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Abstract

Large Bayesian VARs are now widely used in empirical macroeconomics. One pop-

ular shrinkage prior in this setting is the natural conjugate prior as it facilitates pos-

terior simulation and leads to a range of useful analytical results. This is, however,

at the expense of modeling flexibility, as it rules out cross-variable shrinkage—i.e.,

shrinking coefficients on lags of other variables more aggressively than those on own

lags. We develop a prior that has the best of both worlds: it can accommodate

cross-variable shrinkage, while maintaining many useful analytical results, such as a

closed-form expression of the marginal likelihood. This new prior also leads to fast

posterior simulation—for a BVAR with 100 variables and 4 lags, obtaining 10,000

posterior draws takes less than half a minute on a standard desktop. In a forecast-

ing exercise, we show that a data-driven asymmetric prior outperforms two useful

benchmarks: a data-driven symmetric prior and a subjective asymmetric prior.
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1 Introduction

Large Bayesian vector autoregressions (BVARs) have become increasingly popular in

empirical macroeconomics for forecasting and structural analysis since the influential

work by Banbura, Giannone, and Reichlin (2010). Prominent examples include Carriero,

Kapetanios, and Marcellino (2009), Koop (2013), Koop and Korobilis (2013) and Koro-

bilis and Pettenuzzo (2019). VARs tend to have a lot of parameters, and the key that

makes these highly parameterized VARs useful is the introduction of shrinkage priors. For

large BVARs, one commonly adopted prior is the natural conjugate prior, which has a few

advantages over alternatives. First, this prior is conjugate, and consequently it gives rise

to a range of useful analytical results, including a closed-form expression of the marginal

likelihood.1 Second, the posterior covariance matrix of the VAR coefficients under this

prior has a Kronecker product structure, which can be used to speed up computations.

On the other hand, a key limitation of the natural conjugate prior is that the prior

covariance matrix of the VAR coefficients needs to have a Kronecker product structure,

which implies cross-equation restrictions that might not be reasonable. In particular, this

Kronecker structure requires symmetric treatment of own lags and lags of other variables.

In many applications one might wish to shrink the coefficients on other variables’ lags

more strongly to zero than those of own lags. This cross-variable shrinkage, however,

cannot be implemented using the natural conjugate prior due to this Kronecker structure.

Carriero, Clark, and Marcellino (2015) summarize this dilemma between computational

convenience and prior flexibility as: “While the pioneering work of Litterman (1986)

suggested it was useful to have cross-variable shrinkage, it has become more common

to estimate larger models without cross-variable shrinkage, in order to have a Kronecker

structure that speeds up computations and facilitates simulation.”

We develop a prior that solves this dilemma—this new prior allows asymmetric treatment

between own lags and lags of other variables, while it maintains many useful analytical

results, such as a closed-form expression of the marginal likelihood. In addition, we

1An analytical expression for the marginal likelihood is valuable for many purposes. First, it is useful
for model selection—e.g., choosing the lag length in BVARs. Second, it can be used to select prior
hyperparameters that control the degree of shrinkage. Examples include Del Negro and Schorfheide
(2004), Schorfheide and Song (2015) and Carriero, Clark, and Marcellino (2015). This approach of
selecting hyperparameters is incorporated in the BEAR MATLAB toolbox developed by the European
Central Bank (Dieppe, Legrand, and Van Roye, 2016).
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exploit these analytical results to develop an efficient method to simulate directly from

the posterior distribution—we obtain independent posterior draws and avoid Markov

chain Monte Carlo (MCMC) methods altogether. For a BVAR with 100 variables and 4

lags, simulating 10,000 posterior draws under this new asymmetric conjugate prior takes

less than 30 seconds.

To develop this asymmetric conjugate prior, we first write the BVAR in the structural

form, under which the error covariance matrix is diagonal. We then adopt an equation-by-

equation estimation approach similar to that in Carriero, Clark, and Marcellino (2019).

In particular, we assume that the parameters are a priori independent across equations—

i.e., the joint prior density is a product of densities, each for the set of parameters in each

equation. Under this setup, we show that if the VAR coefficients and the error variance

in each equation follows a normal-inverse-gamma prior, the posterior distribution has the

same form—i.e., it is a product of normal-inverse-gamma densities.

To help elicit the hyperparameters in this asymmetric conjugate prior, we prove that if

we assume a standard inverse-Wishart prior on the reduced-form error covariance matrix,

the implied prior on the structural-form impact matrix and error variances is a product

of normal-inverse-gamma densities. Hence, using this proposition, we can first elicit the

hyperparameters in the reduced-form prior, which is often more natural, and then obtain

the implied hyperparameters in the structural-form prior. In addition, this proposition

implies that the proposed prior—with carefully chosen hyperparameters—is invariant to

reordering of the dependent variables.

We illustrate the empirical relevance of the proposed asymmetric conjugate prior with a

forecasting exercise that involves 21 US quarterly macroeconomic and financial variables.

More specifically, we use the analytical expression of the marginal likelihood under the

asymmetric conjugate prior to obtain the optimal hyperparameters. We show that this

data-based asymmetric prior outperforms two important benchmarks: 1) a data-based

symmetric prior that rules out cross-variable shrinkage; and 2) an asymmetric prior in

which the hyperparameters are chosen subjectively as in Carriero, Clark, and Marcellino

(2015).

The rest of the paper is organized as follows. We first introduce in Section 2 a repa-

rameterization of the reduced-form BVAR and the new asymmetric conjugate prior. We

then derive the associated posterior distribution and the marginal likelihood. Section 3
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discusses a few extensions of the standard BVAR, and outlines the corresponding sam-

pling schemes. It is followed by a macroeconomic forecasting exercise to illustrate the

usefulness of the proposed prior in Section 4. Lastly, Section 5 concludes and briefly

discusses some future research directions.

2 Bayesian VARs and Conjugate Priors

Let yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of endogenous variables at time t. A standard

VAR can be written as:

yt = b̃ + B̃1yt−1 + · · ·+ B̃pyt−p + ε̃yt , ε̃yt ∼ N (0, Σ̃), (1)

where b̃ is an n × 1 vector of intercepts, B̃1, . . . , B̃p are n × n VAR coefficient matrices

and Σ̃ is a full covariance matrix.

The parameters in this model can be naturally divided into two blocks: the error covari-

ance matrix Σ̃ and the matrix of intercepts and VAR coefficients, i.e., B̃ = (b̃, B̃1, · · · , B̃p)
′.

Under this parameterization, there is a conjugate prior on (B̃, Σ̃), namely, the normal-

inverse-Wishart distribution:

Σ̃ ∼ IW(ν̃0, S̃0), (vec(B̃) | Σ̃) ∼ N (vec(B̃0), Σ̃⊗ Ṽ),

where ⊗ denotes the Kronecker product, vec(·) vectorizes a matrix by stacking the

columns from left to right and IW denotes the inverse-Wishart distribution. This prior

is commonly called the natural conjugate prior and can be traced back to Zellner (1971).

For textbook treatment of this prior and the associated posterior distribution, see, e.g.,

Koop and Korobilis (2010), Karlsson (2013) or Chan (2019).

The main advantage of the natural conjugate prior is that it gives rise to a range of

analytical results. For example, the associated posterior and one-step-ahead predictive

distributions are both known; the marginal likelihood is also available in closed-form.

These analytical results are useful for a variety of purposes. For instance, the closed-

form expression of the marginal likelihood under the natural conjugate prior can be used

to calculate optimal hyperparameters, as is done in Del Negro and Schorfheide (2004),
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Schorfheide and Song (2015) and Carriero, Clark, and Marcellino (2015). The analytical

expression of the posterior distribution of (B̃, Σ̃) can be used to develop efficient sampling

algorithms to estimate more flexible Bayesian VARs. Examples include Carriero, Clark,

and Marcellino (2016) and Chan (2018).

On the other hand, one key drawback of the natural conjugate prior is that the prior

covariance matrix of vec(B̃) is restrictive—to be conjugate it needs to have the Kronecker

product structure Σ̃ ⊗ Ṽ, which implies cross-equation restrictions on the covariance

matrix. In particular, this structure requires symmetric treatment of own lags and lags

of other variables. In many situations one might want to shrink the coefficients on lags of

other variables more strongly to zero than those of own lags. This prior belief, however,

cannot be implemented using the natural conjugate prior due to the Kronecker structure.

Here we develop a prior that solves this dilemma: this new prior allows asymmetric

treatment between own lags and lags of other variables, while it maintains many useful

analytical results. In what follows, we first consider a reparameterization of the reduced-

form VAR in (1). We introduce in Section 2.2 the new asymmetric conjugate prior and

discuss its properties. We then derive the associated posterior distribution and discuss

an efficient sampling scheme in Section 2.3. Finally, we give an analytical expression of

the marginal likelihood in Section 2.4.

2.1 The Bayesian VAR in Structural Form

In this section we introduce a reparameterization of the reduced-form VAR in (1) and

derive the associated likelihood function. To that end, we first write the VAR in the

following structural form:

Ayt = b + B1yt−1 + · · ·+ Bpyt−p + εyt , εyt ∼ N (0,Σ), (2)

where b is an n×1 vector of intercepts, B1, . . . ,Bp are n×n VAR coefficient matrices, A

is an n× n lower triangular matrix with ones on the diagonal and Σ = diag(σ2
1, . . . , σ

2
n)

is diagonal. Since the covariance matrix Σ is diagonal, we can estimate this recursive

system equation by equation without loss of efficiency.2 It is easy to see that we can

2Carriero, Clark, and Marcellino (2019) pioneer a similar equation-by-equation estimation approach to
estimate a large VAR with a standard stochastic volatility specification. However, they use the reduced-
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recover the reduced-form parameters by setting b̃ = A−1b, B̃j = A−1Bj, j = 1, . . . , p

and Σ̃ = A−1Σ(A−1)′.

For later reference, we introduce some notations. Let bi denote the i-th element of b and

let bj,i represent the i-th row of Bj. Then, βi = (bi,b1,i, . . . ,bp,i)
′ is the intercept and

VAR coefficients for the i-th equation. Furthermore, let αi denote the free elements in

the i-th row of the impact matrix A, i.e., αi = (Ai,1, . . . , Ai,i−1)
′. We then follow Chan

and Eisenstat (2018) to rewrite the i-th equation of the system in (2) as:

yi,t = w̃i,tαi + x̃tβi + εyi,t, εyi,t ∼ N (0, σ2
i ),

where w̃i,t = (−y1,t, . . . ,−yi−1,t) and x̃t = (1,y′t−1, . . . ,y
′
t−p). Note that yi,t depends on

the contemporaneous variables y1,t, . . . , yi−1,t. But since the system is triangular, when

we perform the change of variables from εyt to yt to obtain the likelihood function, the

corresponding Jacobian has unit determinant and the likelihood function has the usual

Gaussian form.

If we let xi,t = (w̃i,t, x̃t), we can further simplify the i-th equation as:

yi,t = xi,tθi + εyi,t, εyi,t ∼ N (0, σ2
i ),

where θi = (α′i,β
′
i)
′ is of dimension ki = np+ i. Hence, we have rewritten the structural

VAR in (2) as a system of n independent regressions. Moreover, by stacking the elements

of the impact matrix αi and the VAR coefficients βi, we can sample them together to

improve efficiency.3

To derive the likelihood function, we further stack yi = (yi,1, . . . , yi,T )′ and define Xi and

εyi similarly. Hence, we can rewrite the above equation as follows:

yi = Xiθi + εyi , εyi ∼ N (0, σ2
i IT ).

form parameterization in (1), whereas here we use the structural form in (2). As we will see below,
the latter parameterization has the advantage of having a convenient representation as n independent
regressions and it consequently leads to a more efficient sampling scheme. Ando and Zellner (2010)
also consider a similar reparameterization of the reduced-form VAR that allows equation-by-equation
estimation. But in their implementation they need to switch between two parameterizations, which
makes estimation more cumbersome.

3This more efficient blocking scheme has been used previously in the literature. For example, Eisen-
stat, Chan, and Strachan (2016) use it to speed up computations in the context of time-varying parameter
VARs with stochastic volatility.
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Finally, let θ = (θ′1, . . . ,θ
′
n)′ and σ2 = (σ2

1, . . . , σ
2
n)′. Then, the likelihood function of the

VAR in (2) is given by

p(y |θ,σ2) =
n∏
i=1

p(yi |θi, σ2
i ) =

n∏
i=1

(2πσ2
i )
−T

2 e
− 1

2σ2
i

(yi−Xiθi)
′(yi−Xiθi)

. (3)

In other words, the likelihood function is the product of n Gaussian densities.

2.2 Asymmetric Conjugate Priors

Next we introduce a conjugate prior on (θ,σ2) that allows differential treatment between

prior variances on own lags versus others. We assume that the parameters are a priori

independent across equations, i.e., p(θ,σ2) =
∏n

i=1 p(θi, σ
2
i ). Furthermore, we consider a

normal-inverse-gamma prior for each pair (θi, σ
2
i ), i = 1, . . . , n:

(θi |σ2
i ) ∼ N (mi, σ

2
iVi), σ2

i ∼ IG(νi, Si), (4)

and we write (θi, σ
2
i ) ∼ NIG(mi,Vi, νi, Si). In other words, the prior density of (θ,σ2)

is given by

p(θ,σ2) =
n∏
i=1

ci(σ
2
i )
−(νi+1+

ki
2 )e
− 1

σ2
i
(Si+ 1

2
(θi−mi)

′V−1
i (θi−mi))

, (5)

where ci = (2π)−
ki
2 |Vi|−

1
2Sνii /Γ(νi).

Since the prior variance of each element of θi is controlled by the corresponding diagonal

element of Vi, it is obvious that this prior can accommodate different prior variances

between own lags versus others. As we will show in the next section, this prior is also

conjugate. To distinguish this from the natural conjugate prior, we call the prior in (4) the

asymmetric conjugate prior. The hyperparameters of the asymmetric conjugate prior are

mi,Vi, νi and Si, i = 1, . . . , n. Below we describe one way to elicit these hyperparameters.

Recall that for each equation i there are three types of parameters: αi, the free parameters

in the impact matrix A; βi, the structural-form VAR coefficients; and σ2
i , the structural-

form error variance. For the hyperparameters associated with the conditional prior of βi,

we follow Sims and Zha (1998), who consider Minnesota-type shrinkage priors for VAR
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coefficients in the structural form.4 For the hyperparameters associated with αi and σ2
i ,

a good way to elicit them is less obvious. One concern is that an arbitrary choice of the

hyperparameters for αi and σ2
i would induce some unreasonable prior on the reduced-

form error covariance matrix Σ̃ = A−1Σ(A−1)′. In particular, the induced prior on Σ̃

might not be invariant to reordering—e.g., the prior variance of the i-th reduced-form

error depends on its position in the n-tuple. This problem is especially acute for large

systems due to the fact that A−1 is lower triangular.

To avoid this potential non-invariance problem, we instead specify a prior on the reduced-

form error covariance matrix Σ̃. And given this prior on Σ̃, we then derive the implied

prior on αi and σ2
i , i = 1, . . . , n. To that end, we consider a standard inverse-Wishart

prior on Σ̃ centered around S = diag(s21, . . . , s
2
n), where s2i denotes the sample variance

of the residuals from an AR(4) model for the variable i, i = 1, . . . , n. More precisely,

Σ̃ ∼ IW(ν0,S) with ν0 = n + 2. This prior on Σ̃ is commonly used in the literature

(e.g., in Kadiyala and Karlsson, 1997; Carriero, Clark, and Marcellino, 2015). It turns

out that, quite remarkably, the implied prior on αi and σ2
i is normal-inverse-gamma. The

following proposition records this result.

Proposition 1. Consider the following normal-inverse-gamma priors on the diagonal

elements of Σ and the lower triangular elements of A:

σ2
i ∼ IG

(
ν0 + i− n

2
,
s2i
2

)
, i = 1, . . . , n, (6)

(Ai,j |σ2
i ) ∼ N

(
0,
σ2
i

s2j

)
, 1 6 j < i 6 n, i = 2, . . . , n. (7)

Then, Σ̃
−1

= A′Σ−1A has the Wishart distribution Σ̃
−1
∼ W(ν0,S

−1), where S =

diag(s21, . . . , s
2
n). It follows that Σ̃ ∼ IW(ν0,S). Since the transformation Σ̃

−1
=

A′Σ−1A is one-to-one, the converse is also true. That is, if we assume Σ̃ ∼ IW(ν0,S),

then the implied priors on αi and σ
2
i , i = 1, . . . , n, are the normal-inverse-gamma distri-

butions given in (6) and (7).5

4The original Minnesota priors on the reduced-form VAR coefficients were first developed by Doan,
Litterman, and Sims (1984) and Litterman (1986).

5This proposition holds for the more general case where S is any symmetric positive definite matrix.
That is, the induced priors on the structural-form variances are independent gamma distributions and
the conditional priors of the free elements of A are normal distributions. However, the parameters under
this more general case are no longer independent across equations, and the proposed sampling scheme
does not directly apply.
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Hence, the above proposition gives us a guide to elicit the hyperparameters associated

with αi and σ2
i . In particular, we set νi = 1 + i/2 and Si = s2i /2. For the elements of mi

and Vi associated with αi, they are discussed below.

Recall that the elements of mi and Vi associated with βi are elicited along the lines

of Sims and Zha (1998). Together with Proposition 1, one can set mi = 0 to shrink the

VAR coefficients to zero for growth rates data; for level data, mi is set to be zero as well

except the coefficient associated with the first own lag, which is set to be one.

To elicit Vi, recall that Vi is the ratio of the prior covariance matrix of θi relative to the

error variance σ2
i . Similar to the Minnesota prior, here we assume Vi to be diagonal with

the k-th diagonal element Vi,kk set to be:

Vi,kk =



κ1
l2s2i

, for the coefficient on the l-th lag of variable i,
κ2
l2s2j

, for the coefficient on the l-th lag of variable j, j 6= i,

κ3
s2j
, for the j-th element of αi,

κ4, for the intercept.

The hyperparameter κ1 controls the overall shrinkage strength for coefficients on own lags,

whereas κ2 controls those on lags of other variables. These two hyperparameters will play

a key role in the empirical analysis, and we will select them optimally by maximizing the

associated marginal likelihood. We set κ3 = 1 as per Proposition 1. Lastly, we fix

κ4 = 100, which implies essentially no shrinkage for the intercepts.6

2.3 Posterior Distribution and Efficient Sampling

In this section we first derive the posterior distribution of (θ,σ2) under the asymmetric

conjugate prior and show that it has indeed the same form as the prior. Then, we describe

an efficient method for posterior simulation.

Since both the likelihood in (3) and the prior in (5) have the product form, we can

6In principle one can select κ3 and κ4 optimally as well, but the corresponding optimization is more
costly to solve. More generally, high-dimensional numerical optimization using derivative-free methods is
time consuming. One feasible alternative is to use Automatic Differentiation to obtain the relevant partial
derivatives, which are then fed to numerical optimization routines that use these partial derivatives to
more efficiently find the maximizer. See Chan, Jacobi, and Zhu (2019) for an example.
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estimate each pair (θi, σ
2
i ) separately. More specifically, the posterior distribution of

(θ,σ2) is given by:

p(θ,σ2 |y) ∝ p(θ,σ2)p(y |θ,σ2) =
n∏
i=1

p(θi, σ
2
i )p(yi |θi, σ2

i )

=
n∏
i=1

ci(σ
2
i )
−(νi+1+

ki
2 )e
− 1

σ2
i
(Si+ 1

2
(θi−mi)

′V−1
i (θi−mi)) × (2πσ2

i )
−T

2 e
− 1

2σ2
i

(yi−Xiθi)
′(yi−Xiθi)

=
n∏
i=1

ci(2π)−
T
2 (σ2

i )
−(νi+T+ki

2
+1)e

− 1

σ2
i
(Si+ 1

2(θ′i(V−1
i +X′iXi)θi−2θ′i(V

−1
i mi+X′iyi)+m′iV

−1
i mi+y′iyi))

=
n∏
i=1

ci(2π)−
T
2 (σ2

i )
−(νi+T+ki

2
+1)e

− 1

σ2
i
(Ŝi+ 1

2
(θi−θ̂i)′Kθi

(θi−θ̂i))
,

where Kθi = V−1i + X′iXi, θ̂i = K−1θi
(V−1i mi + X′iyi) and Ŝi = Si + (y′iyi + m′iV

−1
i mi −

θ̂
′
iKθiθ̂i)/2. Hence, the posterior distribution is a product of n normal-inverse-gamma

distributions and we have:

(θi, σ
2
i |y) ∼ NIG

(
θ̂i,K

−1
θi
, νi +

T

2
, Ŝi

)
, i = 1, . . . , n. (8)

Using properties of the normal-inverse-gamma distribution, it is easy to see that the

posterior means of θi and σ2
i are respectively θ̂i and Ŝi/(νi + T/2− 1). Other posterior

moments can also be obtained by using similar properties of the normal-inverse-gamma

distribution. For other quantities of interest where analytical results are not available,

we can estimate them by posterior simulation. For example, the h-step-ahead predictive

distribution of yT+h is non-standard. But we can obtain posterior draws from p(θ,σ2 |y)

to construct the h-step-ahead predictive distribution.

In what follows, we outline an efficient method to simulate a sample of size R from

the posterior distribution. Here we can directly generate independent draws from the

posterior distribution as opposed to MCMC draws that are correlated by construction.

First, note that (θ,σ2 |y) is a product of n normal-inverse-gamma distributions as given

in (8). Thus we can sample each pair (θi, σ
2
i |y) individually. Next, we can sample

(θi, σ
2
i |y) in two steps. First, we draw σ2

i marginally from (σ2
i |y) ∼ IG(νi + T/2, Ŝi).
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Then, given the σ2
i sampled, we obtain θi from the conditional distribution

(θi |y, σ2
i ) ∼ N (θ̂i, σ

2
iK
−1
θi

).

Here the covariance matrix σ2
iK
−1
θi

is of dimension ki = np+ i. When n is large, sampling

from this normal distribution using conventional methods—based on the Cholesky factor

of σ2
iK
−1
θi

—is computationally intensive for two reasons. First, inverting the ki × ki

matrix Kθi to obtain the covariance matrix σ2
iK
−1
θi

is computationally costly. Second,

the Cholesky factor of the covariance matrix needs to be computed R times—once for each

draw of σ2
i from the marginal distribution. It turns out that both of these computationally

intensive steps can be avoided.

To that end, we introduce the following notations: given a non-singular square matrix

F and a conformable vector d, let F\d denote the unique solution to the linear system

Fz = d, i.e., F\d = F−1d. When F is lower triangular, this linear system can be solved

quickly by forward substitution; when F is upper triangular, it can be solved by backward

substitution.7 Now, compute the Cholesky factor CKθi
of Kθi such that Kθi = CKθi

C′Kθi
.

Note that this needs to be done only once. Let u be a ki×1 vector of independent sample

from N (0, σ2
i ). Then, return

θ̂i + C′Kθ
\u,

which has the N (θ̂i, σ
2
iK
−1
θi

) distribution.8 Finally, we can further speed up the computa-

tions by vectorizing all operations to obtain R posterior draws instead of using for-loops.

This sampling scheme is more efficient than the method in Carriero, Clark, and Marcellino

(2019), who propose estimating the reduced-form parameters equation-by-equation. The

main reason is that their method requires computing the Cholesky factor of every sampled

reduced-form covariance matrix (e.g., a total of R times for R draws), whereas we only

need to do it once. This difference becomes more important when n becomes larger, as

number of operations for computing the Cholesky factor of an n× n matrix is O(n3).

To get a sense of how long it takes to obtain posterior draws using the proposed algo-

7Forward and backward substitutions are implemented in standard packages such as Matlab, Gauss
and R. In Matlab, for example, it is done by mldivide(F,d) or simply F\d.

8Note that θ̂i can be obtained similarly without explicitly computing the inverse of Kθi
. Specifically,

it is easy to see that θ̂i can be calculated as: C′Kθi
\(CKθi

\(V−1i mi +X′iyi)) by forward then backward

substitution. Also note that since V−1i is diagonal, its inverse is straightforward to compute.
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rithm, we fit Bayesian VARs of different sizes, each with p = 4 lags. The algorithm is

implemented using Matlab on a desktop with an Intel Core i7-7700 @3.60 GHz proces-

sor and 64GB memory. The computation times (in seconds) to obtain 10,000 posterior

draws of (θ,σ2) are reported in Table 1. As it is evident from the table, the proposed

method is fast and scales well. It also compares favorably to the algorithm in Carriero,

Clark, and Marcellino (2019), especially when n is large. For example, for a large BVAR

with n = 100 variables, the proposed method takes about half a minute to obtain 10,000

posterior draws. In comparison, using the algorithm in Carriero, Clark, and Marcellino

(2019) takes about 43 minutes.

Table 1: The computation times (in seconds) to obtain 10,000 posterior draws of (θ,σ2)
using the proposed method compared to the method in Carriero, Clark, and Marcellino
(2019). All BVARs have p = 4 lags.

n = 25 n = 50 n = 100
proposed method 1.3 6.8 28
CCM 58 238 2,574

2.4 The Marginal Likelihood

In this section we provide an analytical expression of the marginal likelihood. This

closed-form expression is useful for a range of purposes, such as obtaining optimal hyper-

paramaters or designing efficient estimation algorithms for more flexible Bayesian VARs.

To prevent arithmetic underflow and overflow, we evaluate the marginal likelihood in log

scale. Given the likelihood function in (3) and the asymmetric conjugate prior in (5), the

associated log marginal likelihood of the VAR has the following analytical expression:

log p(y) =− Tn

2
log(2π) +

n∑
i=1

[
−1

2
(log |Vi|+ log |Kθi |)

+ log Γ

(
νi +

T

2

)
+ νi logSi − log Γ(νi)−

(
νi +

T

2

)
log Ŝi

]
.

(9)

The details of the derivation are given in Appendix B. The above expression is straight-

forward to evaluate. We only note that to compute the log determinant log |Kθi |, it is

numerically more stable to first compute its Cholesky factor CKθi
and return 2

∑
log cii,
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where cii is the i-th diagonal element of the CKθi
.

3 Extensions

In this section we briefly discuss how we can use the above analytical results and the

efficient sampling scheme in more general settings. Suppose we augment our BVAR in (3)

to the model p(y |θ,σ2,γ) with the additional parameter vector γ. Further, consider the

prior p(θ,σ2,γ) = p(θ,σ2 |γ)p(γ), where p(θ,σ2 |γ) is the asymmetric conjugate prior

that could potentially depend on γ and the marginal prior p(γ) is left unspecified for

now. Before we discuss some efficient posterior samplers, we first give two examples that

fit into this framework.

In our first example, we augment the BVAR by treating the hyperparameters κ1 and

κ2 as parameters to be estimated. That is, γ = (κ1, κ2)
′. This extension is useful as it

takes into account the parameter uncertainty of κ1 and κ2 (see also Giannone, Lenza,

and Primiceri, 2015). This extension is considered in the empirical application. In our

second example, we extend the BVAR by adding an MA(1) component to each equation:

yi,t = xi,tθi + εyi,t,

εyi,t = ui,t + ψiui,t−1,

where ui,t ∼ N (0, σ2
i ), t = 1, . . . , T, i = 1, . . . , n. In this case, γ = (ψ1, . . . , ψn)′. This

extension is motivated by the empirical finding that allowing for moving average errors

often improves forecast performance (see, e.g., Chan, 2013, 2018).

Both examples fit into the framework with likelihood p(y |θ,σ2,γ) and prior p(θ,σ2,γ).

One natural posterior sampler is to construct a Markov chain by sequentially sampling

from p(θ,σ2 |y,γ) and p(γ |y,θ,σ2). The first density is a product of normal-inverse-

gamma densities, and we can efficiently obtain a draw from it as described before. The

second density depends on the model, but it is often easy to sample from.9

9For our first example with a low-dimensional γ = (κ1, κ2)′, an independent-chain Metropolis-Hastings
algorithm can be easily constructed. For our second example with γ = (ψ1, . . . , ψn)′, it turns out that
we can factor p(γ |y,θ,σ2) = p(ψ |y,θ,σ2) =

∏n
i=1 p(ψi |y,θ,σ2). Then, each ψi can be simulated

using the method in Chan (2013).
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Alternatively, a more efficient approach is the collapsed sampler that samples from

p(γ |y). This sampling scheme is typically more efficient as it integrates out the high-

dimensional parameters (θ,σ2) analytically. The density p(γ |y) can be evaluated quickly

since

p(γ |y) ∝ p(y |γ)p(γ),

where p(y |γ) is the ‘marginal likelihood’ of the standard BVAR. For instance, for the first

example with γ = (κ1, κ2)
′, the quantity p(y |γ) is exactly as the analytical expression

given in (9). Finally, given the posterior draws of γ, we can obtain the posterior draws

of (θ,σ2) from p(θ,σ2 |y,γ).

4 Application: Forecasting with Large BVARs

We consider a forecasting exercise using large Bayesian VARs to illustrate the usefulness of

the proposed asymmetric conjugate prior. After describing the macroeconomic dataset

in Section 4.1, we first present the full sample results in Section 4.2, highlighting the

empirical relevance of allowing for different levels of shrinkage on own lags and other

lags. We then show in Section 4.3 that the proposed asymmetric conjugate prior leads to

substantial gains in forecast performance over the symmetric prior that rules out cross-

variable shrinkage.

4.1 Data

The dataset for our forecasting exercise consists of 21 US quarterly variables and the

sample period is from 1959Q1 to 2018Q4. The dataset is constructed from the FRED-

QD database at the Federal Reserve Bank of St. Louis as described in McCracken and

Ng (2016). We use a range of standard macroeconomic and financial variables, such

as Real GDP, industrial production, inflation rates, labor market variables and interest

rates. They are transformed to stationarity, typically to growth rates. The complete list

of variables and how they are transformed is given in Appendix A.
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4.2 Full Sample Results

In this section we use the full sample to obtain the optimal hyperparameters κ1 and κ2

that maximize the log marginal likelihood given in (9). The optimal hyperparameters

and the associated log marginal likelihood are reported in Table 2. For comparison, we

also consider two useful benchmarks. In the first case we set κ1 = κ2 = κ and maximize

the log marginal likelihood with respect to κ only. This benchmark mimics the standard

practice of using the natural conjugate prior that does not distinguish between own lags

and lags of other variables. We refer to this version as the symmetric prior. The second

benchmark is a set of subjectively chosen values that apply cross-variable shrinkage. In

particular, we follow Carriero, Clark, and Marcellino (2015) and consider κ1 = 0.04 and

κ2 = 0.0016. This second benchmark is referred to as the subjective prior.

Table 2: Optimal values of the hyperparameters κ1 and κ2 under the symmetric prior
(κ1 = κ2), the subjective prior (Carriero, Clark, and Marcellino, 2015) and the proposed
asymmetric prior.

Symmetric prior Subjective prior Asymmetric prior
κ1 0.039 0.04 0.406
κ2 0.039 0.0016 0.009
log-ML −9,436 −9,372 −9,201

Under the symmetric prior with the restriction that κ1 = κ2, the optimal hyperparameter

value is 0.039, which is very close a widely used value in the literature of 0.04 (e.g., Sims

and Zha, 1998; Carriero, Clark, and Marcellino, 2015; Chan, 2018). However, if we

allow κ1 and κ2 to be different, we obtain very different results: the optimal value for

κ1 increases more than ten-folds to 0.406, whereas the optimal value of κ2 reduces to

0.009. These results suggest that the data prefers shrinking the coefficients on lags of

other variables much more aggressively to zero than those on own lags. This makes

intuitive sense as one would expect, on average, a variable’s own lags would contain

more information about its future evolution than lags of other variables. By relaxing the

restriction that κ1 = κ2, the log marginal likelihood increases by 235. If we were to test

the hypothesis that κ1 = κ2, this large difference in log marginal likelihood values would

have decidedly reject it.

In addition, the optimal values of κ1 and κ2 under the asymmetric prior are also very
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different from those of the subjective prior. In particular, the values of κ1 and κ2 under the

asymmetric prior are, respectively, 10 and 5.6 times larger than the latter. By selecting

the values of κ1 and κ2 optimally, one can increase the log marginal likelihood value by

171. These results suggest that the subjective prior might have shrunk the coefficients

too aggressively.

We have so far taken the empirical Bayes approach of choosing hyperparameter values by

maximizing the log marginal likelihood. A fully Bayesian approach would specify proper

priors on κ1 and κ2 and obtain the corresponding posterior distribution. The latter

approach has the additional advantage of being able to quantity parameter uncertainty

of κ1 and κ2. In view of this, we take a fully Bayesian approach and treat κ1 and κ2 as

parameters to be estimated. Specifically, we assume a uniform prior on the unit square

(0, 1) × (0, 1) for κ1 and κ2, and compute the marginal posterior distribution of κ1 and

κ2. The contour plot of the joint posterior density is reported in Figure 1.
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Figure 1: Contour plot of the joint posterior density of κ1 and κ2. The mode of the
density is normalized to one for easy comparison.

As the contour plot in the right panel shows, most of the mass of κ1 lies between 0.3 and

0.6, whereas the mass of κ2 is mostly between 0.007 and 0.012. These results confirm the

conclusion that one should shrink the coefficients on other lags much more aggressively
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to zero than those on own lags. Moreover, since there is virtually no mass along the

diagonal line κ1 = κ2, requiring them to be the same as in the natural conjugate prior

appears to be too restrictive. As a comparison, we also plot the values of κ1 and κ2 under

the symmetric and subjective priors in the left panel. As is evident from the figure, the

values under both priors are far from the high-density region of the posterior distribution.

Overall, the full sample results indicate that the optimal hyperparameter values could

be very different from some subjectively chosen values commonly used in empirical work.

In addition, these results also highlight the importance of allowing for different levels of

shrinkage on own versus other lags—and therefore the empirical relevance of the proposed

asymmetric conjugate prior.10

4.3 Forecasting Results

In this section we evaluate the forecast performance of BVARs with the proposed asym-

metric conjugate prior relative to two alternative priors: the symmetric prior that restricts

κ1 = κ2 and the subjective prior that fixes κ1 = 0.04 and κ2 = 0.0016. Our sample period

is from 1959Q1 to 2018Q4 and the evaluation period starts at 1985Q1 and runs till the

end of the sample. In each recursive forecasting iteration, we use only the data up to

time t, denoted as y1:t, to obtain the optimal hyperparameters in the symmetric and

asymmetric priors by maximizing the marginal likelihood as given in (9). We evaluate

both point and density forecasts. We use the conditional expectation E(yi,t+h |y1:t) as

the h-step-ahead point forecast for variable i and the predictive density p(yi,t+h |y1:t) as

the corresponding density forecast.

The metric used to evaluate the point forecasts from model M is the root mean squared

forecast error (RMSFE) defined as

RMSFEM
i,h =

√∑T−h
t=t0

(yoi,t+h − E(yi,t+h |y1:t))2

T − h− t0 + 1
,

where yoi,t+h is the actual observed value of yi,t+h. For RMSFE, a smaller value indicates

10We also compare the posterior estimates under this asymmetric conjugate prior on the structural-
form parameters with those under the more standard independent normal and inverse-Wishart priors
on the reduced-form parameters. The results are reported in Appendix D. The reduced-form estimates
under both priors are mostly similar.
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better forecast performance. To evaluate the density forecasts, the metric we use is the

average of log predictive likelihoods (ALPL):

ALPLMi,h =
1

T − h− t0 + 1

T−h∑
t=t0

log p(yi,t+h = yoi,t+h |y1:t),

where p(yi,t+h = yoi,t+h |y1:t) is the predictive likelihood. For this metric, a larger value

indicates better forecast performance.

To compare the forecast performance of model M against the benchmark B, we follow

Carriero, Clark, and Marcellino (2015) to report the percentage gains in terms of RMSFE,

defined as

100× (1− RMSFEM
i,h/RMSFEB

i,h),

and the percentage gains in terms of ALPL:

100× (ALPLMi,h − ALPLBi,h).

Figure 2 reports the forecasting results from the BVARs with the asymmetric conjugate

prior relative to the benchmark symmetric prior. The top panel shows the percentage

gains in RMSFE for all 21 variables, whereas the bottom panel presents the corresponding

results in ALPL. For 1-step-ahead point forecasts, the asymmetric prior outperforms the

benchmark for all variables except one. For a few variables, such as capacity utilization

and 3-month treasury bill rate, the former outperforms the benchmark by more than

10%.

For 4-step-ahead point forecasts, the asymmetric prior similarly outperforms the bench-

mark, though the gains are more modest. The median percentage gains in RMSFE for

1- and 4-step-ahead forecasts are 3.41% and 0.72%, respectively. Results for density

forecasts are similar, though for two variables—a credit spread variable and PPI—the

4-step-ahead density forecasts under the asymmetric prior are noticeably worse than the

benchmark. Overall, the asymmetric prior performs well: the median percentage gains

in ALPL for 1- and 4-step-ahead forecasts are, respectively, 2.5% and 0.47%.
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Figure 2: Forecasting results from BVAR with the asymmetric conjugate prior versus
BVAR with the symmetric prior that assumes κ1 = κ2. The top panel shows the percent-
age gains in root mean squared forecast error of the asymmetric conjugate prior. The
bottom panel presents the percentage gains in the average of log predictive likelihoods.

Next, we compare the forecast performance of the asymmetric prior with that of the

subjective prior, and the results are reported in Figure 3. For the 1-step-ahead forecast

horizon, the asymmetric prior substantially outperforms the subjective prior for a ma-

jority of variables for both point and density forecasts. The median percentage gains in

RMSFE and ALPL are 2% and 3.6%, respectively.

For 4-step-ahead forecasts, the results are mixed. The asymmetric prior performs better

than the benchmark for density forecast, but for point forecasts it is a bit worse. The

median percentage gains in ALPL and RMSFE are 1.8% and −0.23%, respectively. This

could reflect the fact that the hyperparameters under the asymmetric prior are chosen

by maximizing the marginal likelihood—which can be interpreted as a one-step-ahead

density forecast metric. Hence, the hyperparameters under the asymmetric prior are

optimized for one-step-ahead forecast performance, and they do not necessary do as well
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for longer forecast horizons compared to some subjectively chosen hyperparameter values.
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Figure 3: Forecasting results from BVAR with the asymmetric conjugate prior versus
BVAR with the subjective prior that fixes κ1 = 0.04 and κ2 = 0.0016. The top panel
shows the percentage gains in root mean squared forecast error of the asymmetric conju-
gate prior. The bottom panel presents the percentage gains in the average of log predictive
likelihoods.

Lastly, we investigate if there are forecast performance gains by estimating the hyper-

parameters κ1 and κ2, as opposed to choosing their values by maximizing the marginal

likelihood. In theory, the former approach is more desirable as it takes into account of

parameter uncertainty. To that end, we compare the forecast performance of the two

versions of the asymmetric conjugate prior. In the first version, we select the hyper-

parameters κ1 and κ2 by maximizing the marginal likelihood as before. In the second

version, we estimate them using a uniform prior over the square (0, 1)× (0, 1).

The results are reported in Figure 4. For point forecasts, both versions have essentially

the same performance. For density forecasts, they perform very similarly as well, though

for a few variables the difference in ALPL can be as large as 4%. Hence, for computational
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reason, the asymmetric prior in which the hyperparameters are fixed at optimal values

might be a good default.
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Figure 4: Forecasting results from the asymmetric conjugate prior where the hyperpa-
rameters are chosen by maximizing the marginal likelihood versus the version where the
hyperparameters are estimated. The top panel shows the percentage gains in root mean
squared forecast error of the asymmetric conjugate prior. The bottom panel presents the
percentage gains in the average of log predictive likelihoods.

5 Concluding Remarks and Future Research

We have developed a new asymmetric conjugate prior for large BVARs that can ac-

commodate cross-variable shrinkage, while maintaining many useful analytically results

as the natural conjugate prior. Using a large US dataset, we demonstrated that the

gains in forecast accuracy of this new prior can be substantial compared to convectional

benchmarks. In particular, we showed that allowing for cross-variable shrinkage can lead

to notable improvement in forecast performance. Our findings therefore highlight the
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empirical relevance of this new asymmetric prior.

There is now a large empirical literature that shows that models with stochastic volatility

tend to forecast substantially better (Clark, 2011; D’Agostino, Gambetti, and Giannone,

2013; Cross and Poon, 2016). In future work, it would be useful to develop similar

efficient posterior samplers for large BVARs with stochastic volatility, such as the models

in Eisenstat, Chan, and Strachan (2018) and Carriero, Clark, and Marcellino (2019). In

addition, it would be interesting to use Proposition 1 to work out a way to construct a

multivariate stochastic volatility model that is invariant to reordering of the variables.

22



Appendix A: Data

The dataset is sourced from the FRED-QD database at the Federal Reserve Bank of St.

Louis (McCracken and Ng, 2016). It covers the quarters from 1959Q1 to 2018Q4. Table 3

lists the 21 quarterly variables and describes how they are transformed. For example,

∆ log is used to denote the first difference in the logs, i.e., ∆ log x = log xt − log xt−1.

Table 3: Description of variables used in the forecasting exercise.

Variable Transformation
Real Gross Domestic Product 400∆ log
Personal Consumption Expenditures 400∆ log
Real Disposable Personal Income 400∆ log
Industrial Production Index 400∆ log
Capacity Utilization: Manufacturing (SIC) no transformation
All Employees: Total nonfarm 400∆ log
Civilian Employment 400∆ log
Civilian Unemployment Rate no transformation
Nonfarm Business Section: Hours of All Persons 400∆ log
Housing Starts: Total 400∆ log
Personal Consumption Expenditures: Chain-type Price index 400∆ log
Gross Domestic Product: Chain-type Price index 400∆ log
Consumer Price Index for All Urban Consumers: All Items 400∆ log
Producer Price Index for All commodities 400∆ log
Real Average Hourly Earnings of Production and Nonsupervisory
Employees: Manufacturing, deflated by Core PCE 400∆ log
Nonfarm Business Section: Real Output Per Hour of All Persons 400∆ log
3-Month Treasury Bill: Secondary Market Rate no transformation
10-Year Treasury Constant Maturity Rate no transformation
Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield
on 10-Year Treasury Constant Maturity no transformation
Real M1 Money Stock 400∆ log
S&P’s Common Stock Price Index : Composite 400∆ log
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Appendix B: Derivation of the Marginal Likelihood

In this appendix we prove that the marginal likelihood of the VAR(p) under the asym-

metric conjugate prior in (4) has the following expression:

p(y) =
n∏
i=1

(2π)−
T
2 |Vi|−

1
2 |Kθi |−

1
2

Γ(νi + T/2)Sνii

Γ(νi)Ŝ
νi+

T
2

i

.

This result follows from direct computation:

p(y) =
n∏
i=1

p(yi) =
n∏
i=1

∫
p(θi, σ

2
i )p(yi |θi, σ2)d(θi, σ

2
i )

=
n∏
i=1

ci(2π)−
T
2

∫
(σ2

i )
−(νi+T+ki

2
+1)e

− 1

σ2
i
(Ŝi+ 1

2
(θi−θ̂i)′Kθi

(θi−θ̂i))
d(θi, σ

2
i )

=
n∏
i=1

ci(2π)−
T
2 (2π)

ki
2 |K−1θi

|
1
2

Γ(νi + T/2)

Ŝ
νi+

T
2

i

=
n∏
i=1

(2π)−
T
2 |Vi|−

1
2 |Kθi |−

1
2

Γ(νi + T/2)Sνii

Γ(νi)Ŝ
νi+

T
2

i

.

where ci = (2π)−
ki
2 |Vi|−

1
2Sνii /Γ(νi), Kθi = V−1i + X′iXi, θ̂i = K−1θi

(V−1i mi + X′iyi) and

Ŝi = Si + (y′iyi + m′iV
−1
i mi − θ̂

′
iKθiθ̂i)/2. In the above derivation we have used the fact

that ∫
(σ2

i )
−(νi+T+ki

2
+1)e

− 1

σ2
i
(Ŝi+ 1

2
(θi−θ̂i)′Kθi

(θi−θ̂i))
= (2π)

ki
2 |K−1θi

|
1
2

Γ(νi + T/2)

Ŝ
νi+

T
2

i

.

The above equality holds because the quantity on the right-hand side is the normalizing

constant of the (θi, σ
2
i ) ∼ NIG(mi,Vi, νi, Si) distribution.
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Appendix C: Proof of Proposition 1

This appendix provides a proof of Proposition 1 in the main text. We first record in the

following lemma the determinant of the Jacobian of transformation from the structural-

form parameterization to the reduced-form parameterization.11 This lemma was proved

in Chan and Jeliazkov (2009), and we include it here for convenience. The proof uses

the differential forms approach that is equivalent to calculating the Jacobian (see, e.g.,

Theorem 2.1.1 in Muirhead, 1982).

Lemma 1. Suppose W is a n×n positive definite matrix and W = T′T̃T, where T is a

lower triangular matrix with ones on the main diagonal and T̃ is a diagonal matrix with

positive diagonal elements. Denote the lower diagonal elements of T by tij, 1 6 j < i 6 n,

and the diagonal elements of T̃ by tii, i = 1, . . . , n,. Let (dW) denote the differential

form (dW) ≡ ∧
i>j

dwij and similarly define (dT) ≡ ∧
i>j

dtij. Then we have

(dW) =
n∏
i=1

ti−1ii (dT).

In other words, the determinant of the Jacobian of the transformation from T′T̃T to W

is
∏n

i=1 t
−i+1
ii .

Proof of the lemma: By the definition W = T′T̃T, we have
w11 w21 . . . wn1

w21 w22 . . .
...

...
...

. . .
...

wn1 wn2 . . . wnn

 =


1 t21 . . . tn1

0 1 . . . tn2
...

...
. . .

...

0 0 . . . 1



t11 0 . . . 0

0 t22 . . . 0
...

...
. . .

...

0 0 . . . tnn




1 0 . . . 0

t21 1 . . . 0
...

...
. . .

...

tn1 tn2 . . . 1

 .

11For a different structural-form parameterization where the error covariance matrix is the identity ma-
trix and the impact matrix is triangular with free diagonal elements, Zha (1999) derives the determinant
of the Jacobian of transformation from the reduced-form parameterization.
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Hence, we can express each wij in terms of {tij}:

wii = tii +
n∑

j=i+1

t2jitjj, i = 1, . . . , n, (10)

wij = tijtii +
n∑

k=i+1

tkitkjtkk, 1 6 j < i 6 n. (11)

Next, we take differentials of these two equations so that we can write the differential

form (dW) in terms of (dT). Since we are going to take the exterior product of these

differentials and the exterior products of repeated differentials are zero, there is no need

to keep track of differentials in tij that have previously occurred. Therefore, we take

differentials of (10) and (11) and ignore those that have previously occurred:

dwnn = dtnn

dwn,n−1 = dtnndtn,n−1 + . . .

...

dwn1 = tnndtn1 + . . .

dwn−1,n−1 = dtn−1,n−1 + . . .

...

dw11 = dt11 + . . .

Finally, taking exterior products gives

∧
i>j

dwij = tn−1nn tn−2n−1,n−1 · · · t22 ∧
i>j

dtij

as claimed. �

Proof of Proposition 1: Assume the same notation as in Lemma 1. To prove Propo-

sition 1, we consider the case where

tii ∼ G
(
ν0 + i− n

2
,
s2i
2

)
, i = 1, . . . , n, (12)

(tij | tii) ∼ N
(

0,
t−1ii
s2j

)
, 1 6 j < i 6 n, i = 2, . . . , n. (13)
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More specifically, we will show that the density of W = T′T̃T is the same as that of the

Wishart distribution W(ν,S−1), where S = diag(s21, . . . , s
2
n). Then, if we let tii = 1/σ2

i

and Ai,j = tij, we have Σ̃
−1

= A′Σ−1A ∼ W(ν0,S
−1).

To prove the proposition, we first compute the determinant of W and the trace tr(SW).

Since the determinant of T is 1, we have

|W| = |T̃| =
n∏
i=1

tii.

Next, using (10), we have

tr(SW) =
n∑
i=1

wiis
2
i

=
n∑
i=1

tiis
2
i +

n∑
i=1

n∑
j=i+1

t2jitjjs
2
i

=
n∑
i=1

tiis
2
i +

n∑
j=2

j−1∑
i=1

t2jitjjs
2
i

=
n∑
i=1

tiis
2
i +

n∑
i=2

i−1∑
j=1

t2ijtiis
2
j ,

where we change the order of the double summations in the third equality and interchange

the dummy indices i and j in the last equality.

Now, it follows from the distributional assumptions in (12) and (13) that the kernel of

the joint density of T and T̃ is

n∏
i=1

t
ν0+i−n

2
−1

ii e−
s2i
2
tii ×

n∏
i=2

t
i−1
2
ii e−

1
2

∑i−1
j=1 t

2
ijtiis

2
j

=

(
n∏
i=1

t
ν0−n−1

2
+(i−1)

ii

)
e−

1
2(

∑n
i=1 tiis

2
i+

∑n
i=2

∑i−1
j=1 t

2
ijtiis

2
j).

Next, we derive the kernel of the density of W. By the lemma, the determinant of

the Jacobian is
∏n

i=1 t
−i+1
ii . Substituting tr(W) and |W| into the above expression and
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multiplying the determinant of the Jacobian, we obtain the kernel of the density of W:

|W|
ν0−n−1

2 e−
1
2
tr(SW),

which is the kernel of the Wishart density W(ν0,S
−1). �
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Appendix D: Comparison with Independent Normal

and Inverse-Wishart Prior

This appendix compares the posterior estimates under the asymmetric conjugate prior

on the structural-form parameters with those under the independent normal and inverse-

Wishart priors on the reduced-form parameters. More specifically, we first obtain pos-

terior draws of the structural-form parameters under the asymmetric conjugate prior,

and transform them into the reduced-form parameters Σ̃ and β̃ = vec([b̃, B̃1, . . . , B̃p]
′).

Then, we obtain posterior draws of Σ̃ and β̃ under the independent priors Σ̃ ∼ IW(ν0,S)

and β̃ ∼ N (0,V), where V = diag(V1, . . . ,Vn). The results are reported in Figure 5.

The two priors give almost identical estimates of Σ̃. Moreover, the estimates of β̃ are

also very similar.
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Figure 5: Scatter plots of the VAR coefficients (left panel) and the free elements of the
covariance matrix (right panel).
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