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Abstract

This study proves the asymptotic properties of the maximum likelihood estimator (MLE) in

a wide range of endogenous regime-switching models. This class of models extends the constant

state transition probability in Markov-switching models to a time-varying probability that in-

cludes information from observations. A feature of importance in this proof is the mixing rate

of the state process conditional on the observations, which is time varying owing to the time-

varying transition probabilities. Consistency and asymptotic normality follow from the almost

deterministic geometric decaying bound of the mixing rate. Relying on low-level assumptions

that have been shown to hold in general, this study provides theoretical foundations for sta-

tistical inference in most endogenous regime-switching models in the literature. Monte Carlo

simulation studies are conducted to examine the behavior of the MLE in finite samples.
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1 Introduction

Regime-switching models have been applied extensively since Hamilton (1989) to study how time-

series patterns change across different underlying economic states, such as boom and recession, high-

volatility and low-volatility financial market environments, and active and passive monetary and

fiscal policies. This class of models features a bivariate process (St, Yt), where (St) is an unobservable

Markov chain determining the regime in each period, and (Yt) is an observable process whose

conditional distribution is governed by the underlying state (St). The concept of Markov switching

has been introduced in a broad class of time-series econometric models, including but not limited to

Markov-switching vector autoregressions (Krolzig (1997)), the switching autoregressive conditional

heteroskedasticity model (Cai (1994); Hamilton and Susmel (1994)), and the Markov-switching

generalized autoregressive conditional heteroskedasticity model (Gray (1996); Klaassen (2002)).

In basic Markov-switching models, like Hamilton (1989), the unobservable state process is as-

sumed to follow a homogeneous Markov chain. The implication is that the transition probability

and expected duration of each regime are constant through all periods, regardless of the level of the

observable and how long the regime has lasted. The setup is restrictive in application and conflicts

with empirical findings, such as those of Watson (1992) and Filardo and Gordon (1998). Diebold,

Lee, and Weinbach (1994) extended the state transition probability to be time varying by allowing

it to depend on the predetermined variables (Xt), which are often chosen as economic covariates for

predicting the regime change. This class of models, usually referred to as time-varying transition

probability regime-switching models, is widely used in many empirical studies (see, e.g., Filardo

(1994), Bekaert and Harvey (1995), Gray (1996), Filardo and Gordon (1998), Ang, Bekaert, and

Wei (2008)). Such models, however, still assume that the evolution of the underlying state is inde-

pendent of the other parts of the model. Chib and Dueker (2004), Kim, Piger, and Startz (2008),

and Chang, Choi, and Park (2017) proposed endogenous regime-switching models in which the de-

termination of states depends on the realizations of the observable process. The model of particular

interest to this study is Chang et al. (2017), 1 which allows the transition of states to depend

1Chib and Dueker (2004) used a Bayesian estimation method and thus is beyond the scope of this study. We

do not consider Kim et al. (2008), since its determination of the current state depends on the current shock to the

observable process Yt. When the regime is determined, Yt is a determined one-point realization. We cannot interpret

the model in the conventional way in which the observable process follows a particular pattern in some regime, as we
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on past realizations of the observable (Yt). In their model, accumulation of sustained positive (or

negative) shocks to the observable might pressure the regime to change.

Compared to the large body of empirical work on regime-switching models, there are few studies

on the asymptotic properties of their maximum likelihood estimator (MLE). Douc, Moulines, and

Ryden (2004) and Kasahara and Shimotsu (2018) 2 showed the asymptotic properties of the MLE

only with basic Markov-switching models. Ailliot and Pene (2015) established consistency of the

MLE in models with time-inhomogeneous Markov regimes. Pouzo, Psaradakis, and Sola (2018)

showed the asymptotic properties of the MLE in autoregressive models with time-inhomogeneous

Markov regime switching and possible model misspecifications. Their model set-ups encompass

endogenous regime switching in the sense that they allow the transition kernel of the state to depend

on past realizations of the observable. Pouzo et al. (2018) showed that under certain assumptions,

the MLE converges to a pseudo-true parameter set even if the model is misspecified. However, the

authors restricted the observable time series to depend only on the current state, and the state

process to be only a first-order inhomogeneous Markov chain. Such restrictions make their theory

less applicable.

The aim of this study is to show the asymptotic properties of the MLE in a wide range of

endogenous regime-switching models, including Chang et al. (2017) as a special case. The model

is general enough to incorporate the time-varying transition probability regime-switching models

represented by Diebold et al. (1994). The model we consider is more general than that of Douc

et al. (2004) and Kasahara and Shimotsu (2018) in that it allows dependence of state transition

probability on past realizations and other economic fundamentals. Our model is more general than

that of Pouzo et al. (2018) in that it allows the transition of the observable and the state process to

depend on more than one lag of the processes. Moreover, instead of dealing with misspecification in

the transition probability as in Pouzo et al. (2018), this study assumes that the likelihood function

is concentrated. The advantage is that this study relies on assumptions of lower level than Pouzo

can in basic regime-switching models.
2Baum and Petrie (1966), Leroux (1992), Bickel and Ritov (1996), Bickel, Ritov, and Ryden (1998), Jensen and

Petersen (1999), Le Gland and Mevel (2000) and Douc and Matias (2001) contribute to the asymptotic theories with

the basic Markov models less general than Douc et al. (2004) and Kasahara and Shimotsu (2018). Their models,

usually referred to as hidden Markov models, do not allow autoregression and (Yt) are conditionally independent

given the current state.
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et al. (2018) did. In Section 6, we show that our assumptions hold in some widely used endogenous

regime-switching models. Thus, this study provides theoretical foundations for statistical inference

of endogenous regime-switching models in most empirical research. Some interesting and important

statistical tests can now be conducted, such as whether the observables affect transition probability

and whether the effect is positive or negative.

The general difficulty in the proof of asymptotic theories with regime-switching models is that

the predictive densities of the observable given past realizations do not form a stationary sequence,

and thus, the ergodic theorem does not directly apply. To deal with the problem, this study, following

Douc et al. (2004) and Kasahara and Shimotsu (2018), approximates the log-likelihood function by

the partial sum of a stationary ergodic sequence. The cornerstone of the approximation is the almost

surely geometrically decaying bound of the mixing rate of the conditional chain S|Y,X. The time-

varying state transition probability makes it more complex to show the bound, because it enters

the mixing rate and causes the rate to approach unity as the transition probability approaches zero.

By contrast, the constant state transition probability is bounded away from zero in Douc et al.

(2004) and Kasahara and Shimotsu (2018). The main theoretical contribution of this study is that

we show the mixing rate is bounded away from zero eventually by assuming that there is a small

probability that the observable takes extreme values, which is vital for our findings of consistency

and asymptotic normality of the MLE.

The rest of this paper is organized as follows. Section 2 lists the main assumptions and examples

of endogenous regime-switching models. Section 3 shows the mixing rate of the conditional chain

and the approximation of the log-likelihood function with an ergodic stationary process. Sections 4

and 5 show the consistency and asymptotic normality of the MLE, respectively. Section 6 discusses

the assumptions in detail and Section 7 shows the simulation results. Section 8 concludes.
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2 Models, notations, and assumptions

2.1 Models

Endogenous regime-switching models can generally be defined by a transition equation of the ob-

served process and a state transition probability allowed to depend on past observable Yt−1, . . . , Yt−r:

transition equation of the observed process:

Yt = fθ(St, . . . , St−r+1, Yt−1, . . . , Yt−r, Xt;Ut)
3 (1)

state transition probability:

qθ(St|St−1, . . . , St−r, Yt−1, . . . , Yt−r, Xt)
4 (2)

where Xt is a predetermined variable (vector), (Ut) is an independent and identically distributed

(i.i.d.) sequence of random variables, fθ is a family of functions indexed by θ, and qθ is a family

of probabilities indexed by θ. Pouzo et al. (2018) dealt with the model with r = 1. 5 The special

case in which the transition probability in (2) depends only on (St−1, . . . , St−r) reduces to the basic

Markov-switching model. The case in which (2) depends on (St−1, . . . , St−r, Xt) is the time-varying

transition probability regime-switching model represented by Diebold et al. (1994).

Some widely applied transition equations of the observed process are summarized as

Yt = m(Yt−1, . . . , Yt−k, St, . . . , St−k, Xt) + σ(St, . . . , St−k)Ut = mt + σtUt. (3)

3The model here is more general than it may appear by allowing for different numbers of lags of (St) and (Yt) as

fθ(St, . . . , St−p+1, Yt−1, . . . , Yt−q, Xt;Ut). If, without loss of generality, p ≤ q, then we can make an innocuous change

by including more lags as fθ(St, . . . , St−p+1, St−p, . . . , St−q+1, Yt−1, . . . , Yt−q, Xt;Ut). Then, this is the model in (1).
4The transition probability here can accommodate different numbers of lags in (St) and (Yt) as well as different

numbers of lags from those in (1) by making similar changes to the previous comment.
5The state transition probability in Pouzo et al. (2018) cannot be generalized easily to accommodate more lags by

defining the state variable St as a vector (S̃t, S̃t−1, . . . , S̃t−r) because their Assumption 1 requires qθ(St|St−1, Yt−1) > 0

for all St and St−1. This is violated when, for r = 2, qθ(St = (s1, s1)|St−1 = (s2, s2), Yt−1) = 0. Similarly, the transition

equation of the observed process cannot be generalized to accommodate more lags owing to their Assumption 5.
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An example of (3) is the autoregressive model with switching in mean and volatility:

γ(L)(Yt − µt) = γ′XXt + σtUt (4)

where γ(z) = 1− γ1z − · · · − γkzk, µt = µ(St), σt = σ(St), St = 1, 2, 3, . . . , or J .

Another example is the autoregressive model with state-dependent autoregression coefficients:

Yt = µ(St) + γ1(St)Yt−1 + · · ·+ γk(St)Yt−k + γX(St)
′Xt + σ(St)Ut. (5)

For the state transition probability, we mainly consider the specifications proposed by Diebold

et al. (1994) and Chang et al. (2017) as examples. Although the transition probability in Diebold

et al. (1994) does not depend on past observations of Yt and thus, is strictly not an endogenous

regime-switching model, the reason we include it here is twofold. First, the model is widely used but

its asymptotic properties have not been fully discussed. Second, the model can be easily extended

to endogenous regime-switching models by including past realizations of the observable as the

predetermined variables.

State transition 1 (Diebold et al. (1994)) Transition probabilities are functions mapping Xt to

[0, 1]. In the case in which there are two states St = 0 or 1,

qθ(St = st|St−1 = st−1, Xt) =

 p00(Xt) 1− p00(Xt)

1− p11(Xt) p11(Xt)

 . (6)

Functions used most often are logistic functions and probit functions. The case in which p00(Xt)

and p11(Xt) are constant functions reduces to the basic Markov-switching model.

State transition 2. (Chang et al. (2017)) Chang et al. (2017) proposed a new approach to modeling

switching when there are two regimes by using an autoregressive latent factor to determine regimes,

depending on whether the factor takes a value above or below a threshold τ . The latent factor follows

an AR(1) process

Wt = αWt−1 + Vt
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for t = 1, 2, . . . with parameter α ∈ [−1, 1] and i.i.d. standard normal innovations (Vt). (Ut) and

(Vt) are jointly i.i.d. and distributed as

 Ut

Vt+1

 =d N


0

0

 ,

1 ρ

ρ 1


 .

The regime is decided by

St =


1 if Wt ≥ τ

0 if Wt < τ

.

The correlation ρ between innovations to the latent factor and lagged innovations to the observed

time series connects the state transition probability to the observed time series. A positive corre-

lation means that the information raising the level of the observed time series makes the economy

more likely to be in the high regime (St = 1) in the future. A negative correlation works in the

opposite direction. A zero-correlation model reduces to the basic Markov-switching model.

Theorem 3.1 in Chang et al. (2017) clarifies the state transition probability. The theorem states

that with the transition equation of the observed process (3), when |α| < 1, |ρ| < 1, (St, Yt) together

follow a (k + 1)th-order Markov process, and the state transition probability is

qθ(St|St−1, . . . , St−k−1, Yt−1, . . . , Yt−k−1) = (1− St)ωρ + St(1− ωρ) (7)

with ωρ = ωρ(St−1, . . . , St−k−1, Yt−1, . . . , Yt−k−1) defined as

ωρ =

[(1− St−1)
∫ τ√1−α2

−∞ +St−1

∫∞
τ
√

1−α2 ]Φ

(
τ−ρUt−1√

1−ρ2
− αx√

1−α2
√

1−ρ2

)
ϕ(x)dx

(1− St−1)Φ(τ
√

1− α2) + St−1[1− Φ(τ
√

1− α2)]
(8)

where Ut = Yt−mt
σt

, Φ(·) and ϕ(·) are the distribution function and the density function of the

standard normal distribution,respectively. The state transition probability fits (2) with r = k + 1.
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2.2 Notations and assumptions

Let , denote “equals by defination.” In the following proof, for short notation, we define

Yn
m , (Yn, Yn−1, . . . , Ym)′ for n ≥ m,

Yt , Yt
t−r+1 = (Yt, Yt−1, . . . , Yt−r+1)′,

Y
n
m , (Yn, . . . ,Ym)′ for n ≥ m,

and similarly for St, Xt and realizations st, yt, and xt.

We assume that {St}∞t=−r+1 takes a value in a discrete set S with J elements. Let S , Sr, and

use P(S) to denote the power set of S. For each t ≥ 1 and given (Yt−1
t−r ,S

t−1
t−r , Xt), St is condition-

ally independent of (Yt−r−1
−r+1 ,S

t−r−1
−r+1 ,X

t−1
1 ,X∞t+1). The transition probability is qθ(s|St−1,Yt−1, Xt).

{Yt}∞t=−r+1 takes a value in a set Y, which is separable and metrizable by a complete metric. Let

Y , Yr. For each t ≥ 1 and given (Yt−1
t−r ,S

t
t−r+1, Xt), Yt is independent of (Yt−r−1

−r+1 ,S
t−r
−r+1,X

t−1
1 ,

X∞t+1). The conditional law has a density gθ(y|Yt−1,St, Xt) with respect to some fixed σ−finite

measure ν on the Borel σ−field B(Y). {Xt}∞t=1 takes a value in a set X. Conditionally on Xt,

{Xk}k≥t+1 is independent of {Yk}k≤t and {Sk}k≤t. Conditionally on Xt, {Xk}k≤t−1 is independent

of {Yk}k≥t and {Sk}k≥t.

Under the setup, conditional on X∞1 , (St, Yt) follows a Markov chain of order r with transition

density

pθ(St, Yt|St−1, . . . , S−r+1, Yt−1, . . . , Y−r+1, Xt)

=gθ(Yt|Yt−1,St, Xt)qθ(St|St−1,Yt−1, Xt) = pθ(St, Yt|St−1,Yt−1, Xt).

It also follows that for 1 ≤ t ≤ n,

pθ(Y
t
1|Y0,S0 = s0,X

n
1 ) = pθ(Y

t
1|Y0,S0 = s0,X

t
1),

pθ(Y
t
1|Y0,X

n
1 ) = pθ(Y

t
1|Y0,X

t
1).

This study works with the conditional likelihood function given initial observations Y0 =

(Y0, . . . , Y−r+1), (unobservable) initial state S0 = (S0, . . . , S−r+1), and predetermined variables
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Xt
1, owing to the difficulties obtaining the closed-form expression of the unconditional stationary

likelihood function. We can write the conditional log-likelihood function as

`n(θ, s0) = log pθ(Y1, . . . , Yn|Y0,S0 = s0,X
n
1 ) =

n∑
t=1

log pθ(Yt|Y
t−1
0 ,S0 = s0,X

t
1) (9)

with predictive density

pθ(Yt|Y
t−1
0 ,S0,X

t
1)

=
∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)Pθ(St−1 = st−1|Y
t−1
0 ,S0 = s0,X

t−1
1 ). (10)

When the number of observations is n+ r, we condition on the first r observations, and arbitrarily

choose the initial state s0. The aim of this study is to show consistency and asymptotic normality

of the MLE θ̂n,s0 = arg maxθ `n(θ, s0) with any choice of s0, even when it is not the true underlying

initial state.

The following are the basic assumptions.

(A1) The parameter θ belongs to Θ. Θ is compact. Let θ∗ denote the true parameter. θ∗ lies in the

interior of Θ.

(A2) (St,Yt, Xt) is a strictly stationary ergodic process.

Remark. We can extend (Yt, Xt) with doubly infinite time {Yt, Xt}+∞−∞. According to Theorem 7.1.3

in Durrett (2013), for measurable function f(·), f(Yt, Yt+1, . . . , Xt, Xt+1, . . . ) is ergodic.

(A3) (a) σ−(y0, x1) := infθ mins1∈S,s0∈S qθ(s1|s0,y0, x1) > 0, for all y0 ∈ Y and x1 ∈ X.

(b) b−(y1
−r+1, x1) := infθ mins1∈S gθ(y1|y0, s1, x1) > 0, for all y1

−r+1 ∈ Yr+1 and x1 ∈ X.

(c) b+ := supθ supy1,y0,x1
maxs1 gθ(y1|y0, s1, x1) <∞, and Eθ∗ | log b−(y1

−r+1, x1)| <∞.

(A4) (a) Constants α1 > 0, C1, C2 ∈ (0,+∞), and β1 > 1 exist such that, for any ξ > 0,

Pθ∗
(
σ−(Y0, X1) ≤ C1e

−α1ξ
)
≤ C2ξ

−β1 . (11)
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(b) Constants α2 > 0, C3, C4 ∈ (0,+∞), and β2 > 1 exist such that, for any ξ > 0,

Pθ∗
(
b−(Y1

−r+1, X1) ≤ C3e
−α2ξ

)
≤ C4ξ

−β2 . (12)

Remark. Assumptions (A3b), (A3c), and (A4b) are the same as in Kasahara and Shimotsu (2018).

Assumption (A3a) parallels Assumption (A1) in Douc et al. (2004) and Assumption 1(d) in Kasa-

hara and Shimotsu (2018), but σ−(·) here is time varying depending on the observations, whereas

the value is constant in Douc et al. (2004) and Kasahara and Shimotsu (2018). Assumption (A4a)

refers to the low probability of σ−(y0, x1) taking an extremely small value. This is the key as-

sumption that we use in Lemma 3 to establish the geometric bound. It serves the same function as

Assumption 4 in Pouzo et al. (2018) but is of a lower level. Their assumption parallels Lemma 2

in the following section. We will need the following additional assumptions on the continuity of qθ

and gθ and the identifiability of θ∗:

(A5) For all (s′, s) ∈ S× S, (y, y′) ∈ Y×Y, and x ∈ X, θ → qθ(s
′|s,y, x) and θ → gθ(y

′|y, s, x) are

continuous.

(A6) θ and θ∗ are identical (up to a permutation of state indexes) if and only if Pθ(Yn
1 ∈ ·|Y0

−r+1,X
n
−r+1) =

Pθ∗(Yn
1 ∈ ·|Y0

−r+1,X
n
−r+1) for all n ≥ 1.

Remark. Section 6 shows that this assumption is satisfied in many examples with the identifiability

of the mixture normal distributions. By contrast, the identifiability assumptions in Douc et al.

(2004) and Kasahara and Shimotsu (2018) are difficult to verify.

3 Approximation with stationary ergodic sequence

Consistency and asymptotic normality follows if we can show the following two results:

(R1) the normalized log-likelihood n−1`n(θ, s0) converges to a deterministic function `(θ) uniformly

with respect to θ, and θ∗ is a well-separated point of maximum of `(θ); and

(R2) a central limit theorem for the Fisher score function and a locally uniform law of large numbers

for the observed Fisher information.
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The updating distribution Pθ(St−1 = st−1|Y
t−1
0 ,S0,X

t−1
1 ) in (10) is not stationary ergodic and

thus, the predictive density is not stationary ergodic. Therefore, the ergodic theorem cannot be

applied directly to conclude a law of large numbers or central limit theorems. Here, we follow Douc

et al. (2004) and Kasahara and Shimotsu (2018) to first approximate the predictive density with a

stationary ergodic sequence

pθ(Yt|Y
t−1
−∞,X

t−1
−∞)

=
∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)Pθ(St−1 = st−1|Y
t−1
−∞,X

t−1
−∞). (13)

(13) differs from (10) in that the updating distribution part now depends on the whole history of

(Yt, Xt) from past infinity and does not depend on the initial state. The approximation builds on

the almost surely geometric decaying bound of the mixing rate of the conditional chain (S|Y,X).

The bound guarantees that the influence of observation and initial state far in the past quickly

vanishes and thus, the difference between the exact predictive and approximated predictive log

densities becomes asymptotically neglible.

The mixing rate in Corollary 1 follows from the Markov property of the conditional chain and

the minorization condition in Lemma 1. Lemma 2 establishes (almost) deterministic bounds for

the time-varying mixing rate. Lemma 3 shows the approximation of the log predictive density

log pθ(Yt|Y
t−1
0 ,S0 = s,Xt

1) with the stationary one log pθ(Yt|Y
t−1
−∞,X

t−1
−∞). For short notation, we

define the following predictive log densities:

∆t,m,s(θ) , log pθ(Yt|Y
t−1
−m,S−m = s,Xt

−m+1),

∆t,m(θ) , log pθ(Yt|Y
t−1
−m,X

t
−m+1).

LEMMA 1 (Minorization condition). Let m,n ∈ Z with −m ≤ n and θ ∈ Θ. Conditionally on

Y
n
−m and Xn

−m, {Sk}−m≤k≤n satisfies the Markov property. Assume (A3). Then, for all −m+ r ≤

k ≤ n, a function µk(Y
n
k−r,X

n
k , A) exists, such that:

(i) for any A ∈ P(S), (ynk−r,x
n
k)→ µk(y

n
k−r,x

n
k , A) is a Borel function; and

(ii) for any ynk−r and xnk , µk(y
n
k−r,x

n
k , ·) is a probability measure on P(S). Moreover, for A ∈ P(S),
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the following holds:

min
sk−r∈S

Pθ(Sk ∈ A|Sk−r = sk−r,Y
n
−m,X

n
−m)

≥ ω(Yk−1
k−2r+1,X

k
k−r+1) · µk(Yn

k−r,X
n
k , A)

where ω(Yk−1
k−2r+1,X

k
k−r+1) :=

∏k−1
`=k−r+1 b−(Y`

`−r,X`)
∏k
`=k−r+1 σ−(Y`−1,X`)

br−1
+

.

The proof is in the appendix. For any probability measures µ1 and µ2, we define the total

variation distance ‖µ1 − µ2‖TV = supA |µ1(A) − µ2(A)|. For any x ∈ R+, let bxc denote the

largest integer that is smaller than x. The following corollary bounds the distance between the two

conditional Markov chains starting from initial distributions µ1 and µ2.

COROLLARY 1 (Uniform ergodicity). Assume (A3). Let m,n ∈ Z, −m ≤ n and θ ∈ Θ. Then,

for −m ≤ k ≤ n, for all probability measures µ1 and µ2 defined on P(S) and for all Y
n
−m and

X
n
−m,

∥∥∥∥∥∥
∑
s∈S

Pθ(Sk ∈ ·|S−m = s,Y
n
−m,X

n
−m)µ1(s)−

∑
s∈S

Pθ(Sk ∈ ·|S−m = s,Y
n
−m,X

n
−m)µ2(s)

∥∥∥∥∥∥
TV

≤
b(k+m)/rc∏

i=1

(
1− ω

(
Y−m+ri−1
−m+ri−2r+1,X

−m+ri
−m+ri−r+1

))
=

b(k+m)/rc∏
i=1

(1− ω(V−m+ri))

with Vt := (Yt−1
t−2r+1,X

t
t−r+1).

The proof follows from Lemma 7 in Kasahara and Shimotsu (2018). The corollary parallels

Corollary 1 in Douc et al. (2004) and Corollary 1 in Kasahara and Shimotsu (2018). The main

difference is that the mixing rate contains the term σ−(·) in ω(Vt), and can approach 1 as σ−(·)

approaches 0. The following lemma shows that we can bound the mixing rate almost determinis-

tically under Assumptions (A3) and (A4), and enables us to show the approximation in Lemma

3.

LEMMA 2 (Bound for mixing rate). Assume (A2)–(A4). Then, ε0 ∈ (0, 1
16r ) and ρ ∈ (0, 1) exist

12



such that for all m,n ∈ Z+,

Pθ∗
(

n∏
k=1

(1− ω(Vtk)) ≤ ρ(1−2ε0)n ev.

)
= 1, 6 (14)

Pθ∗
(
ω(Vk) ≥ C5ρ

ε0b(k−r)/rc ev.
)

= 1, (15)

(16)

where C5 =
Cr1C

r−1
3

br−1
+

, and {tk}1≤k≤n is a sequence of integers such that tk 6= tk′ for 1 ≤ k, k′ ≤ n

and k 6= k′.

It also holds that

Eθ∗
[

n∏
k=1

(1− ω(Vtk))m

]
≤ 2ρn, (17)

Eθ∗

 n1∏
k1=1

(1− ω(Vtk1
))m ∧

n2∏
k2=1

(1− ω(Vtk2
))m

 ≤ 2(ρn1 ∧ ρn2), (18)

Eθ∗

 n1∏
k1=1

(1− ω(Vtk1
))m ∧

n2∏
k2=1

(1− ω(Vtk2
))m ∧

n3∏
k3=1

(1− ω(Vtk3
))m


≤ 2(ρn1 ∧ ρn2 ∧ ρn3). (19)

LEMMA 3. Assume (A2)–(A4). Then, for m′ ≥ m ≥ 0,

Pθ∗
(

sup
θ∈Θ

max
si,sj∈S

|∆t,m,si(θ)−∆t,m′,sj (θ)| ≤
1

C5
ρb(t+m)/3rc ev.

)
= 1, (20)

Pθ∗
(

sup
θ∈Θ

max
si∈S
|∆t,m,si(θ)−∆t,m(θ)| ≤ 1

C5
ρb(t+m)/3rc ev.

)
= 1, (21)

sup
θ∈Θ

sup
m≥0

max
s∈S
|∆t,m,s(θ)| ≤ max

{
|log b+| ,

∣∣log
(
b−(Yt

t−r, Xt)
)∣∣} . (22)

From (20), {∆t,m,s(θ)} is a uniformly Cauchy sequence with respect to θ Pθ∗− almost surely

(a.s.).

We define ∆t,∞(θ) , limm→∞∆t,m,s(θ). From (22), {∆t,m,s(θ)} is uniformly bounded in L1(Pθ∗),
6ev. is an abbreviation for “eventually.”
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and thus, ∆t,∞(θ) is also in L1(Pθ∗). Let m = 0 and m′ →∞ in (20), which yields

1

n

n∑
t=1

sup
θ∈Θ

max
s0∈S
|∆t,0,s0(θ)−∆t,∞(θ)| → 0 Pθ∗ − a.s. (23)

From (21), limm→∞∆t,m,s(θ) = limm→∞∆t,m(θ).

Moreover, limm→∞∆t,m(θ) = log pθ(Yt|Y
t−1
−∞,X

t
−∞), since

lim
m→∞

∆t,m(θ) = lim
m→∞

log pθ(Yt|Y
t−1
−m,X

t
−m+1)

= log
∑
st,st−1

(
gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)× lim

m→∞
Pθ(St−1 = st−1|Y

t−1
−m,X

t
−m+1)

)
= log

∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)Pθ(St−1 = st−1|Y
t−1
−∞,X

t
−∞)

= log pθ(Yt|Y
t−1
−∞,X

t
−∞).

Then, there are two expressions for ∆t,∞(θ). In Section 4, we use limm→∞∆t,m,s(θ) to derive

continuity, and use limm→∞∆t,m(θ) to show convergence. Since log pθ(Yt|Y
t−1
−∞,X

t
−∞) is strictly

stationary ergodic, it holds that

n−1
n∑
t=1

∆t,∞(θ)→ `(θ) , Eθ∗ [∆0,∞(θ)] Pθ∗ − a.s. (24)

4 Consistency

This section shows the consistency in Theorem 1 based on uniform convergence (Proposition 1)

and identification (Proposition 2).

PROPOSITION 1 (Uniform convergence). Assume (A1)–(A5). Then,

lim
n→∞

sup
θ∈Θ
|n−1`n(θ, s0)− `(θ)| = 0 Pθ∗ − a.s.

Proof. By the compactness of Θ, it suffices to show ∀θ ∈ Θ,

lim sup
δ→0

lim sup
n→∞

sup
θ′:|θ′−θ|≤δ

|n−1`n(θ′, s0)− `(θ)| = 0, Pθ∗ − a.s.

14



We decompose the difference as

lim sup
δ→0

lim sup
n→∞

sup
θ′:|θ′−θ|≤δ

|n−1`n(θ′, s0)− `(θ)|

= lim sup
δ→0

lim sup
n→∞

sup
θ′:|θ′−θ|≤δ

|n−1`n(θ′, s0)− `(θ′)|+ lim sup
δ→0

sup
θ′:|θ′−θ|≤δ

|`(θ′)− `(θ)|.

On the one hand, the first term

lim sup
δ→0

lim sup
n→∞

sup
θ′:|θ′−θ|≤δ

|n−1`n(θ′, s0)− `(θ′)|

≤ lim sup
n→∞

1

n

n∑
t=1

sup
θ′∈Θ
|∆t,0,s0(θ′)−∆t,∞(θ′)|+ lim sup

n→∞
sup
θ′∈Θ
| 1
n

n∑
t=1

∆t,∞(θ′)− `(θ′)|

= 0, Pθ∗ − a.s.

follows from the approximation (23) and is a consequence of the ergodic theorem (24). On the

other hand, note that `(θ) = Eθ∗ [∆0,∞(θ)] and ∆0,∞(θ) is continuous if ∆0,m,s(θ) is continuous (see

appendix) by uniform convergence. Then, the second term is bounded by

lim sup
δ→0

sup
θ′:|θ′−θ|≤δ

|`(θ′)− `(θ)| ≤ lim sup
δ→0

sup
θ′:|θ′−θ|≤δ

Eθ∗ |∆0,∞(θ′)−∆0,∞(θ)|

≤ lim sup
δ→0

Eθ∗
[

sup
θ′:|θ′−θ|≤δ

|∆0,∞(θ′)−∆0,∞(θ)|

]

= Eθ∗
[

lim sup
δ→0

sup
θ′:|θ′−θ|≤δ

|∆0,∞(θ′)−∆0,∞(θ)|

]
= 0

where the equality follows by the dominated convergence theorem. �

PROPOSITION 2 (Identification). Under (A2) and (A6), `(θ) ≤ `(θ∗) and `(θ) = `(θ∗) if and

only if θ = θ∗.

The proof is in the appendix. The following theorem summarizes the finding and establishes

consistency. The proof is similar to the scheme of Wald (1949), with slight modifications to include

conditioning on s0.

THEOREM 1. Assume (A1)–(A6). Then, for any s0 ∈ S, limn→∞ θ̂n,s0 = θ∗, Pθ∗ − a.s.

Proof. As θ∗ is a well-separated maximum of `(θ), we have ∀ε > 0, supθ:|θ−θ∗|≥ε `(θ) < `(θ∗). For
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ε, δ > 0 exists such that |θ − θ∗| > ε implies `(θ) < `(θ∗)− δ, and thus,

Pθ∗(|θ̂n,s0 − θ∗| > ε) ≤ Pθ∗(`(θ̂n,s0) < `(θ∗)− δ) = Pθ∗(`(θ∗)− `(θ̂n,s0) > δ).

The proof is completed by Proposition 1 and

`(θ∗)− `(θ̂n,s0) = n−1`n(θ∗, s0)− `(θ̂n,s0) + `(θ∗)− n−1`n(θ∗, s0)

≤n−1`n(θ̂n,s0 , s0)− `(θ̂n,s0) + `(θ∗)− n−1`n(θ∗, s0)

≤2 sup
θ
|n−1`n(θ, s0)− `(θ)|.

�

5 Asymptotic normality

Let ∇θ be the gradient and ∇2
θ the Hessian operator with respect to the parameter θ. For any

matrix or vector A, ‖A‖ =
∑
|Aij |. Here, we list additional regularity assumptions required for the

asymptotic normality proof. Assume a positive real δ exists such that on G , {θ ∈ Θ : |θ−θ∗| < δ},

the following conditions hold:

(A7) For all s′ ∈ S, s ∈ S and y′ ∈ Y,y ∈ Y, the functions θ → qθ(s
′|s,y, x) and θ → gθ(y

′|y, s, x)

are twice continuously differentiable.

(A8) (a) Eθ∗ [supθ∈G maxs′,s ‖∇θ log qθ(s
′|s,Y0, X0)‖4] <∞,

Eθ∗ [supθ∈G maxs′,s ‖∇2
θ log qθ(s

′|s,Y0, X0)‖2] <∞;

(b) Eθ∗ [supθ∈G maxs ‖∇θ log gθ(Y0|Y−1, s, X0)‖4] <∞,

Eθ∗ [supθ∈G maxs ‖∇2
θ log gθ(Y0|Y−1, s, X0)‖2] <∞.

(A9) (a) For almost all (y, y′, x), a finite function fy,y′,x : S→ R+ exists such that supθ∈G gθ(y
′|y, s, x) ≤

fy,y′,x(s).

(b) For almost all (y, s, x), functions f1
y,s,x : Y → R+ and f2

y,s,x : Y → R+ exist in L1(ν)

such that ‖∇θgθ(y′|y, s, x)‖ ≤ f1
y,s,x(y′) and ‖∇2

θgθ(y
′|y, s, x)‖ ≤ f2

y,s,x(y′) for all θ ∈ G.

Assumptions (A7)–(A9) parallel Assumption 7 in Kasahara and Shimotsu (2018). We do not need
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any high-level assumptions on the finite moments of

supm≥0 supθ∈G sups∇iθ log pθ(Y1|Y
0
−m,X

1
−m) with i = 1, 2, as Assumption 8 in Kasahara and Shi-

motsu (2018). Kasahara and Shimotsu (2018) needed the high-level assumptions to apply the dom-

inated convergence theorem to show the the convergence in moments of the gradiant and hessian of

the period log-likelihood functions. In this study, we can derive the convergence in moments with

(17) and (18) in Lemma 2 and without any further high-level assumptions.

5.1 A central limit theorem for the score function

We define the period score function as

∆̇t,m,s(θ) , ∇θ∆t,m,s(θ) = ∇θ log pθ(Yt|Y
t−1
−m,S−m = s,X

t
−m+1),

∆̇t,m(θ) , ∇θ∆t,m,s(θ) = ∇θ log pθ(Yt|Y
t−1
−m,X

t
−m+1).

This subsection shows the asymptotic normality of the score function. The proof follows a similar

method to that in the proof for consistency. First, we show that the score function can be approxi-

mated by a sequence of integrable martingale increments. A useful expression in the approximation

is the Fisher identity7 , which states that the score function in a model with missing data can be

obtained by the expectation of the complete score conditional on the observed data.

∆̇t,m,s(θ) = Eθ

[
t∑

k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m

]

− Eθ

[
t−1∑

k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t−1
−m,S−m = s,Xt−1

−m

]
,

(25)

∆̇t,m(θ) = Eθ

[
t∑

k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m

]

− Eθ

[
t−1∑

k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t−1
−m,X

t−1
−m

] (26)

where Zk , (Yk, Sk)
′, Zk , (Yk,Sk)

′, and

φ(θ,Zkk−r, Xk) = ∇θ log pθ(Yk, Sk|Yk−1,Sk−1, Xk)

7For details, see Cappé, Moulines, and Rydén (2009, p.353).
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= ∇θ log
(
gθ(Yk|Yk−1,Sk, Xk)qθ(Sk|Sk−1,Yk−1, Xk)

)
.

As in the previous section, the stationary conditional score is that conditional on the whole

history of (Yt, Xt) starting from past infinity:

∆̇t,∞(θ∗) , lim
m→∞

∆̇t,m(θ∗)

= lim
m→∞

[
Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y

t
−m,X

t
−m]

+
t−1∑

k=−m+1

(
Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−m,X

t−1
−m]

)]
=Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y

t
−∞,X

t
−∞]

+

t−1∑
k=−∞

(
Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−∞,X

t
−∞]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−∞,X

t−1
−∞]

)
.

(A.23) and (A.24) in the appendix show that ∆̇k,∞(θ∗) is well defined in L2(Pθ∗). The next lemma

shows that ∆̇t,0,s(θ
∗) converges to ∆̇t,∞(θ∗) in L2(Pθ∗).

LEMMA 4. Assume (A2)–(A4) and (A7)-(A8). Then, for all s ∈ S,

lim
n→∞

Eθ∗
∥∥∥ 1√

n

n∑
t=1

(
∆̇t,0,s(θ

∗)− ∆̇t,∞(θ∗)
)∥∥∥2

= 0.

Define the filtration Ft = σ
(
(Yk, Xk+1),−∞ < k ≤ t

)
for t ∈ Z. Eθ∗ [∆̇t,∞|Ft−1] = 0, since

Eθ∗
[

t−1∑
k=−∞

(
Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−∞,X

t
−∞]

− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t−1
−∞,X

t−1
−∞]

)∣∣∣Yt−1
−∞,X

t−1
−∞

]
= 0,

Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y
t−1
−∞,X

t−1
−∞]

= Eθ∗
[
Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y

t−1
−∞,St−1,X

t−1
−∞]

∣∣∣Yt−1
−∞,X

t−1
−∞]

]
= 0.

{∆̇t,∞(θ∗)}∞k=−∞ is an (F ,Pθ∗)-adapted stationary ergodic and square integrable martingale incre-
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ment sequence. The central limit theorem for the sums of such a sequence shows that

n−
1
2

n∑
t=1

∆̇t,∞(θ∗)→ N(0, I(θ∗)), Pθ∗ − weakly

where I(θ∗) , Eθ∗ [∆̇0,∞(θ∗)∆̇0,∞(θ∗)T ] is the asymptotic Fisher information matrix. By Lemma 4,

n−
1
2
∑n

t=1 ∆̇t,0,s(θ
∗) has the same limiting distribution.

THEOREM 2. Assume (A2)–(A4) and (A7)–(A9). Then, for any s ∈ S,

n−
1
2∇θ`n(θ∗, s)→ N(0, I(θ∗)), Pθ∗ − weakly.

5.2 Law of large numbers for the observed Fisher information.

This subsection presents the law of large numbers for the observed Fisher information. The proof

is similar to that of the uniform convergence of the log-likelihood function in Section 4 and is

based on the approximation of the observed Hessian with a stationary ergodic sequence. A useful

expression is the Louis missing information principle (Louis (1982)), which expresses the observed

Fisher information in terms of the Hessian of the complete log-likelihood function:

∇2
θ log pθ(Y

n
1 |Y0,S0 = s0,X

n
1 )

=Eθ
[ n∑
t=1

φ̇θ(Zt,Zt−1, Xt)
∣∣∣Yn

0 ,S0 = s0,X
n
1

]
+ Varθ

[ n∑
t=1

φθ(Zt,Zt−1, Xt)
∣∣∣Yn

0 ,S0 = s0,X
n
1

]
=

n∑
t=1

(
Eθ
[ t∑
k=1

φ̇θ(Zk,Zk−1, Xk)|Y
t
0,S0 = s0,X

t
1

]
− Eθ

[ t−1∑
k=1

φ̇θ(Zk,Zk−1, Xk)|Y
t−1
0 ,S0 = s0,X

t−1
1

])

+
n∑
t=1

(
Varθ

[ t∑
k=1

φθ(Zk,Zk−1, Xk)|Y
t
0,S0 = s0,X

t
1

]
−Varθ

[ t−1∑
k=1

φθ(Zk,Zk−1, Xk)|Y
t−1
0 ,S0 = s0,X

t−1
1

])
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where

φ̇θ(Zt,Zt−1, Xt) , ∇θφθ(Zt,Zt−1, Xt) = ∇2
θ log pθ(Yt, St|Yt−1,St−1, Xt).

We define

Γt,m,s(θ) , Eθ
[ t∑
k=−m+1

φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m

]

−Eθ
[ t−1∑
k=−m+1

φ̇θ(Zk,Zk−1, Xk)|Y
t−1
−m,S−m = s,Xt−1

−m

]
,

Φt,m,s(θ) , Varθ

[ t∑
k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m

]

−Varθ

[ t−1∑
k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t−1
−m,S−m = s,Xt−1

−m

]
.

Similarly, we define

Γt,m(θ) , Eθ
[ t∑
k=−m+1

φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m

]

− Eθ
[ t−1∑
k=−m+1

φ̇θ(Zk,Zk−1, Xk)|Y
t−1
−m,X

t−1
−m

]
,

Φk,m(θ) , Varθ

[ t∑
k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m

]

−Varθ

[ t−1∑
k=−m+1

φθ(Zk,Zk−1, Xk)|Y
t−1
−m,X

t−1
−m

]
.

As in Section 4, we construct the stationary ergodic sequence by conditioning the observed

Hessian on the whole history of (Yt, Xt) from past infinity. Lemmas 11 to 15 in the appendix

establish the approximation using the deterministic bounds in Lemma 2. Lemmas 11 and 12 show

that {Γt,m,s(θ)}m≥0 converges uniformly with respect to θ ∈ G Pθ∗−a.s. and in L1(Pθ∗) to a random

variable that we denote by Γt,∞(θ), and the limit does not depend on s. Lemmas 14 and 15 show

similar results for {Φt,m,s(θ)}m≥0. Following a similar procedure to Douc et al. (2004), Propositions

3 and 4 show the uniform convergence. We relegate the details of the proof to the appendix.
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PROPOSITION 3. Assume (A2)–(A5) and (A7)–(A8). Then, for all s ∈ S and θ ∈ G,

lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

∣∣∣∣∣ 1n
n∑
t=1

Γt,0,s(θ
′)− Eθ∗ [Γ0,∞(θ)]

∣∣∣∣∣ = 0, Pθ∗ − a.s.

PROPOSITION 4. Assume (A2)–(A5) and (A7)–(A8). Then, for all s ∈ S and θ ∈ G,

lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

∣∣∣∣∣ 1n
n∑
t=1

Φt,0,s(θ
′)− Eθ∗ [Φ0,∞(θ)]

∣∣∣∣∣ = 0, Pθ∗ − a.s.

Using the Louis missing information principle and Assumption (A9),

Eθ∗ [Γ0,∞(θ∗) + Φ0,∞(θ∗)] = −Eθ∗ [∆̇0,∞(θ∗)∆̇0,∞(θ∗)T ] = −I(θ∗).

Propositions 3 and 4 yield the following theorem.

THEOREM 3. Assume (A2)–(A5) and (A7)–(A9). Let {θ∗n} be any, possibly stochastic, sequence

in Θ such that θ∗n → θ∗ Pθ∗−a.s. Then, for all s0 ∈ S, −n−1∇2
θ`n(θ∗n, s0)→ I(θ∗), Pθ∗ − a.s.

Theorems 2 and 3 together yield the following theorem of asymptotic normality.

THEOREM 4. Assume (A1)–(A9). Then, for any s0 ∈ S,

n1/2(θ̂n,s0 − θ∗)→ N(0, I(θ∗)−1), Pθ∗ − weakly.

From Theorems 1, 3, and 4, the negative of the inverse of the Hessian matrix at the MLE value

is a consistent estimate of the asymptotic variance.

6 Discussion of assumptions

This section shows that the Assumptions (A4) and (A6) hold in models with a transition equation

of the observed process (3) and a transition probability of logistic form (6) or of the Chang et al.
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(2017) type (7). In addition, we derive explicit conditions for Assumption (A2) to hold in models

with a transition equation of the observed process (5) and transition probability (7).8 The models

here can cover a wide range of empirical research. The other assumptions are either standard in

the literature or easy to verify, and are not discussed here.

PROPOSITION 5. Assumptions (A4) and (A6) hold in a two-regime endogenous regime-switching

model with a transition probability (6) of logistic form: qθ(st = s|st−1 = s, st−2, . . . , st−r, Xt) =

exp(β′sXt)
1+exp(β′sXt)

and a transition equation of the observed process (3) satisfying

1. σ(0) 6= σ(1) and 0 < σ(0), σ(1) <∞;

2. Ut ∼ N(0, 1);

3. mθ(si) 6= mθ(sj), for si 6= sj; and

4. for all s ∈ S, exp(β′sXt) and exp(β′sXt)
−1 have finite second moments.

PROPOSITION 6. Assumptions (A4) and (A6) hold in a two-regime endogenous regime-switching

model with a transition equation of the observed process (3) satisfying conditions 1–3 in Proposition

5 and a Chang et al. (2017)-type transition probability (7).

The following lemmas are helpful for showing the propositions.

LEMMA 5. A sufficient condition for Assumption (A4b) is that for some δ > 0, Eθ∗ [| log b−(Y1
−r+1, X1)|1+δ] <

∞.

The proof follows from Kasahara and Shimotsu (2018, p. 9).

LEMMA 6. A sufficient condition for Assumption (A4a) is that for some δ > 0, Eθ∗ [| log σ−(y0, x1)|1+δ] <

∞.

Proof. Set C1 = 1.

Pθ∗(σ−(Y0, X1) ≤ e−α1ξ) = Pθ∗(| log σ−(Y0, X1)|1+δ ≥ (α1ξ)
1+δ)

8Pouzo et al. (2018) discussed the stationary ergodicity assumption in models with a transition probability (6),

and thus, we do not repeat it here.
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≤ Eθ∗
[
| log σ−(Y0, X1)|1+δ

]
/(α1ξ)

1+δ = C2ξ
−(1+δ)

where C2 = Eθ∗ [| log σ−(Y0, X1))|1+δ]/α1+δ
1 , and the second inequality follows from Markov’s in-

equality. �

LEMMA 7 (Teicher, 1967). Assume that the class of finite mixtures of the family (fφ) of densities

on y ∈ Y with parameter φ ∈ Φ is identifiable. Then, the class of finite mixtures of the n−fold

product densities f
(n)
φ (y) = fφ1(y1) · · · fφn(yn) on y ∈ Yn with parameter φ ∈ Φn is identifiable.

This lemma was proved by Teicher (1967). Write the conditional likelihood function as

pθ(Y1, . . . , Yn|Y0
−r+1,X

n
−r+1)

=
∑
sn−r+2

(
n∏
t=1

gθ(Yt|Yt−1, st, Xt)

n∏
t=2

qθ(st|st−1,Yt−1, Xt)Pθ(S1 = s1|Y0
−r+1,X

n
−r+1)

)
.

(27)

The conditional likelihood function is a finite mixture of the n−fold product densities
∏n
t=1 gθ(Yt|Yt−1, st, Xt)

with mixing distributions
∏n
t=2 qθ(st|st−1,Yt−1, Xt)Pθ(S1 = s1|Y0

−r+1,X
n
−r+1). Under condition 2

of Propositions 5, gθ(Yt|Yt−1, st, Xt) =d N(mθ(st), σ(st)
2). Teicher (1960) stated that finite joint

mixtures of normal distributions over both mean and variance are identifiable. It follows that the

conditional likelihood function is identifiable.

Proof of Proposition 5. The transition equation of the observed process (3) satisfies the condition

in Lemma 5 with δ = 1, since

Eθ∗ [| log gθ(Y1|Y0, s1, X1)|2] = Eθ∗
[∣∣∣− 1

2
log(2π)− log σ(st)−

1

2
Ut

∣∣∣2] <∞ (28)

Next, we show that the logistic-type Diebold et al. (1994) transition probability satisfies the con-

dition in Lemma 6 with δ = 1. For s ∈ S, we use | log x− log y| ≤ |x−y|x∧y to have

Eθ∗ [| log qθ(s1 = s|s0 = s, s−1, . . . , s−r+1, X1)|2]

=Eθ∗
[∣∣∣∣log

exp(β′sX1)

1 + exp(β′sX1)

∣∣∣∣2
]
≤ Eθ∗ [exp(β′sX1)−2] <∞.
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For s, s′ ∈ S and s′ 6= s,

Eθ∗ [| log qθ(s1 = s′|s0 = s, s−1, . . . , s−r+1, X1)|2]

=Eθ∗
[∣∣∣∣log

1

1 + exp(β′sX1)

∣∣∣∣2
]
≤ Eθ∗ [exp(β′sX1)2] <∞.

Next, we show (A6). The “only if” part is obvious. Here, we show only the “if” part. θ = (θ′1, θ
′
2)′,

where θ1 is the parameter vector in (3), and θ2 = (β(s1), . . . , β(sJ))′. If Pθ(Yn
1 ∈ ·|Y0

−r+1,X
n
−r+1) =

Pθ∗(Yn
1 ∈ ·|Y0

−r+1,X
n
−r+1), by Lemma 7, the law of the process {mθ(st), σ(st)

2} is in accordance

with {mθ∗(st), σ
∗(st)

2}. Since mθ∗(si) 6= mθ∗(sj) for si 6= sj , and σ(si) 6= σ(sj) for si 6= sj , the

sets {mθ∗(si)} and {mθ(si)}, {σ∗(si)} and {σ(si)} are identical. Under appropriate permutation,

mθ∗(si) = mθ(si) and σ∗(si) = σ(si). Thus, θ∗1 = θ1. Again, since the law of {mθ(st), σ(st)
2} is in

accordance with {mθ∗(st), σ
∗(st)

2}, qθ(st|st−1, Xt) = qθ∗(st|st−1, Xt). By the monotonicity of qθ in

β(s), θ∗2 = θ2. �

Proof of Proposition 6. (A4a) can be shown as (28) and is omitted here for brevity. We can prove

(A4b) by showing that the condition in Lemma 6 holds with δ = 1. The proof is in the appendix.

Then, we show the “if” part in (A6). When the number of lags is k in (4) and θ = (θ′1, θ
′
2)′, where

θ1 is the parameter vector in (3) and θ2 = (α, τ, ρ)′. When Pθ(Yn
1 ∈ ·|Y0

−r+1,X
n
−r+1) = Pθ∗(Yn

1 ∈

·|Y0
−r+1,X

n
−r+1), similarly to the previous analysis, we can show θ∗1=θ1 (with permutation of states

if necessary). Since the laws of the processes {mθ(st), σ(st)
2} and {mθ∗(st), σ

∗(st)
2} are in accor-

dance, Pθ(St = 0) = Φ(τ
√

1− α2) and Pθ(St = 0) = Pθ∗(St = 0) imply τ
√

1− α2 = τ∗
√

1− α∗2.

Likewise, qθ(st|st−1,Yt−1, Xt) = qθ∗(st|st−1,Yt−1, Xt), (7), and (8) imply τ−ρut−1−αx/
√

1−α2√
1−ρ2

=

τ∗−ρ∗ut−1−α∗x/
√

1−α∗2√
1−ρ∗2

. It follows that θ∗2 = θ2. �

In order to investigate Assumption (A2), we use the following vectorial form of the transition

equation of the observed process (5):

Yt
t−k+1 = A(St)Y

t−1
t−k +B(St, Xt) (29)
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where B(St, Xt) = (µ(St) + γX(St)
′Xt + σ(St)Ut, 0, . . . , 0)′ and

A(St) =



γ1(St) γ2(St) . . . γk(St)

1 0 0 0

0
. . . 0 0

0 0 1 0


.

In the following proof, we simply write B(St) instead of B(St, Xt). Results on ergodicity for au-

toregressive processes with basic Markov switching have been shown in Yao (2001) and Francq

and Zakoıan (2001). We extend their proofs to Chang et al. (2017)-type transition probability,

and summarize our findings in Proposition 7. Note that the Chang et al. (2017)-type transition

probability (7) is essentially a function of (St, St−1, Ut−1), which allows us to use another notation

qθ(St|St−1, Ut−1). Since Wt−1 is independent of Ut−1, and so is St−1, integration with respect to

Ut−1 yields the unconditional transition probabilities

pij , E[qθ(St = j|St−1 = i, Ut−1)|St−1 = i]

= (1− j)ω + j(1− ω)

where

ω =
[(1− i)

∫ τ√1−α2

−∞ +i
∫∞
τ
√

1−α2 ]Φ
(
τ − αx√

1−α2

)
ϕ(x)dx

(1− i)Φ(τ
√

1− α2) + i[1− Φ(τ
√

1− α2)]
.

We denote by ⊗ the Kronecker tensor product. Let the 2k2 × 2k2 matrix

M =

(A(0)⊗A(0))p00 (A(0)⊗A(0))p10

(A(1)⊗A(1))p01 (A(1)⊗A(1))p11

 . (30)

We denote the spectral radius of a real matrix A = (aij) by ρ(A). Then, we obtain the following

result.

PROPOSITION 7. Assumption (A2) holds in a two-regime endogenous regime-switching model

with a transition equation of the observed process (5) satisfying that Xt is strictly stationary and

ergodic and has finite second moment, and Chang et al. (2017)-type transition probability (7) sat-

isfying |α| < 1, W0 ∼ N(0, 1
1−α2 ) and ρ(M) < 1.
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Proof. In the proof, we omit subscript θ for simplicity. Note that the stationarity and ergodicity

of {St} are implied by those of {Wt}. Under the assumptions that |α| < 1 and W0 ∼ N(0, 1
1−α2 ),

{Wt} becomes a strictly stationary process. In addition, the dynamics of {Wt} can be equivalently

defined as

Wt = αWt−1 + ρUt−1 +
√

1− ρ2Vt

=

∞∑
l=0

ραlUt−1−l +

∞∑
l=0

√
1− ρ2αlVt−l.

According to Theorem 7.1.3 in Durrett (2013), the ergodicity of {Wt} follows from the ergodicity

of {Ut} and {Vt}. Consequently, {A(St), B(St)} is a strictly stationary and ergodic sequence.

We show that

Ht,p , A(St)A(St−1) . . . A(St−p+1)B(St−p)

converges to zero in L2 at an exponential rate, as p goes to infinity. We obtain

E[vec(Ht,pH
′
t,p)]

=E[(A(St)⊗A(St)) . . . (A(St−p+1)⊗A(St−p+1))(B(St−p)⊗B(St−p))]

(31)

=

∫
· · ·
∫ ∑

st,...,st−p

(A(st)⊗A(st)) . . . (A(st−p+1)⊗A(st−p+1))(B(st−p)⊗B(st−p))

× p(st, st−1, ut−1, st−2, ut−2, . . . , st−p, ut−p, xt−p)dut−1 . . . dut−pdxt−p

(32)

with

p(st, st−1, ut−1, st−2, ut−2, . . . , st−p, ut−p, xt−p)

=p(st|st−1, ut−1)p(ut−1)p(st−1|st−2, ut−2) . . . p(st−p+1|st−p, ut−p)p(ut−p)p(st−p, xt−p)

=p(st, ut−1|st−1)p(st−1, ut−2|st−2) . . . p(st−p+1, ut−p|st−p)p(st−p, xt−p) (33)

where the first equality follows because Ut is independent of Wt, Wt−1, and Ut−1.

Plugging (33) back into (32) yields

E[vec(Ht,pH
′
t,p)] = E[(A(St)⊗A(St)) . . . (A(St−p+1)⊗A(St−p+1))(B(St−p)⊗B(St−p))]
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=

∫
· · ·
∫ ∑

st,...,st−p

(A(st)⊗A(st)) . . . (A(st−p+1)⊗A(st−p+1))(B(st−p)⊗B(st−p))

× p(st, ut−1|st−1)p(st−1, ut−2|st−2) . . . p(st−p+1, ut−p|st−p)p(st−p, xt−p)dut−1 . . . dut−pdxt−p

=

∫ ∫ ∑
st,...,st−p

(A(st)⊗A(st)) . . . (A(st−p+1)⊗A(st−p+1))(B(st−p)⊗B(st−p))

× p(st|st−1)p(st−1|st−2) . . . p(st−p+2|st−p+1)p(st−p+1, ut−p|st−p)p(st−p, xt−p)dut−pdxt−p.

We define the 2k2 × 1 matrix as

Nt−p =∫ ∫ ∑st−p

(
A(1)⊗A(1)

)(
B(st−p)⊗B(st−p)

)
p(st−p+1 = 1, st−p, ut−p, xt−p)dut−pdxt−p∫ ∫ ∑

st−p

(
A(2)⊗A(2)

)(
B(st−p)⊗B(st−p)

)
p(st−p+1 = 2, st−p, ut−p, xt−p)dut−pdxt−p

 .

Then, we obtain E[vec(Ht,pH
′
t,p)] = I

′Mp−1Nt−p where I = (Ik2 , Ik2)′ and Ik2 are a 2k2×k2 matrix

and a k2 × k2 identity matrix, respectively. It follows that

‖Ht,p‖L2 ≤ ‖I′Mp−1Nt−p‖1/2 ≤ ‖I′‖1/2‖Mp−1‖1/2‖Nt−p‖1/2.

Then, the process

Yt
t−k+1 = B(St) +A(St)B(St−1) +A(St)A(St−1)B(St−2) + . . .

= Ht,0 +Ht,1 +Ht,2 + . . .

is well defined in L2 if ρ(M) < 1, since ‖Yt
t−k+1‖L2 ≤

∑∞
p=0 ‖Ht,p‖L2 and ‖Ht,p‖L2 converges to

zero at an exponential rate as p goes to infinity. Since {A(St), B(St)} is strictly stationary ergodic,

again by Theorem 7.1.3 in Durrett (2013), Yt
t−k+1 is strictly stationary ergodic. �

7 Simulation

This section presents the results of Monte Carlo simulation of the sample properties of the MLE in

Diebold et al. (1994)-type and Chang et al. (2017)-type models. This section lists the frequency with

which the true parameter falls in the 95% confidence interval centered at the MLE. If the distribution
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of the sample estimator can be well approximated by the asymptotic normal distribution, then the

frequency should be close to 95%. Moreover, as the sample size increases, the coverage error should

decrease.

The first experiment is based on a two-regime volatility-switching model with a Chang et al.

(2017)-type transition probability:

Yt = σStUt

St = 1{Wt ≥ τ}.

The parameter θ = (σ0, σ1, α, τ, ρ)′. We use the parameter in the simulation model of Chang et al.

(2017), θ∗ = (0.04, 0.12, 0.4, 0.4, 0.5). The result is listed in Table 1.

Table 1: Coverage frequency of asymptotic 95% confidence interval of volatility model with Chang,
Choi, and Park (2017) transition probability (1000 replications)

Observations σ0 σ1 ρ α τ

n = 200 0.908 0.916 0.875 0.887 0.934
n = 400 0.940 0.944 0.910 0.908 0.945
n = 600 0.948 0.937 0.919 0.901 0.945
n = 800 0.940 0.955 0.938 0.897 0.963
n = 1000 0.957 0.941 0.926 0.901 0.948

The second experiment is based on a two-regime mean-switching model with a Diebold et al.

(1994)-type transition probability:

Yt = µSt + Ut, Ut ∼ i.i.d. N(0, 1)

with transition matrix

0 1

0

1

 exp(βq0+βq1Xt)
1+exp(βq0+βq1Xt)

1− exp(βq0+βq1Xt)
1+exp(βq0+βq0Xt)

1− exp(βp0+βp1Xt)
1+exp(βp0+βp0Xt)

exp(βp0+βp0Xt)
1+exp(βp0+βp0Xt)



The parameter θ = (µ0, µ1, βq0, βq1, βp0, βp1)′. We choose parameters from the simulation ex-

ample in Diebold et al. (1994). θ∗ = (−0.8, 0.5, 0.79,−2, 1, 2)′. The process of the predetermined

28



Table 2: Coverage frequency of asymptotic 95% confidence interval of mean model with Diebold,
Lee, and Weinbach (1994) transition probability (1000 replications)

Observations µ0 µ1 βq0 βq1 βp0 βp1
n = 200 0.889 0.907 0.970 0.938 0.956 0.927
n = 400 0.925 0.949 0.979 0.934 0.976 0.956
n = 600 0.945 0.935 0.958 0.954 0.972 0.952
n = 800 0.941 0.939 0.970 0.963 0.968 0.945
n = 1000 0.940 0.935 0.953 0.956 0.955 0.958

variable is Xt+1 = αXXt + Ũt with αX = 0.4 and Ũt ∼ i.i.d.N(0, 1). The result is listed in Table 2.

8 Conclusion

This study proves consistency and asymptotic normality of the MLE in endogenous regime-switching

models represented by Chang et al. (2017). The model we consider is general enough to cover time-

varying transition probability regime-switching models represented by Diebold et al. (1994).

Our proof follows the method of Douc et al. (2004) and Kasahara and Shimotsu (2018). The

key feature is to approximate the sequence of non-ergodic period predictive densities with a sta-

tionary ergodic process using the mixing rate of the unobservable state process conditional on the

observations. The time-varying transition probabilities, however, heighten the difficulty of proving

the approximation, because the mixing rate can approach one as the transition probabilities takes

extremely small values. In this study, we provide almost deterministic geometric decaying bounds

for the time-varying mixing rate. The assumptions in the proof are low-level ones and have been

shown to hold in general. Thus, this study provides theoretical foundations for a wide range of

endogenous regime-switching models in the literature. Some interesting and important statistical

tests in empirical work can now be conducted, such as whether the observables affect transition

probability and whether the effect is positive or negative.

Throughout the paper, we assume that the number of regimes is precisely known. One fails to

identify all of the parameters if the number of regimes is set greater than the true value. There are

few studies about criteria for selecting the proper number of regimes in endogenous regime-switching

models. We leave this topic for future research.
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A Appendix

A.1 Detailed proof of lemmas and corollaries in Section 3

Proof of Lemma 1. For −m ≤ k ≤ n, {Sk} is a Markov chain conditionally, since

pθ(Sk|S
k−1
−m ,Y

n
−m,X

n
−m) = pθ(Sk|Sk−1,Y

n
k−1,X

n
k).

The proof follows from Lemma 1 in Kasahara and Shimotsu (2018).

To see the minorization condition, observe that

Pθ(Sk ∈ A|Sk−r,Y
n
−m,X

n
−m) = Pθ(Sk ∈ A|Sk−r,Y

n
k−r,X

n
k−r+1)

=

∑
sk∈A pθ(Y

n
k |Sk = sk,Yk−1,X

n
k)Pθ(Sk = sk|Sk−r,Y

k−1
k−r ,X

k
k−r+1)∑

sk∈S pθ(Y
n
k |Sk = sk,Yk−1,X

n
k)Pθ(Sk = sk|Sk−r,Y

k−1
k−r , ,X

k
k−r+1)

.

Since Pθ(Sk = sk|sk−r,Y
k−1
k−r , X

k
k−r+1) ≤ 1 and

Pθ(Sk = sk|sk−r,Y
k−1
k−r ,X

k
k−r+1)

=

∏k−1
`=k−r+1 gθ(Y`|Y`−1, s`, X`)

∏k
`=k−r+1 qθ(s`|s`−1,Y`−1, X`)∑

sk∈S
∏k−1
`=k−r+1 gθ(Y`|Y`−1, s`, X`)

∏k
`=k−r+1 qθ(s`|s`−1,Y`−1, X`)

≥
∏k−1
`=k−r+1 b−(Y`

`−r, X`)
∏k
`=k−r+1 σ−(Y`−1, X`)

br−1
+

= ω(Yk−1
k−2r+1,X

k
k−r+1),
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it readily follows that

Pθ(Sk ∈ A|Sk−r,Y
n
−m,X

n
−m) ≥ ω(Yk−1

k−2r+1,X
k
k−r+1)µk(Y

n
k−r,X

n
k , A)

with

µk(Y
n
k−r,X

n
k , A) ,

∑
sk∈A pθ(Y

n
k |Sk = sk,Yk−1,X

n
k)∑

sk∈S pθ(Y
n
k |Sk = sk,Yk−1,X

n
k)
. (A.1)

In order for µk(Y
n
k−r,X

n
k , A) to be a well-defined probability measure, we need show only that the

denominator is strictly positive. The summand term in the denominator of (A.1) is

pθ(Y
n
k |Sk = sk,Yk−1,X

n
k) =

∑
snk+1

n∏
`=k

gθ(Y`|Y`−1, s`, X`)
n∏

`=k+1

qθ(s`|s`−1,Y`−1, X`)

≥
n∏
`=k

b−(Y`
`−r, X`)

n∏
`=k+1

σ−(Y`−1, X`) > 0.

�

Proof of Lemma 2. First, we show (17). By Assumption (A4), C6 < 1 exists such that for any

ξ > 0,

Pθ∗
(

1− ω(Vt) ≥ 1− C6e
−[α1r+α2(r−1)]ξ

)
≤ rC2ξ

−β1 + (r − 1)C4ξ
−β2 . (A.2)

We choose ξ0 such that it satisfies

1

16r
(1− C6e

−[α1r+α2(r−1)]ξ0)mn = rC2ξ
−β1
0 + (r − 1)C4ξ

−β2
0 . (A.3)

The existence of such ξ0 is guaranteed by monotone increasing of 1
16r (1− C6e

−[α1r+α2(r−1)]ξ)mn in

ξ from 1
16r (1 − C6)mn to 1

16r and monotone decreasing of rC2ξ
−β1 + (r − 1)C4ξ

−β2 in ξ from +∞

to 0. We define

ρ = 1− C6e
−[α1r+α2(r−1)]ξ0 (A.4)
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and

Itk , 1{1− ω(Vtk) ≥ ρ} (A.5)

Notice that ρ ∈ (0, 1). Using (1− ω(Vtk))m ≤ ρ(1−Itk )m and mn ≥ n,

Eθ∗
[

n∏
k=1

(1− ω(Vtk))m

]
≤ Eθ∗

[
n∏
k=1

ρ(1−Itk )m

]
= ρmnEθ∗

[
n∏
k=1

ρ−mItk

]
≤ ρnEθ∗

[
n∏
k=1

ρ−mItk

]
.

Next, we find an upper bound for Eθ∗ [
∏n
k=1 ρ

−mItk ]. Using the generalized Hölder’s inequality,

Eθ∗
[

n∏
k=1

ρ−mItk

]
≤

n∏
k=1

(
Eθ∗

[
ρ−mnItk

]) 1
n . (A.6)

Given (A.2) and (A.3),

Eθ∗ [ρ−mnItk ] = ρ−mnPθ∗{Itk = 1}+ Pθ∗{Itk = 0} ≤ ρ−mnPθ∗{1− ω(Vtk) ≥ ρ}+ 1

≤ ρ−mn[rC2ξ
−β1
0 + (r − 1)C4ξ

−β2
0 ] + 1 = ρ−mn · 1

16r
ρmn + 1 ≤ 2.

(A.7)

The proof is completed by plugging (A.7) back into (A.6).

(18) follows from (17) given Eθ∗
[∏n1

k1=1(1−ω(Vtk1
))m∧

∏n2
k2=1(1−ω(Vtk2

))m] ≤ min{Eθ∗ [
∏n1
k1=1(1−

ω(Vtk1
))m],Eθ∗ [

∏n2
k2=1(1− ω(Vtk2

))m]}. (19) similarly follows.

Next, we show (14). The proof follows a similar procedure to Kasahara and Shimotsu (2018,

pp. 19–20). Let ρ and Itk be defined as in (A.4) and (A.5), respectively. We define

ε0 = rC2ξ
−β1
0 + (r − 1)C4ξ

−β2
0 . (A.8)

Then, ε0 ∈ (0, 1
16r ), and

Pθ∗(1− ω(Vt) ≥ ρ) ≤ ε0.

Using 1− ω(Vtk) ≤ ρ1−Itk ,

n∏
k=1

(1− ω(Vtk)) ≤ ρn−
∑n
k=1 Itk = ρnan (A.9)
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with an := ρ−
∑n
k=1 Itk . Since Vtk is stationary and ergodic, it follows from the strong law of large

numbers that n−1
∑n

k=1 Itk → Eθ∗ [Itk ] < ε0 Pθ∗−a.s. Hence,

Pθ∗(an ≤ ρ−2ε0n ev.) = 1. (A.10)

The proof is completed by combining (A.9) and (A.10).

Next, we show (15). Let ρ and ε0 be defined as in (A.4) and (A.5) respectively. For each t ≥ 2r,

set ξt such that it satisfies ρε0b(t−r)/rc = e−[α1r+α2(r−1)]ξt . The existence of ξt is guaranteed, since

ρε0b(t−r)/rc ∈ (0, 1), and e−[α1r+α2(r−1)]ξt is monotone decreasing in ξt from 1 to 0. Then,

∞∑
t=1

Pθ∗(ω(Vt) ≤ C5ρ
ε0b(t−r)/rc) ≤ (2r − 1) +

∞∑
t=2r

Pθ∗
(
ω(Vt) ≤ C5e

−[α1r+α2(r−1)]ξt
)

≤(2r − 1) + r

∞∑
t=2r

Pθ∗(σ−(Yt−1, Xt) ≤ C1e
−α1ξt)

+ (r − 1)

∞∑
t=2r

Pθ∗(b−(Yt
t−r, Xt) ≤ C3e

−α2ξt) <∞.

By the Borel–Cantelli lemma, Pθ∗(ω(Vt) ≤ C5ρ
ε0b(t−r)/rc i.o.) = 0.9 �

Proof of Lemma 3. First, we show (20). Write

pθ(Yt|Y
t−1
−m,S−m = si,X

t
−m+1)

=
∑

st,st−1,s−m

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)

× Pθ(St−1 = st−1|S−m = s−m,Y
t−1
−m,X

t−1
−m+1)δsi(s−m)

and similarly for pθ(Yt|Y
t−1
−m′ ,S−m′ = sj ,X

t
−m′+1). It follows that

∣∣∣pθ(Yt|Yt−1
−m,S−m = si,X

t
−m+1)− pθ(Yt|Y

t−1
−m′ ,S−m′ = sj ,X

t
−m′+1)

∣∣∣
=

∣∣∣∣ ∑
st,st−1,s−m

[
gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)

× Pθ(St−1 = st−1|S−m = s−m,Y
t−1
−m,X

t−1
−m+1)

9i.o. is an abbreviation for “infinitely often.”
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×
(
δsi(s−m)− Pθ(S−m = s−m|S−m′ = sj ,Y

t−1
−m′ ,X

t−1
−m′+1)

)]∣∣∣∣
≤
b(t−1+m)/rc∏

i=1

(
1− ω(V−m+ri)

) ∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt).

Moreover, we rewrite the period predictive density as

pθ(Yt|Y
t−1
−m,S−m = si,X

t
−m+1)

=
∑

st,st−1,st−r−1,s−m

(
gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)

× Pθ(St−1 = st−1|St−r−1 = st−r−1,Y
t−1
t−r−1,X

t−1
t−r)

× Pθ(St−r−1 = st−r−1|S−m = s−m,Y
t−1
−m,X

t−1
−m+1)δsi(s−m)

)
and similarly for pθ(Yt|Y

t−1
−m′ ,S−m′ = sj ,X

t
−m′+1). It follows that

pθ(Yt|Y
t−1
−m,S−m = si,X

t
−m+1) ∧ pθ(Yt|Y

t−1
−m,S−m′ = sj ,X

t
−m′+1)

≥ min
s′t−1,st−r−1

Pθ(St−1 = s′t−1|St−r−1 = st−r−1,Y
t−1
t−r−1,X

t−1
t−r)

×
∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt)

=ω(Vt−1)
∑
st,st−1

gθ(Yt|Yt−1, st, Xt)qθ(st|st−1,Yt−1, Xt).

By | log x− log y| ≤ |x− y|/(x ∧ y),

| log pθ(Yt|Y
t−1
−m,S−m = si,X

t
−m+1)− log pθ(Yt|Y

t−1
−m′ ,S−m′ = sj ,X

t
−m′+1)|

≤
∏b(t−1+m)/rc
i=1 (1− ω(V−m+ri))

ω(Vt−1)
. (A.11)

By (14) and (15) in Lemma (3),

Pθ∗
(
|∆t,m,si(θ)−∆t,m,sj (θ)| ≤

1

C5
ρ(1−3ε0)b(t−1+m)/rc ev.

)
= 1.

36



Since (1− 3ε0)b(t− 1 +m)/rc ≥ b(t− 1 +m)/rc/2 ≥ b(t− 1 +m)/2rc ≥ b(t+m)/3rc,

Pθ∗
(
|∆t,m,si(θ)−∆t,m,sj (θ)| ≤

1

C5
ρb(t+m)/3rc ev.

)
= 1.

(21) follows by replacing Pθ(S−m = s−m|S−m′ = sj ,Y
t−1
−m′ ,X

t
−m′+1) with Pθ(S−m = s−m|Y

t−1
−m,X

t
−m+1).

(22) follows from

b−(Yt
t−r, Xt) ≤ pθ(Yt|Y

t−1
−m,S−m = si,X

t
−m+1) ≤ b+.

�

A.2 Detailed proof of propositions and theorems in Section 4

Proof of continuity in Proposition 1. Show that ∆0,m,s−m(θ) is continuous with respect to θ.

pθ(Y0|Y
−1
−m,S−m = s−m,X

0
−m+1) =

pθ(Y
0
−m+1|Y−m,S−m = s−m,X

0
−m+1)

pθ(Y
−1
−m+1|Y−m,S−m = s−m,X

−1
−m+1)

,

pθ(Y
j
−m+1|Y−m,S−m = s−m,X

j
−m+1)

=
∑

sj−m+1

j∏
`=−m+1

qθ(s`|s`−1,Y`−1, X`)

j∏
`=−m+1

gθ(Y`|Y`−1, s`, X`)

for j = 0,−1. Continuity follows from Assumption (A5). �

Proof of Proposition 2.

`(θ) = Eθ∗
[

lim
m→∞

log pθ(Y1|Y
0
−m,S−m,X

1
−m+1)

]
= lim

m→∞
Eθ∗

[
log pθ(Y1|Y

0
−m,S−m,X

1
−m+1)

]
(A.12)

= lim
m→∞

Eθ∗
[
Eθ∗ [log pθ(Y1|Y

0
−m,S−m,X

1
−m+1)|Y0

−m,S−m,X
1
−m+1]

]
.

It follows that

`(θ∗)− `(θ)
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= lim
m→∞

Eθ∗
[
Eθ∗

[
log

pθ∗(Y1|Y
0
−m,S−m,X

1
−m+1)

pθ(Y1|Y
0
−m,S−m,X

1
−m+1)

∣∣∣∣Y0
−m,S−m,X

1
−m+1

]]
≥ 0.

The nonnegativity follows because Kullback–Leibler divergence is nonnegative, and thus, the limit

of its expectation is nonnegative. Next, we show that θ∗ is the unique maximizer. The proof closely

follows Douc et al. (2004, pp. 2269–2270). Assume `(θ) = `(θ∗). For any t ≥ 1 and m ≥ 0,

Eθ∗ [log pθ(Y
t
1|Y

0
−m,S−m,X

t
−m+1)] =

t∑
k=1

Eθ∗ [log pθ(Yk|Y
k−1
−m ,S−m,X

k
−m+1)].

By (A.12) and stationarity, limm→∞ Eθ∗ [log pθ(Y
t
1|Y

0
−m,S−m,X

t
−m+1)] = t`(θ). For 1 ≤ k ≤ t −

r + 1,

0 = t(`(θ∗)− `(θ)) = lim
m→∞

Eθ∗
[

log
pθ∗(Y

t
1|Y

0
−m,S−m,X

t
−m+1)

pθ(Y
t
1|Y

0
−m,S−m,X

t
−m+1)

]

= lim sup
m→∞

Eθ∗
[

log
pθ∗(Y

t
t−k+1|Yt−k,Y

0
−m,S−m,X

t
−m+1)

pθ(Y
t
t−k+1|Yt−k,Y

0
−m,S−m,X

t
−m+1)

+ log
pθ∗(Yt−k|Y

0
−m,S−m,X

t
−m+1)

pθ(Yt−k|Y
0
−m,S−m,X

t
−m+1)

+ log
pθ∗(Y

t−k−r
1 |Yt

t−k−r+1,Y
0
−m,S−m,X

t
−m+1)

pθ(Y
t−k−r
1 |Yt

t−k−r+1,Y
0
−m,S−m,X

t
−m+1)

]

≥ lim sup
m→∞

Eθ∗
[

log
pθ∗(Y

t
t−k+1|Yt−k,Y

0
−m,S−m,X

t
−m+1)

pθ(Y
t
t−k+1|Yt−k,Y

0
−m,S−m,X

t
−m+1)

]

= lim sup
m→∞

Eθ∗
[

log
pθ∗(Y

k
1 |Y0,Y

−t+k
−m−t+k,S−m−t+k,X

k
−m+1−t+k)

pθ∗(Y
k
1 |Y0,Y

−t+k
−m−t+k,S−m−t+k,X

k
−m+1−t+k)

]
.

This holds when we let t→∞. It suffices to show that for all t ≥ 0 and all θ ∈ Θ,

lim
k→∞

sup
m≥k

∣∣∣∣∣Eθ∗
[

log
pθ∗(Y

t
1|Y0,Y

−k
−m,S−m,X

t
−m)

pθ(Y
t
1|Y0,Y

−k
−m,S−m,X

t
−m)

]
− Eθ∗

[
log

pθ∗(Y
t
1|Y0

−r+1,X
t
−r+1)

pθ(Y
t
1|Y0

−r+1,X
t
−r+1)

]∣∣∣∣∣ = 0.

(A.13)

From (A.13) and the previous inequality, if `(θ∗) = `(θ), then Eθ∗
[

log
(
pθ∗(Y

t
1|Y0

−r+1,X
t
−r+1)/

pθ(Y
t
1|Y0

−r+1,X
t
−r+1)

)]
= 0. The laws Pθ∗(Yt

1 ∈ ·|Y0
−r+1,X

t
−r+1) and Pθ(Yt

1 ∈ ·|Y0
−r+1,X

t
−r+1)

agree. From Assumption (A6), θ = θ∗.

Next we show (A.13). Define Uk,m(θ) = log pθ(Y
t
1|Y0,Y

−k
−m,S−m,X

t
−m), and U(θ) = log pθ(Y

t
1|Y0

−r+1,X
t
−r+1).
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It is enough to show that for all θ ∈ Θ,

lim
k→∞

Eθ∗
[

sup
m≥k
|Uk,m(θ)− U(θ)|

]
= 0.

Put

Ak,m = pθ(Y
t
−r+1|Y

−k
−m,S−m,X

t
−m), A = pθ(Y

t
−r+1|Xt

−r+1),

Bk,m = pθ(Y
0
−r+1|Y

−k
−m,S−m,X

0
−m), B = pθ(Y

0
−r+1|X0

−r+1).

Then

|pθ(Yt
1|Y0,Y

−k
−m,S−m,X

t
−m)− pθ(Yt

1|Y0
−r+1,X

t
−r+1)| =

∣∣∣∣Ak,mBk,m
− A

B

∣∣∣∣
≤
B|Ak,m −A|+A|Bk,m −B|

BBk,m
. (A.14)

For all t ≥ 0 and k ≥ r, write

pθ(Y
t
−r+1|Y

−k
−m,S−m,X

t
−m)

=

∫ ∫
pθ(Y

t
−r+1|Z−r = z−r,X

t
−r+1)Pθ(dz−r|Z−k+1 = z−k+1,X

−r
−k+2)

× Pθ(dz−k+1|Y
−k
−m,S−m,X

−k+1
−m )

pθ(Y
t
−r+1|Xt

−r+1)

=

∫ ∫
pθ(Y

t
−r+1|Z−r = z−r,X

t
−r+1)Pθ(dz−r|X−r−2r+1)

× Pθ(dz−k+1|Y
−k
−m,S−m,X

−k+1
−m ),

where Zt is defined as in (26). The second expression holds because conditionally on Xt, {Xk}k≥t+1

is independent of {Zk}k≤t, and conditionally on Xt, {Xk}k≤t−1 is independent of {Zk}k≥t. An upper

bound of their difference is

|pθ(Yt
−r+1|Y

−k
−m,S−m,X

t
−m)− pθ(Yt

−r+1|Xt
−r+1)|

≤
∫ ∫

pθ(Y
t
−r+1|Z−r = z−r,X

t
−r+1)
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×
∣∣Pθ(dz−r|Z−k+1 = z−k+1,X

−r
−k+2)− Pθ(dz−r|X−r−2r+1)

∣∣Pθ(dz−k+1|Y
−k
−m,S−m,X

t
−m)

≤bt+r+

∫
‖Pθ(z−r ∈ ·|Z−k+1 = z−k+1,X

−r
−k+2)− Pθ(z−r ∈ ·|X−r−2r+1)‖TV

× Pθ(dz−k+1|Y
−k
−m,S−m,X

t
−m)

‖Pθ(z−r ∈ ·|Z−k+1 = z−k+1,X
−r
−k+2) − Pθ(z−r ∈ ·|X−r−2r+1)‖TV goes to zero as k goes to infinity,

owing to the Markovian property of Zt conditional on X+∞
−∞ and Assumption (A2). Thus

sup
m≥k
|pθ(Yt

−r+1|Y
−k
−m,S−m,X

t
−m)− pθ(Yt

−r+1|Xt
−r+1)| → 0,Pθ∗ − a.s. as k →∞. (A.15)

Using Assumption (A3),

B = pθ(Y
0
−r+1|X0

−r+1)

=

∫ ∑
s

(
0∏

k=−r+1

pθ(Yk|Y
k−1
−r ,S−r = s,Xk

−r+1)

)

× Pθ(S−r = s|Y−r,X0
−r+1)Pθ(Y−r ∈ dy−r|X0

−r+1)

≥
∫ 0∏

k=−r+1

b−(Yk
k−r, Xk)Pθ(Y−r ∈ dy−r|X0

−r+1) > 0

By (A.15), with Pθ∗-probability arbitrarily close to 1, Bk,m is uniformly bounded away from zero

for m ≥ k and k sufficiently large. By (A.14) and (A.15),

lim
k→∞

sup
m≥k
|pθ(Yt

1|Y0,Y
−k
−m,S−m,X

t
−m)− pθ(Yt

1|Y0
−r+1,X

t
−r+1)| = 0,

in P∗θ − probability.

Since pθ(Y
t
1|Y0,Y

−k
−m,S−m,X

t
−m) =

∑
s pθ(Y

t
1|Y0,S0 = s,Xt

1)Pθ(S0 = s|Y0,S−m,X
t
−m), it is

bounded below by
∏t
k=1 b−(Yk

k−r, Xk) and bounded above by bt+. The same lower bound can be

attained for pθ(Y
t
1|Y0

−r+1,X
t
−r+1). Use the inequality | log x− log y| ≤ |x− y|/(x ∧ y),

lim
k→∞

sup
m≥k
|Uk,m(θ)− U(θ)| = 0, in P∗θ − probability
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Using the bounds of pθ(Y
t
1|Y0,Y

−k
−m,S−m,X

t
−m),

Eθ∗
[

sup
k

sup
m≥k
|Uk,m(θ)|

]
<∞.

The proof is completed by applying the bounded convergence theorem.

�

A.3 Detailed proof of lemmas and theorems in Subsection 5.1

To show the approximation of the score function, we first need to show the mixing rate of the

time-reversed Markov process.

LEMMA 8 (Minorization condition of the time-reversed Markov process). Let m,n ∈ Z with

−m ≤ n and θ ∈ Θ. Conditionally on Y
n
−m and Xn

−m, {Sn−k}0≤k≤n+m satisfies the Markov

property. Assume (A3). Then, for all r ≤ k ≤ n + m, a function µ̃k(Y
n−k+r
−m ,Xn−k+r

−m , A) exists

such that:

(i) for any A ∈ P(S), (yn−k+r
−m ,xn−k+r

−m )→ µ̃k(y
n−k+r
−m ,xn−k+r

−m , A) is a Borel function; and

(ii) for any yn−k+r
−m and xn−k+r

−m , µ̃k(y
n−k+r
−m ,xn−k+r

−m , ·) is a probability measure on P(S). Moreover,

for A ∈ P(S), the following holds:

min
sn−k+r∈S

Pθ(Sn−k ∈ A|Sn−k+r = sn−k+r,Y
n
−m,X

n
−m)

≥ ω(Yn−k+r−1
n−k−r+1,X

n−k+r
n−k+1) · µ̃k(Y

n−k+r−1
−m ,Xn−k+r

−m , A)

where ω(Yn−k+r−1
n−k−r+1,X

n−k+r
n−k+1) ,

∏n−k+r−1
`=n−k+1 b−(Y`

`−r,X`)
∏n−k+r
`=n−k+1 σ−(Y`−1,X`)

b+
r−1 .

Proof. To observe the Markovian property, for 2 ≤ k ≤ m+ n,

pθ(Sn−k|S
n
n−k+1,Y

n
−m,X

n
−m) (A.16)

=
pθ(S

n
n−k+2,Y

n
n−k+1|Sn−k+1,Yn−k,X

n
−m)pθ(S

n−k+1
n−k ,Y

n−k
−m |Xn

−m)

pθ(S
n
n−k+2,Y

n
n−k+1|Sn−k+1,Yn−k,X

n
−m)pθ(Sn−k+1,Y

n−k
−m |Xn

−m)
(A.17)

=pθ(Sn−k|Sn−k+1,Y
n−k
−m ,X

n−k+1
−m ). (A.18)
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To observe the minorization condition, note that

Pθ(Sn−k ∈ A|Sn−k+r,Y
n
−m,X

n
−m) = Pθ(Sn−k ∈ A|Sn−k+r,Y

n−k+r−1
−m ,Xn−k+r

−m )

=

∑
sn−k∈A pθ(Sn−k = sn−k,Y

n−k+r−1
−m ,Xn−k+r

−m )pθ(Sn−k+r|Sn−k = sn−k,Y
n−k+r−1
n−k ,Xn−k+r

n−k+1)∑
sn−k∈S pθ(Sn−k = sn−k,Y

n−k+r−1
−m ,Xn−k+r

−m )pθ(Sn−k+r|Sn−k = sn−k,Y
n−k+r−1
n−k ,Xn−k+r

n−k+1)
.

Since pθ(Sn−k+r|Sn−k = sn−k,Y
n−k+r−1
n−k ,Xn−k+r

n−k+1) ≤ 1, and for all sn−k+r, sn−k ∈ S,

Pθ(Sn−k+r = sn−k+r|Sn−k = sn−k,Y
n−k+r−1
n−k ,Xn−k+r

n−k+1) ≥ ω(Yn−k+r−1
n−k−r+1,X

n−k+r
n−k+1),

it readily follows that

Pθ(Sn−k ∈ A|Sn−k+r,Y
n
−m,X

n
−m) ≥ ω(Yn−k+r−1

n−k−r+1,X
n−k+r
n−k+1)µ̃k(Y

n−k+r−1
−m−r+1 ,X

n−k+r
−m , A)

with

µ̃k(Y
n−k+r−1
−m−r+1 ,X

n−k+r
−m , A) , pθ(Sn−k ∈ A|Y

n−k+r−1
−m ,Xn−k+r

−m ).

�

COROLLARY 2 (Uniform ergodicity of the time-reversed Markov process). Assume (A3). Let

m,n ∈ Z, −m ≤ n, and θ ∈ Θ. Then, for −m ≤ k ≤ n, for all probability measures µ1 and µ2

defined on P(S) and all Y
n
−m,

∥∥∥∥∥∥
∑
s∈S

Pθ(Sk ∈ ·|Sn = s,Y
n
−m,X

n
−m)µ1(s)−

∑
s∈S

Pθ(Sk ∈ ·|Sn = s,Y
n
−m,X

n
−m)µ2(s)

∥∥∥∥∥∥
TV

≤
b(n−k)/rc∏

i=1

(
1− ω

(
Yn−ri+r−1
n−ri−r+1,X

n−ri+r
n−ri+1

))
=

b(n−k)/rc∏
i=1

(1− ω(Vn+r−ri)).

We follow almost the same procedure to obtain

∥∥∥∥∥∥
∑
s∈S

Pθ(Sk ∈ ·|Sn = s,Y
n
−m,X

n
−m,S−m)µ1(s)
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−
∑
s∈S

Pθ(Sk ∈ ·|Sn = s,Y
n
−m,X

n
−m,S−m)µ2(s)

∥∥∥∥∥∥
TV

≤
b(n−k)/rc∏

i=1

(
1− ω

(
Yn−ri+r−1
n−ri−r+1,X

n−ri+r
n−ri+1

))
=

b(n−k)/rc∏
i=1

(1− ω(Vn+r−ri)).

First, we show that the initial state s does not show up in the limit. We define

‖φθ∗,t‖∞ = maxst,st−1 ‖φθ∗((st, Yt), (st−1,Yt−1), Xt)‖.

LEMMA 9. Assume (A2)–(A4) and (A7)–(A8). Then, for −m′ < −m < k ≤ t,

Eθ∗
[∥∥Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,S−m = s,Xt

−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m]

∥∥2
]

≤ 8
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
2 ρb(k+m−1)/2rc,

(A.19)

Eθ∗
[
‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m′ ,X

t
−m′ ]‖2

]
≤ 8
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
2 ρb(k+m−1)/2rc,

(A.20)

Eθ∗
[
‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−m,X

t−1
−m]‖2

]
≤ 8
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
2 ρb(t−1−k)/2rc.

. (A.21)

Proof. First, show (A.19).

‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m]‖

≤2‖φθ∗,k‖∞
∥∥∥∑
s−m

Pθ∗(Sk−1 ∈ ·|Y
t
−m,S−m = s−m,X

t
−m)δs(s−m)

−
∑
s−m

Pθ∗(Sk−1 ∈ ·|Y
t
−m,S−m = s−m,X

t
−m)Pθ∗(S−m = s−m|Y

t
−m,X

t
−m)

∥∥∥
≤2‖φθ∗,k‖∞

b(k+m−1)/rc∏
i=1

(1− ω(V−m+ri))

Using Lemma 2 and Hölder’s inequality, the second moment is bounded by

4Eθ∗

‖φθ∗,k‖2∞ b(k+m−1)/rc∏
i=1

(1− ω(V−m+ri))
2


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≤4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
2

Eθ∗

b(k+m−1)/rc∏
i=1

(1− ω(V−m+ri))
4


1
2

≤8
(
Eθ∗

[
‖φθ∗,0‖4∞

]) 1
2 ρb(k+m−1)/2rc.

We can show (A.20) by replacing P(Sk−1 ∈ ·|Y
t
−m,S−m = s,Xt

−m) with P(Sk−1 ∈ ·|Y
t
−m′ ,X

t
−m′).

For (A.21),

‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−m,X

t−1
−m]‖

≤2‖φθ∗,k‖∞
∥∥∥∑
st−1

Pθ∗(Sk ∈ ·|St−1 = st−1,Y
t−1
−m,X

t−1
−m)Pθ∗(St−1|Y

t
−m,X

t
−m)

−
∑
st−1

Pθ∗(Sk ∈ ·|St−1 = st−1,Y
t−1
−m,X

t−1
−m)Pθ∗(St−1|Y

t−1
−m,X

t−1
−m)

∥∥∥
≤2‖φθ∗,k‖∞

b(t−1−k)/rc∏
i=1

(1− ω(Vt−1+r−ri)).

The bound for its second moment follows similarly to the proof for (A.19). �

Since {Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m]}m≥0 is a martingale, by Jensen’s inequality, {‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m]‖2}m≥0

is a submartingale. Moreover, for any m,

Eθ∗
[
‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m]‖2

]
≤ Eθ∗ [Eθ∗ [‖φθ∗(Zk,Zk−1, Xk)‖2|Y

t
−m,X

t
−m]]

= Eθ∗
[
‖φθ∗(Zk,Zk−1, Xk)‖2

]
<∞

under A8. Then by the martingale convergence theorem (see, e.g., Shiryaev (1996, p.508)),

‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m]‖2

→ ‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−∞,X

t
−∞]‖2, Pθ∗ − a.s.

(A.22)

as m→∞ and

Eθ∗
[
‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t
−∞,X

t
−∞]‖2

]
<∞. (A.23)
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On the other hand, by setting m =∞ in (A.21),

Eθ∗
[

t−1∑
k=−∞

‖Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−∞,X

t
−∞]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−∞,X

t−1
−∞]‖2

]
<∞.

(A.24)

Combining (A.23) and (A.24), ∆̇t,∞(θ∗) is well defined in L2(Pθ∗).

Proof of Lemma 4. It suffices to show limn→∞ Eθ∗
[∥∥∥ 1√

n

∑n
t=1

(
∆̇t,0,s(θ

∗)− ∆̇t,0(θ∗)
)∥∥∥2
]

= 0

and limn→∞ Eθ∗
[∥∥∥ 1√

n

∑n
t=1

(
∆̇t,0(θ∗)− ∆̇t,∞(θ∗)

)∥∥∥2
]

= 0.

First, we show the first term. From (25),

n∑
t=1

∆̇t,0,s(θ
∗) =

n∑
t=1

Eθ∗
[
φθ∗(Zt,Zt−1, Xt)|Y

t
0,S0 = s,Xt

0

]
and similarly, from (26),

n∑
t=1

∆̇t,0(θ∗) =
n∑
t=1

Eθ∗
[
φθ∗(Zt,Zt−1, Xt)|Y

t
0,X

t
0

]
.

Using the Minkowski inequality and (A.19),

{
Eθ∗

[∥∥∥ 1√
n

n∑
t=1

(
∆̇t,0,s(θ

∗)− ∆̇t,0(θ∗)
)∥∥∥2
]} 1

2

=

{
Eθ∗

[∥∥∥ 1√
n

n∑
t=1

(
Eθ∗
[
φθ∗(Zt,Zt−1, Xt)|Y

t
0,S0 = s,Xt

0

]
− Eθ∗

[
φθ∗(Zt,Zt−1, Xt)|Y

t
0,X

t
0

]) ∥∥∥2
]} 1

2

≤ 1√
n

n∑
t=1

(
Eθ∗

[∥∥∥Eθ∗[φθ∗(Zt,Zt−1, Xt)|Y
t
0,S0 = s,Xt

0

]
− Eθ∗

[
φθ∗(Zt,Zt−1, Xt)|Y

t
0,X

t
0

]∥∥∥2
]) 1

2

≤ 1√
n

n∑
t=1

[
8
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
2 ρb(t−1)/2rc

] 1
2 ≤ 1√

n
4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
4

1

ρ(1− ρ
1
4r )

which converges to zero as n→∞. Next, consider the second term.

(
Eθ∗

[∥∥∥∆̇t,0(θ∗)− ∆̇t,∞(θ∗)
∥∥∥2
]) 1

2

≤
(
Eθ∗

[∥∥∥Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y
t
−∞,X

t
−∞]− Eθ∗ [φθ∗(Zt,Zt−1, Xt)|Y

t
0,X

t
0]
∥∥∥2
]) 1

2
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+

t−1∑
k=1

(
Eθ∗

[∥∥∥Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−∞,X

t
−∞]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−∞,X

t−1
−∞]

−Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
0,X

t
0]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
0 ,Xt−1

0 ]
∥∥∥2
]) 1

2

+
0∑

k=−∞

(
Eθ∗

[∥∥∥Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y
t
−∞,X

t
−∞]− Eθ∗ [φθ∗(Zk,Zk−1, Xk)|Y

t−1
−∞,X

t−1
−∞]

∥∥∥2
]) 1

2

≤4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
4

(
ρb(t−1)/4rc + 2

t−1∑
k=1

ρb(k−1)/4rc ∧ ρb(t−1−k)/4rc +
0∑

k=−∞
ρb(t−1−k)/4rc

)

≤4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
4 ρ−1

ρ t−1
4r + 2

∑
k≥ t

2

ρ
k−1
4r + 2

∑
k≤ t

2

ρ
t−1−k

4r +
0∑

k=−∞
ρ
t−1−k

4r


≤4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
4

6− ρ
1
4r

1− ρ
1
4r

ρ
t
2−4r−1

4r .

Using Minkowski inequality,

{
Eθ∗

[∥∥∥ 1√
n

n∑
t=1

(
∆̇t,0(θ∗)− ∆̇t,∞(θ∗)

)∥∥∥2
]} 1

2

≤ 1√
n

n∑
t=1

(
Eθ∗

[∥∥∥∆̇t,0(θ∗)− ∆̇t,∞(θ∗)
∥∥∥2
]) 1

2

≤ 1√
n

n∑
t=1

4
(
Eθ∗

[
‖φθ∗,0‖4∞

] ) 1
4

6− ρ
1
4r

1− ρ
1
4r

ρ
t
2−4r−1

4r

which converges to 0 as n→∞. �

A.4 Detailed proof of theorems in Subsection 5.2

The following Lemma 10 extends (14).

LEMMA 10. Assume (A2)–(A4). For 1 ≤ m ≤ n, {tki1}1≤i1≤am and {thi2}1≤i2≤bm are two

sequences of integers satisfying (i) tki1 6= tki′1
for 1 ≤ i1, i

′
1 ≤ am and i1 6= i′1, (ii) thi2 6= thi′2

for

1 ≤ i2, i
′
2 ≤ bm and i2 6= i′2, and (iii) tki1 6= thi2 for all 1 ≤ i1 ≤ am and 1 ≤ i2 ≤ bm, then it holds

that for the same ε0 and ρ defined as in Lemma 2,

Pθ∗
{

n∑
m=1

[ am∏
i1=1

(1− ω(Vtki1
)) ∧

bm∏
i2=1

(1− ω(Vthi2
))
]

≤ ρ−2ε0(t−t+1)
n∑

m=1

ρam∨bm ev.

}
= 1, (A.25)
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where t and t are integers such that t ≤ tki1 , thi2 ≤ t, for all 1 ≤ i1 ≤ am and 1 ≤ i2 ≤ bm, and all

1 ≤ m ≤ n.

For 1 ≤ m ≤ n, {tki1}1≤i1≤am, {thi2}1≤i2≤bm, and {t`i3}1≤i3≤cm are three sequences of integers

satisfying (i) tki1 6= tki′1
for 1 ≤ i1, i

′
1 ≤ am and i1 6= i′1, (ii) thi2 6= thi′2

for 1 ≤ i2, i
′
2 ≤ bm and

i2 6= i′2, (iii) t`i3 6= t`i′3
for 1 ≤ i3, i′3 ≤ cm and i3 6= i′3, and (iv) tki1 6= thi2 , tki1 6= t`i3 and thi2 6= t`i3

for all 1 ≤ i1 ≤ am, 1 ≤ i2 ≤ bm, and 1 ≤ i3 ≤ cm, then it holds that for the same ε0 and ρ defined

as in Lemma 2,

Pθ∗
{

n∑
m=1

[ am∏
i1=1

(1− ω(Vtki1
)) ∧

bm∏
i2=1

(1− ω(Vthi2
)) ∧

cm∏
i3=1

(1− ω(Vt`i3
))

]

≤ ρ−2ε0(t−t+1)
n∑

m=1

ρam∨bm∨cm ev.

}
= 1, (A.26)

where t and t are integers such that t ≤ tki1 , thi2 , t`i3 ≤ t, for all 1 ≤ i1 ≤ am, 1 ≤ i2 ≤ bm,

1 ≤ i3 ≤ cm and all 1 ≤ m ≤ n.

Proof. First, we show (A.25). We define ρ, It and ε0 as in (A.4), (A.5) and (A.8), respectvely.

Notice that ε0 ∈ (0, 1
16r ). Using 1− ω(Vt) ≤ ρ1−It , it follows that

am∏
i1=1

(1− ω(Vtki1
)) ≤ ρ

am−
∑am
i1=1 Itki1 ≤ ρam−

∑t
t=t It ,

bm∏
i2=1

(1− ω(Vt`i2
)) ≤ ρ

bm−
∑bm
i2=1 It`i2 ≤ ρbm−

∑t
t=t It ,

and

n∑
m=1

am∏
i1=1

(1− ω(Vtki1
)) ∧

bm∏
i2=1

(1− ω(Vt`i2
)) ≤

n∑
m=1

ρam−
∑t
t=t It ∧ ρbm−

∑t
t=t It

= ρ−
∑t
t=t It

n∑
m=1

ρam∨bm . (A.27)

Since Vt forms a stationary and ergodic sequence for t ≤ t ≤ t, the strong law of large numbers

yields (t− t+ 1)−1(
∑t

t=t It)→ Eθ∗ [I1] < ε0, Pθ∗ − a.s. Hence,

Pθ∗
(
ρ−

∑t
t=t It ≤ ρ−2ε0(t−t+1) ev.

)
= 1. (A.28)
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The proof is completed by combining (A.27) and (A.28). (A.26) similarly follows. �

LEMMA 11. Assume (A2)–(A4) and (A7)–(A8). A random variable K ∈ L1(Pθ∗) exists such

that, for all t ≥ 1 and 0 ≤ m ≤ m′,

Pθ∗
(

max
s

sup
θ∈G
‖Γt,m,s(θ)− Γt,m′,s(θ)‖ ≤ K(t ∨m)2ρ(t+m)/4r ev.

)
= 1, (A.29)

Pθ∗
(

max
s

sup
θ∈G
‖Γt,m,s(θ)− Γt,m(θ)‖ ≤ K(t ∨m)2ρ(t+m)/4r ev.

)
= 1. (A.30)

Proof. Put ‖φ̇k‖∞ = maxsk,sk−1
supθ∈G ‖φ̇θ((sk, Yk), (sk−1,Yk−1), Xk)‖. For −m′ < −m < k ≤ t,

∥∥∥Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m

]
− Eθ

[
φ̇θ(Zk,Zk−1, Xk)|Y

t
−m,X

t
−m

]∥∥∥
≤ 2‖φ̇k‖∞

b(k+m−1)/rc∏
i=1

(1− ω(V−m+ri)),

∥∥Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m
]
− Eθ

[
φ̇θ(Zk,Zk−1, Xk)|Y

t
−m′ ,S−m′ = s,Xt

−m′
]∥∥

≤ 2‖φ̇k‖∞
b(k+m−1)/rc∏

i=1

(1− ω(V−m+ri)),∥∥∥Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,S−m = s,Xt

−m

]
− Eθ

[
φ̇θ(Zk,Zk−1, Xk)|Y

t−1
−m,S−m = s,Xt−1

−m

]∥∥∥
≤ 2‖φ̇k‖∞

b(t−1−k)/rc∏
i=1

(1− ω(Vt+r−ri)),∥∥∥Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
t
−m,X

t
−m

]
− Eθ

[
φ̇θ(Zk,Zk−1, Xk)|Y

t−1
−m,X

t−1
−m

]∥∥∥
≤ 2‖φ̇k‖∞

b(t−1−k)/rc∏
i=1

(1− ω(Vt+r−ri)).

First, we show (A.30).

‖Γt,m,s − Γt,m‖ ≤ 2‖φ̇t‖∞
b(t+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)
+ 4

t−1∑
k=−m+1

‖φ̇k‖∞
[ b(k+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)
∧
b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)]

≤ 4 max
−m+1≤k≤t

‖φ̇k‖∞
t∑

k=−m+1

[ b(k+m−1)/rc∏
i=1

(
1− ω(V−m+ri)

)
∧
b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)]
.

(A.31)
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The first part of (A.31) is bounded by

4 max
−m+1≤k≤t

‖φ̇k‖∞ ≤ 4
t∑

k=−m+1

(|k| ∨ 1)2 1

(|k| ∨ 1)2
‖φ̇k‖∞

≤ 4(t ∨m)2
∞∑

k=−∞

1

(|k| ∨ 1)2
‖φ̇k‖∞ (A.32)

We proceed to bound the second part of (A.31). Since −m+ rb(k+m− 1)/rc < t+ r− rb(t− k−

1)/rc, we can apply Lemma 10. Using ρb(k+m−1)/rc ∧ ρb(t−k−1)/rc = ρb(t−k−1)/rc for k ≤ t−m
2 and

ρb(k+m−1)/rc for k ≥ t−m
2 ,

ρ−2ε0(t+m+r−1)
t∑

k=−m+1

(
ρb

k+m−1
r
c ∧ ρb

t−k−1
r
c)

≤ρ−2ε0(t+m+r−1)

 ∑
k≤(t−m)/2

ρb
t−k−1
r
c +

∑
k≥(t−m)/2

ρb
k+m−1

r
c


≤2

ρ
t+m
4r

ρr−1(1− ρ
1
r )
. (A.33)

Because of (A.32), (A.33), and Lemma 10, (A.30) follows.

Next, we follow a similar procedure to show (A.29).

‖Γt,m,s(θ)− Γt,m′,s(θ)‖ ≤ 2‖φ̇t‖∞
b(t+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)
+ 4

t−1∑
k=−m+1

‖φ̇k‖∞
[ b(k+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)
∧
b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)]

+ 2

−m∑
k=−m′+1

‖φ̇k‖∞
b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)
(A.34)

The first two terms on the right-hand side can be bounded as above. We proceed to show the bound

for the third term. Define ρ, It and ε0 as in (A.4), (A.5) and (A.8), respectvely. Notice that the ρ

and ε0 are the same as the ones in Lemma 2. Using 1−Vt ≤ ρ1−It ,

−m∑
k=−m′+1

‖φ̇k‖∞
b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)
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≤
−m∑

k=−m′+1

‖φ̇k‖∞ρb(t−k−1)/rc−
∑b(t−k−1)/rc
i=1 It+r−ri

≤
−m∑

k=−m′+1

‖φ̇k‖∞ρb(t−k−1)/rc−
∑t
i=−m′+r+1 Ii

≤ρ−
∑t
i=−m′+r+1 Ii

−m∑
k=−m′+1

‖φ̇k‖∞ρb(t−k−1)/rc.

Using (A.6) and (A.7), Eθ∗ [ρ−
∑t
i=−m′+r+1 Ii ] ≤ 2 for allm′ and t. Then ρ−

∑t
i=−m′+r+1 Ii ≤ ρ−

∑+∞
i=−∞ Ii ,

which is in L1(Pθ∗).

Since − k
2r ≤

t−m−2k
2r for k ≤ m, we can follow a similar procedure to Douc et al. (2004, p. 2295)

to obtain

2
−m∑

k=−m′+1

‖φ̇k‖∞ρb(t−k−1)/rc ≤ 2ρ
t+m
2r

−m∑
k=−m′+1

‖φ̇k‖∞ρ
t−m−2k

2r
−1

≤ 2ρ
t+m
2r

∞∑
k=−∞

‖φ̇k‖∞ρ
|k|
2r
−1 ≤ 2ρ

t+m
4r

∞∑
k=−∞

‖φ̇k‖∞ρ
|k|
2r
−1.

Then (A.29) follows.

�

LEMMA 12. Assume (A2)–(A4) and (A7)–(A8). Then, for all t ≥ 1 and 0 ≤ m ≤ m′,

lim
m→∞

Eθ∗ [max
s

sup
θ∈G
‖Γt,m,s(θ)− Γt,m′,s(θ)‖] = 0, (A.35)

lim
m→∞

Eθ∗ [max
s

sup
θ∈G
‖Γt,m,s(θ)− Γt,m(θ)‖] = 0. (A.36)

Proof. (A.35) follows from (A.34) and

Eθ∗
[

sup
θ∈G

max
s∈S
‖Γt,m,s(θ)− Γt,m′,s(θ)‖

]
≤2
(
Eθ∗‖φ̇0‖2∞

) 1
2

{[
Eθ
[ b(t+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)2]] 1
2

+ 2
t−1∑

k=−m+1

[
Eθ
[ b(k+m−1)/rc∏

i=1

(
1− ω(V−m+ri)

)2 ∧ b(t−k−1)/rc∏
i=1

(
1− ω(Vt+r−ri)

)2]] 1
2
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+

−m∑
k=−m′+1

[
Eθ
[ b(t−k−1)/rc∏

i=1

(
1− ω(Vt+r−ri)

)2]] 1
2

}

≤8
(
Eθ‖φ̇0‖2∞

) 1
2
ρ
t+m−2

4r
−1

1− ρ
1
2r

,

which converges to 0. Similarly, we can obtain (A.36) by using (A.31). �

LEMMA 13. Assume (A2)–(A5) and (A7)–(A8), for all s ∈ S and m ≥ 0, the function θ 7→ Γ0,m,s

is Pθ∗ − a.s. continuous on G. In addition, for all θ ∈ G and for all s ∈ S,

lim
δ 7→0

Eθ∗
[

sup
|θ′−θ|≤δ

|Γ0,m,s(θ
′)− Γ0,m,s(θ)|

]
= 0.

Proof. Note that |Γ0,m,s(θ)| ≤ 2
∑0

k=−m+1 ‖φ̇k‖∞. By Assumption (A8), Γ0,m,s(θ) is uniformly

bounded with respect to θ by a random variable in L1(Pθ∗). It hence suffices to show that for

−m < k ≤ 0,

lim
δ→0

sup
|θ′−θ|≤δ

∣∣∣Eθ′ [φ̇θ′(Zk,Zk−1, Xk)|Y
0
−m,S−m = s,X0

−m]

− Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
0
−m,S−m = s,X0

−m]
∣∣∣ = 0, Pθ∗ − a.s.

Write

Eθ[φ̇θ(Zk,Zk−1, Xk)|Y
0
−m,S−m = s,X0

−m]

=
∑

sk,sk−1

φ̇θ
(
(Yk, sk), (Yk−1, sk−1), Xk

)
Pθ(Sk = sk,Sk−1 = sk−1|Y

0
−m,S−m = s,X0

−m).

Note that φ̇θ
(
(Yk, sk), (Yk−1, sk−1), Xk

)
is continuous with respect to θ by Assumption (A7). Similar

to the proof of Proposition 1, we can show Pθ(Sk = sk,Sk−1 = sk−1|Y
0
−m,S−m = s,X0

−m) is

continuous with respect to θ from Assumption (A5). The proof is complete. �

By Lemmas 11 and 12, {Γ0,m,s(θ)}m≥0 is a uniform Cauchy sequence with respect to θ Pθ∗-a.s.

and in L1(Pθ∗). Lemma (13) shows that Γ0,m,s(θ) is continuous with respect to θ on G Pθ∗ − a.s.

and in L1(Pθ∗) for each m. Hence, Γ0,∞(θ) is continuous with respect to θ on G Pθ∗-a.s. and in

L1(Pθ∗).
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Proof of Proposition 3. Write

lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

∣∣∣∣∣ 1n
n∑
t=1

Γt,0,s(θ
′)− Eθ∗ [Γ0,∞(θ)]

∣∣∣∣∣
≤ lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

1

n

n∑
t=1

∣∣Γt,0,s(θ′)− Γt,∞(θ′)
∣∣

+ lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

∣∣∣∣∣ 1n
n∑
t=1

Γt,∞(θ′)− Eθ∗ [Γ0,∞(θ′)]

∣∣∣∣∣
+ lim
δ→0

lim
n→∞

sup
θ′:|θ′−θ|<δ

Eθ∗
∣∣Γ0,∞(θ′)− Γ0,∞(θ)

∣∣.
The first term on the right-hand side is zero Pθ∗ − a.s. by Lemma 11. The second term is zero

Pθ∗ − a.s., owing to the ergodic theorem. The third term is zero from the continuity of Γ0,∞(θ) in

L1(Pθ∗). �

LEMMA 14. Assume (A2)–(A4) and (A7)–(A8). Then, a random variable K ∈ L1(Pθ∗) exists

such that, for all t ≥ 1 and 0 ≤ m ≤ m′,

Pθ∗
(

max
s

sup
θ∈G
‖Φt,m,s(θ)− Φt,m(θ)‖ ≤ K(t ∨m)3ρ(t+m)/8r ev.

)
= 1,

Pθ∗
(

max
s

sup
θ∈G
‖Φt,m,s(θ)− Φt,m′,s(θ)‖ ≤ K(t ∨m)3ρ(t+m)/8r ev.

)
= 1.

Proof. Put ‖φk‖∞ = maxsk,sk−1
supθ∈G ‖φθ((sk, Yk), (sk−1,Yk−1), Xk)‖. For m′ ≥ m ≥ 0, all −m <

` ≤ k ≤ n, all θ ∈ G, and all s−m ∈ S,

‖Covθ[φθ,k, φθ,`|Y
n
−m,X

n
−m]‖ ≤ 2‖φk‖∞‖φ`‖∞

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri)),

‖Covθ[φθ,k, φθ,`|Y
n
−m,S−m = s−m,X

n
−m]‖ ≤ 2‖φk‖∞‖φ`‖∞

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri)),

‖Covθ[φθ,k, φθ,`|Y
n
−m,S−m = s−m,X

n
−m]− Covθ[φθ,k, φθ,`|Y

n
−m,X

n
−m]‖

≤ 6‖φk‖∞‖φ`‖∞
b(`+m−1)/rc∏

i=1

(1− ω(V−m+ri)),

‖Covθ[φθ,k, φθ,`|Y
n
−m,X

n
−m]− Covθ[φθ,k, φθ,`|Y

n−1
−m ,X

n−1
−m ]‖

≤ 6‖φk‖∞‖φ`‖∞
b(n−k−1)/rc∏

i=1

(1− ω(Vn+r−ri)),
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‖Covθ[φθ,k, φθ,`|Y
n
−m,S−m = s−m,X

n
−m]− Covθ[φθ,k, φθ,`|Y

n−1
−m ,S−m = s−m,X

n−1
−m ]‖

≤ 6‖φk‖∞‖φ`‖∞
b(n−k−1)/rc∏

i=1

(1− ω(Vn+r−ri)).

We define Λba =
∑b

i=a φθ,i. Then, Φt,m,s(θ)− Φt,m′,s(θ) may be decomposed as A+ 2B + C, where

A =Varθ[Λ
t−1
−m+1|Y

t
−m,S−m = s,Xt

−m]−Varθ[Λ
t−1
−m+1|Y

t−1
−m,S−m = s,Xt−1

−m]

−Varθ[Λ
t−1
−m+1|Y

t
−m,X

t
−m] + Varθ[Λ

t−1
−m+1|Y

t−1
−m,X

t−1
−m],

B =Covθ[Λ
t−1
−m+1, φθ,t|Y

t
−m,S−m = s,Xt

−m]− Covθ[Λ
t−1
−m+1, φθ,t|Y

t
−m,X

t
−m],

C =Varθ[φθ,t|Y
t
−m,S−m = s,Xt

−m]−Varθ[φθ,t|Y
t
−m,X

t
−m].

We have

‖A‖ ≤ max
−m+1≤`≤k≤t−1

‖φk‖∞‖φ`‖∞ × 2
∑

−m+1≤`≤k≤t−1

{[
2× 6

b(`+m−1)/rc∏
i=1

(1− ω(V−m+ri))
]

∧
[
4× 2

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri))
]
∧
[
2× 6

b(t−k−1)/rc∏
i=1

(1− ω(Vt+r−ri))
]}
,

‖B‖ ≤ max
−m+1≤k≤t−1

‖φk‖∞‖φt‖∞ ×
∑

−m+1≤k≤t−1

{[
6

b(k+m−1)/rc∏
i=1

(1− ω(V−m+ri))
]

∧
[
2× 2

b(t−k−1)/rc∏
i=1

(1− ω(Vk+ri))
]}
,

‖C‖ ≤ ‖φt‖2∞ × 6

b(t+m−1)/rc∏
i=1

(1− ω(V−m+ri)).

Similar to the calculation on p. 2299 of Douc et al. (2004), we derive

max
−m+1≤`≤k≤t−1

‖φk‖∞‖φ`‖∞ ≤ (m3 + t3)

∞∑
k=−∞

1

(|k| ∨ 1)2
‖φk‖2∞.

In view of Lemma 10 and

ρ−2ε0(t+m−r+1)
∑

−m+1≤`≤k≤t−1

(
ρb(`+m−1)/rc ∧ ρb(k−`−1)/rc ∧ ρb(t−k−1)/rc

)
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≤ 4
1

ρ(1− ρ)(1− ρ
1
2 )
ρ
t+m−4

8r ,

Pθ∗
(
‖A‖ ≤ (m3 + t3)

∞∑
k=−∞

1

(|k| ∨ 1)2
‖φk‖2∞

96ρ
t+m
8r
−1

ρ
1
r (1− ρ

1
r )(1− ρ

1
2r )

ev.
)

= 1,

Pθ∗
(
‖B‖ ≤ (m3 + t3)

∞∑
k=−∞

1

(|k| ∨ 1)2
‖φk‖2∞

12ρ
t+m
4r
−1

ρ
1
r (1− ρ

1
r )

ev.
)

= 1,

Pθ∗
(
‖C‖ ≤ (m3 + t3)

∞∑
k=−∞

1

(|k| ∨ 1)2
‖φk‖2∞6ρb(t+m−1)/4rc ev.

)
= 1.

The difference Φt,m,s(θ)−Φt,m′,s(θ) can be decomposed as A+ 2B +C −D − 2E − 2F , where

A =Varθ[Λ
t−1
−m+1|Y

t
−m,S−m = s,Xt

−m]−Varθ[Λ
t−1
−m+1|Y

t−1
−m,S−m = s,Xt−1

−m]

−Varθ[Λ
t−1
−m+1|Y

t
−m′ ,S−m′ = s,Xt

−m′ ] + Varθ[Λ
t−1
−m+1|Y

t−1
−m′ ,S−m′ = s,Xt−1

−m′ ],

B =Covθ[Λ
t−1
−m+1, φθ,t|Y

t
−m,S−m = s,Xt

−m]

− Covθ[Λ
t−1
−m+1, φθ,t|Y

t
−m′ ,S−m′ = s,Xt

−m′ ],

C =Varθ[φθ,t|Y
t
−m,S−m = s,Xt

−m]−Varθ[φθ,t|Y
t
−m′ ,S−m′ = s,Xt

−m′ ],

D =Varθ[Λ
−m
−m′+1|Y

t
−m′ ,S−m′ = s,Xt

−m′ ]−Varθ[Λ
−m
−m′+1|Y

t−1
−m′ ,S−m′ = s,Xt−1

−m′ ],

E =Covθ[Λ
t−1
−m+1,Λ

−m
−m′+1|Y

t
−m′ ,S−m′ = s,Xt

−m′ ]

− Covθ[Λ
t−1
−m+1,Λ

−m
−m′+1|Y

t−1
−m′ ,S−m′ = s,Xt−1

−m′ ],

F =Covθ[Λ
−m
−m′+1, φθ,t|Y

t
−m′ ,S−m′ = s,Xt

−m′ ].

‖A‖, ‖B‖, and ‖C‖ are bounded as above. For the other terms, we have

‖D‖ ≤ 2
∑

−m′+1≤`≤k≤−m

[
6

b(t−k−1)/rc∏
i=1

(1− ω(Vt+r−ri))

∧ 2× 2

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri))
]
‖φk‖∞‖φ`‖∞,

‖E‖ ≤
t−1∑

k=−m+1

−m∑
`=−m′+1

[
6

b(t−k−1)/rc∏
i=1

(1− ω(Vt+r−ri))
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∧ 2× 2

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri))
]
‖φk‖∞‖φ`‖∞,

‖F‖ ≤
∑

−m′+1≤`≤−m
2

b(t−`−1)/rc∏
i=1

(1− ω(V`+ri))‖φ`‖∞‖φt‖∞.

Define ρ, It and ε0 as in (A.4), (A.5) and (A.8), respectvely. Notice that the ρ and ε0 are the same

as the ones in Lemma 2. Using 1−Vt ≤ ρ1−It ,

∑
−m′+1≤`≤k≤−m

[
6

b(t−k−1)/rc∏
i=1

(1− ω(V−m+ri)) ∧ 2× 2

b(k−`−1)/rc∏
i=1

(1− ω(V`+ri))
]
‖φk‖∞‖φ`‖∞

≤ 12
∑

−m′+1≤`≤k≤−m

(
ρb(t−k−1)/rc−

∑b(t−k−1)/rc
i=1 I−m+ri ∧ ρb(k−`−1)/rc−

∑b(k−`−1)/rc
i=1 I`+ri

)
‖φk‖∞‖φ`‖∞

≤ 12ρ−
∑t
i=−m′+1 Ii

∑
−m′+1≤`≤k≤−m

(
ρb(t−k−1)/rc ∧ ρb(k−`−1)/rc)‖φk‖∞‖φ`‖∞

Using (A.6) and (A.7), Eθ∗ [ρ−
∑t
i=−m′ Ii ] ≤ 2 for all m′ and t. Then ρ−

∑t
i=−m′ Ii ≤ ρ−

∑+∞
i=−∞ Ii ,

which is in L1(Pθ∗). Following a similar procedure to Douc et al. (2004, pp. 2301), we obtain

∑
−m′+1≤`≤k≤−m

ρb(t−k−1)/rc ∧ ρb(k−`−1)/rc‖φk‖∞‖φ`‖∞

≤ ρ
t+m−2

8r
−1

∞∑
`=−∞

ρ
|`|
8r ‖φ`‖∞

∞∑
k=−∞

ρ
|k|
4r ‖φk‖∞

Thus,

‖D‖ ≤ 12ρ
t+m−2

8r
−1ρ−

∑+∞
i=−∞ Ii

∞∑
`=−∞

ρ
|`|
8r ‖φ`‖∞

∞∑
k=−∞

ρ
|k|
4r ‖φk‖∞.

Similarly, we can derive

‖E‖ ≤ 6ρ
t+m−2

8r
−1ρ−

∑+∞
i=−∞ Ii

∞∑
`=−∞

ρ
|`|
8r ‖φ`‖∞

∞∑
k=−∞

ρ
|k|
4r ‖φk‖∞,

‖F‖ ≤ 2ρ
t+m
4r
−1ρ−

∑+∞
i=−∞ Ii

∞∑
`=−∞

ρ
3|`|
4r ‖φ`‖∞

∞∑
k=−∞

ρ
|k|
2r ‖φk‖∞.

The proof is complete. �
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Using a similar procedure to that in Lemma 12 and the inequalities in Lemma 14, we obtain

the following lemma.

LEMMA 15. Assume (A2)–(A4) and (A7)–(A8). Then, for all t ≥ 1 and 0 ≤ m ≤ m′,

lim
m→∞

Eθ∗ [max
s

sup
θ∈G
‖Φt,m,s(θ)− Φt,m′,s(θ)‖] = 0,

lim
m→∞

Eθ∗ [max
s

sup
θ∈G
‖Φt,m,s(θ)− Φt,m(θ)‖] = 0.

By Lemmas 14 and 15, {Φt,m,s(θ)}m≥0 is a uniform Cauchy sequence w.r.t. θ Pθ∗ − a.s. and

in L1(Pθ∗). The rest of the proof of Proposition 4 follows along the same line as the proof of

Proposition 3.

A.5 Supplemental proof of Proposition 6

Show that for all s′ ∈ S and s ∈ S, θ ∈ Θ, Eθ∗ | log qθ(s
′|s,Y0, X1)|2 <∞.

First, consider the case of s1 = 0 and s0 = 0,

qθ(s1 = 0|s0 = 0, s−1, . . . , s−r+1,Y0, X1) =

∫ τ√1−α2

−∞ Φ

(
τ−ρUt−1√

1−ρ2
− αx√

1−α2
√

1−ρ2

)
ϕ(x)dx

Φ(τ
√

1− α2)
.

The following result holds for the numerator:

∫ τ
√

1−α2

−∞
Φ

(
τ − ρU0√

1− ρ2
− αx
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
∫ −|τ√1−α2|

−∞
Φ

(
τ − ρU0√

1− ρ2
+

|α|x
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
∫ −|τ√1−α2|

−|τ
√

1−α2|−1
Φ

(
τ − ρU0√

1− ρ2
+

|α|x
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥Φ

(
τ − ρU0√

1− ρ2
− |ατ

√
1− α2|+ |α|

√
1− α2

√
1− ρ2

)(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − |α|)

)
≥Φ(−D)

(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)
=Φc(D)

(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)
≥
√

2

π
e−

D2

2
1

D +
√
D2 + 1

(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)
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where D ,

∣∣∣∣ τ−ρUt−1√
1−ρ2

− |ατ
√

1−α2|+|α|√
1−α2
√

1−ρ2

∣∣∣∣ and Φc(x) , 1 − Φ(x). The last inequality follows from

Φc(x) ≥
√

2
πe
−x2/2 1

x+
√
x2+4

.

Eθ∗
[
| log qθ(s1 = 0|s0 = 0, s−1, . . . , s−r+1,Y0, X1)|2

]
≤Eθ∗

[∣∣∣ log

(
e−

D2

2
1

D +
√
D2 + 1

)
+ log

√
2

π
+ log

(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)
− log(Φ(τ

√
1− α2))

∣∣∣2].
We need show only that Eθ∗

[(
log

(
e−

D2

2
1

D+
√
D2+1

))2
]
< ∞. Note that D is folded normal

distributed and has finite moments. We use log(x) ≤ x− 1 for x > 0 to obtain

Eθ∗
[(

log

(
e−

D2

2
1

D +
√
D2 + 1

))2
]

= Eθ∗
[(
−D

2

2
− log(D +

√
D2 + 4)

)2
]

=Eθ∗
[
D4

4
+
(

log(D +
√
D2 + 4)

)2
+D2 log(D +

√
D2 + 4)

]
≤Eθ∗

[
D4

4
+ (D +

√
D2 + 4− 1)2 +D2(D +

√
D2 + 4− 1)

]
≤Eθ∗

[
D4

4
+ (2D + 1)2 +D2(2D + 1)2

]
<∞.

(A.37)

Next, consider the case of s1 = 1 and s0 = 0,

qθ(s1 = 1|s0 = 0, s−1, . . . , s−r+1,Y0, X1) =

∫ τ√1−α2

−∞ Φc

(
τ−ρUt−1√

1−ρ2
− αx√

1−α2
√

1−ρ2

)
ϕ(x)dx

Φ(τ
√

1− α2)
.

The following result holds for the numerator

∫ τ
√

1−α2

−∞
Φc

(
τ − ρU0√

1− ρ2
− αx
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
∫ −|τ√1−α2|

−∞
Φc

(
τ − ρU0√

1− ρ2
− |α|x
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
∫ −|τ√1−α2|

−|τ
√

1−α2|−1
Φc

(
τ − ρU0√

1− ρ2
− |α|x
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥Φc

(
τ − ρU0√

1− ρ2
+
|ατ
√

1− α2|+ |α|
√

1− α2
√

1− ρ2

)(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)
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≥Φc(D2)
(

Φ(−|τ
√

1− α2|)− Φ(−|τ
√

1− α2| − 1)
)

≥
√

2

π
e−

D2
2
2

1

D2 +
√
D2

2 + 1

(
Φ(−|τ

√
1− α2|)− Φ(−|τ

√
1− α2| − 1)

)

whereD2 ,

∣∣∣∣ τ−ρUt−1√
1−ρ2

+ |ατ
√

1−α2|+|α|√
1−α2
√

1−ρ2

∣∣∣∣. Then, we can show Eθ∗ | log qθ(s1 = 1|s0 = 0, s−1, . . . , s−r+1,Y0, X1)|2 <

∞ by showing that Eθ∗
[(

log

(
e−

D2
2
2

1

D2+
√
D2

2+1

))2
]
< ∞. The proof follows a similar procedure

to that in (A.37).

For the case of s1 = 0, s0 = 1,

∫ −∞
τ
√

1−α2

Φ

(
τ − ρU0√

1− ρ2
− αx
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
√

2

π
e−

D2

2
1

D +
√
D2 + 1

(
Φ(|τ

√
1− α2 + 1|)− Φ(|τ

√
1− α2|)

)

and for the case of s1 = 1, s0 = 1,

∫ −∞
τ
√

1−α2

Φc

(
τ − ρU0√

1− ρ2
− αx
√

1− α2
√

1− ρ2

)
ϕ(x)dx

≥
√

2

π
e−

D2
2
2

1

D2 +
√
D2

2 + 1

(
Φ(|τ

√
1− α2 + 1|)− Φ(|τ

√
1− α2|)

)

and the result follows.
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