : Θ → R be given by

u(θ) =

∫
(v(ω, θ))+ π(dω), c(θ) = −

∫
v(ω, θ) π(dω).

The quantity u(θ) is the agent’s ex-interim payoff from observing the arm’s state and

making an optimal decision to pull it or not. Meanwhile, the quantity −c(θ) is the

agent’s ex-interim payoff from pulling the arm when its state is unknown.

With this microfoundation, upkeep of the machine takes the form of periodic

exploration of the bandit arm to learn its state. The machine is working when the

arm’s state is known, in which case an agent of type θ can achieve payoff u(θ) by

making an optimal state-contingent decision about whether to pull the arm. The
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machine breaks when the state of the arm renews. When the machine is broken,

some agent must make a costly contribution by pulling the arm to learn its state.

In this interpretation, agents cannot distinguish between usage and contribution,

since both involve pulling the arm. As a result, the ex-interim participation constraint

of our reduced-form setting is equivalent to an ex-post obedience requirement that

each agent must prefer to obey a recommendation by the designer to pull the arm.

This setting can therefore be viewed as an infinite-horizon variant of KMP, with

the key distinctions that the arm’s state renews periodically and agents may have

heterogeneous preferences.

KMP observe that when homogeneous agents do not know their order of arrival in

a finite-horizon model, obedience constraints are nonbinding for a utilitarian designer.

In our setting, agents arrive in steady state and calendar time is uninformative about

the state of the arm and the designer’s knowledge. A similar conclusion therefore

obtains: The first-best outcome is achievable when agents are homogeneous. However,

when agents have heterogeneous preferences, incentive constraints may bind for some

agents. Our results indicate how the informativeness of recommendations to different

agents should be adjusted to restore obedience.

8 Proofs

8.1 Proof of Proposition 1

We first observe that the designer’s problem is equivalent to the relaxed problem in

which the balance condition is enforced as the inequality constraint

ρ ·Q ≤
∫

P dλ.

Indeed, any mechanism which satisfies this inequality strictly can be improved by

lowering P (θ) for a positive measure of types without violating the simplex bounds

or the relaxed balance condition. Hence any optimum of the relaxed problem satisfies

the balance condition as an equality. For the remaining of the proof, we pass to the

relaxed problem.

Let CS be the set of all (P,Q) that satisfy the simplex bounds. For each Q, let

C̄S(Q) = {P : (P,Q) ∈ CS}. Consider the Lagrangian relaxation of the designer’s
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problem with respect to the balance condition. Let y be the dual variable. The

Lagrangian is given by (5) with the domain CS ×R+. The problem

maximizeP∈C̄S(Q)L (Q,P ; y)

factorizes over types and has the solution P (θ) = (1−Q) · 1[c(θ)<y]. Let

ℓfb(Q; y) = max
P∈C̄S(Q)

L (Q,P ; y) = Q · (ū− ρ · y) + (1−Q)

∫
(c− y)+ dλ

be the reduced Lagrangian with domain [0, 1] ×R+. Since the domain Q ∈ [0, 1] is

compact, it follows from Sion’s minimax theorem that the primal problem admits an

optimal solution and strong duality holds. The dual Lagrange function is given by

φfb(y) = max
Q∈[0,1]

ℓfb(Q; y) = max

(
ū− ρ · y,

∫
(y − c(θ))+λ(dθ)

)
. (7)

Since the function y 7→ ū − ρ · y is decreasing while the function y 7→
∫
(y − c)+ dλ

is nondecreasing, the dual problem miny≥0 φ
fb(y) attains its optimum at yfb, and its

value is W fb as stated. Finally, the balance condition implies (4).

8.2 Proof of Theorem 1

As in the proof of Proposition 1, we pass to the relaxed problem in which the balance

condition is enforced as an inequality. Let CSP be the set of all (P,Q) that satisfy

the simplex bounds and participation constraints (SP-θ). For each Q, let C̄SP (Q) =

{P : (P,Q) ∈ CSP}. Consider the Lagrangian relaxation of the designer’s problem

with respect to the balance constraint. Let y be the dual variable. The Lagrangian

is given by (5) with domain restricted to (P,Q) ∈ CSP .

For every (Q, y), the problem

maximizeP∈C̄SP (Q)L (Q,P ; y)

factorizes over types and has the solution π(θ;Q, y) = min(1 − Q,Q · ν(θ)) · 1[θ>y].

The function ℓ(Q, y) in the theorem statement is therefore the reduced Lagrangian:

ℓ(Q; y) = max
P∈C̄SP (Q)

L (Q,P ; y).
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Since the domain Q ∈ [0, 1] is compact, Sion’s minimax theorem implies that strong

duality holds, the primal problem

max
Q∈[0,1]

min
y≥0

ℓ(Q; y)

admits an optimum, and the optimal value is given by W ∗, as stated. If, further,

the dual problem admits a (finite) solution y∗, then strong duality ensures that the

mechanism (P ∗, Q∗) with P ∗(θ) = π(θ;Q∗, y∗) solves the designer’s problem.

Suppose instead that the dual problem admits no optimum, i.e., y∗ = ∞. We

claim that ρ ·Q ≥
∫
θ
min(1−Q,Q · ν(θ))λ(dθ) for every Q. Indeed, if there existed

some Q ∈ [0, 1] such that ρ ·Q <
∫
θ
min(1−Q,Q ·ν(θ))λ(dθ), then there would exist a

feasible mechanism satisfying Slater’s condition. In that case, the dual problem would

admit an optimum (Borwein and Lewis 2006, Theorem 3.2.8), a contradiction. This

claim implies that any (P,Q) ∈ CSP satisfying the balance condition must satisfy

P (θ) = min(1−Q,Q · ν(θ)) for every θ. Hence (P ∗, Q∗) with P ∗(θ) = π(θ;Q∗, y∗) =

min(1−Q,Q · ν(θ)) must solve the designer’s problem.

It remains to prove that y∗ ≥ yfb. If y∗ = ∞ then this inequality trivially holds

as a strict inequality, so suppose that y∗ < ∞. Let φfb and φ∗ be the dual Lagrange

functions of the two problems, with φfb as defined in (7) and

φ∗(y) = max
Q∈[0,1]

ℓ(Q; y).

Then φfb(y) = φ∗(y) for every y ≤ yfb, because for y ≤ yfb the maximum in (7) is

achieved by (P,Q) = (0, 1), which satisfies the participation constraints. Therefore,

for every y < yfb we have that

φ∗(y) = φfb(y) > φfb(yfb) = φ∗(yfb),

where the strict inequality follows from the fact that φfb is uniquely maximized at

yfb. Since y∗ is the solution to the dual problem miny≥0 φ
∗(y), it follows that y∗ ≥ yfb

as desired. Finally, if W ∗ < W fb and y∗ < ∞, then φ∗(y∗) < φfb(yfb). Since φ∗(yfb) =

φfb(yfb), this implies that yfb ̸= y∗, as desired.
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8.3 Proof of Proposition 2

Let (Q∗, P ∗) be the mechanism characterized in Theorem 1, with y∗ the corresponding

solution to the dual problem. Let Θ∗ be the set of types with active participation

constraints under this mechanism. By definition, θ ∈ Θ∗ if and only if P ∗(θ) =

Q∗ · ν(θ). If Q∗ = 0, then Θ∗ = R− is an interval. Going forward, we assume that

Q∗ > 0.

Theorem 1 implies that θ ∈ Θ∗ if and only if c(θ) < y∗ and ν(θ) ≤ (1 − Q∗)/Q∗,

i.e., Θ∗ is the intersection of Ir = c−1([0, y∗)) and Il = ν−1([0, (1−Q∗)/Q∗]). Since c

and ν are monotone functions, Ir and Il are both intervals. Therefore, Θ∗ is itself an

interval.

Let Θfb be the set of types that contribute under the mechanism characterized in

Proposition 1. We claim that Θfb∩Θ∗ ̸= ∅. Indeed, in any convex optimization prob-

lem, all inactive constraints may be removed without affecting the optimality of the

solution. But first-best welfare is achievable in the problem without the participation

constraints in Θfb, and so Θfb ∩Θ∗ = ∅ would contradict our hypothesis.

Recall that c(θ) = −θ under ordered types , so that Θfb = (θfb, 0) with θfb = −yfb.

We claim that θfb ∈ Θ∗. Indeed, from Theorem 1 we know that y∗ > yfb and therefore

yfb ∈ [0, y∗) and θfb = −yfb ∈ Ir. Meanwhile, Θfb ∩Θ∗ ̸= ∅ implies that Θfb ∩ Il ̸= ∅.
Since Θfb is an interval with lower endpoint θfb and Il is a left half-line, it follows that

θfb ∈ Il.

8.4 Proof of Proposition 3

Let (Q∗, y∗) be as defined in Theorem 1. We first prove that if Eλν = ∞, then Q∗ ∈
(0, 1) and y∗ < ∞, so that in particular Q∗ ∈ argmaxQ∈(0,1) ℓ(Q; y∗). The balance

condition implies the inequality Q∗/(1−Q∗) ≤ 1/ρ, so that necessarily Q∗ < 1. Next,

the monotone convergence theorem implies that

lim
Q↓0

∫
min(ν(θ), (1−Q)/Q)λ(dθ) = Eλν = ∞.

Hence for Q > 0 sufficiently small, the mechanism (Q,P ) with P (θ) = min(1−Q,Q ·
ν(θ)) lies in C∗ and satisfies the balance condition as a strict inequality, verifying

Slater’s condition and therefore (as established in the proof of Theorem 1) implying

that y∗ < ∞.
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By construction, this mechanism satisfies participation for all agents and therefore

delivers non-negative aggregate welfare. Lowering P (θ) for a positive measure of types

until the balance condition holds with equality therefore yields a feasible mechanism

generating positive payoffs for a positive measure of types, i.e., generating positive

aggregate welfare. Since any feasible mechanism satisfying Q = 0 yields zero welfare,

it must be that Q∗ > 0.

We now establish the claimed limits. Since the reduced Lagrangian ℓ is a concave

function of Q, its one-sided derivatives exist everywhere. Its right derivative may be

calculated by writing ℓ as

ℓ(Q; y) = Q · (ū− ρ · y) +Q ·
∫

ν(θ) · (y − c(θ))+ λ(dθ)

+

∫
1[ν≥(1−Q)/Q](θ) ·

(
1− (ν(θ) + 1) ·Q

)
· (y − c(θ))+ λ(dθ),

Since (1−Q)/Q is decreasing and continuous,

d

d+Q
1[ν≥(1−Q)/Q](θ) = 0

everywhere, meaning that

∂ℓ

∂+Q
= ū− ρ · y +

∫
ν(θ) · (y − c(θ))+ λ(dθ)

−
∫

1[ν≥(1−Q)/Q](θ) · (ν(θ) + 1) · (y − c(θ))+ λ(dθ).

Regrouping terms allows this derivative to be equivalently written

∂ℓ

∂+Q
= ū−

∫
1[c≤y](θ) ·

(
1[ν<(1−Q)/Q](θ) · u(θ)− 1[ν≥(1−Q)/Q](θ) · c(θ)

)
λ(dθ)

− y ·
(
ρ+ Prλ(c ≤ y ∧ ν ≥ (1−Q)/Q)−

∫
1[c≤y∧ν<(1−Q)/Q](θ) · ν(θ)λ(dθ)

)
.

The optimality condition Q∗ ∈ argmaxQ∈(0,1) ℓ(Q; y∗) implies the one-sided first-order

condition ∂ℓ
∂+Q

(Q∗; y∗) ≤ 0. Meanwhile, for every Q > 0 the balance condition may be

rewritten

ρ =

∫
1[c≤y∧ν<(1−Q)/Q](θ) · ν(θ)λ(dθ) +

1−Q

Q
· Pr(c ≤ y ∧ ν ≥ (1−Q)/Q).
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Since the balance condition is satisfied at (Q∗, y∗) andQ∗ > 0, the first-order condition

implies

ū−
∫

1[c≤y∗](θ) ·
(
1[ν<ν∗](θ) · u(θ)− 1[ν≥ν∗](θ) · c(θ)

)
λ(dθ)

≤ y∗ · (ν∗ + 1) · Prλ(c ≤ y∗ ∧ ν ≥ ν∗),

where ν∗ = (1−Q∗)/Q∗. Since c > 0, this bound in turn implies the weaker bound∫
1[c>y∗](θ) · u(θ)λ(dθ) ≤ y∗ · (ν∗ + 1) · Prλ(ν ≥ ν∗).

Now, suppose that limv→∞ v Prλ(ν > v) = 0. Since limρ→∞ Q∗ = 0, it must be that

limρ→∞ ν∗ = ∞ and therefore limρ→∞(ν∗+1)·Prλ(ν ≥ ν∗) = 0. Let y = lim infρ→∞ y∗,

and suppose by way of contradiction that y < ∞. Then

lim inf
ρ→∞

y∗ · (ν∗ + 1) · Prλ(ν ≥ ν∗) = 0.

Meanwhile, viewed as a function of y, 1[c>y](θ) is an indicator function on an open

set, meaning that it is lower semicontinuous. Hence

lim inf
ρ→∞

1[c>y∗] ≥ 1[c>y].

Fatou’s lemma therefore implies

lim inf
ρ→∞

∫
1[c>y∗](θ) · u(θ)λ(dθ) ≥

∫
1[c>y](θ) · u(θ)λ(dθ)

Since c has full support on R+, the latter integral must be positive when y < ∞, a

contradiction.

Meanwhile, the left derivative of ℓ may be calculated by writing the reduced

Lagrangian as

ℓ(Q; y) = Q · (ū− ρ · y) +
∫

1[ν≤(1−Q)/Q](θ) ·
(
(ν(θ) + 1) ·Q− 1

)
· (y − c(θ))+ λ(dθ)

+ (1−Q)

∫
(y − c(θ))+ λ(dθ).
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Since (1−Q)/Q is continuous and decreasing,

d

d−Q
1[ν≤(1−Q)/Q](θ) = 0

everywhere, meaning that

∂ℓ

∂−Q
= ū− ρ · y +

∫
1[ν≤(1−Q)/Q](θ) · (ν(θ) + 1) · (y − c(θ))+ λ(dθ)

−
∫

(y − c(θ))+ λ(dθ).

This derivative may be equivalently written

∂ℓ

∂−Q
= ū−

∫
1[c<y](θ) ·

(
1[ν≤(1−Q)/Q](θ) · u(θ)− 1[ν>(1−Q)/Q](θ) · c(θ)

)
λ(dθ)

− y ·
(
ρ+ Prλ(c < y ∧ ν > (1−Q)/Q)−

∫
1[c<y∧ν≤(1−Q)/Q] · ν(θ)λ(dθ)

)
.

The optimality condition Q∗ ∈ argmaxQ∈(0,1) ℓ(Q; y∗) implies the one-sided first-order

condition ∂ℓ
∂−Q

(Q∗; y∗) ≥ 0. Meanwhile, for every Q > 0 the balance condition may be

rewritten

ρ =

∫
1[c<y∧ν≤(1−Q)/Q] · ν(θ)λ(dθ) +

1−Q

Q
· Pr(c < y ∧ ν > (1−Q)/Q).

Since the balance condition is satisfied at (Q∗, y∗) andQ∗ > 0, the first-order condition

implies

ū−
∫

1[c<y∗](θ) ·
(
1[ν≤ν∗](θ) · u(θ)− 1[ν>ν∗](θ) · c(θ)

)
λ(dθ)

≥ y∗ · (ν∗ + 1) · Prλ(c < y∗ ∧ ν > ν∗).

Let c̄ =
∫
c dλ. Then the left-hand side of this inequality is in turn bounded above

by ū+ c̄, so that

ū+ c̄ ≥ y∗ · (ν∗ + 1) · Prλ(c < y∗ ∧ ν > ν∗).

Note that ū+ c̄ is independent of Q∗, y∗, and ρ.

Now, suppose that ν and c are negatively associated under λ and limv→∞ v Prλ(ν >
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v) = ∞. The first condition implies the inequality

Prλ(c < y∗ ∧ ν > ν∗) ≥ Prλ(c < y∗) · Prλ(ν > ν∗),

yielding the bound

ū+ c̄ ≥ y∗ · Prλ(c < y∗) · (ν∗ + 1) · Prλ(ν > ν∗).

Since limρ→∞ Q∗ = 0, it must be that limρ→∞ ν∗ = ∞. Hence limv→∞ v Prλ(ν > v) =

∞ implies that limρ→∞(ν∗ + 1) · Prλ(ν > ν∗) = ∞. Suppose by way of contradiction

that lim supρ→∞ y∗ > 0. Since c has full support on R+, the expression y ·Prλ(c < y)

is an increasing function of y which is positive for all y > 0. Hence lim supρ→∞ y∗ ·
Prλ(c < y∗) > 0. It follows that

lim sup
ρ→∞

y∗ · Prλ(c < y∗) · (ν∗ + 1) · Prλ(ν > ν∗) = ∞.

But this limit must also be bounded above by ū+ u, which is finite given that u, c ∈
L 1(λ), a contradiction.

8.5 Proof of Proposition 4

Let f = limε→0 Prλ(c < ε)/ε, and assume that this limit exists. Also let u+(0) =

lim supt→0 u(t) and u−(0) = lim inft→0 u(t).

Lemma 1. If u−(0) > 0 and u+(0) < ∞, then lim supv→∞ v Prλ(ν > v) ≤ u+(0) · f
and lim infv→∞ v Prλ(ν > v) ≥ u−(0) · f .

Proof. For any v > 0, let χ(v) = − inf{θ : ν(θ) > v}, with the convention that

χ(v) = 0 if v ≥ supΘ ν(θ). Note that χ is nonincreasing given that ν is increasing.

The assumption u−(0) > 0 implies that ν(θ) = −u(θ)/θ is unbounded above, hence

χ(v) ∈ (0,∞) for sufficiently large v > 0 and limv→∞ χ(v) = 0. Going forward, we

restrict attention to v large enough that χ(v) < ∞.

Fix ε ∈ (0, 1) small enough that χ((1 − ε) · v) < ∞. For all v, the bound c <

(1− ε) · χ(v) implies that ν > v, while ν > v implies that c < (1 + ε) · χ(v). Hence

Prλ(c < (1− ε) · χ(v)) ≤ Prλ(ν > v) ≤ Prλ(c < (1 + ε) · χ(v)).
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Equivalently,

(1− ε) · v · χ(v) · Prλ(c<(1−ε)·χ(v))
(1−ε)·χ(v) ≤ v · Prλ(ν > v) ≤ (1 + ε) · v · χ(v) · Prλ(c<(1+ε)·χ(v))

(1+ε)·χ(v) .

Now let v → ∞. Since χ is nonincreasing in v and satisfies limv→∞ χ(v) = 0, we have

lim
v→∞

Prλ(c < (1− ε) · χ(v))
(1− ε) · χ(v)

= lim
v→∞

Prλ(c < (1 + ε) · χ(v))
(1 + ε) · χ(v)

= f.

Meanwhile, ν(−(1 + ε) · χ(v)) < v < ν(−χ(v)/(1 + ε)) for all v, and so

v · χ(v)
1 + ε

>
ν(−(1 + ε) · χ(v)) · χ(v)

1 + ε
=

u(−(1 + ε) · χ(v))
(1 + ε)2

,

implying

lim inf
v→∞

v · χ(v)
1 + ε

≥ u−(0)

(1 + ε)2
.

Since u−(0) is positive and finite by assumption, it follows that

lim infv→∞ v · Prλ(ν > v) ≥ f ·u−(0)
(1+ε)2

.

A very similar calculation yields the bound

lim supv→∞ v · Prλ(ν > v) ≤ f ·u−(0)
(1−ε)2

.

Since these bounds hold for any ε ∈ (0, 1), taking ε → 0 yields the claimed bounds.

Combining this result with Proposition 3 immediately implies the desired result in

the first case. As for the second case, recall that under ordered types, c is decreasing

in θ while ν is increasing, so that ν and c are mechanically negatively associated under

ordered types. Proposition 3 therefore also implies the result for the second case.

8.6 Proof of Proposition 5

We prove the Proposition using the following lemma, which may be useful in other

situations to establish comparative statics of saddle points.

Lemma 2. Let X be a sublattice of R+ ×R×R and h : X → R be submodular and
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nonincreasing in its final argument. Then argmaxxminy x · h(x, y, z) is nonincreas-

ing2.

Proof. Let H(y, z) = miny h(x, y, z), and consider the objective function

g(x, z) = miny x · h(x, y, z) = x ·H(x, z).

Since h is submodular, it follows that H is as well (Topkis 1998, Theorem 2.7.6).

Since H is also nonincreasing in z, Claim 1 below implies that g is also submodular.

Its maximizers are therefore nonincreasing in z.

Claim 1. Let X be a sublattice of R+×R and f : X → R be submodular (supermod-

ular) and nonincreasing (nondecreasing) in its second component. Then g : X → R

given by g(x, y) = x · f(x, y) is submodular (supermodular).

Proof. The claim follows from general results about the product of supermodular

functions (Topkis 1998, Lemma 2.6.4), but we provide a simpler direct proof here as

an alternative.

We prove the submodularity case, with supermodularity following from the sub-

modularity result applied to −f. Let x < x′. Then

g(x′, y)− g(x, y) = (x′ − x) · f(x, y) + x · (f(x′, y)− f(x, y))

is nonincreasing in y since f is nonincreasing in y and submodular.

To complete the proof of Proposition 5 using Lemma 2, consider the designer’s

primal problem maxQ∈[0,1] miny≥0 ℓ(Q; y), with ℓ(Q; y) = Q · h(Q, y, ρ) and

h(Q, y, ρ) = ū− ρ · y +
∫

min ((1−Q)/Q, ν(θ)) (y − c(θ))+ λ(dθ).

The function h is submodular, because it is a sum of components which are each a

product of a nonincreasing function in one variable and a nondecreasing function in

another. It is also nonincreasing in ρ. Monotonicity of the solution therefore follows

from Lemma 2.

2Monotonicity is in the induced set ordering (Topkis 1998, Section 2.4).
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8.7 Proof of Theorem 2

As in the proof of Proposition 1, we pass to the relaxed problem in which the balance

condition is enforced as an inequality. Let CIC be the set of all (R,P,Q) that satisfy

the simplex bounds along with the participation and IC constraints. For each Q, let

C̄IC(Q) = {(R,P ) : (R,P,Q) ∈ CIC}.
Consider the Lagrangian relaxation of the designer’s problem with respect to the

balance constraint. Let y be the dual variable. The Lagrangian is given by (5) with

domain restricted to (P,Q) ∈ CSP . Let ℓIC(Q, y) be the reduced Lagrangian:

ℓIC(Q; y) = max
(R,P )∈C̄IC(Q)

L IC(R,P,Q; y),

where

L IC(R,P,Q; y) =

∫
(R(θ) · ν(θ)− P (θ)) · c(θ)λ(dθ) + y ·

∫
P dλ− ρ ·Q · y.

Note that the IC constraints may be rewritten

R(θ) · ν(θ)− P (θ) ≥ R(θ′) · ν(θ)− P (θ′).

These are the familiar IC constraints in a single-good monopoly sale problem with

valuations ν(θ), probabilities R(θ) of receiving the good, and payments P (θ). Max-

imizing L IC with respect to (R,P ) ∈ C̄IC(Q) is therefore equivalent to solving the

monopoly sale problem for a seller who maximizes a weighted sum of buyer welfare

and revenue, under the uniform payment bound P (Q) ≤ 1 − Q. (The remaining

simplex bounds R(θ) ≤ Q can be normalized to yield a quantity 1 of the good by

redefining ν, and so they do not impact the form of the solution.)

As we show in Appendix A, the optimal mechanism with bounded payments takes

one of two forms. One possibility is a posted price which delivers the good with the

maximum probability, i.e., with R(Q) = Q. This case corresponds to ν̄ = ∞ in the

theorem statement. The second is a menu with two options: pay 1−Q∗ and receive

the item with the maximum probability Q, or pay P̂ and receive the item with some

probability R̂. This case corresponds to ν̄ < ∞ in the theorem statement.

We next observe that, since ℓIC is the partially-optimized Lagrangian of a convex

optimization problem, standard arguments imply that it is a concave-convex function.
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(Convexity in y follows from the fact that ℓIC is the Lagrangian dual of the designer’s

problem enforcing a fixed Q. Concavity in Q follows from the fact that ℓIC is the value

of the convex maximization problem with objective L IC, choice variables (R,P ), and

parameter Q.) Since the domain Q ∈ [0, 1] is compact, Sion’s minimax theorem

therefore implies that strong duality holds and the primal problem

max
Q∈[0,1]

min
y≥0

ℓ(Q; y)

admits an optimum Q∗. If, further, the dual problem

min
y≥0

max
Q∈[0,1]

ℓ(Q; y)

admits a (finite) optimum y∗, then strong duality ensures that the mechanism (P ∗, R∗)

that maximizes L (R,P,Q∗; y∗) solves the designer’s problem.

Suppose instead that the dual problem admits no optimum. We claim that ρ ·
Q ≥

∫
P dλ for every mechanism in CIC. Indeed, if there existed some mechanism

(R,P,Q) ∈ CIC satisfying ρ · Q <
∫
P dλ, then Slater’s condition would be satisfied

and the dual problem would admit an optimum, a contradiction. Therefore, any

mechanism in CIC satisfying the balance condition also maximizes seller revenue

among all mechanisms in CIC . We again appeal to the characterization in Appendix

A to conclude that in this case an optimal mechanism must have the structure stated

in the Theorem.

8.8 Proof of Proposition 6

Assume first that the system process is stationary and let (R,P,Q) be its reduced

form. We first derive the balance condition. If Q = 0, then the machine is always

broken, agents never contribute, and the balance condition is satisfied. So assume

that Q > 0.

For T > 0, let n(T ) be the number of times the machine breaks down during the

interval time interval [0, T ]. We prove the balance condition by showing that

ρ ·Q =

∫
P dλ = lim

T→∞

n(T )

T
a.s.

Since Q > 0 it must be that limT→∞ n(T ) = ∞ a.s. Indeed, if n(T ) were bounded,
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then from some point onward the machine would never be fixed, else it would eventu-

ally break again. But then from some later point onward the machine would remain

broken forever, implying Q = 0, a contradiction.

Let L0 ≥ 0 be residual lifespan of the machine at time 0 (so L0 = 0 if the machine

is broken at time 0), and for i ≥ 1 let Li be the lifespan of the machine after the i-th

time it is being fixed after time 0. For T > 0, let W (T ) =
∫ T

0
1[ωt=G] dt. Then for

every T > 0,

L1 + · · ·+ Ln(T )−1 ≤ W (T ) ≤ L0 + L1 + · · ·+ Ln(T ). (8)

By the strong law of large numbers, limn→∞ n−1
∑n

i=1 Ln = 1/ρ a.s. Since limT→∞ n(T ) =

∞ a.s., it follows from (8) that limT→∞W (T )/n(T ) = 1/ρ a.s. Meanwhile, limT→∞W (T )/T =

Q a.s. by the definition of Q. Therefore limT→∞ n(T )/T = Q · ρ a.s.

Let M0 ≥ 0 be the residual contribution quantum at time 0 (so M0 = 0 if the

machine is working at time 0), and for i ≥ 1 let Mi be the contribution quantum

after the i-th time breakdown subsequent to time 0. For T > 0, let C(T ) be the total

amount of contribution in the time interval [0, T ]. Then for every T > 0,

M1 + · · ·+Mn(T )−1 ≤ C(T ) ≤ M0 +M1 + · · ·+Mn(T ). (9)

By the strong law of large numbers, limn→∞ n−1
∑n

i=1 Mn = 1/ρ a.s. Since limT→∞ n(T ) =

∞ a.s., it follows from (9) that limT→∞C(T )/n(T ) = 1 a.s. Meanwhile, limT→∞ C(T )/T =∫
P dλ a.s. by the definition of P. Therefore limT→∞ n(T )/T =

∫
P dλ a.s.

We now establish the simplex bounds. At every point in time the realized usage

of each agent is bounded by the 1 if the machine is working and by 0 if it is broken.

Therefore for the population of agents of each type, expected usage is bounded by

Q, the probability that the machine is working. In other words, R(θ) ≤ Q. Similarly,

the realized contribution of each agent is bounded by the 0 if the machine is working

and by 1 if it is broken. Therefore for the population of agents of each type, expected

contributions are bounded by 1 − Q, the probability that the machine is broken. In

other words, P (θ) ≤ 1−Q.

Assume now that (R,P,Q) satisfies the physical constraints, and consider the

Markovian mechanism given by σ(θ,W ) = R(θ)/Q and σ(θ, B) = P (θ)/(1 − Q),

with the convention that σ(θ,W ) = 0 if Q = 0 and σ(θ, B) = 0 if Q = 1. The

machine state process under this mechanism is an alternating renewal process: When
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the machine becomes working, it remains working for the lifespan with expectation

µW = 1/ρ. When the machine becomes broken, it remains broken for a random time

with expectation µB = 1/
∫
σ(θ, B) λ(dθ).

The balance condition implies that Q/(1−Q) = µW/µB, which may be rearranged

to find that the long-run proportion of time that the machine is working is µW

µW+µB
= Q.

The quantity Q must therefore also be the probability with which the machine is

working under the steady state induced by the mechanism. It then follows from

definition of σ that R(θ) = Q · σ(θ,W ) is the expected usage of an arriving agent of

type θ while P (θ) = (1−Q) ·σ(θ, B) is the expected contribution of an arriving agent

of type θ.

8.9 Proof of Proposition 7

Assume first that the system process is stationary and let (R,P,Q) be its reduced

form. The proof that (R,P,Q) satisfies the balance condition is very similar to the

proof of Proposition 6 and is omitted. To prove the simplex bound, note that the

non-anticipation assumption in (3) implies the so-called PASTA (“Poison arrivals see

time average”) property, under which the probability that an arriving agent of type θ

encounters a working machine equals the steady-state uptime Q (Tijms 2003, Section

2.4). As a result, the simplex bounds follow from the fact that the agent cannot use

or fix the machine more often than that action is available.

Assume now that (R,P,Q) satisfies the physical constraints, and consider the

Markovian mechanism given by σ(θ,W ) = R(θ)/Q and σ(θ, B) = P (θ)/(1−Q), with

the convention that σ(θ,W ) = 0 if Q = 0 and σ(θ, B) = 0 if Q = 1. The machine

state process under this mechanism is an alternating renewal process with the same

expectations as in the proof of Proposition 7. Therefore, by the same argument as in

that proof the reduced form induced by this mechanism is (R,P,Q).

A Monopoly sale problem with bounded transfers

Consider a generalized version of Myerson’s single-good monopoly sale problem (My-

erson 1981). Buyers are heterogeneous with types θ ∈ Θ. They have quasilinear

payoffs over allocations and payments, with valuations ν : Θ → R+ for the good.

A mechanism is given by an allocation function r : Θ → [0, 1] and payment rule
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p : Θ → R+. (We rule out payments to buyers.) The seller’s objective is a weighted

average of buyer payoffs and payments of the form∫ (
r(θ) · ν(θ)− p(θ)

)
µ1(dθ) +

∫
p dµ2 (10)

for some finite measures µ1, µ2 over Θ.

A mechanism is incentive compatible (IC) if

r(θ) · ν(θ)− p(θ) ≥ r(θ′) · ν(θ)− p(θ′)

for every θ, θ′ ∈ Θ. It is individually rational (IR) if r(θ) · ν(θ) − p(θ) ≥ 0 for all

θ ∈ Θ. The seller chooses a mechanism to maximize (10) subject to IC and IR.

We first observe that, without loss, we may restrict attention to mechanisms

satisfying (r(θ), p(θ)) = (r(θ′), p(θ′)) whenever ν(θ) = ν(θ′). Indeed, under any IC

mechanism, all types with the same valuation receive the same utility. If such a

mechanism does not offer all such types the same bundle, modify it to pool all types

on the bundle involving the highest payment. This modification does not affect IC or

IR and raises the seller’s payoff. Given the restriction to such mechanisms, we may

without loss relabel types so that the type space is the set of valuations R+.

As usual, the set of IC and IR mechanisms can be identified with the set of

nondecreasing allocation functions. (Because the lowest type has valuation 0 for the

good, the utility of the lowest type is not a free parameter in this environment.)

We may further restrict attention to right-continuous allocation functions. Indeed,

if r(ν) < r(ν+) for some ν, then also p(ν) < p(ν+). Additionally, IC implies that

the bundle (r(ν+), p(ν+)) must deliver that type the same utility as (r(ν), p(ν)).

Replacing that type’s bundle with (r(ν+), p(ν+)) therefore preserves IC and IR,

delivers that type the same utility, and raises the seller’s revenue from that type.

Going forward, we assume that r is both nondecreasing and right-continuous. The

payment function and buyer payoffs corresponding to each such allocation function r

are

pr(ν) =

∫ ν

0

v dr(v),

Ur(ν) =

∫ ν

0

r(v) dv.

(11)
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Standard theory says that the optimal mechanism is a posted price mechanism of

the form r = 1[ν1,∞) for some ν1 ∈ R+ (the price). The following lemma states an

analog of this result for the case that payments are bounded. The proof follows a

similar argument as in the corresponding proof for the case of unbounded payments,

as in Börgers (2015, Section 2.5), with the twist that the set of extreme points of IC

mechanisms is more complicated. We also develop the argument more generally, to

allow for atoms in the type distributions. The argument is not new, but we do not

know of a reference.

Proposition 8. Consider the problem of maximizing objective (10) over all IC and IR

mechanisms such that 0 ≤ p(ν) ≤ 1 for every ν ∈ R+. The optimal allocation function

is either of the form r = 1[ν1,∞) for some ν1 ≤ 1 or of the form r = r01[ν0,ν1) + 1[ν1,∞)

for some 0 ≤ ν0 ≤ ν1 and some 0 ≤ r0 ≤ 1 such that r0ν0 + (1− r0)ν1 = 1

The first mechanism in the lemma is the familiar posted price with price ν1. The

second mechanism can be implemented as a menu with two options: pay r0 · ν0 and

receive the good with probability r0, or pay 1 and receive the good for sure.

Proof. The allocation functions r : R+ → [0, 1] of IR and IC mechanisms with pay-

ments bounded by 1 are nondecreasing and right-continuous, hence also u.s.c, and

satisfy
∫∞
0

v dr(v) ≤ 1. We can identify each such allocation with a finite measure

over m over R+ such that

m(R+) ≤ 1, and (12)∫
ν m(dν) ≤ 1, (13)

so r is the cdf of m. The set M of all these measures is convex, and, by Helly’s

selection theorem, compact in the weak∗ topology.

By (11), for every buyer valuation ν, the utility Ur(ν) is linear and continuous in r

and the payment pr(ν) is linear and u.s.c. in r. Therefore, the objective function (10)

is linear and u.s.c., which implies that the maximum is achieved at an extreme point.

The set of extreme points of measures under a finite number of moment conditions is

well-understood. (See, for example Karr (1983). The argument traces back to Karlin

and Shapley (1953).)

The extreme points of M for which (12) is not saturated correspond to measures

with a single atom and allocation function of the form r = r11[ν1,∞) with r1 < 1 and
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r1ν1 ≤ 1, implementable by a mechanism that offers a pricer1ν1 in return for receiving

the item with probability r1. This mechanism cannot be optimal under our objective

function, because both buyer utility and payments can be increased by offering the

item with probability 1 for the same price.

The extreme points of M for which (12) is saturated are probability measures. If

(13) is not saturated, then m is a probability measure with a single atom, correspond-

ing to an allocation of the form r = 1[ν1,∞) with and ν1 ≤ 1, as in the proposition.

If (13) is saturated, then m is a probability measure with at most two atoms, corre-

sponding to an allocation of the form r = r01[ν0,ν1)+1[ν1,∞) for some 0 ≤ ν0 ≤ ν1 and

some 0 ≤ r0 ≤ 1 such that r0ν0 + (1− r0)ν1 = 1, as in the proposition.

Example 2 in Che and Gale (2000) presents an environment in which the bound

on payments is binding and the optimal mechanism is a menu with two options. That

example involves an environment in which the seller is uncertain of the buyer’s budget

as well as their valuation. However, the solution involves a menu with payments no

higher than the lowest budget, and so it must also be the optimal mechanism in the

problem where all buyers have the same (low) budget.
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