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Abstract

Generators applying to connect to the U.S. power grid go through an interconnection

queue. Most wind and solar generators that begin the process do not complete it. Using

new data, we find that a long queue delays the necessary engineering studies, and high

interconnection costs cause generators to withdraw from the queue. We develop and

estimate a dynamic model of the queue and quantify the effects of policy reforms. We find

that a per generator fee to enter the queue can increase completed capacity by reducing

congestion.
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1 Introduction

Electricity production accounted for over a quarter of both U.S. and global carbon emissions

in 2021 (CBO, 2022; IEA, 2022a,b). Many countries’ climate goals center on transitioning to

a low carbon electricity grid while simultaneously electrifying heating and transportation.

Meeting these goals will require massive investment in wind and solar powered generators.

Yet, connecting an electricity generator to the U.S. power grid is increasingly difficult.

The process, known as interconnection, takes several years. It can also be costly: connect-

ing generators must often pay to upgrade the transmission infrastructure because the local

grid is at capacity (Plumer, 2023). Renewable energy developers cite interconnection as the

single biggest hurdle they face (Driscoll, 2022), and less than a quarter of the wind and solar

generators that start the process complete it (Rand et al., 2021). We study the design of this

interconnection process.

Interconnection works as follows. A generator wishing to connect to the transmission grid

joins a waitlist known as the interconnection queue. The grid operator then conducts a series

of engineering studies to determine whether the new generator will overload the grid, and,

if so, the cost of the new equipment, such as transmission lines, that is necessary to resolve

the overload (“interconnection cost”). The grid operator studies generators in the queue on a

first-come, first-served basis. Generators in the queue must pay for the studies to remain in

the queue and can drop out at any time. A generator usually needs three studies to arrive at a

final cost. After the final study, the generator can connect by paying the interconnection cost,

or it can leave the queue.

From an economic perspective, the current queuing process is far from optimal. Priority

is by entry date, but the probability of completion is significantly different across generators

with the same final interconnection cost. Thus, while grid operators struggle to keep up with

an influx of interconnection requests from renewables, many studies are done for generators

with low probabilities of completion. The cost of being in the queue is also low and may be

insufficient to offset the congestion externality imposed on other generators.

We use novel data to study the design of this process. We hand collect these data for

the PJM, the largest of the U.S. regional grid operators. PJM serves 65 million people in

parts of the Mid-Atlantic, Midwest, and Southern United States (PJM, 2021b). Our data cover

all generator interconnection requests from 2008 through 2020: 4,085 requests and the 7,117

engineering studies for these requests.

Generator complaints about delayed studies and high interconnection costs are borne out
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in the data. We find that the necessary studies often take far longer than PJM’s official time-

line, with the later studies being the most delayed. For example, PJM expects the third and

final interconnection study to take 6 months, but the median wait in the data is 16 months,

and the ninetieth percentile is 35 months. While the median interconnection costs are $0.05

million per MW, the 90th percentile is $0.41 million per megawatt, roughly a quarter of the in-

stallation cost for wind and solar generators. We also find that observably similar generators

can have very different interconnection costs, a finding consistent with project developers’

complaints that these costs are unpredictable (Caspary et al., 2021). Finally, wind and solar

generators have higher interconnection costs on a per MW basis.

We also show that high interconnection costs cause generators to withdraw from the

queue. After every study, generators with high interconnection costs are more likely to with-

draw from the queue. For example, a generator with a second study interconnection cost

above 0.1 million per megawatt (33 percent of generators) is 49 percent more likely to with-

draw from the queue prior to receiving the third study. We find similar results when we

control for distance to the grid connection point, a proxy for permitting difficulties, and when

we instrument for interconnection costs with the difference in costs across studies.

We next quantify three potential externalities in the queue. The first is a congestion exter-

nality: are the necessary engineering studies returned more slowly when more generators are

ahead in the queue? The next is a geographic cost externality: do costly completed intercon-

nections reduce interconnection costs for future generators in the same location? The third

is a local output externality: do completed interconnections reduce local wholesale electricity

prices and thus the expected profits of nearby generators in the queue?

We find that the congestion externality is quantitatively important, while the other two

externalities are not. We use variation in a generator’s queue position to find that a 10 per-

cent increase in the number of higher queued generators reduces a generator’s probability

of receiving the third and final study by 5 percent, on average. Conversely, we do not find

evidence that costly completed interconnections reduce costs for the generators that follow.

Similarly, using a staggered difference-in-difference estimator, we find a new generator be-

ginning operation does not reduce wholesale prices in its location relative to other locations

in PJM.

We then develop an empirical model of the queue to study this externality and quantify

the effects of policy reforms. We model withdrawal decisions as an optimal stopping prob-

lem. A generator waits in the queue for the necessary studies and forms beliefs about when
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the next study will arrive and what its interconnection cost estimate will be. The continua-

tion value of a generator depends on its characteristics and the status of the queue. We also

develop a tractable queuing equilibrium concept that accommodates the non-stationarity in

the data.

We estimate the model in two steps. First, we use a rich set of generator and queue char-

acteristics to jointly model the arrival of new studies and the update of interconnection costs.

These estimates allow us to construct generator beliefs. Second, we embed these beliefs in the

generator’s optimal stopping problem, and use the observed withdrawal decisions and the

dynamic model of queuing to recover the waiting cost and payoff for completing interconnec-

tion. The generator’s decision to begin operation after receiving its final interconnection cost

helps to identify the payoff function. Interim interconnection cost estimates in prior studies

shift generator expectations of the final cost and help to identify the waiting costs.

Using the estimated model, we first consider a thought experiment where we speed up

the queue. Holding entry fixed, a 10 percent increase in the study arrival probability increases

total completed capacity by 4.0 GW, or 5.3 percent. Renewable capacity increases by 1.6 GW,

or 4.6 percent. Reducing waiting not only reduces a generator’s waiting cost, such as the

cost of leasing land, but also reduces exposure to other causes of withdrawals, such as the

expiration of signed long term contracts. This large increase in completed capacity motivates

potential gains from modifying the queuing mechanism to reduce congestion.

In another thought experiment, we fix the grid operator’s capacity to process studies and

instead ask whether changing the way generators are prioritized can increase completed ca-

pacity. Specifically, we solve for an alternative queuing mechanism that excludes a set of

generators from the queue to maximize completed capacity. This mechanism removes a large

share of generators below 100 megawatts in size. By facilitating the completion of larger

generators, this mechanism increases completed capacity by 7.9 GW, of which 1.5 GW is re-

newable. If we value renewable capacity three times as much as non-renewable capacity, we

can increase completed capacity by 4.1 GW, of which 2.7 GW is renewable.

We next consider reforms that address this congestion externality by increasing the costs

of entering and staying in the queue. We first consider a flat entry fee, which screens out

small generators. We find that an entry fee of 900,000 dollars per generator maximizes the

completed capacity, adding 6.9 GW of capacity, of which 0.8 GW is renewable. This policy also

removes many more small generators than the queuing mechanisms we considered above.

We next consider a per MW entry fee that scales linearly with the size of the generator. We
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find this fee can also increase capacity, but the increase is much smaller, and this type of entry

fee alone cannot increase renewable capacity. Finally, we find that increasing the fee to request

later studies does not increase completed capacity.

These reforms can have important climate impacts. Using the U.S. Environmental Pro-

tection Agency’s Avoided Emissions and Generation Tool (AVERT), we calculate the avoided

carbon emissions from the added renewable capacity. At a social cost of carbon of $185 per

ton, the implied annual benefit of 0.8 GW of added renewable capacity is over 200 million

dollars per year.

Related Literature

In this paper, we study electricity transmission policy and formally account for the effects of

interconnection queues. Although the interconnection process is a key step in entering the

electricity market and has received some attention in research on energy policies (e.g., Ger-

gen, Cannon Jr and Torgerson (2008); Alagappan, Orans and Woo (2011)), it has been rarely

studied in the economics literature, likely due to a lack of data. In a related paper, Gonzales,

Ito and Reguant (2022) study how the expansion of the transmission grid enables the entry

of renewables. More broadly, in considering the economic implications of electricity trans-

mission policy, this paper relates to papers studying the effects of transmission constraints on

competition, emissions, renewable energy investment, and allocative efficiency (Wolak, 2015;

Ryan, 2021; Davis and Hausman, 2016; Fell, Kaffine and Novan, 2021; LaRiviere and Lyu,

2022; Doshi, 2022; Hausman, 2024).

We also contribute to the literature on how public policy affects investment in renewable

energy (see, e.g., Metcalf (2010); Hitaj (2013); Johnston (2019); Aldy, Gerarden and Sweeney

(2023); Deschenes, Malloy and McDonald (2023)). More broadly, there are a number of pa-

pers in the energy and environmental literature that study investment and industry dynamics

(Ryan, 2012; Gowrisankaran, Reynolds and Samano, 2016; Fowlie, Reguant and Ryan, 2016;

Blundell, Gowrisankaran and Langer, 2020; Butters, Dorsey and Gowrisankaran, 2021; Elliott,

2021; Gowrisankaran, Langer and Zhang, 2022; Abito et al., 2022; Covert and Sweeney, 2022;

Davis, Holladay and Sims, 2022; Leisten and Vreugdenhil, 2023). The cited papers are unified

in focusing on how environmental regulations interact with dynamic incentives in equilib-

rium.

Our study uses data from PJM, the largest U.S. transmission organization by the number

of customers served. A number of papers (e.g., Mansur (2007, 2008); Bushnell, Mansur and
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Saravia (2008); Allcott (2012); Buchsbaum et al. (2022)) also use data from PJM but focus on

market structure issues, while Linn and McCormack (2019) study exit by coal-fired power

plants.

Finally, we contribute to the empirical literature on dynamic assignment mechanisms (e.g.

Agarwal et al. (2021); Waldinger (2021); Verdier and Reeling (2021); Liu, Wan and Yang (2024))

by studying a queuing problem in a novel and important market. We develop a tractable

queuing equilibrium concept for a non-stationary environment. Our equilibrium concept

is similar to Weintraub et al. (2010), and we use a finite horizon assumption to capture the

non-stationarity in the data (Igami, 2017; Yang, 2020). To understand the equilibrium effects

of congestion, we solve for alternative queuing mechanisms that maximize various planner

objectives (Che and Tercieux, 2021).

2 PJM Interconnection Process

We first describe how PJM manages the interconnection process in more detail. The two

main types of participants are developers and transmission owners. Developers (e.g., NextEra

Energy) enter their generators (e.g., 2.5MW Front Royal Solar Field in Virginia) in the queue

and pay the interconnection costs identified in the studies. These developers can be either

independent producers (more common for renewable) or regulated utilities (more common

for natural gas).

Transmission owners conduct the interconnection studies and construct the upgrades

(Connell and McGill, 2020).1 They are regulated utilities, and we assume they do not exercise

market power, i.e., they charge the cost of upgrades in a competitive factor market.2

1While new generators pay for transmission network upgrades through the interconnection process, other
transmission investment is planned by the grid operator. In PJM, this transmission planning process is called
RTEP, which stands for regional transmission expansion plan. The primary goal of the RTEP is to maintain relia-
bility (PJM, 2021d). At a high-level, the two types of transmission investment are substitutes, but they are funded
differently. Connecting generators pay for the network upgrades they trigger through the interconnection pro-
cess. In contrast, electricity consumers pay for RTEP investment via higher transmission rates (PJM, 2021d). In our
analysis, we treat RTEP investment as fixed. Twenty-seven billion dollars worth of RTEP investment was com-
pleted from 2008-2020 (PJM, 2023). Locations with recent RTEP investment are associated with increased entry
and a moderate decrease in interconnection costs (Table E.2). While generator entry responds to RTEP, the RTEP
process does not consider generators waiting in the queue or try to anticipate entry by generators (PJM, 2021d).
More generally, larger-scale transmission infrastructure is challenging to build due to difficulties surrounding
siting and permitting, overlapping jurisdictions, and cost allocation (Davis, Hausman and Rose, 2023).

2The transmission owner does not profit from this investment because upgrades paid for by connecting gen-
erators do not go into its rate base.
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2.1 Entering the Queue

To enter a generator in the interconnection process, a developer must secure land sufficient

to build the generator (PJM, 2021f). Developers must also pay a deposit to enter the queue or

move on to the next stage. The deposit amount depends on the generator size and stage, with

larger generators and later studies typically requiring higher deposits. For the median gener-

ator size of 20 MW, the three deposits would be 12,000, 10,000 and 50,000 dollars. Generators

that withdraw have their deposit returned, less a 10 percent non-refundable portion and any

study costs already incurred (PJM, 2021c).

2.2 Queuing Rules

Generators can enter the queue at any time, but each year is divided into two windows.

Generators that enter in the same 6-month window are put in the same cohort and will receive

up to three studies (feasibility, system impact, and facility study) sequentially. Through these

studies, generators learn increasingly accurate information about the costs of interconnection.

To receive the next study, a generator must incur a cost, but it can freely leave the queue at

any time. PJM may requires just one or two studies if it determines that a generator is not

required to make significant network upgrades or share costs with other generators. After

the last study is issued, the generator chooses to leave the queue or sign an interconnection

service agreement in which it agrees to pay the final interconnection cost, thus completing the

interconnection process.

The official timeline for the interconnection process is quite rigid. For generators that ap-

ply within the same time window, PJM starts conducting the first studies (feasibility studies)

one month after the closing of the window. Within three months, generators are supposed

to receive their first studies. At this point, generators have another month to decide whether

to advance to the second study (system impact study). The second study then takes four

months, at which point generators have one month to decide whether to request the third

and final study (facility study). The third study takes 6 months. Finally, generators and PJM

agree on final details and sign the interconnection service agreement, over a 6.5-month period

(PJM, 2021a).3

Despite this timeline, significant delays in delivering studies can occur due to the number

of backlogged interconnection requests and a lack of staff capacity (Shoemaker, 2021). Upon

3This agreement also sets a commercial operation date. After signing the interconnection service agreement,
the generator may suspend the process for up to 3 years (up to 1 year if the suspension has a negative impact on
subsequent generators), though these suspensions are rare (PJM, 2021e).
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receiving a study, a generator has approximately one month to decide whether to pay the

deposit to request the next study, but it has little control over when the transmission organi-

zation delivers the study. A solar developer in PJM recently lodged a complaint with Federal

Energy Regulatory Commission (FERC) after waiting more than two years for the second

study (Hale, 2021).

2.3 Timing of Interconnection within Project Development

Generators apply for interconnection early in project development. After a developer secures

the land for the generator, the permitting and interconnection process occur simultaneously.

Compared to permitting, interconnection delays and costs are perceived as the more impor-

tant hurdle (RechargeNews (2021); Collier (2021)). Renewable energy generators sign long

term contracts to sell the power while in the queue or once the interconnection process is

completed. After the long term contract and interconnection service agreements are signed,

the physical generator and interconnection facilities are constructed. This construction typi-

cally takes less than a year, far shorter than the time the generator spends in the queue.4

A slow interconnection process can adversely impact other steps in project development.

Power buyers are willing to sign long term contracts a few years before a generator begins

operation, but developers must apply for interconnection much earlier. Developers are thus

left trying to forecast demand a few years in advance and enter generators into the queue

accordingly. There have also been cases where developers with long term contracts are unable

to begin operation as planned because they are still waiting for interconnection. A long wait

may also cause a developer’s option to lease to expire, prompting the developer to relinquish

site control or renegotiate with landowners.

2.4 Proposed Reforms

There have been several recent efforts to reform the interconnection process, which a key reg-

ulator described as in “chaos” (Potter, 2021). In 2023, the Federal Energy Regulatory Commis-

sion (FERC), the federal regulator overseeing U.S. transmission policy, approved new rules

governing the interconnection process. Broadly, the new rules try to transition interconnec-

tion queue priority from “first-come, first-served” to “first-ready, first-served”. The rules in-

crease the cost for generators to enter and remain in the queue, move from separate studies for

4This timeline is based on the timeline for a wind generator in AWEA (2019); wind and solar generators follow
similar timelines.
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each generator to studying several proposed generators together, and penalize transmission

owners for delays in completing studies (Hale and Christian, 2023).

PJM plans to implement reforms consistent with FERC’s proposed new rules. PJM plans to

increase the cost of entry and requesting later studies, penalize withdrawals from the queue,

and penalize transmission owners for delays ins study delivery (PJM, 2022). PJM transmis-

sion owners will group generators into large clusters and study all generators in a cluster

jointly, issuing each study at the cluster level rather than the generator level.

Table 1: Summary Statistics

Study 1 Study 2 Study 3

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Cost per MW 0.12 0.40 0.18 0.48 0.10 0.16
Wait time (mos.) 5.3 2.7 12.7 11.3 19.0 13.0
Size in MW 97 196 106 191 162 276
Uprate 0.21 0.41 0.23 0.42 0.16 0.37
Solar 0.60 0.49 0.60 0.49 0.59 0.49
Natural Gas 0.17 0.37 0.16 0.36 0.22 0.42
Wind 0.09 0.29 0.10 0.30 0.12 0.32
Battery 0.10 0.30 0.10 0.30 0.04 0.19
Coal, oil, diesel 0.02 0.13 0.01 0.12 0.01 0.09
Other 0.03 0.18 0.03 0.17 0.02 0.15
Cost sharing 0.04 0.19 0.60 0.49 0.60 0.49
Study 1 cost sharing 0.42 0.49 0.48 0.50 0.45 0.50
Receive engr. tests 0.82 0.39 0.88 0.32 0.04 0.21
Distance to substation (km) 3.81 5.99 3.71 6.18 3.40 5.17
Ordinance 0.28 0.45 0.31 0.46 0.30 0.46
N 4,083 2,433 672

Generators entering the queue in 2008-2020. Costs in millions of 2020 dollars. Cost per MW
is interconnection cost estimate divided by the generator’s size in MW. Wait time for Study 1
is wait in months for the first study after joining the queue. Wait time for Study 2 is wait in
months for second study after receiving the first study. Wait time for Study 3 is wait in months
for third study after receiving the second study. Uprate is an indicator for a capacity increase
to an existing generator. Cost sharing is an indicator for if a generator shares costs with other
generators. Study 1 cost sharing is an indicator for if the first study mentions shared network
upgrade costs. Receive engr. tests is an indicator for receiving any of three engineering tests:
generator deliverability, multiple facility contingency, and short circuit analysis. Distance to
substation is the distance to the nearest substation in km. Ordinance is an indicator for a local
ordinance restricting renewable energy development.
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Figure 1: Queue Size Over Time

Solid red line is annual avg. number of generators in the queue (measured
from entry to final study receipt or withdrawal). Dotted blue line is total num-
ber of new entries to the queue by year.

3 Interconnection Request Data

Our main data are based on the 4,085 interconnection requests in PJM from 2008 to 2020.

These data come from pdfs of 7,117 engineering studies done as part of the interconnection

process. Because the formats are irregular, we hand collect these data. We start our sample in

2008 because data before 2008 have even more irregular formats, making it hard to identify

the relevant costs. Summary statistics are presented in Table 1 and Appendix Table E.1.

The PJM queue is dominated by requests for solar, natural gas, and wind generators.

These three fuels accounted for 82 percent of interconnection requests from 2008-2020. Nat-

ural gas generators tend to be much larger than wind and solar generators; they account for

14 percent of requests but 40 percent of requested capacity. Appendix Figure E.1 shows the

proportion of new requests by fuel type in each of our sample years. In the rest of the paper,

we refer to wind and solar generators as “renewable”, and the rest as “non-renewable”.

The number of interconnection requests has increased over time. Figure 1 shows both

the number of new interconnection requests each year (dotted line) and the average number

of generators in the queue by year (solid line).5 Requests increased dramatically starting in

5The queue size is based on the queue and withdrawal dates for all generators queued between 1997 and
2020.
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Figure 2: Study Arrival Times by Date of Queue Entry

(a) Study 2 (b) Study 3

Panel (a) shows the distribution of arrival dates for the second study by entry cohort. Panel
(b) shows the distribution of arrival dates for the third study by entry cohort.

2015. This increase was driven by renewable generators. Because renewables are smaller on

average, the increase in requested capacity was less pronounced: the capacity of new requests

in 2008 was 42 GW compared to 69 GW in 2020.6

3.1 Waiting times

The official timeline is that the studies should take no more than 3, 4, and 6 months. Over three

quarters of generators receive the first study within 6 months. The second study’s arrival time

is more variable; the mean wait time is 10 months with a standard deviation of 7 months.

Finally, the mean wait for the third study is 15 months with a standard deviation of 9 months.

The mean waiting time to receive the terminal study is 24 months.

While priority is by entry cohort, study arrival is stochastic. Figure 2 plots the distribution

of arrival time of studies by entry cohort. Cohorts that entered the queue earlier are more

likely to receive a study then generators in later cohorts that are waiting for the same study,

but this is not guaranteed. Time spent in the queue increased over our sample, though not

as dramatically as the number of generators. The mean wait time from entering the queue to

receiving the terminal study was 20 months for generators queuing in 2008-2012 compared to

27 months for those queuing in 2013-2017. 7

6The spike in 2010 was due to an influx of solar generators. The likely cause was a temporary program that
offered the federal investment tax credit for solar investment as a cash grant rather than a nonrefundable tax credit
(Aldy, Gerarden and Sweeney, 2023).

7One reason wait times are variable is that these studies sometimes need to be revised. For example, 19
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Figure 3: Costs by Location

Cost/MW in million dollars
0−0.01
0.01−0.05
0.05−0.1
>0.1

Second study interconnection cost estimates by location. Costs in millions
of 2020 dollars per MW.

3.2 Interconnection Costs

Interconnection costs are often comprised of two components: the direct cost to connect the

production facility to the grid, and the indirect cost of upgrading the network to avoid an

overload. Both components may require building or upgrading lines, circuit breakers, and

even a substation. PJM expressly states in studies that the interconnection costs do not con-

sider permitting costs or rights of way. The first study (feasibility study) does only some of

the required engineering tests. This study reports preliminary direct interconnection costs

and whether the generator may share costs with other generators using common transmis-

sion infrastructure. The second study completes the remaining engineering tests, updates

the direct interconnection costs, and reports the network upgrade costs. A generator may be

solely responsible for network upgrades or share this cost with other generators. The third

study details the engineering specification of all upgrades and provides a final update to the

costs.

While the median interconnection cost estimate is close to zero, the cost distribution is

right skewed. We use cost per megawatt (MW) as our measure of cost.8 For the second study,

percent of generators in our sample had their second study revised. Revisions can be due to the connecting
generator changing its request or nearby generators dropping out of the queue. We will model the arrival of the
final version of each study, not the intervening versions which are not always posted by PJM.

8There do not appear to be economies of scale for moderately sized generators. For generators from the 10th
to 90th percentile in size, a 1 standard deviation increase in capacity is associated with 0.05 standard deviation
decrease in the second study interconnection cost.
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Figure 4: Differences in Cost Estimates across Studies Within A Generator ($Million/MW)

(a) Study 2 - Study 1 (b) Study 3 - Study 2

Panel (a) shows a histogram of the difference in the first and second study interconnection cost es-
timates for generators queuing from 2011-2020 that received study 2. N =2,023; 50 generators with
cost differences above 1 in magnitude excluded. Panel (b) shows a histogram of the difference in the
second and third study interconnection cost estimates for generators queuing from 2011-2020 that re-
ceived study 3. N =479; 3 generators with cost differences above 0.5 in magnitude excluded. Y-axis is
the percent of observations in each bin. Costs are in millions of 2020 dollars per MW.

thirty percent of generators have interconnection costs less than 0.01 million per MW. Yet, the

75th percentile of the cost distribution is 0.15 million per MW and the 90th percentile is 0.42

million per MW. For comparison, installation costs for wind and solar generators are roughly

1.5 million per MW. The median interconnection cost per MW is also higher for renewables

(0.08 vs. 0.02).

3.2.1 Interconnection Costs are Hard to Predict

There are several sources of uncertainty about interconnection costs. First, although a de-

veloper may be able to use engineering models to identify whether an interconnection will

cause instability, it is hard to predict what remedies a transmission owner will require and

the cost of these remedies, according to our interview with an industry expert. Second, the

withdrawal of other generators sharing the cost of a network upgrade changes a generator’s

cost. After withdrawals, PJM may still require the upgrade, so the remaining generators’

share of its cost increases. If PJM no longer requires the upgrade, the cost for the remaining

generators will decrease. Third, due to the long waiting time, technologies like solar invert-

ers evolve, and a developer may need to change the production equipment, causing the grid

operator to reevaluate the generator and assess a different cost.

Observable generator characteristics explain some but far from all of the variation in inter-
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connection costs. Appendix Table E.2 shows that a regression of having a low second study

interconnection cost on characteristics such as size, state, fuel type, and year of entry has an

R2 of 0.41. Geography also does not explain much of this variation. Figure 3 plots the location

of generators with study 2 cost estimates.9 More generators are clustered along the more pop-

ulated east coast. These generators have higher interconnection cost estimates, on average,

but interconnection costs can vary substantially in the same geographic area, even within fuel

type.10

We next show that changes in costs across studies are also hard to predict. Figure 4 shows

that interconnection costs for the same generator do not systematically decrease across stud-

ies.11 This pattern suggests that cost changes are not anticipated. If developers were able to

predict how a generator’s interconnection cost would evolve across studies, we would expect

selection on this difference. Appendix Figure E.2 also shows that generators disproportion-

ately withdraw from the queue in the two months after receiving a study, which suggests the

studies provide new information.

3.2.2 High Interconnection Costs Lead to Withdrawals

We next test whether generators with high interconnection costs are more likely to withdraw

from the queue. Specifically, we regress an indicator for withdrawing from the queue on

an indicator for having a high (above 0.1 million per MW) interconnection cost. We define

withdrawing as leaving the queue before the next study arrives, or before beginning operation

for generators that have received their final study.

Across all three studies, we find that generators with a high interconnection cost estimate

are more likely to withdraw from the queue (Table 2). For the first study, the OLS estimates in

the first column imply that having a high interconnection cost is associated with an increase

in the probability of withdrawal of 12 percentage points, or 44% at the mean withdrawal rate.

The estimated effect is similarly large for other studies.12

We find similar estimates when we instrument for costs with the change in these costs

across studies. Generators may have private information about costs. The resulting selection

9We focus on costs from the second study because the first study does not typically indicate a generator’s
contribution to shared network upgrade costs (see Appendix A for more detail and an example of the information
available in the first study). This is a selected sample because generators with high interconnection costs are more
likely to drop out after the first study.

10We observe a similar pattern when plotting the residuals after regressing costs on generator characteristics.
11Costs on average increase from the first to the second study because the second study includes the contribu-

tion to shared costs. For generators that do not share costs, the distribution of this cost difference is symmetric
around zero.

12Our result is robust to using a continuous measure of costs or more cost bins (Appendix Table E.3).
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Table 2: Interconnection Costs on Probability of Withdrawing from the Queue

Study 1 Study 2 Study 3

OLS OLS OLS IV IV OLS IV
Cost above 0.1m/MW 0.123*** 0.123*** 0.231*** 0.293*** 0.241*** 0.113* 0.074

( 0.022) ( 0.022) ( 0.031) ( 0.054) ( 0.057) ( 0.063) ( 0.117)
Study 1 cost sharing 0.018 0.106***

( 0.020) ( 0.033)
Log total for sharing 0.015*** 0.020**

( 0.005) ( 0.009)

Mean of dependent var. 0.28 0.28 0.43 0.43 0.43 0.55 0.55
F-statistic (instrument) 972 808 202
N 3,191 3,191 1,269 1,269 1,269 345 345

Generators queuing from 2011-2020; generators still active excluded. SEs in parentheses; clustered by
substation. Dep. var. are indicators for projects withdrawing from the queue before receiving the
next study or before beginning operation for generators with their final study. Cost above 0.1m/MW
indicates if that study’s interconnection cost estimate is above 0.1 million dollars per MW. Study 1 cost
sharing indicates if the first study mentions shared network upgrade costs. Log total for sharing is the
log of the total costs to be shared listed in Study 1 for generators with cost sharing. IV results instrument
for having a high cost using the change in having a high cost across studies. All specifications control
for size (5 bins), fuel type, state, uprate, and FE for the year of queue entry and the year the study is
issued. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

would attenuate the relationship between interconnection costs and withdrawals. To address

this concern, we instrument for current interconnection costs with the innovation to these

costs, i.e., the difference between the current cost and the cost in the previous study. This

instrument is valid because changes in interconnection costs across studies are hard to predict

(Section 3.2.1). For the effect of the second study costs on withdrawals, the IV estimates are

similar to the OLS estimate and statistically significant. For the effect of third study costs, the

IV estimate is positive and similar in magnitude but not precisely estimated.13

3.3 Speculative Interconnection Requests

Requests for interconnection are inexpensive and have a high option value, so developers

enter many more requests than the number of generators they expect to build. This phe-

nomenon is commonly referred to as speculative interconnection requests. We take this be-

havior to mean that most potential generators were entered into the queue during the period

13In Appendix Table E.4, we also find these effects are not driven by permitting difficulties. Specifically, we
show they are robust to including controls for whether the county has an ordinance restricting the siting of re-
newables and the distance to the point of interconnection.
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we study.14

To understand whether strategic interactions are important, we collect data on the identi-

ties of developers. The name of the developer is listed in the studies starting with the second

study. This name is often the limited liability corporation that owns the generator (e.g., “7

Bridges Solar, LLC”), and we use local news articles, regulatory documents, and developer

websites to match each generator to its developer (e.g., “Longroad Energy”). Of the genera-

tors in our data, we are able to identify the developer for 39% overall, 52% that reached study

2, and 81% that reached study 3.

These data show that concentration is low. We match 1,574 generators to 383 unique de-

velopers, and the largest developer (“Invenergy“) accounts for only 5.0% of these generators.

This lack of concentration suggests that strategic interactions may be less important in this

setting.

We next turn to the question of whether developers are submitting multiple intercon-

nection requests with the intention of building only one generator. Our data suggest that

modeling the generator’s rather than the firm’s problem is a good approximation. For cases

where a developer had more than one generator in an entry cohort, either all or none of the

generators were completed 71% of the time. Appendix Table E.6 reports this same fraction

for the top 15 developers in our sample. Overall, we view these data as generally consistent

with developers being willing to build all generators that are individually profitable.

4 Externalities in the Queue

We next discuss and quantify three externalities that may be present in the queue: a conges-

tion externality, a geographic cost externality, and a local output externality. We find that the

congestion externality is the most important.

14There is some debate about the quality of the marginal entries into the queue. The following quote sums up
the perspective that these entries are potentially viable projects:

Maybe there are some people who carpet bomb the queues with speculative projects, but I think in general they
appear to be speculative because people know it’s going to take five years to get through the process, so you
have to do that early on. It would be unwise to fully develop your site prior to entering a queue that you have
no certainty on getting through, especially because so many things can change in five years.- Boone Staples,
director of transmission analysis at Tenaska (Penrod, 2022)

Another perspective is that these marginal requests are not viable; for example, FERC says its 2023 reforms will
“discourage speculative, commercially non-viable interconnection requests” FERC Staff (2023). This concern may
be especially relevant for requests put in by firms that have not previously developed projects, though we note
that developers with projects in the queue can and do sell these projects to other developers.
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4.1 Congestion Externality

We first quantify whether a generator with a low queue position, i.e., with many generators

ahead of it, receives studies more slowly. Before formally estimating these effects, we look

at the how the probability of arrival varies with the number of generators waiting. The left

panel of Figure 5 plots the fraction of generators waiting for the second study that receive it

by quarter in blue. The right panel does the same for the third study. Both figures plot the

queue size in red. The arrival probability of the second study declines starting in 2017 but

reverts to the 2011 level in 2020 despite a large queue. In contrast, the third study’s arrival

probability falls when the queue size increases.

Figure 5: Queue Size and Study Arrival
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(b) Third Study
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Panel (a) blue line shows annual proportion of generators waiting for the second study that receive it. Panel
(b) shows annual proportion of generators waiting for the third study that receive it. Red lines show avg.
number of generators in the queue by year (from first study receipt to final study receipt or withdrawal).

We next formally estimate the study arrival process to quantify this congestion external-

ity. We estimate a flexible probit model of study arrival conditional on a generator’s queue

position and characteristics.15 The coefficient of interest is the one on queue position, and we

allow this coefficient to vary with whether the generator is waiting for the second or third

study. We include time fixed effects (in three year bins) to account for how PJM’s process is

slowly changing over our sample.

The identifying assumption is that a generator’s decision to withdraw is conditionally in-

dependent of the error term in the probit model given the generator’s characteristics and its

queue position. This is a reasonable assumption because both the PJM manual and interviews

with industry experts indicate that priority for studies is based solely on queue position, and

15As discussed in Section 7.2.4, we estimate this probit model jointly with probit models for the cost arrival
process and the decision to expedite a generator.
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generators cannot do anything to expedite their studies. Neither does a transmission owner

take into account the potential profit of a generator when conducting the studies. More com-

plex studies may take longer, but we expect these effects to be well captured by controls for

generator size, fuel type, previous cost estimate, and whether the project is sharing costs. A

concern is that the presence of many nearby generators or nearby generators’ withdrawals

slow down studies, and we also estimate a specification that controls for the size, completion,

and withdrawal of nearby generators in the queue.

We find a significant congestion externality for the third but not the second study. Ta-

ble 3 reports estimates. The first column reports estimates from our baseline specification.

Conditional on how long a generator has been waiting, we find that the queue position has

a small effect on the arrival probability of the second study but a negative effect on the ar-

rival probability of the third study. These estimates imply that, on average, a 10% increase in

higher-queued generators reduces the probability of receiving the third study by 5%, and this

effect is similar across generator sizes and fuel types (Appendix E.11).

We do not find that the size of the higher queued generators matters for the effect of

queue position on study arrival. The second column of Table 3 shows that the number of

large, higher-queued generators (> 20MW) has little additional effect conditional on the total

number of higher-queued generators. The third column shows estimates from a specification

that includes the entire queue size and as well as the size of the higher queued generators.

This specification produces similar estimates for the effect of queue position on study arrival.

These findings are robust to including additional controls in the study arrival process.

They are robust to controlling for the actions of nearby generators in the queue (Appendix

Tables E.12, E.13 and E.9). They are also robust to including proxies for generator profit or

construction costs unobservables in the arrival function. For a proxy for the unobservable

affecting the revenue, we use the average locational marginal prices16 at the nearest bus to the

generator. For proxies for costs, we use local solar ordinances and the distance to the nearest

substation. We find their effects on study arrival to be small and statistically insignificant.

4.2 Geographic Cost Externality

Upgrades to the transmission infrastructure are often discrete. Thus, when a generator pays

for an upgrade to the transmission network, a future generator connecting in the same lo-

16We use the quarterly average of hourly prices during peak hours (7am-11pm).
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Table 3: New Study Arrival Probit Model: Queue Position Parameters

(1) Baseline (2) Congestion Effects of Higher- (3) Additional Queue and
Queued Large Generators Generator Characteristics

Queue Position
ln (# Higher Queued Generators) -0.10 -0.10 -0.10

(0.04) (0.04) (0.05)
ln (Total # Generators in the Queue) -0.19

(0.09)
Generator i Waiting for Third Study ×

ln (# Higher Queued Generators) 0.74 0.49 0.48
(0.15) (0.43) (0.24)

ln (# Higher Queued Generators)2 -0.11 -0.11 -0.10
(0.02) (0.05) (0.02)

ln (# Higher Queued Generators > 20MW) 0.23
(0.40)

ln (# Higher Queued Generators > 20MW)2 0.02
(0.06)

ln (Total # Generators in the Queue) -0.10
(0.11)

ln (Higher Queued Generators Capacity MW) 0.19
(0.14)

Generator i Waiting for Third Study ×
ln (# Higher Queued Generators)×Entry Year

2013-2015 0.16 0.15 0.12
(0.02) (0.02) (0.03)

2016-2018 0.16 0.15 0.15
(0.02) (0.02) (0.03)

>2018 0.04 0.02 0.04
(0.03) (0.03) (0.04)

Parameter estimates related to the queue position for the new study arrival probit. # Higher Queued Generators
is the number of generators that entered the queue in the same or an earlier entry cohort and are still in the queue
for that quarter. SE in parentheses. Appendix Table E.12 presents estimates of the parameters for other covariates.

cation may benefit from the upgrade and pay a lower interconnection cost. To mitigate this

externality, many grid operators share the costs of network upgrades across generators. 17

We test for this externality in the data, focusing on those generators we expect to be most

affected. PJM shares network upgrade costs across contemporaneous generators (typically,

those within the same or adjacent cohorts) that trigger the same violation. We define “next”

as the next generator that does not share costs with the completed generator. A grid operator

we spoke with said any effects would be highly local, so we focus on generators connecting

at the same substation and within ten kilometers of the costly interconnection.

We regress an indicator of whether a generator has a low interconnection cost estimate

on whether the most recently completed interconnection at the same substation and within

10 km was costly. The first two columns of Table 4 show some evidence that a completed

interconnection with a total cost over 1 million dollars increases the probability the next inter-

connection in that location has a low cost. Yet, the third and fourth columns show these effects

are much smaller and not statistically significant once we control for whether the generator is

an uprate, which is a request for a capacity expansion for an existing generator. We similarly

17In FERC Order 2023, the Commission states that “absent cost sharing provisions among clusters, interconnec-
tion customers may significantly benefit from earlier-in-time network upgrades but not share in the cost of those
network upgrades in a manner that is roughly commensurate with benefits” (pg. 320) suggesting this externality
is more relevant for systems without cost sharing (FERC, 2023).
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Table 4: Effect of Prior Costly Interconnection on Probability of Low Interconnection Cost

Costly prior interconnection 0.080* 0.146** 0.015 0.095
( 0.048) ( 0.065) ( 0.048) ( 0.062)

No prior interconnection -0.038 0.044 -0.020 0.068
( 0.025) ( 0.045) ( 0.023) ( 0.041)

Uprate 0.452*** 0.429***
( 0.036) ( 0.039)

Substation FE X X
N 1,597 1,597 1,597 1,597

Generators queuing from 2011-2020. SEs in parentheses; clustered by substation. Dep. var.
is indicator for Study 2 cost estimate less than 0.01 m/MW (mean 0.31). Costly prior inter-
connection is an indicator for if the most recent prior completed interconnection at the same
substation and within 10km of the focal generator had a total cost > 1 million dollars (mean
0.07). All specifications control for size (5 bins), fuel type, state, and FE for the year of queue
entry and the year the study is issued. * p<0.1, ** p<0.05, *** p<0.01.

do not find statistically significant impacts for alternative definitions of the same location and

thresholds for costly (Appendix Table E.5).

We also do not find that entry responds to costly, completed interconnections. We define a

substation as a potential location for entry. For each substation-quarter, we regress an indica-

tor for whether there is a new interconnection request on whether the prior interconnection is

costly (>1 million dollars), controlling for PJM-wide grid investment, the voltage of the sub-

station, local wholesale prices, and state-quarter-year fixed effects. In Table 5, we show that

prior (costly) interconnections at same substation, within 10km, or within 50km have little

effect on entry. The point estimates range from -0.1% to 0.6%, while the mean entry rate at a

substation-month combination is 4.3%.18

4.3 Local Output Externality

Finally, a generator completing interconnection could reduce the incentive of other nearby

generators to complete interconnection via the output market. We expect this effect to be well

captured by the new generator’s effect on local wholesale electricity prices.

We next test if a new generator interconnecting reduces local wholesale prices. We first

construct a monthly panel with an observation for each substation, which is a potential grid

connection point. Our measure of monthly wholesale prices is the average locational marginal

price at that substation. We use the event study Difference-in-Differences estimator from Call-

away and Sant’Anna (2021) to estimate the effect of a new generator beginning operation on

18Appendix Table E.7 presents the summary statistics of the variables used in the regression.
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these prices. The comparison group are substation-months without new generators begin-

ning operation or with generators below a certain threshold in size beginning operation. The

thresholds we use are 20 and 100 MW.

We find little effect of a new generator beginning operation on local prices. Figure 6 shows

that we find a small decrease in price in the months after a generator begins operation. These

effects are short-lived, lasting less than a year. A potential reason is that the interconnection

process requires most new generators to upgrade the transmission infrastructure to the point

that the new generator can deliver power to load in times of peak demand (PJM’s deliverabil-

ity requirement). As the new power is sold PJM-wide, the local effect is small. We previously

found there were no effects on entry (Table 5). Thus, the local effects of a completed intercon-

nection on the expected profits of future generators are likely small.

Figure 6: Effects of Interconnections on Local Wholesale Prices

(a) Adding 20 MW New Capacity (c) Adding 100 MW New Capacity

5 An Illustrative Model of the Interconnection Queue

Before introducing the full empirical model, we first illustrate the main idea in a T-period

queuing model. There are N1 generators entering in period 1 and N2 in period 2. No gen-

erators enter in subsequent periods. For simplicity, we assume each generator needs only

one study. A generator receives the study with some probability in each period. The prob-

ability decreases in the number of generators in the same or higher queue positions. Specif-

ically, we use N1,t and N2,t to denote the numbers of generators that entered in periods 1

and 2 and are still in the queue at the beginning of period t. The study arrival probability

is p1,t (N1,t) = Φ (− ln N1,t) for a generator that entered in period 1, and p2,t (N1,t, N2,t) =

21



Φ (− ln (N1,t + N2,t)) for those that entered in period 2. The timing is as follows:

1. At the beginning of each period, generators observe (N1,t, N2,t), form beliefs about the

probability of receiving the study, and decide whether to leave the queue or continue to

wait.

2. For those that choose to wait, a new study arrives according to p1,t (N1,t) and p2,t (N1,t, N2,t).

3. Generators that receives the study decide whether to withdraw or pay the cost and

complete the interconnection. Other generators continue to wait.

4. New generators enter the queue.

The queue ends at period T, when all generators leave the queue.

We first describe a generator’s decision. We use r1,t to denote the period t belief about the

study arrival probability of a generator that entered in period 1. A generator knows this belief

for every t but is still uncertain about when its study will actually arrive. The value function

of a generator that still waits is

V1,t = Eξ1,t max {ξ1,t, r1,tΠ + (1− r1,t)V1,t+1} , (1)

where ξ1,t indicates the value of the outside option (withdrawal) and Π is the expected profit

of receiving the study. The expectation is over the value of ξ1,t. We specify Π = Ec,ε max {π − c, ε} ,where

π is the present value of completing interconnection and building the generator, c is the inter-

connection cost, and ε is a shock that captures the value of withdrawal before the construction

phase. At the terminal period T, V1,T = Eξ1,T. The maximization problem implies the choice

probabilities of whether to withdraw in any period t, Λ1,t. We analogously define r2,t and Λ2,t

for a generator that enters in period 2.

We consider a tractable queuing equilibrium. We assume that there is a continuum of

heterogenous generators. Because each generator is non-atomistic, a generator’s payoffs and

beliefs depend only on the aggregate state of the queue, which is the number of generators

waiting in this simple model. This large market assumption is similar to that in Buchholz

(2022) and Liu, Wan and Yang (2024) and results in deterministic transitions for the aggregate

state. Generators still face uncertainty about their own shocks. We define balance conditions

where the number of generators continuously changes across periods; the number of gen-

erators next period is the number of generators in the current period times the probability
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that they decide to wait but do not receive studies. This equilibrium is similar to the non-

stationary oblivious equilibrium (NOE) in Weintraub et al. (2010). A key difference is that we

use a finite horizon model. In the full model, we allow the queuing environment to vary over

time, adding features such as increased entry into the queue.

The queuing equilibrium consists of the number of generators {N1,t, N2,t} , the choice

probabilities {Λ1,t, Λ2,t}, and the beliefs {r1,t, r2,t} for t = 1, . . . , T. The equilibrium requires

the following restrictions:

1. Optimality. The choice probabilities are consistent with the Bellman equation (1) and its

equivalent for generators that entered in period 2.

2. Consistent beliefs. We assume that

r1,t = p1,t (N1,t) , r2,t = p2,t (N1,t, N2,t) .

3. Balance conditions.

N1,t+1 = N1,t (1−Λ1,t) (1− p1,t (N2,t)) ,

N2,t+1 = N2,t (1−Λ2,t) (1− p2,t (N1,t, N2,t)) .

This tractable equilibrium concept still allows us to capture important equilibrium responses.

As an example, we simulate how the equilibrium responds to faster study arrival. We first

simulate the baseline equilibrium outcome and beliefs for T = 30. Then in Figure (7), we plot

the number of completed generators when we hold the baseline equilibrium beliefs fixed and

when we allow the equilibrium beliefs to adjust. We increase the study arrival probability by

5%, 10%, . . ., 25%. The equilibrium effects mitigate the benefits of faster study arrival, because

generators anticipate more generators will wait, slowing down the equilibrium study arrival.

This mitigation effect is proportionally larger for generators that arrive later.

6 Empirical Model

We now extend the illustrative model for our empirical context. We define a period to be a

quarter. We assume that every generator enters the queue with a first study. The timing of

the queue in each period is as follows:
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Figure 7: Simulated Equilibrium: Illustrative Model
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We set N1 = N2 = 15, π = 3, c is normal with a mean of 1 and standard deviation of 1, ξ and
ε are i.i.d and standard normal, and T = 30.

1. At the beginning of a period t, the generator observes the cost estimate from the latest

study and other time-varying information, such as the current calendar time, how many

studies the generator has received, and whether certain engineering tests have been

conducted.

2. The generator forms beliefs about whether the next study will arrive in the current pe-

riod, the new cost estimate, and the other contents of the study. It decides whether to

wait or withdraw.

3. For a generator that chooses to wait, a new study arrives with some probability. If the

new study arrives,

(a) For a generator with two studies, the new study is the final study. The generator

decides whether to complete the interconnection or withdraw.

(b) For a generator with one study,

i. With some probability the new study is the final study. The generator observes

the final cost estimate and decides whether to complete the interconnection or

withdraw;

ii. Otherwise, the generator observes the cost estimate and other contents of the

study and decides whether to request the next study or withdraw.

If no new study is issued, the generator continues to the next period.

4. Potential generators decide whether to enter the queue.
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6.1 Generator Decisions in the Queue

6.1.1 Notation

We focus on a particular generator’s decision and omit the generator subscript in our notation.

A generator in calendar time period t = 1, . . . , T is associated with time-invariant generator

characteristics x, such as the size of the generator. While in the queue, the generator incurs a

waiting cost of ot (τ, τ̃, x), where τ = 1, . . . , T0 is the number of periods a generator has been

in the queue, and τ̃ is the number of periods since receiving the previous study. Through its

dependence on when the previous study was received, the waiting cost accounts for the study

fee and deposit required by PJM to advance in the queue.19 We assume that each generator

waits a maximum of eight years (T0 = 32). The last quarter is T = 85, corresponding with an

end year of 2028.

We use k ∈ {1, 2, 3} to indicate which study the generator has received. We use c to de-

note the interconnection cost estimate from the latest study, and z to denote other information

from previous studies.20 In our analysis, we focus on two sets of contents in the study and

specify z =
(
ztest, zcost-sharing) . The first component ztest is an indicator for whether PJM has

conducted a set of engineering tests. These engineering tests quantify how much a new gen-

erator will overload the grid. The variable zcost-sharing is another indicator for whether PJM

deems the generator part of a cost-sharing group collectively responsible for the same trans-

mission upgrade.21

We use yt to denote the equilibrium queue state that affects the cost and waiting time of

a generator. The queue state has two main components that are both generator specific: (1)

the generator’s queue position, which depends on the number, composition, and actions of

other generators with earlier entry times, and (2) the number and sizes of other generators

in the same region. Given the “first-come-first-served” rule, the queue position is the main

factor determining the arrival time of a study. A generator’s outcome also depends on what

other generators are present in the queue and geographically close. For example, PJM may

jointly study generators that overload the same circuit breakers and ask them to share costs.

We use a vector of variables in yt to flexibly account for these effects. We discuss the detailed

19Deposits are paid in the first period after receiving the previous study.
20The information may be cumulative. For example, each study contains results from different engineering

tests, and the generator needs to aggregate these results to form beliefs about the final interconnection cost.
21Our estimates indicate that cost-sharing has, at most, a moderate effect on both the costs and study arrival.

We therefore do not explicitly model the interactions between generators sharing costs. We also note that this
is likely a PJM-specific feature. For example, the way costs are shared in another grid operator SPP can lead
to a waiting game since costs often substantially decline when generators in the cost-sharing cluster withdraw
(Charles et al. (2023)).
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specification of yt in Appendix 7.1.

We use πt (τ, x) to denote the generator’s expected discounted operating profit when it

completes the interconnection process in period t after waiting for τ periods.22 We assume

that the support of (k, c, z, τ, τ̃, t, x) is discrete.

6.1.2 Belief Assumptions

We start with the belief of a generator that has received two studies and is waiting for the

third and last study. Given the latest cost estimate c and study information z, we assume the

belief about the arrival of the third study with a cost estimate c′ in period t is

rt
(
c′; c, z, τ, τ̃, x

)
≡ H3

(
c′; c, z, τ, τ̃, yt, x

)
, (2)

where the function H3 is the probability of PJM issuing the new study given the current status

of the queue and the generator state. This function represents PJM’s “production process” of

studies. We assume this process is invariant to the actions of the generator up to the argu-

ments of the H3 function, which flexibly include the generator’s queue position, whether the

generator is a renewable generator, and a large set of other time-varying queue characteris-

tics as well as time fixed effects. We make similar assumptions below about the other arrival

probability functions, also denoted by H but distinguished by subscripts.

To simplify a generator’s belief, we assume that the generator belief rt (·) depends on the

generator characteristics and the information contained in previous studies, varies over time,

and is consistent with the equilibrium queue state yt. The underlying assumption is that a

generator reacts to the state of the queue aggregated in the function H3 (·), but not the actions

of individual generators. This “large-market” assumption helps to reduce a generator’s state

space and has been used to analyze other settings with many strategic players (e.g. Agarwal

et al. (2021); Chen and Xu (2023)).

Similarly, the belief about the arrival of a second study that is the final study with a new

cost estimate c′ is

pt
(
c′; c, z, τ, τ̃, x

)
≡ H2

(
c′; c, z, τ, τ̃, yt, x

)
, (3)

where H2 is the probability that a second study arrives and PJM deems a third study to be

22We can allow π to explicitly depend on the current and past queue states and account for how the equilib-
rium queue outcomes may affect the expected payoff. For example, existing entrants may decrease the expected
profitability of the focal generator. In a robustness analysis, we estimate a profit function that depends on the
completed generation capacity at the transmission owner territory level and find its effect to be negligible.
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unnecessary.

Next, we assume that the belief about the arrival of a second study that is not the final

study with a cost estimate c′ and new information z′ in the study is

qt
(
c′, z′; c, z, τ, τ̃, x

)
≡ H̃2

(
c′, z′; c, z, τ, τ̃, yt, x

)
. (4)

The function H̃2 is the probability of the non-final second study arrival. In both rt (·) and

pt (·), we assume that generators form beliefs about the costs which will directly enter the

payoff function after receiving the final study. In qt (·), the generator forms the beliefs about

the cost c′ and other contents z′ of the next study. Both the current c and z affect the generator

belief.

Finally, we assume that, when a generator enters the queue, the initial cost c and the study

information z in the first study are assigned with probability H1 (c, z; yt, x). We assume the

generator belief is consistent with this probability distribution:

vt (c, z; x) = H1 (c, z; yt, x) . (5)

6.1.3 Generator Decision

We start from the last period a generator can be in the queue, τ = T0. A generator that

reaches this maximum waiting time receives the outside option and leaves the queue without

completing interconnection. We assume the outside option (scrapping the project and relin-

quishing site control) is valued at bt (x) + ξt in period t, where bt (·) varies over time and is a

function of generator characteristics, and ξt is known to the generator but unobserved by the

researcher.

For τ < T0, we first consider the case where the generator has received the final study

cost estimate c in calendar time t. We assume the total cost to bring the generator online,

including the costs of construction and equipment, is gt (x) + c + εt, where gt (·) represents

how observed characteristics affect the cost, c is the interconnection cost from the final study,

and εt is the generator-specific unobserved cost. Importantly, gt (·) flexibly accounts for cal-

endar time to capture exogenous trends such as the decrease in renewable installation costs

and changes in subsidy policies. If the expected total profit exceeds the value of the outside

option,

πt (τ, x)− gt (x)− c− εt > bt (x) + ξt,
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the generator completes the interconnection. The expected value of reaching this stage is

Πt (τ, x, c) = Eεt,ξt max {πt (τ, x)− g (t, x)− c− εt, bt (x) + ξt} , (6)

where we integrate over the random variables in the expectation sign’s subscript.

We next consider the generator decision when it has two non-final studies. Suppose the

generator’s last study indicates a cost of c. The decision is whether to wait for the third study

or withdraw. The option value of waiting depends on the probability rt (·) of receiving a

study next period, the waiting cost o (·), and the value of the outside option. The value of

waiting is given by the following Bellman equation

Wt (c, z, τ, τ̃, x) = Eξ max

{
bt (x) + ξt, ∑

c′
rt
(
c′; c, z, τ, τ̃, x

)
·Πt

(
τ, x, c′

)
+

(
1−∑

c′
rt
(
c′; c, z, τ, τ̃, x

))
·Wt+1 (c, z, τ + 1, τ̃ + 1, x)− ot (τ, τ̃, x)

}
. (7)

where we take expectations over values of the outside options and the final study cost. We

do not separately include a discount factor in addition to the waiting cost. The probability of

staying in the queue is the probability that the first term in the maximand is lower than the

second term.

Now we consider the decision when the generator decides whether to wait for the sec-

ond study after entry. The generator may receive a second study that is the final study, a

second study that is not the final study, or withdraw. The value of waiting takes into account

the respective payoffs, the arrival probability pt (·) of a final second study, and the arrival

probability qt (·) of a non-final second study:

Vt (c, z, τ, τ̃, x) = Eξ max

{
bt (x) + ξt, ∑

c′
pt
(
c′; c, z, τ, τ̃, x

)
·Πt

(
τ, x, c′

)
+ ∑

c′,z′
qt
(
c′, z′; c, z, τ, τ̃, x

)
·Wt+1

(
c′, z′, τ + 1, 1, x

)
+

(
1−∑

c′
pt
(
c′; c, z, τ, τ̃, x

)
−∑

c′,z′
qt
(
c′, z′; c, z, τ, τ̃, x

))
·Vt+1 (c, z, τ + 1, τ̃ + 1, x)− ot (τ, τ̃, x)} (8)

In the above, we can normalize the net mean profit π to be π − g− b. This normalization

does not affect the choice probabilities of waiting or completion but simplifies the Bellman
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equations. With a slight abuse of notation, we still use π to denote the normalized mean

profit and write our Bellman equations as

Πt (τ, x, c) = Eξ,ε max {πt (τ, x)− c− εt, ξt} , (9)

Wt (c, z, τ, τ̃, x) = Eξ max

{
ξt, ∑

c′
rt
(
c′; c, z, τ, τ̃, x

)
·Πt

(
τ, x, c′

)
+

(
1−∑

c′
rt
(
c′; c, z, τ, τ̃, x

))
·Wt+1 (c, z, τ + 1, τ̃ + 1, x)− ot (τ, τ̃, x)

}
. (10)

Vt (c, z, τ, τ̃, x) = Eξ max

{
ξt, ∑

c′
pt
(
c′; c, z, τ, τ̃, x

)
·Πt

(
τ, x, c′

)
+ ∑

c′,z′
qt
(
c′, z′; c, z, τ, τ̃, x

)
·Wt+1

(
c′, z′, τ + 1, 1, x

)
+

(
1−∑

c′
pt
(
c′; c, z, τ, τ̃, x

)
−∑

c′,z′
qt
(
c′, z′; c, z, τ, τ̃, x

))
·Vt+1 (c, z, τ + 1, τ̃ + 1, x)− ot (τ, τ̃, x)

}
(11)

At the terminal period τ = T0 for each generator without its final study, the normalization

implies that Wt (c, z, τ = T0, τ̃, x) = Vt (c, z, τ = T0, τ̃, x) = 0.

Finally, we model the entry decision as

Ec,z (Vt (c, z, τ = 1, τ̃ = 1, x) |t, x ) > ct (x) , (12)

where the left-hand side is the expected surplus from entering the queue, and ct (x) is the

entry cost. The expectation is taken over the belief of the first study cost c and information

z conditional on the entry time t and x. The set of N potential entrants is denoted as X ={
(i, ti, xi)

N
i=1

}
, where ti and xi are the entry time and characteristics of generator i. A potential

entrant i leaves after period ti if it decides not to enter the queue.

To compute the value of entry, a potential generator may use information from past or

current interconnection requests. To partially account for this information, we calculate the

number of other generators that have withdrawn from the queue in the past two quarters

within a 100km radius and the same transmission owner territory, and include it in the first

study cost function. Our entry model does not directly account for the interconnection costs

in recent studies of nearby generators. In Appendix B, we find these costs have at most a
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moderate effect on subsequent entry at the same point of interconnection, especially com-

pared with other factors outside the queue, such as baseline transmission investment by the

grid operator.

6.1.4 Queuing Equilibrium

We consider a finite-horizon queuing equilibrium, where the beliefs of the generators are con-

sistent with the state of the queue in calendar time t. The finite horizon assumption allows us

to capture the non-stationarity in the cost of wind turbines and solar panels and the increase

in the number of entrants.

We use Ψt (c, τ, x) to represent the withdrawal probability of a generator after receiving the

final study with a cost estimate c, Λt (c, z, τ, τ̃, x) the withdrawal probability when it waits for

the third study, Υt (c, z, τ, τ̃, x) the withdrawal probability when it waits for the second study,

and Ξt (x) the withdrawal probability of potential entrants. We use mt (c, z, τ, τ̃, k, x) to denote

the fraction of generators waiting in period t with a cost estimate c, time-varying character-

istics {z, τ, τ̃, k}, and time-invariant characteristics x. The equilibrium consists of (1) optimal

withdrawal probabilities {Ψt, Λt, Υt, Ξt}T
t=1, (2) the beliefs about new studies {rt, pt, qt, vt}T

t=1,

(3) the composition of the queue in every period {mt}T
t=1 , and (4) the number of waiting gen-

erators Nt in every period {Nt}T
t=1. The equilibrium queue status that affects study arrival

and costs is aggregated from the queue composition and queue size via a function S,

yt = S
(

x, {mt′ , Nt′ , Ψt′ , Λt′ , Υt′ , Ξt′ , rt′ , pt′ , qt′ , vt′}t
t′=1

)
.

A queuing equilibrium satisfies the following conditions:

1. Optimality conditions. The withdrawal probabilities {Ψt, Λt, Υt, Ξt}T
t=1 are consistent

with the Bellman equations in (9), (10), (11) and (12).

2. Consistent beliefs. The generator beliefs {rt, pt, qt, vt}T
t=1 about the arrival probabilities

of new studies and their contents are consistent with (2), (3), (4) and (5).

3. Balance conditions. For every t = 1, . . . , T,

(a) The transition of the queue (τ > 1).
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i. For generators with two studies and waiting for the third study,

Nt+1mt+1 (c, z, τ + 1, τ̃ + 1, k = 2, x)

= Ntmt (c, z, τ, τ̃, k = 2, x) · (1−Λt (c, z, τ, τ̃, x))

·
(

1−∑
c′

rt
(
c′; c, z, τ, τ̃, x

))
. (13)

ii. For generators just receiving the second study,

Nt+1mt+1 (c, z, τ + 1, τ̃ = 1, k = 2, x)

= Nt ∑
c′,z′,τ̃′

mt
(
c′, z′, τ, τ̃′, k = 1, x

)
·
(
1−Υt

(
c′, z′, τ, τ̃′, x

))
· qt
(
c, z; c′, z′, τ, τ̃′, x

)
. (14)

iii. For generators with one study and waiting for the second study,

Nt+1mt+1 (c, z, τ + 1, τ̃ + 1, k = 1, x)

= Ntmt (c, z, τ, τ̃, k = 1, x) · (1−Υt (c, z, τ, τ̃, x))

·
(

1−∑
c′,z′

qt
(
c′, z′; c, z, τ, τ̃, x

)
−∑

c′
pt
(
c′; c, z, τ, τ̃, x

))
. (15)

(b) The boundary condition (entry):

Ntmt (c, z, τ = 1, τ̃ = 1, k = 1, x) = vt (c, z; x) nt (x) (1− Ξt (x)) , (16)

where nt (x) is the number of new generators with characteristics x and entry time

t in the set of potential entrants X .

In equilibrium, a generator has perfect foresight over the evolution of the queue but faces

uncertainty over its own studies.

7 Identification and Estimation

There are two key sets of parameters in our model. First, we flexibly specify the compo-

nents of queue state yt (the S function) and directly estimate the functions that govern how

PJM issues studies (H1, H2, H̃2 and H3) from data. These parameters govern the exogenous
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transition dynamics of the model between quarters.

Second, we use the estimated functions to construct beliefs and use the withdrawal and

completion decisions to recover preferences, which are the parameters of the profit function

πt (τ, x), the waiting cost o (τ, τ̃, t, x), and the distribution of ξt and εt. Importantly, we as-

sume that the set of potential entrants X is the set of observed actual entrants. There are

two main reasons for this assumption. First, as discussed in Section 2, developers face long

waiting times and great cost uncertainty in the queue as well as an extremely low entry cost

relative to the generator’s installation cost. In response, developers enter a large number of

generators into the queue even though many generators have a low probability of comple-

tion. Given this unique institutional fact, we think it is reasonable to assume that developers

have exhausted all entry opportunities. Second, the utility-scale solar industry, which con-

stitutes the majority of requests, significantly expanded during the latter half of our sample,

but the expansion was due to a large decrease in the cost of solar panels that was unrelated

to the queuing process. Given these considerations, we fix the entry probability to be 1 in

estimation. In Section 7.4, we discuss the assumptions for estimating the entry costs.

7.1 Queue State yt

For the S function that aggregates the current and past evolution of the queue to the queue

state yt, we include two sets of vectors. The first set describes the queue position. In period

t, we compute each generator’s queue position as the number of generators that entered the

queue in the same or an earlier entry cohort and are still in the queue. We include the queue

position and its interaction with whether generator i is waiting for the third study. We also

allow for nonlinear and time-varying effects of the queue position by including its higher

order terms and interactions with time fixed effects.

The second set of variables accounts for the effects of other local generators in the queue.

As discussed in Section 2, the local transmission owner usually conducts the tests and issues

the studies on behalf of PJM. A large local backlog may also affect the the local transmission

owner’s ability to conduct studies. Furthermore, multiple generators in the same location

may share the costs of transmission upgrades. We therefore also include the number and the

total capacity of local generators. We consider two definitions of being local to a generator.

One is to be in the same transmission owner service territory, and the other is to be within

a 100km radius of the generator.23 For similar reasons, withdrawals of local generators may

23In engineering models, PJM measures distances in “electric distances” based on impedance, which requires
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lead to re-study, which changes costs and delays the studies for remaining generators. We

therefore also include the local (as defined above) withdrawals in the past two quarters. Thus,

the queue status yt is specific to a generator’s location and entry time.

7.2 Transition Dynamics

The functions H1, H2, H̃2 and H3 describe the timing and information of a new study. These

functions are directly identified and estimable from data (e.g., Aguirregabiria and Mira (2007);

Bajari, Benkard and Levin (2007)). We focus on the specification of these functions in this

section. The input of the functions includes the cost assessment c from the most recent study,

the study information z from previous studies, the time since the generator entered the queue

τ, the time since the most recent study was issued τ̃, the current calendar time t, generator-

specific characteristics x, and the current queue state yt.

The outputs of the H functions differ. The functions H2 and H3 generate the probability

that a new study that is the final study (whether it is the second or third study) will be issued

in the current period, and that the new cost is c. The function H̃2 generates the probability

that a new study that is not the final study will be issued and that the updated cost and

information are c and z. The function H1 generates the cost and information for the first

study.

Given the complex set of decisions in the queuing process, we simplify our model by

considering two processes: (1) the arrival of a new study and the cost distribution, and (2)

conditional on receiving the second study, PJM’s decision to expedite the interconnection

requests, i.e., require only two studies, and to update the information z. We then combine

these processes to produce the H functions.

7.2.1 New Study Arrival and Cost

We start by specifying a flexible probability function for receiving a new study with a cost

c. We discretize the cost and consider a joint probit (for study arrival) and ordered probit

(for the cost level) model. We divide the interconnection costs (in million $/MW) into L = 4

bins, with bin ` ∈ C` = {[0, 0.01] , (0.01, 0.05] , (0.05, 0.20] , (0.20, ∞]} . We specify the latent

detailed knowledge about the physical distance and capability of the connecting transmission lines. We find that
a physical distance of 100km is a reasonable cutoff to account for the effect of nearby generators. We randomly
sampled 100 generators that PJM identifies as contributing to the same violation with at least one other generator.
Then, for each of 100 sampled generators, we compute the average distance to the corresponding cost-sharing
generators. We find that 86% of the average distances are within 100km.
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variables governing study arrivals and costs as

u?arrive = βarrive · d1 (`, z, k, x, yt) ,

u?cost = βcost · d2 (`, z, k, x, yt) ,

where the d(·) (·) functions are vectors of flexible polynomials of the characteristics, and the

β(·)s are vectors of parameters. We use cost bin ` in place of c (from the most recent study) to

make it clear that we model the cost as a discrete variable. The probability that the new study

arrives and the new cost estimate is in bin `′ is defined as

ht
(
`′; `, z, τ, τ̃, k, x, yt (x)

)
= Pr

(
0 < u?arrive + εarrive

t , µ`′ ≤ u?cost + εcost
t ≤ µ`′+1

)
, (17)

where µ1 = −∞, µ2 = 0, and µ2 ≤ ... ≤ µL < µL+1 = ∞ are a series of parameters. We allow

the normally distributed errors εarrive
t and εcost

t to be correlated.

7.2.2 PJM Decision to Expedite Interconnection Requests and Update Information z

PJM determines whether to expedite a generator based on the size and generation type and

whether certain types of violations are identified in the first study (PJM (2010)). Instead

of fully modeling PJM’s rules and engineering simulations for these decisions, we simplify

the analysis by using a flexible probit model based on generator characteristics. We use

pfinal
t (`, z, x, yt) to denote the predicted probability the second study is the final study.

We apply the same approach to the other two PJM decisions, which we track as the cu-

mulative information z =
(
ztest, zcost-sharing). For ztest ∈ {0, 1}, we focus on a set of three

tests: generator deliverability, multiple facility contingency, and short circuit analysis. These

tests are jointly conducted to determine how much the generator will overload the grid. PJM

may choose to conduct these tests in the first or the second study depending on the genera-

tor’s characteristics and the current local transmission network conditions. We also consider

whether the generator shares costs with other generators, zcost-sharing ∈ {0, 1}. To determine

this variable, PJM conducts additional tests (short circuit dynamic analysis and system pro-

tection analysis) to identify generators responsible for the same upgrade. Both variables can

inform the arrival time of the next study and the cost. We denote the corresponding predicted

probabilities as ptest
t (`, z, x, yt) and pcost-sharing

t (`, z, x, yt).
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7.2.3 The H Functions

We combine these processes to yield the following transition functions. We set

H3 = ht
(
`′; `, z, τ, τ̃, k = 2, x, yt

)
and

H2 = ht
(
`′; `, z, τ, τ̃, k = 1, x, yt

)
· pfinal

t (`, z, x, yt) .

For the probability of receiving a non-final second study, we assume (omitting arguments of

the pfinal
t , pcluster

t and ptest
t functions) that:

H̃2

(
`′, ztest′, zcluster′; `, z, τ, τ̃, yt, x

)
=
(

zcluster′pcluster′
t +

(
1− zcluster′

) (
1− pcluster′

t

))
·
(
ztest′ptest′

t +
(
1− ztest′) (1− ptest′

t
))
·
(

1− pfinal
t

)
· ht
(
`′; `, z, τ, τ̃, k = 1, x, yt

)
.

For H1, we assume that the cost in the first study is determined by a flexible ordered probit

function of x and yt. We set z to be what we observe in the first studies in the data.24 Although

our specification restricts the unobservables to be independent, we do allow PJM decisions on

issuing studies, costs, expediting generators, and conducting tests to be correlated through a

large set of flexibility specified observables.

7.2.4 Identification and Estimation

We use maximum likelihood to estimate these transitions. In Section 4.1, we discussed identi-

fication of the study arrival function if we were to estimate it separately. In practice, we allow

the normal unobservable εarrival
t in the probit function for study arrival and the unobservale

εcost
t in the ordered probit function for interconnection costs to be correlated. The key identi-

fication assumption is that
(
εarrival

t , εcost
t
)

is independent of the observables and conditionally

independent of the generator decisions to withdraw from the queue given the observables.

The observables include the generator location, fuel type, size, study outcomes and queue sta-

tus. The conditional independence is a reasonable assumption for study arrival and the cost

transition, because study priority depends entirely on the queue position, and transmission

owners calculate the costs for upgrades based on a set of engineering studies and without

24If either z is 1, then the indicator will continue to be 1 in subsequent studies. Our results are robust to setting
z = (0, 0) and assuming only study 2 updates this information.
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any negotiation with project developers. Based on interviews with project developers, a main

source of cost uncertainty is what equipment the transmission owner would require for the

upgrade and its cost. Section 4.1 reported select estimates of the study arrival process, and

estimates for all transition function parameters appear in Tables E.12, E.12, and E.13.

7.3 Generator Preferences

7.3.1 Identification

We start with the identification of the payoff function. We take the functions H1, H2, H̃2 and H3

as given. In standard optimal stopping problems, it is often not possible to separately identify

the waiting cost o and the payoff function π because a stopping decision (withdrawal) may

be explained by a low payoff or a high waiting cost. Our case is different. We observe two

types of decisions: the decision to wait while the generator is in the queue, and the decision

to complete the interconnection when the final study is issued. The variation of the generator

characteristics and final-study interconnection cost c identify the payoff function following

the standard identification argument of binary choice problems (Manski (1988)).

Specifically, we specify the profit and waiting cost functions as

πt (τ, x) = βπ · dπ (τ, t, x) , ot (τ, τ̃, x) = βo · do (τ, τ̃, t, x) ,

where (βπ, βo) are vectors of parameters, (dπ, (·) , do (·)) are vectors of covariates based on

current calendar time, waiting time and generator characteristics (size, fuel type, location,

and entry time). Intuitively, to identify the effect of an indicator variable on profits, we ex-

ploit the variation of the withdrawal probability Ψ implied by the maximization problem in

equation (9) across generators conditional on this variable being 0 vs 1, holding other vari-

ables fixed. For a continuous variable, we exploit the variation in Ψ across generators with

different values of this variable. To see how the distribution of the unobservable is identified,

consider, for example, a distribution of ξt known up to its variance. If the variance is large,

the withdrawal probability will not significantly change with the interconnection cost. In the

special case that ξt is mean zero and symmetric, the withdrawal probability will be close to 0.5

at a high variance. On the other hand, a small variance implies that withdrawal probabilities

would be dramatically different for generators with small differences in interconnection costs.

In our sample of generators that completed the interconnection or withdrew after receiving

the last study, the median interconnection cost is $9,100/MW. The completion rate is 49.4%
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for generators below the median, and 28.8% for those above it.

The argument for identifying the waiting cost is constructive. Given the identified profit

function πt, we can use backward induction to construct the value function for any generator

in its last period τ = T0. Then the only unknown parameter in the withdrawal probability

at τ = T0 − 1 is the waiting cost. The withdrawal probability is identified from data, and

inverting this probability identifies the waiting cost. We can apply the argument to τ, τ̃ =

T0 − 2, T0 − 3, . . . and any t. This identification argument relies on the normalization that the

mean value of the outside option is 0, which means that we interpret the waiting costs as the

difference between the actual waiting costs and the (potentially time-varying) value of the

outside option. In the empirical analysis, we adopt a more parsimonious specification for the

waiting cost to limit the number of parameters.

One may be concerned about unobserved heterogeneity across generators. In particular,

generators at locations that have higher demand may be more likely to stay, and those at

locations with higher unobserved costs of building infrastructure may be more likely to exit.

To address this concern, we consider the following extension in a robustness analysis, where

the profit function is

πt (τ, x) = βπ · dπ (τ, t, x) + ζsub. (18)

The unobservable ζsub is a substation-level random effect for the nearest substation with a

normal distribution and unknown variance σsub. We use the panel structure of the data, where

multiple generators enter near the same substation, to identify σsub. The intuition is that a

larger variance implies stronger within substation correlations in the withdrawal decisions.

7.3.2 Estimation

We use maximum likelihood to recover generator preference parameters in the baseline model

based on the 2011 to 2020 sample.25 We use the estimated transition functions in Section 7.2

as generators’ beliefs in the dynamic programming problem. To estimate the extension with

the random substation effects in (18), we use a simulated maximum likelihood approach.

Table 6 presents the estimates of the profit function, βπ. Column (1) is our baseline esti-

mate. Column (2) includes substation-level unobserved heterogeneity. We also include state,

entry year, and year fixed effects to account for policy and technology heterogeneity across

space and time. The estimates of covariate parameters are largely similar across the two spec-

25We use the pre-2011 sample to compute the queue status (such as the number of higher-queued generators)
and hold them fixed.
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ifications. We find that generators with capacity between 20 and 100 MW have a higher net

profit on a per megawatt basis than those below 10 MW, and the profit of larger generators is

not necessarily higher. Renewable generators have a lower net profit per megawatt of capac-

ity, consistent with their higher withdrawal rates and lower capacity factors.

Appendix Table E.10 presents the estimates for the waiting costs. We find that waiting

costs are high in periods immediately after receiving the studies, and the additional cost of

waiting for the third study is $3,500 per MW per quarter (e.g., $71,000 per quarter for a 20 MW

generator). These costs account for both the administrative costs of maintaining the queue

position as well as economic costs such as extending site control. The estimates rationalize

the data pattern that a high proportion of withdrawals occurred after the studies are issued

(Appendix Figure E.2).

Appendix Table E.14 presents estimates for the standard deviation parameters for the un-

observables. The estimated standard deviations of ξt, which reflect the unobserved profit

and cost shocks after the generator learns the final study cost estimate, are large (greater than

$100, 000 MW in most years), but have decreased since 2012. Renewables face considerably

greater uncertainty than other generators. Unlike other generators, renewables that have been

in the queue for more than two years face a higher standard deviation of ξt, which is consistent

with our interviews that these generators often face additional uncertainties about securing a

long term contract and sourcing the panels or turbines at the stage of completing the intercon-

nection. These uncertainties are often much greater than εt, which is the quarter-to-quarter

unobserved outside option as the generator continues to wait. The estimated standard devia-

tion of εt is about $78, 770 per MW in the baseline estimates, comparable to that of the random

effect in specification (2).

7.4 Entry Costs

To estimate the entry cost, we rely on a free-entry assumption:

Assumption. The lowest expected profit from entering the queue in each year is 0.

In effect, we assume that the marginal interconnection request just breaks even, which is

reasonable given the large number of entrants. We define the expected profit as the expected

surplus of entering the queue minus the entry cost in (12):

Ec,z (Vt (c, z, τ = 1, τ̃ = 1, x) |t, x )− ct (x) .
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For simplicity, we assume that the entry cost (on a per megawatt basis) is the same across

potential generators in a given year, but this assumption can be relaxed to allow the cost to

vary based on observable characteristics, such as location and fuel type. For the entry cost in

year j, we compute the lowest expected surplus from entering the queue in year j, defined as

cj(t) = min
x∈Xj

Ec,z (Vt (c, z, τ = 1, τ̃ = 1, x) |t, x ) ,

where Xj is the set of potential entrants in year j, j (t) denotes the year of the period t, and the

value function is given by the Bellman equations (9) through (12).

This procedure gives us reasonable estimates for the entry costs. In Appendix Figure E.3,

we present the distribution of the expected surplus by year. We estimate the entry costs are

from $48,200 to $81,100 per megawatt. For perspective, annual lease payments for solar range

from about $2,000 to $20,000 per megawatt (Parker et al., 2023), though an exclusive option to

lease is cheaper. Our estimates of the economic costs of entry also account for other factors,

such as deposits to enter the queue, negotiating leases with landowners, building community

support, and starting the permitting process.

8 Equilibrium Simulation and Model Fit

We use the estimated model to simulate the queuing equilibrium defined in Section 6.1.4.

The details of the simulation procedure are given in Appendix C. We provide a high level

summary here.

The procedure embeds three assumptions. First, by explicitly starting the iteration with

the observed outcomes, we select a particular equilibrium that is naturally motivated by data.

Second, we assume perfect foresight for the evolution of the queue status. This is not an

overly restrictive assumption, as in our context, the long term increase in queue size is not

surprising given the rapid decrease in the cost of renewable generators. At the same time,

generators do not have perfect foresight over short term events such as the study arrival or

future values of unobserved shocks. Third, we take the arrival time of potential entrants and

their characteristics x as given.

To validate our model, we first compare the time series of aggregate investment it predicts

to the data. Figure 8 shows the cumulative capacity that was completed, by queue year,

for generators in our sample (queued between 2011 and 2020). The left panel shows the

cumulative capacity for all generators, and the right panel shows the cumulative capacity for
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Algorithm 1 Summary of Equilibrium Simulation

• Initialization

– Use the observed outcomes in the data to compute the queue status yt for period
t = 1, . . . , T.

– Compute the distribution of study arrival, cost bins and information z using
H1, H2, H̃2, H3 for each potential entrant i in X for each τ, τ̃i after the entry date
ti.

– Solve the equations (9), (10), (11) and (12), and the associated withdrawal proba-
bilities.

• Iteration

1. Given the current study transition and withdrawal probabilities, compute the frac-
tions of a generator i that withdraws, waits, and, if the final study arrives, com-
pletes the interconnection.

2. Update the queue status yt.

3. Update the study transition and withdrawal probabilities.

4. Iterate until convergence.

renewables. The solid black lines plot the total capacity of generators in the data that are

completed, i.e., they have completed construction and started operation. For example, the

solid black line in 2018 represents the total completed capacity, as of 2022, of generators that

entered the queue by 2018. As we near the end of our sample, there are many generators

that are waiting for their next studies or have received their final interconnection study but

have not been completed or withdrawn from the queue. The dotted black lines represent

the capacity of these generators (which include generators still under construction) plus the

capacity of generators that are completed from data.

Our model is able to match these time series. The solid blue line plots the model’s pre-

diction for the total capacity ever completed, by queue year. For the early years, this should

match the capacity actually completed as of 2022 (the solid black line); all generators queued

in these early years have had time to finish construction and begin operation. The completed

capacity for generators entering the queue in 2014 and 2018 is slightly under-predicted by the

point estimates of the model but covered within the reasonably narrow confidence intervals.

For later years, the blue line lies between the solid and dotted black lines as expected.26

26In Appendix Figure E.4, we show the model fit for the growing queue sizes.

40



Figure 8: Cumulative Completed Capacity as of 2022, Model and Data
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The solid black lines (cap completed) represent the total cumulative capacity of generators in our sample that
have started operation by 2022. For example, the capacity in 2018 represents the total completed capacity of
generators that entered the queue in 2018 or earlier. The dotted black lines (cap in queue) represent this capacity
plus the capacity of generators that have not withdrawn as of 2022. The blue line is the simulated cumulative
capacity that will ever be begin operation, by queue year. The red line represents the confidence intervals for the
model prediction.

9 Counterfactual Simulations

We use our estimated model to conduct three sets of counterfactual simulations. The first

two sets focus on quantifying the congestion externality. In the first, we simulate the added

capacity if the necessary studies are delivered faster, holding entry fixed. This exercise can be

seen as quantifying the returns to increasing PJM’s processing capacity.

In the second, we hold PJM’s processing capacity fixed and ask whether we can increase

the added capacity by removing select generators. Removing generators expedites the studies

for the remaining generators, reducing their chance of withdrawal and potentially increasing

total completed capacity.

We next consider policy reforms that address the congestion externality. We simulate the

effects of increasing the the cost of entering or staying in the queue, and we compare flat per

generator fees to fees to fees that increase linearly with project size.

9.1 Reducing Study Delays

As discussed in Section 2.2, reducing study delays may have a first-order impact on increasing

completed capacity. A structural reason for the long waiting time is grid operators’ limited

capacity to process generator requests. Grid operators told us they are limited by engineering
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staff capacity and that they had difficulty hiring electrical engineers, whose supply is inelastic

in the short run due to the training involved. In principle, grid operators could offer higher

wages, hire more engineers, and speed up the process. We simulate five scenarios in which

the study arrival probabilities of the second and third studies are increased by 5% to 25%.

We find large increases in completed capacity from reducing waiting times. Figure 9 re-

ports the simulation results. The x−axis shows the average waiting time from the first to

the last study conditional on not withdrawing from the queue before the last study, and the

y−axis is the added capacity. A 10% increase in the study arrival probabilities reduces wait-

ing time by about 2%,27 and adds 4.0 GW of total capacity, of which 1.6 GW is renewable.28

These additions correspond to increases of 5.6% and 4.6%, respectively. The added capac-

ity increases quickly in the study arrival probability for all generators; for example, a 25%

increase adds nearly 9 GW of new capacity.

We interpret these large gains as being due to reductions in both the cost and uncertainty

from waiting in the queue. Generators incur costs like maintaining the option on the land, but

also face many risks, such as the expiration of signed purchase agreements (Penrod, 2022).

Our model captures the first with the waiting costs and the second with the idiosyncratic

unobservable εt. We estimate the standard deviation of εt to be larger than the difference in

waiting costs due to generator size, fuel type, or time.

9.2 Alternative Queuing Mechanisms

We next take the processing ability of PJM as given and consider alternative queuing mech-

anisms. We search for, for each potential entrant, a weight between 0 and 1 to maximize the

total completed capacity. We treat each generator as a continuous mass, and the weight repre-

sents the share that the grid operator includes in the queue.29 These weights modify the queue

status. For example, the queue position of a generator is given by the sum of the weights of

27A 10% increase in the study arrival does not result in a 10% decrease in the waiting time for two reasons: (1)
we plot the conditional average waiting time given that the generators do not withdraw, and generators that reach
their last studies receive studies faster, which limits the scope for faster study delivery to reduce their waiting time,
and (2) faster study delivery increases the value of waiting, so more generators wait in equilibrium, increasing
congestion.

28A developer could save the time of going through the queue again by entering at the same location with
multiple identical requests across time. If a prior generator fails to complete the interconnection even when the
interconnection cost is low, the generator can immediately use the queue position of a subsequent generator at
the same location and expect similar interconnection study results. We could over-predict the completed capacity
if this practice is widespread. We do not find this practice to be of first-order importance: locations that saw
consecutive entry of generators that have the same fuel sources and similar capacities contribute to 0.12 GW of
added total capacity and 0.07 GW of added renewable capacity.

29An alternative is to solve the integer programming problem of which generators to keep in the queue, but
this optimization problem would be much harder.
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Figure 9: Faster Study Delivery
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Y-axis is new capacity added relative to the status quo. X-axis is the average wait
time from first study issue date to the receipt of the final study. Each point on the
line corresponds to either the status quo or an increase in the arrival probability of
the second and third studies. From right to left, the points on each line are the status
quo, 5%, 10%, . . ., 25%. The solid line shows the change in total generation capacity,
while the dotted line shows the change in renewable generation capacity.

higher-queued generators, and we can move up the queue position of a lower-queued gener-

ator by reducing these weights. We consider the following maximization problem:

max
w ∑

t,c,τ,x
ρt (c, τ, x) · (1−Ψt (c, τ, x)) · capx, (19)

where w is the vector of weights, ρt (c, τ, x) is the number of generators with characteristics

x and final study cost estimate c in period t after having waited τ periods, and capx is the

capacity of these generators. This quantity ρ is based on the equilibrium queue status and

generator withdrawal probabilities, both of which depend on the weights w.30

A planner may value some generators more than others. For example, a planner may favor

non-renewable generators to improve grid reliability, or renewables for their environmental

benefits.31 We also consider algorithms that maximize the following, more flexible objective

30In this exercise, we view the H functions as structural parameters reflecting the processing constraints when
PJM conducts studies. For example, a grid operator that faces multiple waiting generators may have to study them
sequentially, finishing one generator before moving on to the next. Alternatively, it may be able to parallelize and
simultaneously work on multiple generators at the same time. We estimate the study process through the H
functions. If the study process is strictly sequential, and a lower-queued generator has high capacity but might
leave the queue after prolonged waiting, then moving up this generator’s rank and studying it first may increase
the total completed capacity.

31It is not obvious the planner would put a higher weight on renewables given these generators are already
subsidized at the state and federal level. A grid operator we spoke with was concerned that too little dispatch-
able generation capacity was being completed to maintain reliability in the face of policy-induced coal generator
retirements.
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function:

max
w ∑

t,c,τ,x
ρt (c, τ, x) · (1−Ψt (c, τ, x)) · capx · θx, (20)

where θx reflects the planner’s preference for type x generators. We consider three sets of

planner preference parameters, where θs on renewables and other generators are (0.5, 0.5),

(0.75, 0.25) and (0.9, 0.1). Maximizing the objective in (20) under the preference parameters

of (0.5, 0.5) amounts to maximizing (19). The maximization is also subject to optimality con-

ditions 9 through 12 and a set of modified balance conditions in Appendix C.3.

In our implementation, a generator has the same priority as other generators with the

same fuel type, in the same entry year range {< 2015, [2015, 2018),≥ 2018} and the same size

range {< 20MW, [20MW, 50MW), [50MW, 100MW),≥ 100MW}. We use this discretization

to simplify the optimization problem, but we could also allow the weights to differ across

finer categories of generator characteristics or compute a dynamic queuing rule with time-

varying weights.

We find that these alternative queuing mechanisms meaningfully increase completed ca-

pacity. In Table 7, when a planner equally values renewable and non-renewable generation

capacity (Column (1)), we find an increase of 7.94 GW in total capacity, 1.48 GW of which

is renewable. When the planner prefers renewables (Columns (2) and (3)), the completed

renewable capacity increases but the total added capacity is considerably smaller.

The queuing mechanisms remove many small generators from the queue. Table 8 shows

the percentage of removed generators within each fuel-size group. With equal preferences for

the renewable and non-renewable generators, many generators below 100 MW are screened

out. As the planner prefers renewable capacity more, the mechanism removes fewer renew-

able generators with a capacity between 20 and 100 MW but still removes more than 45% of

renewable generators under 20MW. More medium sized non-renewable generators are also

removed. Under all preference parameters, fewer but larger generators complete intercon-

nection.

9.3 Entry Fees

We consider two types of entry fees, defined as the cost to enter the queue (obtain the first

study). The first type is a flat per generator fee. The second type is assessed per megawatt.

For both types of entry fee, we find an inverted-U relationship between the added capacity
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Figure 10: Added Capacity with Entry Fee
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Y-axis is new capacity added relative to the status quo. X-axis is the fee to enter the queue and receive the
first study. The solid line shows the change in total generation capacity, the dotted line shows the change in
renewable generation capacity.

and fee levels (Figure 10). The flat fee that maximizes completed capacity is $900,000. It would

add over 6.85 GW of capacity, but only 0.8 GW of renewable capacity. It also decreases the

number of completed generators by 40%.32 The per-megawatt fee achieves a much smaller

effect, adding at most 0.5 GW of capacity. None of the generators added by the per-megawatt

fee is a renewable generator.

Table 9 breaks down which potential generators decide not to enter the queue at the flat

fee level that maximizes completed capacity. Compared with the alternative queuing mecha-

nisms above, the fee screens out many more small generators and more renewable generators

compared to non-renewable generators resulting in a lower completed capacity.

We also simulate an increase in the fees for later studies. We again consider both flat and

per megawatt fees, and assume the same increase in fee is levied for both the second and third

study. Screening at this later stage is less effective: completed capacity falls for all fee levels.

Appendix D.1 provides more details.Climate Impacts

We found that several policy reforms would significantly increase renewable generation

capacity, an increase that would offset electricity production from fossil fuel generators. To

quantify the approximate impact of this investment on carbon emissions, we use the U.S.

Environmental Protection Agency’s Avoided Emissions and Generation Tool (AVERT). This

tool translates changes in generation capacity into changes in CO2 emissions using data on

regional demand, production costs,and market dispatch (US EPA, 2022). We value these emis-

32In PJM’s 2022 reforms, the collected entry fees will be refunded to generators that complete interconnection.
We do not account for these refunds in our simulations.
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sions using the social cost of carbon of $185 per ton of CO2 in Rennert et al. (2022).

Additional renewable generation capacity would produce large social benefits from avoided

carbon emissions. For example, increasing the study arrival probability by 10% results in 1.58

GW more renewable capacity. The AVERT tool calculates that adding 1.58 GW of utility-scale

renewable generation capacity to the Mid-Atlantic region in 2022 would decrease annual CO2

emissions by 2.14 million metric tons.33 The implied annual social value of this reduction is

394 million dollars. The more conservative social cost of carbon used by the U.S. government

($51 per ton) implies a social value is 109 million dollars. Our other simulations find gains in

renewable capacity in the range of 0.8-3.5 GW. AVERT shows that CO2 emissions are offset

roughly at the rate of 1.4 million metric tons per gigawatt in this range.

10 Conclusion

We use novel data from the largest transmission operator in the United States to study the

interconnection queue. We find there is a congestion externality. If a generator has more

generators ahead of it in the queue, the probability it receives the third and final study in a

given quarter falls. We also find that interconnection costs are hard to predict and are a key

factor in generators’ decisions to withdraw from the queue.

We next study policy reforms using a dynamic model that accounts for equilibrium effects.

Given the congestion effects, we next ask whether removing some generators can increase

the amount of generation capacity completed. Alternative queuing policies prioritize larger

generators and increase completed capacity. A flat fee to enter the queue has a similar effect,

though this increase disproportionately comes from non-renewable generators. The increase

in renewable capacity we see under this policy still has substantial environmental benefits.

References

Abito, Jose Miguel, Christopher R Knittel, Konstantinos Metaxoglou, and André Trindade.

2022. “The Role of Output Reallocation and Investment in Coordinating Externality Mar-

kets.” International Journal of Industrial Organization, 83(102843).

33We assume the composition of this 1.58 GW increase is one third wind and two thirds solar, matching the
roughly 2 to 1 ratio of solar to wind capacity in our sample.

46



Agarwal, Nikhil, Itai Ashlagi, Michael A Rees, Paulo Somaini, and Daniel Waldinger. 2021.

“Equilibrium allocations under alternative waitlist designs: Evidence from deceased donor

kidneys.” Econometrica, 89(1): 37–76.

Aguirregabiria, Victor, and Pedro Mira. 2007. “Sequential estimation of dynamic discrete

games.” Econometrica, 75(1): 1–53.

Alagappan, Lakshmi, Ren Orans, and Chi-Keung Woo. 2011. “What drives renewable en-

ergy development?” Energy policy, 39(9): 5099–5104.

Aldy, Joe, Todd Gerarden, and Richard Sweeney. 2023. “Investment versus Output Subsi-

dies: Implications of Alternative Incentives for Wind Energy.” 10(4).

Allcott, Hunt. 2012. “The smart grid, entry, and imperfect competition in electricity markets.”

National Bureau of Economic Research.

AWEA. 2019. “Wind Powers America Annual Report 2019.” https://www.awea.org/

resources/publications-and-reports/market-reports.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin. 2007. “Estimating dynamic models

of imperfect competition.” Econometrica, 75(5): 1331–1370.

Blundell, Wesley, Gautam Gowrisankaran, and Ashley Langer. 2020. “Escalation of

scrutiny: The gains from dynamic enforcement of environmental regulations.” American

Economic Review, 110(8): 2558–2585.

Buchholz, Nicholas. 2022. “Spatial equilibrium, search frictions, and dynamic efficiency in

the taxi industry.” The Review of Economic Studies, 89(2): 556–591.

Buchsbaum, Jesse F., Catherine Hausman, Johanna L. Mathieu, and Jing Peng. 2022.

“Spillovers from Ancillary Services to Wholesale Energy Markets.” NBER Working Paper

No. 28027.

Bushnell, James B, Erin T Mansur, and Celeste Saravia. 2008. “Vertical arrangements, mar-

ket structure, and competition: An analysis of restructured US electricity markets.” Ameri-

can Economic Review, 98(1): 237–266.

Butters, R. Andrew, Jackson Dorsey, and Gautam Gowrisankaran. 2021. “Soaking up the

sun: Battery investment, renewable energy, and market equilibrium.” NBER Working Pa-

per 29133.

47

https://www.awea.org/resources/publications-and-reports/market-reports
https://www.awea.org/resources/publications-and-reports/market-reports


Callaway, Brantly, and Petro H.C. Sant’Anna. 2021. “Difference-in-Differences with multiple

time periods.”

Caspary, Jay, Michael Goggin, Rob Gramlich, and Jesse Schneider. 2021. “Disconnected:

The Need for a New Generator Interconnection Policy.” Americans for a Clean Energy Grid

Report.

CBO. 2022. “Emissions of Carbon Dioxide in the Electric Power Sector.”

urlhttps://www.cbo.gov/system/files/2022-12/58419-co2-emissions-elec-power.pdf.

Charles, Dan, Nick Fountain, Willa Rubin, and Sally Helm. 2023. “Green energy gridlock.”

Planet Money, [Online; accessed on 2023-10-16].

Chen, Yanyou, and Daniel Yi Xu. 2023. “A structural empirical model of r&d, firm hetero-

geneity, and industry evolution.” The Journal of Industrial Economics, 71(2): 323–353.

Che, Yeon-Koo, and Olivier Tercieux. 2021. “Optimal queue design.” 312–313.

Collier, Rob. 2021. “Interconnection Slowdown: What’s Causing It and What You Can Do.”

textitLevelTen Energy Blog. url=https://www.leveltenenergy.com/post/interconnection-

slowdown.

Connell, Jason, and Susan McGill. 2020. “Interconnection Process Overview.”

https://www.pjm.com/-/media/committees-groups/task-forces/iprtf/postings/

interconnection-process-overview.ashx.

Covert, Thomas R., and Richard L. Sweeney. 2022. “Winds of Change: Estimating Learning

by Doing without Cost or Input Data.” Working Paper.

Davis, Lucas, and Catherine Hausman. 2016. “Market Impacts of a Nuclear Power Plant

Closure.” American Economic Journal: Applied Economics, 8(2): 92–122.

Davis, Lucas W., Catherine Hausman, and Nancy L. Rose. 2023. “Transmission Impossible?

Prospects for Decarbonizing the US Grid.” NBER Working Paper 31377.

Davis, Rebecca J., J. Scott Holladay, and Charles Sims. 2022. “Coal-Fired Power Plant Re-

tirements in the United States.” In Environmental and Energy Policy and the Economy, Vol. 3.

, ed. Matthew J. Kotchen, Tatyana Deryugina and James H. Stock. Chicago:University of

Chicago Press.

48

https://www.pjm.com/-/media/committees-groups/task-forces/iprtf/postings/interconnection-process-overview.ashx
https://www.pjm.com/-/media/committees-groups/task-forces/iprtf/postings/interconnection-process-overview.ashx


Deschenes, Oliver, Christopher Malloy, and Gavin McDonald. 2023. “Causal effects of Re-

newable Portfolio Standards on renewable investments and generation: The role of hetero-

geneity and dynamics.” Resource and Energy Economics, 75(101393).

Doshi, Gaurav. 2022. “Wiring America: The Short- and Long-Run Effects of Electricity Grid

Expansion.” Working Paper.

Driscoll, William. 2022. “Interconnection delays and costs are

the biggest barrier for utility-scale renewables, say develop-

ers.” PV Magazine. https://pv-magazine-usa.com/2022/02/14/

interconnection-delays-and-costs-are-the-biggest-barrier-for-utility-scale-renewables-say-developers/.

Elliott, Jonathan T. 2021. “Investment, Emissions, and Reliability in Electricity Markets.”

Fell, Harrison, Daniel Kaffine, and Kevin Novan. 2021. American Economic Journal: Economic

Policy, 13(2): 241–272.

FERC. 2023. “Docket No. RM22-14-000; Order No. 2023: Improvements to Generator Inter-

connection Procedures and Agreements.” https://www.ferc.gov/media/e-1-order-2023-

rm22-14-000.

FERC Staff. 2023. “Staff Presentation: Improvements to Generator Interconnection Proce-

dures and Agreements.”

Fowlie, Meredith, Mar Reguant, and Stephen P Ryan. 2016. “Market-based emissions regu-

lation and industry dynamics.” Journal of Political Economy, 124(1): 249–302.

Gergen, Michael J, George D Cannon Jr, and Shannon D Torgerson. 2008. “A modest pro-

posal: A market-based approach to generation interconnection process reform.” The Elec-

tricity Journal, 21(9): 8–18.

Gonzales, Luis E., Koichiro Ito, and Mar Reguant. 2022. “The Dynamic Impact of Market

Integration: Evidence from Renewable Energy Expansion in Chile.” Working Paper.

Gowrisankaran, Gautam, Ashley Langer, and Wendan Zhang. 2022. “Policy Uncertainty in

the Market for Coal Electricity: The Case of Air Toxics Standards.” NBER Working Paper

30297.

Gowrisankaran, Gautam, Stanley S Reynolds, and Mario Samano. 2016. “Intermittency and

the value of renewable energy.” Journal of Political Economy, 124(4): 1187–1234.

49

https://pv-magazine-usa.com/2022/02/14/interconnection-delays-and-costs-are-the-biggest-barrier-for-utility-scale-renewables-say-developers/
https://pv-magazine-usa.com/2022/02/14/interconnection-delays-and-costs-are-the-biggest-barrier-for-utility-scale-renewables-say-developers/


Hale, Zach. 2021. “Solar developer adds to pile of complaints targeting PJM study delays.”

Hale, Zach, and Molly Christian. 2023. “FERC approves ‘historic’ rule to clear backlog of US

generation projects.”

Hausman, Catherine. 2024. “Power Flows: Transmission Lines and Corporate Profits.” Na-

tional Bureau of Economic Research.

Hitaj, Claudia. 2013. “Wind power development in the United States.” Journal of Environmen-

tal Economics and Management, 65: 394–410.

IEA. 2022a. “Electricity Market Report - January 2022.” https://www.iea.org/reports/

electricity-market-report-january-2022.

IEA. 2022b. “Global Energy Review: CO2 Emissions in 2021.” https://www.iea.org/

reports/global-energy-review-co2-emissions-in-2021-2.

Igami, Mitsuru. 2017. “Estimating the innovators dilemma: Structural analysis of cre-

ative destruction in the hard disk drive industry, 1981–1998.” Journal of Political Economy,

125(3): 798–847.

Johnston, Sarah. 2019. “Nonrefundable Tax Credits versus Grants: The Impact of Subsidy

Form on the Effectiveness of Subsidies for Renewable Energy.” Journal of the Association of

Environmental and Resource Economists, 6(3): 433–460.

LaRiviere, Jacob, and Xueying Lyu. 2022. “Transmission constraints, intermittent renewables

and welfare.” Journal of Environmental Economics and Management, 112(102618).

Leisten, Matthew, and Nicholas Vreugdenhil. 2023. “Dynamic Regulation with Firm Link-

ages: Evidence from Texas.” Working Paper.

Linn, Joshua, and Kristen McCormack. 2019. “The roles of energy markets and environ-

mental regulation in reducing coal-fired plant profits and electricity sector emissions.” The

RAND Journal of Economics, 50(4): 733–767.

Liu, Tracy, Zhixi Wan, and Chenyu Yang. 2024. “Dynamic matching on a commuter carpool-

ing platform.”

Manski, Charles F. 1988. “Identification of binary response models.” Journal of the American

statistical Association, 83(403): 729–738.

50

https://www.iea.org/reports/electricity-market-report-january-2022
https://www.iea.org/reports/electricity-market-report-january-2022
https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2
https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2


Mansur, Erin T. 2007. “Do oligopolists pollute less? Evidence from a restructured electricity

market.” The Journal of Industrial Economics, 55(4): 661–689.

Mansur, Erin T. 2008. “Measuring welfare in restructured electricity markets.” The Review of

Economics and Statistics, 90(2): 369–386.

Metcalf, Gilbert. 2010. “Investment in energy infrastructure and the tax code.” In Tax policy

and the economy, Vol. 24. , ed. Jeffrey Brown. Chicago:University of Chicago Press.

Parker, Nick, Sarah Johnston, Bryan Leonard, and Justin Winikoff. 2023. “Renewable En-

ergy on American Indian Land.” Working Paper.

Penrod, Emma. 2022. “Why the energy transition broke the U.S. interconnection system.”

PJM. 2010. “OPEN ACCESS TRANSMISSION TARIFF.”

PJM. 2021a. “Connecting to the Grid FAQs: How long does the interconnection

process take?” https://learn.pjm.com/three-priorities/planning-for-the-future/

connecting-grid/how-long-does-the-interconnection-process-take.

PJM. 2021b. “Forward Together: 2020 PJM Annual Report.” https://services.pjm.com/

annualreport2020/.

PJM. 2021c. “PJM Manual 14A: New Services Request Process.” 29 ed., https://www.pjm.

com/-/media/documents/manuals/m14a.ashx.

PJM. 2021d. “PJM Manual 14B: PJM Region Transmission Planning Process.” 51 ed.

PJM. 2021e. “PJM Manual 14C: Generation and Transmission Interconnection Facility Con-

struction.” 14 ed.

PJM. 2021f. “PJM Manual 14G:Generation Interconnection Requests.” 7 ed., https://www.

pjm.com/-/media/documents/manuals/m14g.ashx.

PJM. 2022. “PJM Interconnection, L.L.C., Docket No. ER22- -000.” https://pjm.com/

directory/etariff/FercDockets/6726/20220614-er22-2110-000.pdf.

PJM. 2023. “Project Status & Cost Allocation.” (Accessed Jan 31, 2023).

Plumer, Brad. 2023. “The U.S. Has Billions for Wind and Solar Projects. Good Luck Plug-

ging Them In.” The New York Times. https://www.nytimes.com/2023/02/23/climate/

renewable-energy-us-electrical-grid.html.

51

https://learn.pjm.com/three-priorities/planning-for-the-future/connecting-grid/how-long-does-the-interconnection-process-take
https://learn.pjm.com/three-priorities/planning-for-the-future/connecting-grid/how-long-does-the-interconnection-process-take
https://services.pjm.com/annualreport2020/
https://services.pjm.com/annualreport2020/
https://www.pjm.com/-/media/documents/manuals/m14a.ashx
https://www.pjm.com/-/media/documents/manuals/m14a.ashx
https://www.pjm.com/-/media/documents/manuals/m14g.ashx
https://www.pjm.com/-/media/documents/manuals/m14g.ashx
https://pjm.com/directory/etariff/FercDockets/6726/20220614-er22-2110-000.pdf
https://pjm.com/directory/etariff/FercDockets/6726/20220614-er22-2110-000.pdf
https://www.nytimes.com/2023/02/23/climate/renewable-energy-us-electrical-grid.html
https://www.nytimes.com/2023/02/23/climate/renewable-energy-us-electrical-grid.html


Potter, Ellie. 2021. “FERC’s Christie says agency should examine interconnection queue

’chaos’.”

Rand, Joseph, Mark Bolinger, Ryan H. Wiser, Seongeun Jeong, and Bentham

Paulos. 2021. “Queued Up: Characteristics of Power Plants Seeking Transmis-

sion Interconnection As of the End of 2020.” https://emp.lbl.gov/publications/

queued-characteristics-power-plants.

RechargeNews. 2021. “Texas solar outlook clouded by grid, storm regula-

tion.” Reuters Events. https://www.reutersevents.com/renewables/solar-pv/

texas-solar-outlook-clouded-grid-storm-regulation.

Rennert, Kevin, Frank Errickson, Brian C. Prest, Lisa Rennels, Richard G. Newell, William

Pizer, Cora Kingdon, Jordan Wingenroth, Roger Cooke, Bryan Parthum, David Smith,

Kevin Cromar, Delavane Diaz, Frances C. Moore, Ulrich K. MÃŒller, Richard J. Plevin,

Adrian E. Raftery, Hana SevcÃkova, Hannah Sheets, James H. Stock, Tammy Tan, Mark

Watson, Tony E. Wong, and David Anthoff. 2022. “Comprehensive evidence implies a

higher social cost of CO2.” Nature, 610: 687–692.

Ryan, Nicholas. 2021. “The Competitive Effects of Transmission Infrastructure in the Indian

Electricity Market.” American Economic Journal: Microeconomics, 13(2): 202–42.

Ryan, Stephen P. 2012. “The costs of environmental regulation in a concentrated industry.”

Econometrica, 80(3): 1019–1061.

Shoemaker, Jason. 2021. “Interconnection Queue Status Update.” https:

//www.pjm.com/-/media/committees-groups/committees/pc/2021/20210831/

20210831-item-07-queue-status-update.ashx.

US EPA. 2022. “Avoided Emissions and Generation Tool (AVERT).” https://www.epa.gov/

avert/download-avert.

Verdier, Valentin, and Carson Reeling. 2021. “Welfare effects of dynamic matching: An em-

pirical analysis.” The Review of Economic Studies, forthcoming.

Waldinger, Daniel. 2021. “Targeting in-kind transfers through market design: A revealed

preference analysis of public housing allocation.” American Economic Review, 111(8): 2660–

96.

52

https://emp.lbl.gov/publications/queued-characteristics-power-plants
https://emp.lbl.gov/publications/queued-characteristics-power-plants
https://www.reutersevents.com/renewables/solar-pv/texas-solar-outlook-clouded-grid-storm-regulation
https://www.reutersevents.com/renewables/solar-pv/texas-solar-outlook-clouded-grid-storm-regulation
https://www.pjm.com/-/media/committees-groups/committees/pc/2021/20210831/20210831-item-07-queue-status-update.ashx
https://www.pjm.com/-/media/committees-groups/committees/pc/2021/20210831/20210831-item-07-queue-status-update.ashx
https://www.pjm.com/-/media/committees-groups/committees/pc/2021/20210831/20210831-item-07-queue-status-update.ashx
https://www.epa.gov/avert/download-avert
https://www.epa.gov/avert/download-avert


Weintraub, Gabriel Y, C Lanier Benkard, Przemysław Jeziorski, and Benjamin Van Roy.

2010. “Nonstationary oblivious equilibrium.” working paper.

Wolak, Frank A. 2015. “Measuring the competitiveness benefits of a transmission investment

policy: The case of the Alberta electricity market.” Energy Policy, 85: 426–444.

Yang, Chenyu. 2020. “Vertical structure and innovation: A study of the SoC and smartphone

industries.” The RAND Journal of Economics, 51(3): 739–785.

53



Online Appendix

A Allocation of Shared Network Upgrades

There are two main types of interconnection costs: direct connection costs and network up-

grades. While we collect costs separately for each of the major categories listed in the study, it

is not always easy to distinguish between direct costs and network upgrades, and we combine

both types into one cost measure for our analysis.

Network upgrades are often shared among multiple generators. A generator’s contribu-

tion to these shared costs is typically first reported in the second (system impact) study. The

first (feasibility) study will note that the generator may be responsible for a contribution to-

ward these costs and will often report the total. Figure A.1 shows a typical example. The

generator will likely be responsible for a portion of the 17.75 million, and an estimate of its

exact responsibility will be provided in the next study. For this example, the first study cost

we use in estimation is 7.85 million. This generator will also have the variable s1 cluster set

to one because the first study indicates the generator may be responsible for additional costs

and lists a non-zero total for these costs.

Figure A.1: Example cost breakdown for the first study

B Prior Generator Cost and Entry

In our analysis, we do not consider how interconnection studies provide information that

affects the entry decisions of future generators. Specifically, high costs in a location may

cause entrants to substitute to other locations. Alternatively, suppose a recent upgrade to the
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infrastructure made by one generator lowers the cost for the next generator. Then, locations

where a generator with a high interconnection cost may be about to complete interconnection

would be desirable. PJM’s cost-sharing makes this second channel less likely.34

To assess the empirical relevance of this concern, we first look at the region-level time-

series of interconnection costs and entry. Figure B.1 shows the time series of mean study 2

costs for the nineteen transmission owner territories in PJM. The time period is the half-year.

We focus on the study 2 cost because it is an important source of information: this is the first

study to include a generator’s contribution to shared network upgrade costs, and it is more

widely available than study 3. High costs do not appear to result in either higher or lower

entry in subsequent periods.

We next estimate the effect of prior study costs on entry at the same point of interconnec-

tion. The estimation sample consists of all substation-quarters where the second study cost

of a higher-queued generator is available, i.e., locations where a prior entry has made it to at

least the second study. The outcome variable is an indicator for whether entry occurs in quar-

ter t at this location.35 We regress this variable on whether the most recent study 2 cost at that

substation exceeds $0.1 million/MW. We also include three measures of grid-operator trans-

mission investment (RTEP) affecting the substation,36 the voltage of the transmission line at

the substation, and the locational marginal price (LMP). To construct our measure of the LMP,

we use a quarterly average of hourly prices for peak hours (7am-11pm) for three days each

month (10th, 20th, and 30th, if available, else the 28th). We condition on state-year-quarter fixed

effects to control for changes in state-level incentives and time trends.

We estimate that prior costs have a small effect on entry relative to other factors. These

estimates are reported in Table B.1. The effect of the prior generator’s study 2 cost is not pre-

cisely estimated, with a 95% confidence interval from -0.006 to 0.0179, which are -8% to 25%

of the mean entry rate. Baseline RTEP investment has a larger effect: cumulative investment

greater than $100,000 is associated with 30% increase in the entry rate. Supplemental RTEP in-

vestment and cumulative investment since the most recently completed generator have small

effects. Generators also tend to enter at higher voltage substations. Finally, a one standard

deviation ($12/MWh) increase in the LMP is associated with a 160% increase in the mean

34Empirically, we find little evidence a costly completed interconnection reduces the cost for the subsequent
generator once we control for whether the subsequent generator is an uprate.

35If a generator requests to interconnect by tapping into a line instead of at a substation, we assign the request
to the nearest substation.

36We use data from PJM on the planned and completed transmission investment. These data list which sub-
stations will be affected by each investment.
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entry rate.

C Equilibrium Simulation

C.1 Preliminaries

Each potential generator i is associated with a queue date ti. If the generator decides to enter

the queue, it receives the first study. In the calendar time periods ti + 1, ti + 2, . . . , ti + T0, if the

generator has not received the final study, the generator decides whether to wait or continue.

At the end of ti + T0, if the generator has not received the final study, the generator leaves the

queue.

In the simulation, we solve for a vector of values ni (`, z, τ, τ̃, k), which is the fraction of

generator i with a cost estimate in bin ` (Appendix 7.2.1), study information z, having waited

τ periods, τ̃ periods from the last study, and waiting for kth study. We do not need the x in

the argument because the simulation is done for each potential entrant i in the set X . We also

do not need the calendar time index because the calendar time at τ is ti + τ. In our solution,

ni (`, z, τ, τ̃, k) ∈ [0, 1] is a fraction. Ignoring the integer constraint greatly simplifies the simu-

lation process. In particular, we treat, for example, uncertain arrivals of studies as fractions of

the waiting generator receiving studies over multiple periods. Removing stochasticity allows

us to tractably model the equilibrium. For the study information ztest, we set the variable to 1

in all subsequent studies if PJM performs the corresponding tests in a study.

C.2 Simulation Steps

• Initialization

– We start with an initial guess of ni (`, z, τ, τ̃, k), where ni is the fraction of a potential

generator i in a particular state and ` indicates the `th cost bin. We use the observed

data as the starting point. For example, if a generator i with 1 study, cost c ∈ C` and

information z waited 2 periods and exited the queue, then ni (`, z, τ = 1, τ̃ = 1, k =

1)= 1, ni (`, z, τ = 2, τ̃ = 2, k = 1) = 1, and 0 for any other input values.

– Use the initial ni, compute the probabilities implied by H1, H2, H̃2 and H3. The

only additional input we need is the queue state for each i. We use yit to denote i’s

queue state. All of the queue states we include in the H functions are computable

from the observed outcomes in data. For example, the queue size at the calendar
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time t, is calculated as

∑
k

∑̃
τ

∑
τ

∑
`

∑
z

∑
i

ni (`, z, τ, τ̃, k)1 (ti + τ = t) .

– Given the predicted probabilities (vi, pi, qi, ri) based on the H functions, we solve

the Bellman equations and the corresponding withdrawal probabilities for each

generator i, Υi, Λi, Ψi and Ξi for each combination of (`, z, τ, τ̃). To simplify nota-

tion, we omit queue state yit and generator characteristics xi from the arguments

of these functions.

• Iteration

1. Use the study transition probabilities predicted by H and withdrawal probabilities

probabilities (Υi, Λi, Ψi, Ξi) to update ni. Specifically, for those with two studies

and waiting for the third study and for any ` and z,

ni (`, z, τ + 1, τ̃ + 1, k = 2)

= ni (`, z, τ, τ̃, k = 2) · (1−Λi (`, z, τ, τ̃))

·
(

1−∑
`′

ri
(
`′; c, z, τ, τ̃

))
.

In the first period after receiving the second study,

ni (`, z, τ + 1, τ̃ = 1, k = 2, x)

= ∑
`′,z′,τ̃′

ni
(
`′, z′, τ, τ̃′, k = 1

)
·
(
1−Υi

(
`′, z′, τ, τ̃′

))
· qi
(
`, z; `′, z′, τ, τ̃′

)
.

For those with one study and waiting for the second study and for any ` and z,

ni (`, z, τ + 1, τ̃ + 1, k = 1)

= ni (`, z, τ, τ̃, k = 1) · (1−Υi (`, z, τ, τ̃))

·
(

1−∑
`′,z′

qi
(
`′, z′; `, z, τ, τ̃

)
−∑

`′
pi
(
`′; `, z, τ, τ̃

))
.
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The entry process implies that

ni (c, z, τ = 1, τ̃ = 1, k = 1) = vi (c, z) · (1− Ξi) .

2. Update the queue status yt, using ni as the number of generators in a particular

state.

3. Update the study transition and withdrawal probabilities.

4. Iterate until convergence.

C.3 Balance Conditions in Alternative Mechanisms

We use wt,x to denote the weight for a generator of characteristics x and entry time t. The

balance conditions are:

1. For generators with two studies and waiting for the third study,

Nt+1mt+1 (c, z, τ + 1, τ̃ + 1, k = 2, x)

= Ntmt (c, z, τ, τ̃, k = 2, x) · (1−Λt (c, z, τ, τ̃, x))

·
(

1−∑
c′

rt
(
c′; c, z, τ, τ̃, x

)
wt−τ,x

)
. (C.1)

2. For generators just receiving the second study,

Nt+1mt+1 (c, z, τ + 1, τ̃ = 1, k = 2, x)

= Nt ∑
c′,z′,τ̃′

mt
(
c′, z′, τ, τ̃′, k = 1, x

)
·
(
1−Υt

(
c′, z′, τ, τ̃′, x

))
· qt
(
c, z; c′, z′, τ, τ̃′, x

)
wt−τ,x. (C.2)

3. For generators with one study and waiting for the second study (τ > 0),

Nt+1mt+1 (c, z, τ + 1, τ̃ + 1, k = 1, x)

= Ntmt (c, z, τ, τ̃, k = 1, x) · (1−Υt (c, z, τ, τ̃, x))

·
(

1−∑
c′,z′

qt
(
c′, z′; c, z, τ, τ̃, x

)
wt−τ,x −∑

c′
pt
(
c′; c, z, τ, τ̃, x

)
wt−τ,x

)
. (C.3)
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4. The boundary condition (entry):

Ntmt (c, z, τ = 1, τ̃ = 1, k = 1, x) = vt (c, z; x) nt (x) (1− Ξt (x))wt,x. (C.4)

D Additional Counterfactual Results

D.1 Additional Detail on Study Fees

Figure D.1 shows that the added capacity falls at every level for both types of study fees.

There are two key distinctions from the entry fee, which we find can increase completed ca-

pacity. First, the additional study fees may cause large generators with a high interconnection

cost identified in study 1 to drop out, but small generators with a low study 1 cost to stay in

the queue. Second, generators that wait long enough to request the third study are those that

are more likely to complete interconnection, and screening at this stage becomes less effective.

As a result, these fees do not sufficiently protect the incentives of large generators to remain

in the queue and lead to an overall reduction in the completed capacity.

E Additional Figures and Tables
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Table 6: Profit Function Parameter Estimates ($1,000/MW)

(1) Baseline (2) Heterogeneity

Capacity (MW)
10-20 52.30 45.42

(12.10) (11.16)
20-100 88.12 85.83

(12.68) (12.58)
>100 32.16 32.78

(14.87) (14.91)
Renewable -100.31 -100.56

(22.67) (21.66)
σsubstation 69.85

(6.97)

Estimated parameters for the profit function in $1,000 of 2020 dollars per MW. Renewable is an indicator for being
a wind or solar generator. SE in parentheses. (2) Heterogeneity is a specification that includes random effects at
the nearest substation level. σsubstation is the standard deviation of this random effect. We also include entry year
and year fixed effects at the 3-year level, state fixed effects, and fixed effects for the number of quarters in the
queue. Appendix Table E.14 reports estimates for other profit function parameters.

Table 7: Added Capacity in Alternative Queuing Mechanisms (GW)

Planner Preference Parameter (θrenewable, θnon-renewable)
(0.5, 0.5) (0.75, 0.25) (0.9, 0.1)

Added Capacity 7.94 4.09 0.08
Renewable 1.48 2.66 3.02
Non-Renewable 6.46 1.43 -2.94

Table reports new capacity added relative to the status quo for generators in our sample. The model-predicted
total completed capacity in the status quo is 71.15 GW, 32.44GW of which is renewable.

Table 8: Percentage of Generators Removed by Alternative Queuing Mechanisms

Planner Preference Parameter (θrenewable, θnon-renewable)
(0.5, 0.5) (0.75, 0.5) (0.9, 0.1)

Renewable Capacity (MW)
<20 72.31 45.02 67.06
20-100 51.76 25.73 23.81
>100 1.19 0.00 0.00

Non-Renewable Capacity (MW)
<20 55.97 56.24 56.24
20-100 57.12 77.17 73.08
>100 0.00 8.52 28.05

Table reports the share of generators in a group that are removed by each queuing mechanism. For example,
72.31% of generators whose sizes are below 20MW are removed when the planner preference parameters for the
renewable and non-renewable generators are 0.5 and 0.5.



Table 9: Generators that No Longer Enter the Queue with a Flat Fee=$900,000

% of Group Entry Year
<2013 2013-2015 2016-2018 >2018

Renewable Capacity (MW)
<20 92.11 98.18 94.77 95.98
20-100 69.27 70.59 30.63 40.22
>100 1.92 0.00 0.00 0.00

Non-Renewable Capacity (MW)
<20 93.70 85.06 91.73 87.97
20-100 29.07 22.92 44.68 12.82
>100 0.90 0.00 0.00 0.00

Table reports the share of generators in a group that no longer enter the queue when there is a $900,000 per
generator entry fee. For example, 92.11% of generators that entered the queue from 2008-2012 and whose sizes
are below 20MW no longer enter the queue.

Table B.1: Effect of Interconnection Costs on Entry at the Same Substation

Most Recent Study 2 Cost>$0.1 million/MW 0.0059
(0.0061)

Cumulative RTEP Baseline Investment>$0.1 million 0.0228
(0.0081)

Cumulative RTEP Supplemental Investment>$0.1 million 0.0011
(0.0080)

Cumulative RTEP Since Most Recently Completed Generator>$0.1 million -0.0014
(0.0087)

Voltage>230kV 0.0234
(0.0065)

LMP ($/MWh) 0.0097
(0.0004)

Mean of dependent var. 0.0729
N 17,428

Observations are at the substation by quarter level for 2008-2020. Sample is all substation-quarters
where a prior second study interconnection cost is available (N = 17,428; 1981 unique substations).
Dependent variable is an indicator for entry into the queue at that substation in that quarter. Cumu-
lative RTEP Baseline Investment>$0.1 million is an indicator for if the cumulative amount of baseline
transmission investment completed since 2008 and affecting that substation is greater than $100,000.
Cumulative RTEP Supplemental Investment>$0.1 million is an indicator for if the cumulative amount
of supplemental transmission investment completed since 2008 and affecting that substation is greater
than $100,000. Cumulative RTEP Investment>$0.1 million is an indicator for if the cumulative amount
of either type of RTEP investment since the last connecting generator at the substation was completed
is greater than $100,000. Voltage>230kV is an indicator for if the voltage of the substation is greater
than 230 kV. LMP is a quarterly average of the nearest locational marginal price at peak hours in 2020
$/MWh. Regression includes state-year-quarter fixed effects. SE in parentheses, clustered by substa-
tion.



Figure B.1: Mean Study 2 Costs and Entry in Each Transmission Owner Territory

The bar graph (left y−axis) shows the number of entrants in a transmission owner territory by year, and the red
line (right y−axis) shows the average study 2 costs for studies issued in that territory by year.



Figure D.1: Added Capacity with Increased Study Fee
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Y-axis is new capacity added relative to the status quo. X-axis is the increase in fees for the second and
third studies (we assume both are increased by the same amount). The solid line shows the change in total
generation capacity, the dotted line shows the change in renewable generation capacity.

Figure E.1: Fuel type of generators entering the queue
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diesel; other is biomass, nuclear, hydro, and wood.



Table E.1: Full Summary Statistics

Study 1 Study 2 Study 3

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Cost per MW 0.12 0.40 0.18 0.48 0.11 0.18
. . . ≤0.01m 0.41 0.49 0.27 0.44 0.16 0.37
. . . (0.01m, 0.05m] 0.20 0.40 0.21 0.41 0.31 0.46
. . . (0.05m, 0.1m] 0.14 0.35 0.17 0.38 0.22 0.42
. . . >0.1m 0.25 0.43 0.35 0.48 0.30 0.46
Wait time (mos.) 5.3 2.8 12.9 11.6 18.9 13.1
Size in MW 97 196 105 190 161 273
. . . ≤10 0.28 0.45 0.17 0.37 0.09 0.29
. . . 10-20 0.26 0.44 0.27 0.44 0.24 0.43
. . . 20-100 0.24 0.43 0.32 0.47 0.35 0.48
. . . 100-500 0.17 0.38 0.19 0.40 0.22 0.42
. . . >500 0.05 0.21 0.05 0.21 0.10 0.30
Uprate 0.21 0.41 0.23 0.42 0.16 0.37
Revision 0.04 0.20 0.19 0.39 0.18 0.39
Requested energy in MW 97 196 104 191 160 273
Requested capacity in MW 66 173 68 164 120 257
Solar 0.60 0.49 0.60 0.49 0.59 0.49
Natural Gas 0.17 0.37 0.16 0.36 0.22 0.42
Wind 0.09 0.29 0.10 0.30 0.12 0.32
Battery 0.10 0.30 0.10 0.30 0.04 0.19
Coal, oil, diesel 0.02 0.13 0.01 0.12 0.01 0.08
Other 0.03 0.18 0.03 0.17 0.03 0.17
Cost sharing 0.04 0.19 0.59 0.49 0.59 0.49
Study 1 cost sharing 0.41 0.49 0.48 0.50 0.45 0.50
Receive engr. tests 0.81 0.39 0.88 0.32 0.04 0.20
Distance to substation (km) 4.77 13.92 4.44 11.73 4.45 12.35
Build new substation 0.22 0.41 0.27 0.44 0.46 0.50
Ordinance 0.28 0.45 0.30 0.46 0.29 0.46
Prior RTEP Investment (0m, 60m] 0.37 0.48 0.37 0.48 0.37 0.48
Prior RTEP Investment >60m 0.15 0.36 0.16 0.37 0.21 0.41
N 4,138 2,472 692

Generators entering the queue in 2008-2020. Costs in millions of 2020 dollars. Cost per MW is in-
terconnection cost estimate divided by the generator’s size in MW. Wait time for Study 1 is wait in
months for the first study after joining the queue. Wait time for Study 2 is wait in months for second
study after receiving the first study. Wait time for Study 3 is similarly defined. Size in MW is our
measure of size which is the maximum of the requested energy and requested capacity. Uprate is
an indicator for a capacity increase to an existing generator. Revision is an indicator for if the study
was revised. Requested energy in MW is the associated energy resource for the interconnection re-
quest. Requested capacity in MW is the associated capacity resource for the interconnection request;
all capacity resources must participate in PJM’s capacity auction. Cost sharing is an indicator for if a
generator shares costs with other generators. Study 1 cost sharing is an indicator for if the first study
mentions shared network upgrade costs. Receive engr. tests is an indicator for receiving any of three
engineering tests: generator deliverability, multiple facility contingency, and short circuit analysis.
Distance to substation is the distance to the nearest substation in km. Ordinance is an indicator for a
local ordinance restricting renewable energy development. Prior RTEP Investment is RTEP transmis-
sion investment made within 18 months of the issue date of a focal project and located within 10km
of it.



Table E.2: Predictors of Interconnection Costs

IHS Cost Low Study Cost
(1) (2)

Project Size Bin 1 (10MW, 20MW] -0.049** 0.009
( 0.025) ( 0.027)

Project Size Bin 2 (20MW, 100MW] -0.020 -0.134***
( 0.026) ( 0.027)

Project Size Bin 3 (100MW, 500MW] -0.028 -0.168***
( 0.027) ( 0.030)

Project Size Bin 4 >500MW -0.056* -0.210***
( 0.030) ( 0.051)

Distance To Substation: 0.003 -0.007
( 0.004) ( 0.005)

Ordinance 0.029 -0.043*
( 0.019) ( 0.022)

Uprate -0.055*** 0.494***
( 0.021) ( 0.029)

Fuel-Natural Gas -0.044 0.104
( 0.053) ( 0.078)

Fuel-Solar -0.026 -0.122
( 0.054) ( 0.080)

Fuel-Wind -0.031 -0.034
( 0.060) ( 0.084)

Fuel-Storage -0.028 -0.051
( 0.055) ( 0.081)

Fuel-Other -0.032 0.129
( 0.063) ( 0.098)

Prior RTEP Investment (0m, 60m] -0.012 0.035**
( 0.015) ( 0.017)

Prior RTEP Investment >60m -0.015 0.056**
( 0.022) ( 0.026)

Observations 2,432 2,432
R-Squared 0.122 0.421

Projects queuing from 2008-2020. SEs in parentheses; clustered by sub-
station. In column (1), Dep. var. is the inverse hyperbolic sine transfor-
mation of Study 2 interconnection cost estimate (mean 0.14). In column
(2), Dep. var. is indicator for Study 2 cost estimate less than 0.01m/MW
(mean 0.27). Prior RTEP Investments is measured as investments made
within 18 months of the issue date of a focal project and located within
10km of it. Controls for state, the year of queue entry and the year the
study is issued. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Figure E.2: Withdrawals Relative to Study Arrival

Number of generators withdrawing from the queue in each month relative to the ar-
rival of their most recent study. t1 is the arrival of the first study. t2 is the arrival of the
second study. t3 is the arrival of the third study. Excludes generators that withdrew
two or more years after the arrival of their most recent study.



Table E.3: Withdrawal Regressions with Alternative Cost Measures

Study 1 Study 2 Study 3

OLS OLS OLS IV IV OLS IV

A. Continuous Measure

IHS cost 0.290*** 0.290*** 0.347*** 0.350*** 0.290*** 0.457** 0.092
( 0.054) ( 0.054) ( 0.057) ( 0.074) ( 0.072) ( 0.179) ( 0.427)

B. Cost bin specification

Low cost -0.042 -0.043* -0.046 0.023
( 0.025) ( 0.025) ( 0.050) ( 0.076)

Mid cost -0.011 -0.010 -0.046 0.110
( 0.027) ( 0.027) ( 0.052) ( 0.086)

High cost 0.107*** 0.106*** 0.198*** 0.174**
( 0.027) ( 0.027) ( 0.046) ( 0.083)

Study 1 shared X X
Mean dep. var. 0.28 0.28 0.43 0.43 0.43 0.43 0.43
First stage F 215 195 12
N 3,191 3,191 1,269 1,269 1,269 345 309

Generators queuing from 2011-2020; generators still active excluded. SEs in parentheses; clus-
tered by substation. Dep. var. are indicators for projects withdrawing from the queue before
receiving the next study or before beginning operation for generators with their final study.
IHS cost is the inverse hyperbolic sine transformation of the study’s interconnection cost es-
timate. IV results instrument for the IHS of cost using the change in the IHS of cost across
studies. Low cost bin indicates an interconnection cost between 0.01 and 0.05 million dollars
per MW. Mid cost bin indicates an interconnection cost between 0.05 and 0.1 million dollars
per MW. High cost bin is a cost greater than 0.1 million dollars per MW. Study 1 shared in-
dicates if the regression includes two variables from Study 1: an indicator for if the study
mentions shared network upgrade costs and the log of the total costs to be shared. All spec-
ifications control for size (5 bins), fuel type, state, uprate, and FE for the year of queue entry
and the year the study is issued. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table E.4: Withdrawal Regressions with Alternative Controls

Study 1 Study 2 Study 3

OLS OLS OLS IV IV OLS IV

A. Original specification

High cost 0.123*** 0.123*** 0.231*** 0.293*** 0.241*** 0.113* 0.074
( 0.022) ( 0.022) ( 0.031) ( 0.054) ( 0.057) ( 0.063) ( 0.117)

Study 1 shared X X

Mean dep. var. 0.28 0.28 0.43 0.43 0.43 0.55 0.55
First stage F 972 808 202
N 3,191 3,191 1,269 1,269 1,269 345 345

B. Including permitting controls

High cost 0.123*** 0.123*** 0.230*** 0.293*** 0.241*** 0.115* 0.074
( 0.022) ( 0.022) ( 0.031) ( 0.054) ( 0.057) ( 0.064) ( 0.118)

Study 1 shared X X

Mean dep. var. 0.28 0.28 0.43 0.43 0.43 0.55 0.55
First stage F 948 788 199
N 3,191 3,191 1,269 1,269 1,269 345 345

A. Including substation FE

High cost 0.108*** 0.107*** 0.275*** 0.267*** 0.246*** 0.255* 0.347*
( 0.031) ( 0.031) ( 0.049) ( 0.072) ( 0.075) ( 0.134) ( 0.176)

Study 1 shared X X

Mean dep. var. 0.26 0.26 0.41 0.41 0.41 0.43 0.43
First stage F 365 326 18
N 2,413 2,413 759 759 759 138 138

Generators queuing from 2011-2020; generators still active excluded. Panel C. excludes gener-
ators that were the only generator connecting at that substation. SEs in parentheses; clustered
by substation. Dep. var. are indicators for projects withdrawing from the queue before re-
ceiving the next study or before beginning operation for generators with their final study.
Permitting controls are two variables: the log of the distance from the generator location
to the nearest substation in kilometers and whether the county had an ordinance restricting
renewable energy development. Study 1 shared indicates if the regression includes two vari-
ables from Study 1: an indicator for if the study mentions shared network upgrade costs and
the log of the total costs to be shared. All specifications control for size (5 bins), fuel type,
uprate, and FE for the year of queue entry and the year the study is issued. Panels A. and B.
include state FE; Panel C. include substation FE. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table E.5: Robustness for Effect of a Costly Prior Interconnection on the Probability of Low Cost

Threshold for Nearby Interconnections
Same substation

and <10km
Same substation <10km <20km <50km

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. Total cost > $1m

Costly prior interconnection 0.015 0.095 -0.046 0.063 0.052 0.065 -0.015 0.059 -0.020 0.009
( 0.048) ( 0.062) ( 0.035) ( 0.051) ( 0.032) ( 0.045) ( 0.034) ( 0.050) ( 0.042) ( 0.052)

Substation FE X X X X X

B. Total cost > 90th percentile

Costly prior interconnection -0.003 0.132 -0.056 0.045 0.054 0.052 -0.040 0.064 -0.036 -0.005
( 0.072) ( 0.100) ( 0.052) ( 0.060) ( 0.044) ( 0.074) ( 0.055) ( 0.073) ( 0.059) ( 0.107)

Substation FE X X X X X

C. Cost/MW > $0.1m

Costly prior interconnection -0.011 0.080 -0.029 0.116 0.036 0.063 -0.007 0.006 0.012 0.007
( 0.076) ( 0.111) ( 0.055) ( 0.084) ( 0.037) ( 0.053) ( 0.039) ( 0.052) ( 0.036) ( 0.046)

Substation FE X X X X X

D. Cost/MW > 90th percentile

Costly prior interconnection -0.056 0.018 -0.026 0.097 0.006 0.090 -0.038 0.047 -0.001 -0.000
( 0.092) ( 0.139) ( 0.065) ( 0.090) ( 0.050) ( 0.084) ( 0.074) ( 0.108) ( 0.078) ( 0.110)

Substation FE X X X X X

N 1,597 1,597 1,597 1,597 1,597 1,597 1,597 1,597 1,597 1,597

Projects queuing from 2011-2020. SEs in parentheses; clustered by substation. Dep. var. is an indicator for Study 2 cost estimate less
than 0.01 m/MW (mean 0.31). Costly prior interconnection is an indicator for if the most recent nearby interconnection was costly.
Each estimate corresponds to a separate regression with rows corresponding to different thresholds for costly and columns to different
definitions of nearby. The 90th percentile for the cost of prior interconnection are 7.0, 8.6, 7.1, 7.2, and 9.4 million dollars for total cost and
0.15, 0.13, 0.18, 0.15, and 0.14 million dollars for cost per MW. All specifications control for whether there was no prior interconnection
nearby, whether the generator is an uprate, size (5 bins), fuel type, state, and FE for the year of queue entry and the year the study is
issued. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table E.6: Top 15 Developers and Selective Completion

Developer No. of
generators

Cohorts with
a generator

Avg. gen.
per cohort

Cohorts,
excl. active

Frac. all or 0
completed

Invenergy 79 18 4.4 8 0.75
PSEG 53 17 3.1 17 0.53
Community Energy 52 17 3.1 11 0.64
Dominion 49 19 2.6 16 0.81
LS 39 18 2.2 12 0.83
EDF 30 12 2.5 6 0.83
Apex 28 13 2.2 6 0.67
NextEra 27 11 2.5 5 1
SunEnergy1 27 9 3 5 0.4
Urban Grid 27 6 4.5 0 -
EffiSolar 26 5 5.2 5 0.6
EDP 25 13 1.9 9 0.78
IMG 24 8 3 8 0.63
AEP 23 11 2.1 10 0.9
Exelon 20 10 2 9 0.89

Summary statistics for the top 15 developers in our sample by number of generators. Cohorts with a generator is the
number of queue entry cohorts (out of 33) that the developer has a generator in. Cohorts, excl. active is the same
but excludes cohorts where, as of August 2023, at least one of the developer’s generators is still active, i.e., it has
neither begun operation or withdrawn. Frac. all or 0 completed is the mean of a developer-cohort level indicator for
if either all or none of the generators in that cohort were completed; this mean is taken across cohorts without active
generators.



Table E.7: Summary Statistics: Entry and Prior Completions

Same substation <10km <50km

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Prior Interconnection 0.084 0.278 0.304 0.460 0.807 0.395
Costly Prior Interconnection 0.015 0.121 0.054 0.227 0.108 0.310
Cumulative RTEP Baseline Investment>$0.1 million 0.307 0.461 0.307 0.461 0.307 0.461
Cumulative RTEP Supplemental Investment>$0.1 million 0.198 0.399 0.198 0.399 0.198 0.399
Cumulative RTEP Since Most Recently Completed Generator>$0.1 million 0.368 0.482 0.368 0.482 0.368 0.482
Voltage>230kV 0.334 0.472 0.334 0.472 0.334 0.472
Prior Interconnection × Voltage>230kV 0.042 0.201 0.140 0.347 0.292 0.454
LMP ($/MWh) 35.804 10.643 35.804 10.643 35.804 10.643
Entry 0.043 0.203 0.043 0.203 0.043 0.203

Prior Interconnection indicates whether there is a prior project completed at that substation before that quarter. Costly Prior Interconnection indicates
whether the most recently completed project has a cost > $0.1 million/MW. Cumuative RTEP Baseline Investment>$0.1 million is an indicator for if
the cumulative amount of baseline transmission investment completed since 2008 and affecting that substation is greater than $100,000. Cumulative
RTEP Supplemental Investment>$0.1 million is an indicator for if the cumulative amount of supplemental transmission investment completed since
2008 and affecting that substation is greater than $100,000. Cumulative RTEP Investment>$0.1 million is an indicator for if the cumulative amount
of either type of RTEP investment since the last connecting generator at the substation was completed is greater than $100,000. Voltage>230kV is
an indicator for if the voltage of the substation is greater than 230 kV. Prior Interconnection × Voltage > 230kV is the interaction term between
Prior Interconnection and Voltage > 230kV. LMP is a quarterly average of the nearest locational marginal price at peak hours in 2020 ($/MWh). The
regression includes state-year-quarter fixed effects. Standard errors are in parentheses and clustered by substation. Entry is an indicator of new entry
into the queue at that substation in that quarter.



Table E.8: Summary Statistics: Completions and Locational Marginal Prices

Mean Std.Dev.

Average locational marginal price 34.759 14.448
Completed interconnection 0.219 0.413
... > 20MW 0.128 0.334
... > 50MW 0.087 0.282
... > 100MW 0.067 0.250
Completed renewable interconnection 0.103 0.304
... > 20MW 0.043 0.203
... > 50MW 0.028 0.166
... > 100MW 0.020 0.141

Observations are at the substation by month-year level for 2016-2020. The
sample includes all substations that have ever had a prior interconnec-
tion request. Average locational marginal price is measured during peak
hours. Completed interconnection is an indicator of completed intercon-
nections that change the completed capacity at the same substation. We
also include indicators for completed interconnections that change the ca-
pacity by more than 20MW, 50MW, and 100MW. Completed renewable
interconnection is an indicator of completed renewable interconnections
that change the completed capacity at the same substation. Similarly, we
include indicators for renewable interconnections that change the capac-
ity by more than 20MW, 50MW, and 100MW.



Table E.9: PJM Decisions
(

pfinal
t , ptest

t , pcluster
t

)
and Study 1 Cost Distribution H1

Probit Ordered Probit
Study 2 is Final Test Cost Sharing Study 1 Cost

Last Study Cost ($Million/MW)
0.01-0.05 -0.47 -0.09 0.32

(0.11) (0.27) (0.09)
0.05-0.20 -0.84 -0.12 0.31

(0.11) (0.30) (0.09)
>0.20 -1.43 -0.13 -0.28

(0.15) (0.30) (0.14)
Capacity (MW)

10-20 -0.64 0.63 0.35 -0.34
(0.10) (0.21) (0.11) (0.04)

20-100 -1.26 0.35 0.70 -0.12
(0.13) (0.24) (0.12) (0.05)

>100 -2.03 0.90 0.85 -0.17
(0.15) (0.31) (0.13) (0.05)

Renewable -0.16 0.94 -0.23 0.81
(0.09) (0.26) (0.08) (0.04)

ln Total MW in the Queue
Withdrawn in the Past 2 Quarters, <100km -0.09 0.04 0.01 0.03

(0.01) (0.02) (0.01) (0.00)
Withdrawn in the Past 2 Quarters, Same TO -0.15 -0.00 -0.00 0.04

(0.01) (0.03) (0.01) (0.01)

We additionally control for state, year and entry year fixed effects. For the ordered probit, we estimate µ3 and µ4
to be 0.58, 1.57, with standard errors of 0.017 and 0.027.



Table E.10: Waiting Cost Parameter Estimates ($1,000/MW/Quarter)

(1) Baseline (2) Heterogeneity
Renewable 2.83 2.08

(1.73) (1.33)
Renewable×

Capacity>100MW -1.75 -1.58
(0.40) (0.33)

Entry Year>2013 -2.93 -1.86
(1.69) (1.37)

Year
2013-2015 -1.29 -1.12

(3.34) (2.47)
2016-2018 -3.90 -2.85

(2.71) (2.13)
>2018 4.92 3.12

(2.08) (1.73)
τ̃ Quarters after Receiving

τ̃ = 1, Study 1 30.41 22.81
(8.40) (6.24)

τ̃ = 2, Study 1 32.24 25.96
(9.57) (7.23)

τ̃ = 1, Study 2 -19.42 -16.31
(9.32) (7.37)

τ̃ = 2, Study 2 93.66 74.32
(10.37) (8.14)

ln Capacity×
τ̃ Quarters after Receiving

τ̃ = 1, Study 1 -1.07 -0.76
(2.32) (1.71)

τ̃ = 2, Study 1 -0.40 -0.62
(2.56) (1.95)

τ̃ = 1, Study 2 -1.00 -0.36
(2.40) (1.91)

τ̃ = 2, Study 2 -7.52 -6.62
(2.44) (1.89)

Waiting for Study 3 3.56 2.99
(0.65) (0.52)

We additionally include entry year and year fixed effects at the 3-year level, state fixed effects and fixed effects for
the number of quarters in the queue.

Table E.11: Marginal Effects of Increasing the Queue Sizes on Study 3 Arrival Probability

Avg Arrival Prob ∆Queue Position ↓=10%,
∆ Pr new study ∆ Pr new study SE

Renewable, ≤ 20MW 0.068 -0.004 <0.001
Renewable, > 20MW 0.053 -0.003 <0.001

Non-Renewable, ≤ 20MW 0.093 –0.004 <0.001
Non-Renewable, > 20MW 0.071 -0.003 <0.001

To calculate the ∆ Pr new study we increase the number of higher queued generators by 10%.



Figure E.3: Expected Surplus of Entering the Queue and Cost of Entry
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Plots of the distribution of the expected surplus from entering the queue by year. The
vertical line indicates the lowest surplus of generators that entered in each year.



Table E.12: New Study Arrival Probit Model: Additional Estimates
(1) Baseline (2) Large Generators (3) More Covariates

Last Study Cost ($Million/MW)
0.01-0.05 0.11 0.11 0.12

(0.04) (0.04) (0.04)
0.05-0.20 0.05 0.06 0.07

(0.04) (0.04) (0.04)
>0.20 -0.01 -0.00 -0.02

(0.05) (0.05) (0.06)
Has Tests (ztest) -0.12 -0.12 -0.13

(0.04) (0.04) (0.04)
Cost Sharing (zcost-sharing) 0.04 0.03 0.01

(0.05) (0.05) (0.05)
ln # Projects in the Queue

<10km 0.00
(0.02)

<100km 0.11
(0.04)

Same TO -0.03 -0.03 -0.03
(0.02) (0.02) (0.02)

Withdrawn in the Past 2 Quarters, <100km -0.04
(0.04)

Withdrawn in the Past 2 Quarters, Same TO -0.02
(0.01)

Generator i Waiting for Third Study ×
ln # Projects in the Queue×

Same TO -0.14 -0.13 -0.13
(0.03) (0.03) (0.04)

Withdrawn in the Past 2 Quarters, <100km -0.08
(0.07)

Withdrawn in the Past 2 Quarters, Same TO -0.00
(0.01)

Wind/Solar -0.04 -0.04 0.35
(0.04) (0.04) (0.11)

Wind/Solar×Entry Year
2013-2015 0.52

(0.17)
2016-2018 0.31

(0.20)
>2018 0.17

(0.23)
Wind/Solar×Year

>2013-2015 -0.60
(0.16)

>2016-2018 -0.51
(0.20)

>2018 0.06 0.07 -0.42
(0.05) (0.05) (0.23)

Wind/Solar×Capacity (MW)
10-20 -0.23

(0.10)
20-100 -0.19

(0.10)
100-500 -0.12

(0.11)
>500 -0.35

(0.16)
Capacity (MW)

10-20 0.21
(0.08)

20-100 0.13
(0.08)

100-500 -0.73 -0.73 -0.53
(0.08) (0.08) (0.12)

>500 -0.63 -0.64 -0.34
(0.10) (0.10) (0.13)

Capacity>100×Entry Year
>2013-2015 -0.02

(0.16)
>2016-2018 -0.16

(0.19)
>2018 -0.34

(0.21)
Capacity>100×Year

>2013-2015 0.65 0.64 0.60
(0.10) (0.10) (0.15)

>2016-2018 0.60 0.60 0.66
(0.10) (0.10) (0.20)

>2018 0.52 0.52 0.70
(0.09) (0.09) (0.22)

We additionally include entry year fixed effects, year fixed effects, number of quarters in the queue fixed effects and their interactions with whether the generator is
waiting for its third study, state fixed effects, indicators for whether the generator is an uprate, waiting for its third study, and study 1 indicates the generator might later
share costs with others.



Table E.13: Ordered Probit Model: Cost Estimates
(1) Baseline (2) Large Generators (3) More Covariates

Last Study Cost ($Million/MW)
0.01-0.05 0.49 0.49 0.51

(0.08) (0.08) (0.09)
0.05-0.20 1.24 1.24 1.21

(0.08) (0.08) (0.08)
>0.20 2.34 2.34 2.31

(0.09) (0.09) (0.09)
Has Tests (ztest) 0.07

(0.07)
Cost Sharing (zcost-sharing) -0.17 -0.17 -0.23

(0.10) (0.10) (0.12)
ln Total MW in the Queue

<10km 0.03
(0.03)

<100km -0.01
(0.07)

Same TO -0.03 -0.03 -0.02
(0.02) (0.02) (0.03)

PJM 0.08
(0.13)

Withdrawn in the Past 2 Quarters, <100km 0.02 0.02 0.01
(0.01) (0.01) (0.01)

Withdrawn in the Past 2 Quarters, Same TO 0.00
(0.02)

Generator i Waiting for Third Study ×
ln Total MW in the Queue

PJM 0.01
(0.01)

Withdrawn in the Past 2 Quarters, <100km -0.02 -0.02 -0.02
(0.01) (0.01) (0.02)

Withdrawn in the Past 2 Quarters, Same TO -0.00
(0.02)

Wind/Solar 0.45 0.45 0.33
(0.09) (0.09) (0.18)

Wind/Solar×Entry Year
>2013-2015 0.42

(0.32)
>2016-2018 0.59

(0.41)
>2018 -0.48 -0.48 0.08

(0.20) (0.20) (0.46)
Wind/Solar×Year

>2013-2015 -0.03
(0.30)

>2016-2018 -0.43
(0.42)

>2018 0.09 0.09 -0.28
(0.19) (0.19) (0.49)

Capacity (MW)
10-20 -0.08

(0.09)
20-100 -0.01

(0.10)
100-500 -0.51

(0.24)
>500 -0.46

(0.27)
Capacity>100×Entry Year

>2013-2015 0.02 0.02 0.89
(0.15) (0.15) (0.32)

>2016-2018 -0.13 -0.13 0.93
(0.12) (0.12) (0.43)

>2018 0.14 0.14 1.22
(0.09) (0.09) (0.47)

Capacity>100×Year
>2013-2015 -0.26

(0.32)
>2016-2018 -0.44

(0.44)
>2018 -0.55

(0.50)
We additionally include entry year and year fixed effects at a 3-year level, state fixed effects, number of quarters in the queue fixed effects up to 2 years and interactions
with whether the generator is waiting for the third study, indicators for whether the generator is an uprate, waiting for its third study, study 1 indicates the generator
might later share costs with others, any upgrade was completed during the same substation, the most recent interconnection at the same substation, and any RTEP was
completed at the same substation.The ordered probit cutoffs are [0, µ̂2 =0.93, µ̂3 = 1.24] , with (µ2 , µ3)’s standard errors at (0.04, 0.08) in the baseline.



Table E.14: Standard Deviation Estimates for Unobservables ($1,000/MW)

ξt Year
<2013 2013-2015 2016-2018 >2018

Renewable
Waiting Time≤2 Years 877.03 240.11 381.58 471.48

(120.45) (86.62) (56.52) (40.67)
Waiting Time>2 Years 1294.16 342.51 613.45 546.47

(211.91) (73.18) (79.83) (40.36)
Non-Renewable

Waiting Time≤2 Years 666.73 320.08 342.46 247.62
(152.71) (52.92) (47.10) (36.46)

Waiting Time>2 Years 354.98 324.09 227.92 95.21
(340.11) (79.61) (74.43) (28.36)

εt 78.77
(4.80)

Estimates of the standard deviations of the unobservables. SEs in parentheses.

Figure E.4: Number of Generators Waiting in Queue 2011-2020, Model and Data
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For year t = 2011, . . . , 2020, the solid black lines (number of generators waiting in queue) at t
represents the number of generators that entered the queue in or after 2008 and had not withdrawn
by t. The blue line is the simulated prediction. The red line represents the confidence intervals for the
model prediction.
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