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Abstract

This paper studies averages of intersection bounds – the bounds defined by the infimum of a collec-

tion of regression functions – and other similar functionals of these bounds, such as averages of saddle

values. Examples of such parameters include Frechet-Hoeffding bounds, Makarov (1981) bounds on

distributional effects. The proposed estimator classifies covariate values into the regions corresponding

to the identity of binding regression function and takes the sample average. The paper shows that the

proposed moment function is insensitive to first-order classification mistakes, enabling the use of var-

ious regularized/machine learning classifiers in the first (classification) step. The result is generalized

to cover bounds on the values of linear programming problems and best linear predictor of intersection

bounds.

1 Introduction

Economists are often interested in bounds on parameters when parameters themselves are not point-

identified (Manski (1989, 1990)), such as quantiles of heterogeneous treatment effects and other measures

other than mean. Baseline or pre-treatment covariates often contain helpful information that helps tighten

the bounds (Manski and Pepper (2000)) on the parameter of interest. The underlying nuisance functions

appearing in covariate-specific bounds often create statistical or computational challenges. In this paper,

I focus on averages of intersection bounds – the infimum of a collection of nonparametric regression

functions – and propose a large sample inference procedure based on a novel moment equation. I show
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that this procedure is first-order insensitive to the misclassification mistake in the identity of the binding

constraint.

Let me demonstrate the basic idea using the example Frechet-Hoeffding bounds, a classic example in

program evaluation (Manski (1997); Heckman et al. (1997)) literatures. Let D = 1 be a binary treatment,

let S(1) and S(0) be potential binary outcomes in the treated and control states, and let S = DS(1)+ (1−
D)S(0) be the realized outcome. The target parameter is the share of subjects Pr(S(1) = S(0) = 1) whose

outcome is one in both treated and control state (i.e., the always-takers). The sharp upper bound πU on

the always-takers’ share is

πat = EX Pr(S(1) = S(0) = 1 | X)≤ EX min
d∈{1,0}

s(d,X) =: πU (1.1)

= EX ∑
d∈{1,0}

1{D = d} ·S
Pr(D = d | X)

1{d = arg min
d∈{1,0}

s(d,x)} (1.2)

where s(1,x) and s(0,x) are the conditional probability of S = 1 the treated and control state, respec-

tively. Most of earlier work (Fan and Park (2010), Chernozhukov et al. (2013)) has extensively studied

regression approach (1.1). This paper proposes an asymptotic theory based on the moment equation (1.2),

arguing that its accommodates a wider set of first-stage plug-in estimators.

The paper focuses on bounds that can be represented as averages of intersection bounds

ψ0 = EX inf
t∈T

s0(t,X), (1.3)

where T is a possibly infinite index set and s0(t,x) are regression functions. The first contribution is to

derive the asymptotic theory based on plug-in classifiers

t∗0(x) := argmin
t∈T

s0(t,x), (1.4)

where the minimizer function t∗0 (x) is estimated from the regression functions ∪t∈T s(t,x). Assuming

the estimates of regression functions s0(t,x) converge at worst-case o(N−1/4) rate, I show that the sharp

bound must be first-order insensitive to the classification mistakes. As a result, the proposed estimator is

asymptotically equivalent to its oracle counterpart, where the oracle knows the true value of t∗0 (x). Thus,

the proposed estimator accommodates regularized procedures that were not previously admissible with

the regression approach. Furthermore, this estimator will be the first one (for this parameter) to have

its asymptotic variance expressed analytically in closed form (rather than approximated by simulation).

This result is the first example in the debiased inference literature where the orthogonality (first-order
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insensitivity) property follows from an envelope argument rather than attained by adding a correction

term (e.g., Newey (1994)). The result covers Frechet-Hoeffding bounds (Manski (1997); Heckman et al.

(1997), Fan and Park (2010)) and Makarov (1981) bounds on distributional effects as special cases.

The leading special case of the bound (1.3) comes from linear programming (LP) problem. A standard

form of an LP is

q′β q
0 := min

β0∈Rp
q′β0 s.to Aβ0 = b0 (1.5)

β0 ≥ 0,

where both the LHS matrix A and the cost parameter q are known and deterministic while b0 is a vector of

moments (e.g., population means). If there are baseline covariates available, I propose averaging optimal

values q′β q
0 (x) of the conditional LPs

min
β0∈Rp

q′β0 s.to Aβ0 = b0(x) (1.6)

β0 ≥ 0.

and characterize this parameter as a special case of (1.3). Therefore, the proposed bound is weakly tighter

than the basic bound (1.5) that does not use covariates. The proposed estimator only requires calculating

the vertices of the dual feasible set which does not depend on x. It neither attempts solving the primal

(1.6) or dual, nor requires the solution to be available closed form. An immediate application of (1.6)

are the Frechet-Hoeffding-type bounds on joint distributions with multi-valued treatments and outcomes,

with possibly additional constraints from economic theory expressed in the matrix A.

An important class of LP bounds (e.g., bounds on labor supply responses (Kline and Tartari (2016))

or bounds as in Kamat (2021)) require both the matrix A(x) and the free vector b0(x) to be functions of x,

if conditioned on covariates

min
β0∈Rp

q′β0 s.to A(x)β0 = b0(x) (1.7)

β0 ≥ 0,

As a result, their target parameters EX q′β q
0 (X) are special cases of expectations of optimal values of

Lagrangians

EX sup
κ∈K

inf
t∈T

s0(t,κ ,X) = EX inf
t∈T

sup
κ∈K

s0(t,κ ,X) = EX s0(t0(X),κ0(X),X)
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which moves us outside the main framework (1.3). The proposed estimator is shown to be insensitive to

the first-order mistakes in the primal and dual optimizers, extending the oracle property from minimizers

t∗0 (x) in (1.4) to saddle points (t∗0 (x),κ
∗
0 (x)). The other extensions of (1.3) include best linear predictors

of intersection bounds and taking nonlinear transformations of inft∈T s0(t,x), such as trimmed means.

The paper unifies two lines of research that have been previously studied separately. The first one is

the literature on bounds, in particular, intersection bounds and bounds on aggregate measures of hetero-

geneous treatment effects. The second one is the literature on classification, statistical treatment rules and

policy learning.

.

Bounds, Convex Optimization, and Directionally Differentiable Functionals. Set identification is

a vast area of research, encompassing a wide variety of approaches: linear and quadratic programming,

random set theory, support function, and moment inequalities (Manski (1990), Manski and Pepper (2000),

Manski and Tamer (2002), Haile and Tamer (2003), Chernozhukov et al. (2007), Beresteanu and Molinari

(2008), Molinari (2008), Cilibero and Tamer (2009), Lee (2009), Stoye (2009), Andrews and Shi (2013),

Beresteanu et al. (2011), Chandrasekhar et al. (2012), Chernozhukov et al. (2015), Gafarov (2019), Kallus et al.

(2020)), see e.g. Molchanov and Molinari (2018) or Molinari (2020) for a review. Most of the results

on distributional effects (Makarov (1981), Manski (1997); Heckman et al. (1997), Fan and Park (2010,

2012), Tetenov (2012), Fan et al. (2017), Firpo and Ridder (2019)) focus on identification and/or deriv-

ing sharp bounds with covariates, while inference is much less studied. The first discussion of estima-

tors and inference appears in Fan and Park (2010), where, on p.945 they sketch a plug-in of ψ0 based

on moment condition (1.1) without statistical guarantees. Targeting the envelope function inft∈T s(t,x),

the work by Chernozhukov et al. (2013) proposes a plug-in approach based on least squares series es-

timators, where large sample inference is based on the strong approximation of a sequence of series

or kernel-based empirical processes. Switching focus from the envelope function to its best linear pre-

dictor, Chandrasekhar et al. (2012) proposes a root-N consistent and uniformly asymptotically Gaussian

estimator of the target parameter, relying on the first-stage series estimators. Finally, recent work by

Lee (2021) focuses on bounds on conditional distributions of treatment effects. That is, most inference

work focuses on the envelope function, rather than its mean value, which makes the lack of differen-

tiability of x → min(x,0) at the kink point x = 0 a common concern (e.g., Fang and Santos (2018)).

Because expectation EX [·] in (1.3) is a smoothing operator, this challenge does not apply to the parameter

in (1.3). The paper contributes to recently growing literature on bounds coming from linear program-

ming problems (Honoré and Tamer (2006), Andrews et al. (2020), Fang et al. (2020),Dong et al. (2021),

Hsieh et al. (2021)). Hsieh et al. (2021) proposes a duality argument similar to the one used here, however,
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linking LP to covariates appears to be new. The work by Fang et al. (2020) also uses duality approach

for inference / hypothesis testing problem under weaker assumptions that the present manuscript. In

contrast, this paper focuses on estimation. Finally, the paper contributes to a growing literature on ma-

chine learning for bounds and partially identified models (Kallus and Zhou (2019), Jeong and Namkoong

(2020), Bruns-Smith and Zhou (2023), Semenova (2023)) and sensitivity analysis (Dorn and Guo (2021),

Dorn et al. (2021), Bonvini and Kennedy (2021), Bonvini et al. (2022)), see e.g., Kennedy (2022) for the

review.

Policy learning and classification. The Frechet bound (1.1)–(1.2) coincides with the negative first-best

welfare in the statistical treatment choice literature ( Kitagawa and Tetenov (2018), Mbakop and Tabord-Meehan

(2021), Athey and Wager (2021)) up to a constant. However, the minimizer function t0(X) and the pop-

ulation bound (1.3) have opposite priorities. The optimal policy (i.e., the classifier t0(X)) is the primary

target parameter in the treatment choice literature, while this paper focuses on the bound itself. In con-

trast, most classification and treatment choice papers treat (1.3) as a criterion function. They are primarily

interested in the optimal policy t0(X) that approximately attains optimal value (1.3), while this value itself

is of secondary interest. Likewise, these papers rely on the margin assumption (Mammen and Tsybakov

(1999); Tsybakov (2004)) to improve the statistical guarantees of the ERM classifier. Here, I rely on its

to control the misclassification bias of the plug-in estimator.

The rest of the paper is organized as follows. Section 2 provides motivating examples and sketches

the proposed result. Section 3 formally states the main result. Section 4 presents the extensions, including

general case optimization problems, best linear predictor of intersection bounds, and nonlinear smoothing

functionals of intersection bounds.

2 Set-Up

Many causal parameters of interest can only be bounded from above and below because they are not

point-identified. I focus on bounds that can be represented as

ψ0 := EX inf
t∈T

s(t,X) (2.1)

where X is a covariate vector, T is a possibly infinite index set, and s(t,x) is a regression function of

x. Examples include Frechet-Hoeffding bounds in (Heckman et al. (1997); Manski (1997)) and Makarov

(1981) bounds on distributional effects. The paper’s goal is to develop asymptotically Gaussian inference

on ψ0 based on the regularized/machine learning classifiers as well as to characterize the asymptotic
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variance bound.

Notation and Definitions. Let me introduce notation. Suppose each function s(t,x) is a conditional

expectation function of some observed random variable gt(W ).

s(t,x) = E[gt(W ) | X = x].

The the identity of binding constraint, which is assumed unique a.s., is the minimizer function

t0(x) := argmin
t∈T

s0(t,x).

The envelope regression function is

inf
t∈T

s0(t,x) = s0(t
∗
0 (x),x).

The envelope moment function is

g(W,η) := ∑
t∈T

gt(W )1{t = t(X)}, η(x) := t(x). (2.2)

Taking conditional expectations of the envelope moment coincides with the envelope regression function:

E[g(W,η0) | X ] = ∑
t∈T

s(t,X)1{t = t0(X)}= inf
t∈T

s0(t,X),

which implies

ψ0 = EXE[g(W,η0) | X ] = Eg(W,η0). (2.3)

The oracle asymptotic variance of ψ0

Vψ := E∑
t∈T

E[g2
t (W ) | X ]1{t = t0(X)}−ψ2

0 . (2.4)

If the function t0(X) was known, the population mean would attain the variance Vψ .
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2.1 Motivating Examples.

Bounds on parameters of joint distributions with fixed marginals. Let D = 1 be an indicator for

treatment receipt. Let S(1) and S(0) denote the potential binary outcomes if an individual is treated or

not, respectively. I assume the standard ignorability assumption.

Assumption 1 (Conditional independence). The vector of potential outcomes is independent of the treat-

ment D conditional on X

(S(1),S(0),X)⊥⊥ D | X

and the propensity score

µ1(X) = Pr(D = 1 | X) (2.5)

is known. Example 2.1 describes Frechet-Hoeffding (Manski (1997); Heckman et al. (1997)) bounds on

the always-takers’ share.

Example 2.1. Frechet-Hoeffding bounds Suppose Assumption 1 holds with a binary outcome S ∈
{1,0}. Then, the conditional always-takers’ share

πat(x) := Pr(S(1) = S(0) = 1 | X = x)

is bounded as

πmin(x) := max(s(0,x)+ s(1,x)− 1,0)≤ πat(x)≤ min(s(0,x),s(1,x)) =: πmax(x) (2.6)

Aggregating the bound over covariate space gives the sharp lower and upper bounds

πL := Emax(s(0,X)+ s(1,X)− 1,0)≤ Pr(S(1) = S(0) = 1)≤ Emin(s(0,X),s(1,X)) =: πU (2.7)

Thus, πU is a special case of (2.1) with the index set

T = {1,0}

and s(t,x) = Pr(S = t | X = x) for t ∈ T . An envelope moment equation for πU is given by

g(W,η0) := ∑
t∈{1,0}

D = t

Pr(D = t | X)
S1{t = t0(X)} (2.8)

7



The asymptotic variance in (2.4) reduces to

Vψ = E

[
∑

t∈{1,0}

s(t,X)

µt(X)
1{t0(X) = t}

]
−π2

U , (2.9)

When the propensity score is

µ1(x) = µ0(x) = 1/2, (2.10)

the asymptotic variance reduces to a function of the bound itself Vψ = πU(2−πU). If the strong overlap

condition

0 < κ ≤ inf
x∈X

µ1(x)≤ sup
x∈X

µ1(x)≤ 1−κ < 1. (2.11)

holds, Assumption 3.3 is automatically satisfied. If the other assumptions hold, the statement of Theorem

3.1 holds with ψ0 = πU in (2.7) and g(W,η0) in (2.8) and Vψ in (2.9).

Example 2.2. Makarov (1981) bounds on distributional effects Consider the setup of Example 2.1

with S(1) and S(0) being continuously distributed outcomes. Let F1(· | x) and F0(· | x) be a conditional

CDF of S | D = 1,X = x and S | D = 0,X = x, respectively. Let FS(1)−S(0)(t) be the CDF of the treatment

effect S(1)−S(0), and let FS(1)−S(0)(t | x) be its conditional analog. Makarov (1981) shows that the sharp

upper bound on FS(1)−S(0)(t) is given by

ψU := 1+E inf
t∈T

min(F1(t | X)−F0(t | X),0) (2.12)

The sharp upper bound ψU is a special case of ψ0 in (2.1) with T = R∪{α} and

s(t,x) := E[1{S ≤ t} | D = 1,X = x]−E[1{S ≤ t} | D = 0,X = x], t ∈ R,

and

s(α,x) := E[0 | X = x] = 0.

The envelope moment equation for the upper bound ψU is

g(W,η) := ∑
t∈T

(
D1{S ≤ t(x)}

µ1(X)
− (1−D)1{S ≤ t(x)}

µ0(X)

)
1{t(x) = argmin

t∈T
s(t,x)} (2.13)
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The asymptotic variance is

Vψ = E ∑
t∈T 6={0}

(
F1(t(X))

µ1(X)
+

F0(t(X))

µ0(X)

)
1{t(X) = t}−ψ2

U . (2.14)

Suppose the strong overlap condition (2.11) holds. Under Assumptions 3.1 and 3.2, the statement of

Theorem 3.1 holds with ψ0 = ψU in (2.12) and g(W,η0) in (2.13) and Vψ in (2.14).

Example 2.3. Linear Programming (LP) in a special case Consider an LP (linear programming)

problem in the standard form:

β q
0 (x) := min

β
−q′β

s.t. Aβ = b0(x), (2.15)

β ≥ 0,

where q and A ∈ Rk×p are known deterministic quantities that do not change with x. The RHS vector

b0(x) is an expectation function

b0(x) = E[S | X = x].

The target parameter is

ψ0 = Eq′β q
0 (X). (2.16)

I show that the target parameter (2.16) is a special case of (2.1). Consider the dual form of the problem

(2.15)

max
ν,λ

−bT
0 (x)ν subject to

(
A⊤ −Ip

)
(ν;λ )′− q = 0, (2.17)

λ ≥ 0.

By strong duality, the primal and dual optimal values are equal

−bT
0 (x)ν

∗(x) = q′β q
0 (x). (2.18)

Notice that the dual feasible set defined by (2.17) does not depend on x. This set is the polytope with

9



at most
(

p+k
p

)
vertices, where each vertex corresponds to a Basic Feasible Solution (BFS). Assuming the

primal LP has a finite optimal solution for each x, the dual LP must have achieve its optimal value in one

of the vertices. Taking the index set T := T(A;q) as the vertex set and regression function as

s(t,x) = bT
0 (x)νt , (νt ;λt) ∈ T(A;q) =: T (2.19)

gives

bT
0 (x)ν

∗
0 (x) = inf

(νt ;λt )∈T(A;q)
bT

0 (x) ·νt =: inf
t∈T

s(t,x),

and the target parameter is

ψ0 = Eq′β q
0 (X) = E inf

t∈T
s(t,X). (2.20)

A formal proof of (2.20) is given in Lemma 1.4. The orthogonal moment for ψ0 takes the form

g(W,η0) = ∑
t∈T(A;q)

ST νt{s(t,x) = argmin
t∈T

s(t,x)} (2.21)

The asymptotic variance Vψ reduces to

Vψ = E∑
t∈T

E[(ST νt)
2 | X ]1{s(t,x) = argmin

t∈T
s(t,x)}−ψ2

0 . (2.22)

Remark 2.1. Example 2.1 is a special case of Example 2.3 with

q = (1,0,0,0), A =




1 1 0 0

1 0 1 0

1 1 1 1




the RHS as the expectation vector-function

b0(x) = E[S | X = x], S :=

(
D ·S

µ1(X)
,

(1−D) ·S
µ0(X)

,1

)
.

The set of basic feasible solutions (i.e., vertices of dual feasible set) is

T(A;q) = {(ν1;λ1),(ν2;λ2)} =
{
(1,0,0,0,1,0,0)′,(0,1,0,0,0,1,0)′

}
,

10



where the first 3 coordinates correspond to the shadow prices of each of the 3 constraint. The vector

ν∗
1 (x) = (1,0,0) corresponds to x : s(1,x) < s(0,x), where solution min(s(1,x),s(0,x)) = s(1,x) is at-

tained at the corner solution with the first row of A being active constraint. Likewise, ν∗
2 (x) = (0,1,0)′ if

min(s(1,x),s(0,x)) = s(0,x) and the second row of A is active constraint.

2.2 Other Examples

A large number of LP problems do not fall into the framework (2.15). In these problems, conditioning

on covariates results in both LHS matrix A(x) and the RHS vector b0(x) being x-dependent. The target

parameters take the form

min
β

−q′β

s.t. A(x)β = b0(x), (2.23)

β ≥ 0, (2.24)

where the matrix A(x) depends on x. I study this parameter as a special case of generic optimization

problem Example 2.4.

Example 2.4. Generic optimization problem. Consider a standard form optimization problem:

min f0(β ) s.to f (β ,x) ≤ 0, h(β ,x) = 0, (2.25)

where β ∈ Rp. The constraint functions are f (β ,x) = ( f1(β ,x), . . . , fm f
(β ,x)) ∈ Rm f and h(β ,x) =

(hm f +1(β ,x),hm f +2(β ,x), . . . ,hm(β ,x)) ∈ Rmh+m f = Rm. The target parameter takes the form

ψ0 = EX f0(β
∗
0 (X)). (2.26)

In what follows, assume there exist an observed random variable S j(β ) such that

f j(x,β ) = E[S j(β ) | X = x], j = 1,2, . . . ,m f

h j(x,β ) = E[S j(β ) | X = x], j = m f + 1, . . . ,m.

The target parameter is

ψ0 = EX f0(β
∗
0 (X)).

11



For each x, consider the Lagrangian function. I represent it as a regression function

s0(κ , t,x) = f0(β )+

m f

∑
j=1

λ j f j(β ,x)+
mh

∑
j=1

ν jh j(β ,x), (2.27)

where t = β is the inner minimization argument and κ = (ν,λ ) is the outer maximization argument,

respectively. The dual function is

g(κ ,x) = inf
t∈T

s0(κ , t,x). (2.28)

The dual maximization problem is

max
κ

g(κ ,x) s.to λ ≥ 0. (2.29)

Assuming strong duality holds (e.g., Slater condition holds) for each x, the primal and dual objectives

coincide

g(κ0(x),x) = f0(β
∗
0 (x)) = f0(t0(x)) ∀x ∈ X, (2.30)

which implies that (t0(x),κ0(x)) is a saddle point of the regression function (2.27). As a result, the (2.26)

reduces to

ψ0 = EX sup
κ∈K

inf
t∈T

s0(κ , t,X) = EX inf
t∈T

sup
κ∈K

s0(κ , t,X). (2.31)

For each (κ , t), define the moment function

gκ ,t(W ) := f0(β )+

m f

∑
j=1

λ jS j(β )+
m

∑
j=mh+1

ν jS j(β ), t := β ,κ := (ν,λ ).

The proposed moment function is

ψ0 = E∑
t∈T

∑
κ∈K

1{κ = κ0(X), t = t0(X)}gκ ,t(W ),

where (κ0(x), t0(x)) is the saddle point of s0(κ , t,x). The asymptotic variance is

Vψ := E ∑
t∈T

∑
κ∈K

1{κ = κ0(X), t = t0(X)}[g2
κ ,t(W ) | X ]−ψ2

0 . (2.32)
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Note that the max-min mapping x → maxκ∈K mint∈T s0(κ , t,x) is neither convex nor concave in x.

As a result, the sharp bounds may not correspond to aggregating over full covariate space. That said,

there could be other motivation to condition on covariates, for example, to sustain the unconfoundedness

assumption.

Example 2.5. Best Linear Predictor of Intersection bounds Suppose the envelope function is a smooth

function of x that can be approximated as

inf
t∈T

s(t,X) = p(X)′β0 +R(X), (2.33)

where p(X) is a d-vector of basis functions, inft∈T s(t,X) is the envelope function, R(X) is the approxi-

mation error and β0 is the best linear predictor. The target parameter β0 is the best linear predictor

β0 = (Ep(X)p(X)⊤)−1
Ep(X) inf

t∈T
s0(t,X)

= (Ep(X)p(X)⊤)−1
Ep(X)g(W,η0), (2.34)

where g(W,η0) is in (2.8). The pointwise and uniform asymptotic theory for the best linear predictor

based on (2.34) is discussed in Theorem 4.2.

Example 2.6. Bounds on E(S(1)− S(0))+ Consider the setup of Example 2.2. Tetenov (2012) and

Fan et al. (2017) study sharp lower bound on the partially identified parameter E(S(1)− S(0))+. The

bound takes the form

EX

∫

R
(F0(t | X)−F1(t | X))+dt = EX

∫

R
max(F0(t | X)−F1(t | X),0)dt,

where F1(t | x) and F0(t | x) are the CDFs of S | D = 1,X = x and S | D = 0,X = x, respectively. Fubini

theorem gives

EX

∫

R
max(F0(t | X)−F1(t | X),0)dt =

∫

R

∫

X

max(F0(t | x)−F1(t | x),0) fX (x)dxdt,

which suggests an orthogonal moment

g(W,η0) =:

∫

R
gt(W,η0)dt,

13



where

gt(W,η0) =

(
(1−D)1{S ≤ t}

µ0(X)
− D1{S ≤ t}

µ1(X)

)
1{F0(t | X)−F1(t | X)> 0}

Example 2.7. Interval-Valued Outcome Semenova (2023) studies parameters that are linear in an

unobserved scalar outcome Y . The identified set takes the form

B= {β = Σ−1
EV (η0)Y, YL ≤ Y ≤ YU}, (2.35)

where the random vector V (η0) ∈ Rd depends on a nuisance function η0 and the matrix Σ is identified.

The target parameter is the support function

σ(q) := sup
b∈B

q′b = sup
Y : YL≤Y≤YU

q′Σ−1
EV (η0)Y = q′Σ−1

EV (η0)Y
∗(η0,q), (2.36)

where Y ∗(η0,q) is the selection (a particular element of the random set [YL,YU ]) that maximizes (2.36).

Beresteanu and Molinari (2008); Bontemps et al. (2012) have shown that Y ∗(η0,q) has a closed-form

expresssion

Y ∗(η ,q) =





YL q′Σ−1V (η)< 0

YU q′Σ−1V (η)> 0

Envelope theorem gives

∂ησ(q) = q′Σ−1
E∂ηV (η0)Y

∗(η0,q),

where the selection Y ∗(η0,q) is insensitive to the classification error. Let X denote the argument of the

nuisance function η0. If V (η) is a random variable given X = x, the equivalence of margin assumption

(3.1) is the bound on the conditional density of V (η) | X = x, and the equivalent of s∞
N is the mean square

rate sN (Partially Linear Model with Interval-Valued Outcome, Semenova (2023)). If V (η) and η are

functions of the same argument (e.g. Average Partial Derivative, Kaido (2017)), asymptotic theory is

based on the combination of margin assumption and the worst-case s∞
N rate.

2.3 Envelope theorem. Zero derivative property.

In this section, I consider the plug-in classifiers, that is, the classifiers based on the estimated regression

functions {s(t,x)}t∈T . The plug-in estimator of t(X):

η(x) := t(x) := arg inf
t∈T

s(t,x),
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where s(t,x) are estimates of s0(t,x). Then, the conditional misclassification effect on the true function

s0(t,x) is

τ0(x) := s0(η(x),x)− s0(t0(x),x). (2.37)

A covariate value x is misclassified if and only if τ0(x)> 0.

Let me introduce a two-stage estimator of ψ0. In the first stage, I estimate the regression functions

and construct the plug-in classifier. In the second stage, I compute the sample estimate of the moment

function.

Definition 1 (Cross-Fitting).

1. For a random sample of size N, denote a K-fold random partition of the sample indices [N] =

{1,2, ...,N} by (Jk)
K
k=1, where K is the number of partitions and the sample size of each fold is

n = N/K. For each k ∈ [K] = {1,2, ...,K} define Jc
k = {1,2, ...,N} \ Jk.

2. For each k ∈ [K], construct an estimator η̂k = η̂(Vi∈Jc
k
) of the nuisance parameter η0 using only the

data {V j : j ∈ Jc
k}. Take η̂(Xi) := η̂k(Xi), i ∈ Jk.

Definition 2 (Plug-in estimator of ψ0). Given the fitted values of the estimated classifier (η̂(Xi))
N
i=1, define

ψ̂(η̂) := N−1
N

∑
i=1

g(Wi, η̂) := N−1
N

∑
i=1

∑
t∈T

gt(Wi)1{t(Xi) = η̂(Xi)}. (2.38)

Under the conditions discussed below, the plug-in estimator ψ̂(η̂) is equivalent to its oracle version

√
N(N−1

N

∑
i=1

g(Wi, η̂)−N−1
N

∑
i=1

g(Wi,η0)) = oP(1), (2.39)

where the oracle knows the true value of first-stage arg min function. Therefore, ψ̂(η̂) is asymptotically

Gaussian

N−1/2
N

∑
i=1

g(Wi,η0)−ψ0 ⇒ N(0,Vψ).

where Vψ in (2.4) coincides with the oracle asymptotic variance.

Remark 2.2 (Envelope property). The oracle property (2.39) can be interpreted as an application of en-

velope theorem-type argument. Consider Example 2.1. Define the conditional average treatment effect

(CATE)

ζ (x) = s(1,x)− s(0,x). (2.40)
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Consider a class of sets G ⊆ X determined by plug-in estimates of conditional ATE

G(ζ ) := {x : ζ (x) ≥ 0}.

Then, the Frechet-Hoeffding upper bound can be expressed as

πU := min
G(ζ )

πU(G) = πU(G
∗(ζ0)),

where

πU(G) = E

[
1−D

µ0(X)
1{X ∈ G}+ D

µ1(X)
1{X 6∈ G}

]
.

The optimal value of the bound πU = πU(G
∗) is first-order insensitive with respect to perturbations in ζ .

3 Main Result

3.1 Assumptions

ASSUMPTION 3.1 (Bound on the first-stage ℓ∞ rate). There exists a sequence s∞
N = o(N−1/4) such that

the following worst-case rate bound holds.

sup
s(t,x)∈St

N

sup
t∈T

sup
x∈X

|s(t,x)− s0(t,x)| ≤ s∞
N = o(N−1/4).

Assumption 3.1 requires the first-stage estimator s(t,x) of s0(t,x) converges at o(N−1/4) rate. When

stated in L2 rate, the o(N−1/4) rate is a classic assumption in the semiparametric literature. Examples of

estimators obeying ℓ∞ rate bound include ℓ1-regularized estimators in Belloni et al. (2017).

ASSUMPTION 3.2 (Margin assumption). Assume that there exist finite positive constants B̄ f ,δ ∈ (0,∞)

such that

Pr

(
min

t∈T\argmint∈T s0(t,x)
s0(t,X)−min

t∈T
s0(t,X)≤ t

)
≤ B̄ f t, ∀t ∈ (0,δ ). (3.1)

Assumption 3.2 states the generalization of margin assumption (Mammen and Tsybakov (1999); Tsybakov

(2004)) for a possibly infinite index set, as proposed in Qian and Murphy (2011). While it does al-

low the maximizer of s(t,x) to consist of more than 1 element, it restricts the difference in condi-

tional mean functions between the envelope function s(t(x),x) and the best suboptimal function at x
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mint∈T\argmint∈T s(t,x) s(t,x). In the binary case with T = {1,0}, the margin condition (3.1) reduces to

Pr(0 < |s(1,X)− s(0,X)| ≤ t)≤ B̄ f t, ∀t ∈ (0,δ ). (3.2)

For example, (3.2) holds if s(1,X)− s(0,X) is continuously distributed with a bounded density.

Define the conditional second moment

ρ0(t,x) = E[g2
t (W ) | X = x], t ∈ T. (3.3)

ASSUMPTION 3.3 (Bounded Second Moment). There exists a constant 0 < B̄ < ∞ such that

sup
t∈T

sup
x∈X

ρ0(t,x)≤ B̄. (3.4)

Assumption 3.3 is a standard regularity condition, ensuring that the conditional second moment is

bounded uniformly over T and X.

Theorem 3.1 (Asymptotic Theory for ψ0 in (2.1)). Under Assumptions 3.1–3.3, the envelope orthogonal

moment obeys the oracle property (2.39). As a result,

√
N(N−1

N

∑
i=1

g(Wi, η̂)−ψ0)⇒d N(0,Vψ),

where the oracle asymptotic variance Vψ in (2.4).

Theorem 3.1 is my main result. It states the asymptotically Gaussian approximation for the sharp

bound parameter. It also provides an analytic expression for the asymptotic variance that has not previ-

ously made available.

Consider the asymptotic variance Vψ in (2.4). Unless Vψ is a function of ψ0 (e.g., (2.10) holds), the

asymptotic variance Vψ is first-order sensitive to the misclassification error. The sample analog estimator

V̂ψ := N−1
N

∑
i=1

ρ(t,Xi)1{t = argmins(t,X)}− ψ̂2, (3.5)

(3.5) is first-order sensitive to the estimation error in s(t,x). Lemma 3.2 discusses its convergence rate.

Lemma 3.2 (Consistency and Rate of the Variance Estimator). Assuming s0(t,x) and ρ0(t,x) are estimated

at s∞
N and ρ∞

N , respectively, under the conditions of Theorem 3.1,

|V̂ψ −Vψ |= OP(ρ
∞
N + s∞

N +N−1/2).
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3.2 Linear Programming (special case).

.

Algorithm 1 describes the estimator of ψ0 in Example 2.3.

Algorithm 1 Upper bound on parameters determined by LP with constant LHS matrix A(x) = A.

Input: direction q, matrix A, cross-fitted values (b̂(Xi))
N
i=1.

1: Calculate the set of Basic Feasible Solutions T(A;q) = {(νt ,λt)} for the dual LP whose constraints

are (
A⊤ −Ip

)
(ν;λ )− q = 0.

2: Estimate the identity of binding constraint

η̂(Xi) := arg min
(νt ;λt)∈T(A;q)

b̂T (Xi)νt

3: Report: the sample estimate

ψ̂ := N−1
N

∑
i=1

S⊤η̂(Xi). (3.6)

ASSUMPTION 3.4 (LP regularity conditions). (1) The estimator b(x) of b0(x) converges uniformly in

ℓ2 norm, that is

sup
b∈BN

sup
x∈X

‖b(x)− b0(x)‖ = o(N−1/4). (3.7)

(2) The linear combinations of vector b0(X) obey margin assumption, that is,

Pr( inf
v∈Rp,‖v‖=1

|v′b0(X)| ≤ t)≤ B̄t (3.8)

(3) The variance matrix of S is bounded in the operator norm, that is

sup
x∈X

maxeigE(SS′ | X = x)≤ B̄ a.s. in x. (3.9)

(4) The matrix A ∈ Rk×p has full row rank with k. (5) The problem (2.15) is feasible with finite optimal

value β
q
0 (x) for each covariate value.

Corollary 3.1 (Linear Programming Bounds). Suppose Assumption 3.4 holds. Then, the Theorem 3.1

holds for the ψ̂ of (3.6) and Vψ in (2.22).
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4 Extensions

In this section, I generalize my baseline result. Section 4.1 extends the theory of plug-in estimators from

minimizers to saddle-points, covering Examples 2.4 as a special case. Section 4.2 generalizes main result

to best linear predictor of intersection bounds.

4.1 Generic optimization problem

.

Consider Example 2.4. The target parameter in (2.31) is

ψ0 = EX max
κ∈K

min
t∈T

s0(t,κ ,X).

A point (κ0(x), t0(x)) is a saddle point of s0(t,κ ,x) if it obeys

s0(t0(x),κ ,x)≤ s0(t0(x),κ0(x),x)≤ s0(t,κ0(x),x) ∀κ ∈K∀t ∈ T.

Given a regression estimate s(t,κ ,x) of s0(t,κ ,x), let (κ(x), t(x)) be the saddle point of estimated re-

gression function s(t,κ ,x). Given the cross-fit estimated saddle points (κ̂(Xi), t̂(Xi))
N
i=1, I propose the

following plug-in estimator of ψ0 in (2.31).

Definition 3 (Plug-in estimator of ψ0 for generic LP problems). Given the fitted values (κ̂(Xi), t̂(Xi))
N
i=1,

define

ψ̂ := N−1
N

∑
i=1

∑
κ∈K

∑
t∈T

gκ ,t(Wi)1{κ = κ̂(Xi), t = t̂(Xi)}. (4.1)

ASSUMPTION 4.5 (Bound on the first-stage rate). There exists a sequence s∞
N = o(N−1/4) such that the

following worst-case rate bound holds.

sup
s(t,x)∈St

N

sup
κ∈K

sup
t∈T

sup
x∈X

|s(t,κ ,x)− s0(t,κ ,x)| ≤ s∞
N = o(N−1/4).

ASSUMPTION 4.6 (2d Margin Assumption). Assume that there exist finite positive constants B̄ f ,δ ∈
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(0,∞) such that

Pr(0 < min
κ∈K,t 6=t0

|s0(t,κ ,X)− s0(t0,κ ,X)| ≤ t)≤ B̄ f t ∀t ∈ (0,δ ). (4.2)

Pr(0 < min
t∈T,κ 6=κ0

|s0(t,κ ,X)− s0(t,κ0,X)| ≤ t)≤ B̄ f t ∀t ∈ (0,δ ). (4.3)

Theorem 4.1 (Asymptotic Theory for General LP Problems). Suppose Assumptions 4.5–4.6 hold and for

some B̄ ∈ (0,∞)

sup
t∈T

sup
κ∈K

sup
x∈X

E[g2
t,κ(W ) | X = x]≤ B̄.

Then, the estimator is asymptotically Gaussian

√
N(N−1

N

∑
i=1

g(Wi, η̂)−ψ0)⇒d N(0,Vψ),

where the oracle asymptotic variance Vψ in (2.32).

Theorem 4.1 is my second main result. It establishes the asymptotic theory for the expectation of

the optimal values of a generic optimization problem beyond those representable in (2.1). It extends the

argument of Theorem 3.1 from minimizers to saddle points.

4.2 Best Linear Predictor of Intersection bounds.

Consider Example 2.5. The target parameter is the best linear predictor of intersection bounds

Definition 4 (Best Linear Predictor). Given the first-stage fitted values (η̂(Xi))
N
i=1, define

β̂ :=

(
1

N

N

∑
i=1

p(Xi)p(Xi)
′
)−1

1

N

N

∑
i=1

p(Xi)g(Wi, η̂(Xi)). (4.4)

ASSUMPTION 4.7 (Regularity conditions on the basis functions and first-stage rate). (1) The sup-norm

of the basis functions ξd := supx∈X ‖p(x)‖= supx∈X(∑
d
j=1 p j(x)

2)1/2 grows sufficiently slow:

√
ξ 2

d logN

N
= o(1), dξ 2

d (s
∞
N)

2 = o(N−1/2)

(2) There exists a sequence of finite constants ld ,rd such that the norms of the misspecification error are

controlled as follows:

‖rg‖P,2 :=

√∫
rg(x)2dP(x). rd and ‖rg‖P,∞ := sup

x∈X
|rg(x)|. ldrd , (ξ 2

d logN/N)1/2 ·(1+ ldrd

√
d)= o(1)
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(3) There eigenvalues of Q = Ep(X)p(X)⊤ are bounded away from above and below.

Theorem 4.2 (Pointwise and Uniform Inference on Intersection bounds). Under Assumptions 3.2 and

4.7, the proposed estimator of best linear predictor is asymptotically normal:

lim
N→∞

sup
t∈R

∣∣∣∣∣Pr

(√
Nα ′(β̂ −β0)√

α ′Ωα
< t

)
−Φ(t)

∣∣∣∣∣= 0. (4.5)

Moreover, if the approximation error is negligible relative to the estimation error, namely
√

Nrg(x0) =

o(‖Ω1/2p(x0)‖), then ĝ(x) = p(x0)
′β̂ is asymptotically normal:

lim
N→∞

sup
t∈R

∣∣∣∣∣Pr

(√
N(ĝ(x0)− g(x0))√

p(x0)′Ωp(x0)
< t

)
−Φ(t)

∣∣∣∣∣= 0. (4.6)

Theorem 4.2 extends the basic result of Theorem 3.1 to accommodate linear smoothers of intersec-

tion bounds, such as best linear predictor. It follows from Theorem 3.1 of Semenova and Chernozhukov

(2021).

A Appendix A. Proofs

Lemma 1.3. The equality (2.4) holds.

Proof of Lemma 1.3. The result follows from the law of total variance

Var(g(W,η0)) = E[Var(g(W,η0) | X)]+Var(inf
t∈T

s0(t,X))

= E ∑
t∈T

E[S2
t0(X) | X ]1{t = t0(X)}−E∑

t∈T

1{t = t0(X)}s2
0(t,X)

︸ ︷︷ ︸
ψ0

+ψ0 −ψ2
0

Lemma 1.4 (Characterization of ψ0 in Example 2.3). Suppose the following conditions hold. (1) A∈Rk×p

has full row rank with k. (2) The problem (2.15) is feasible with finite optimal value β q
0 (x) a.s. in x.

Proof. (1) Consider the dual problem (2.17) for any point x. For an LP with linear constraints, strong

duality reduces to feasibility, which is assumed in (2). Therefore, strong duality (2.18) holds, and the dual

Lagrange problem must be feasible with a finite optimal value for each x.

(2) Notice that the dual feasible set does not depend on x. Let T(A;q) be the set of its BFS (basic

feasible solutions). The cardinality of the vertex set |T(A;q)| ≤
(

p+k
p

)
. By (1), the dual program has a
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finite optimal value, and, therefore, it must have an optimal BFS. Therefore,

bT
0 (x)ν

∗
0 (x) = inf

(νt ;λt)∈T(A;q)
bT

0 (x)νt =: inf
t∈T

s(t,x),

where s(t,x) are as in (2.19).

Proof of Theorem 3.1. Step 1. Define

t(X) = argmins(t,X)

t0(X) = argmins0(t,X)

τ(X) := s(t(X),X)− s(t0(X),X)≤ 0

τ0(X) := s0(t(X),X)− s0(t0(X),X)≥ 0

Suppose τ(X) 6= 0. Then,

τ(X)< 0 ≤ τ0(X)⇒ τ(X)− τ0(X)<−τ0(X)≤ 0.

Assumption 3.2 gives

Pr(0 ≤ τ0(X)≤ t)≤ Pr(s0(t(X),X)− s0(t0(X),X)≤ t)

≤ Pr

(
min

t\arg mins0(t,X)
s0(t,X)− s0(t0(X),X)≤ t

)
≤ B̄ f t.

Note that

E[g(W ;η)− gt0(W ) | X ] = s0(t(X),X)− s0(t0(X),X) = τ0(X).

Therefore, the bias is bounded as

|E[g(W ;η)− gt0(W )]| ≤ E|τ0(X)|1{τ(X)− τ0(X)≤−τ0(X)≤ 0}

≤ E|τ(X)− τ0(X)|1{τ(X)− τ0(X)≤−τ0(X)≤ 0}

≤ 2s∞
N Pr(τ(X)− τ0(X)≤−τ0(X)≤ 0)

≤ 2s∞
N Pr(−2s∞

N ≤−τ0(X)≤ 0)≤≤ B̄ f ((s
∞
N)

2),
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where Assumption 3.1 gives

τ(X)− τ0(X)<−τ0(X)≤ 0 ⇒−2s∞
N <−τ0(X)≤ 0.

The variance is bounded as

E[(g(W ;η)− gt0(W ))2 | X ]≤ 2(E[S2
t(X) | X ]+E[S2

t0(X) | X ])1{τ(X)− τ0(X)≤−τ0(X)≤ 0}

≤ C̄ Pr(τ(X)− τ0(X)≤−τ0(X)≤ 0) = C̄s∞
N .

Proof of Corollary 3.1. The set T(A;q) is a finite set. The constants

max
(νt ;λt)∈T(A;q)

‖νt‖ := C̄ < ∞

and

min
(ν1;λ1),(ν2;λ2);ν1 6=nu2∈T(A;q)

‖ν1 −ν2‖ := c > 0

are bounded away from above and below. Invoking the bound

sup
t

sup
x∈X

|s(t,x)− s0(t,x)| ≤ max
(νt ;λt )∈T(A;q)

‖νt‖ sup
x∈X

‖b(x)− b0(x)‖ ≤ C̄‖b(x)− b0(x)‖ (1.1)

and Assumption 3.4(1) verifies Assumption 3.1. Next, Assumption 3.2 reduces to

Pr

(
min

t∈T\argmint∈T s(t,x)
s0(t,X)−min

t∈T
s0(t,X)≤ t

)

=a Pr

(
min

(ν1;λ1),(ν2;λ2)∈T(A;q);ν1 6=ν2

|(ν1 −ν2)
′b0(X)| ≤ t

)

≤b Pr

(
inf

v∈Rp,‖v‖=1}
|v′b0(X)| ≤ t/c

)
≤c B̄/ct,

where (a) follows from the definition of set T = {νt ,(νt ,λt) ∈ T(A;q)} (b) follows from the inequality

min
(ν1;λ1),(ν2;λ2)∈T(A;q);ν1 6=ν2

|(ν1 −ν2)
′b0(x)|

≥ inf
v∈Rp,‖v‖=1

|v′b0(x)| min
(ν1;λ1),(ν2;λ2)∈T(A;q);ν1 6=ν2

‖ν1 −ν2‖= inf
v∈Rp,‖v‖=1

|v′b0(x)|c
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and (c) follows from Assumption 3.4(2). Finally, Assumption 3.3 follows from Assumption 3.4 (3):

sup
t∈T

sup
x∈X

E[g2
t (W ) | X = x]≤ sup

(νt ;λt)∈T(A;q)

E[(S′νt)
2 | X = x]

≤ sup
(νt ;λt)∈T(A;q)

ν ′
tE[SS′ | X = x]νt

≤ sup
(νt ;λt)∈T(A;q)

‖νt‖2B̄ ≤ C̄2B̄.

.

Proof of Theorem 4.1. Step 1. By strong duality assumed in (2.18), the primal and dual optimal points

(t0(x),κ0(x)) form a saddle point of the true regression function s0(t,κ ,x). Therefore,

s0(κ , t0(x),x) ≤ s0(κ0(x), t0(x),x) ≤ s0(κ0(x), t,x) ∀t∀κ . (1.2)

Likewise, (κ(x), t(x)) is a saddle point of s(t,κ ,x). Therefore,

s(κ0(x), t(x),x) ≤ s(κ(x), t(x),x) ≤ s(κ(x), t0(x),x). (1.3)

By Assumption 4.5, there exists N large enough such that

sup
κ∈K

sup
t∈T

sup
x∈X

|s(κ , t,x)− s0(κ , t,x)| ≤ s∞
N (1.4)

for s∞
N = o(N−1/4). Combining the definitions of saddle-points (1.2)–(1.3) gives

|s(κ(x), t(x),)− s0(κ0(x), t0(x),)| ≤ s∞
N . (1.5)

Invoking (1.5) and (1.4) gives

|s0(κ(x), t(x),x)− s0(κ0(x), t0(x),x)| ≤ |s(κ(x), t(x),x)− s0(κ(x), t(x),x)|

+ |s(κ(x), t(x),x)− s0(κ0(x), t0(x),x)| ≤ 2s∞
N .

Step 2. In this step, I bound the probability of misclassification event. Define

τ0(x) =: s0(κ(x), t(x),x)− s0(κ0(x), t0(x),x).
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A covariate value x is misclassified if and only if τ0(x) 6= 0. Consider a covariate value x : τ0(x) > 0.

Decompose

τ0(x) =: (s0(κ(x), t(x),x)− s0(κ(x), t0(x),x))+ s0(κ(x), t0(x),x)− s0(κ0(x), t0(x),x)︸ ︷︷ ︸
≤0

> 0

= ζ+(x)+ τ−0 (x),

where the second term τ−0 (x) ≤ 0 by saddle point property (1.2) of (κ0(x), t0(x)). If τ0(x)> 0, it must be

that ζ+(x)> 0. Invoking the saddle point property (1.3) gives

s(κ(x), t(x),x)− s(κ(x), t0(x),x)≥ 0,

which implies

0 < ζ+(x)

≤ s0(κ(x), t(x),x)− s0(κ(x), t0(x),x)+ s(κ(x), t(x),x)− s(κ(x), t0(x),x)

≤ |s(κ(x), t(x),x)− s0(κ(x), t(x),x)|+ |s(κ(x), t0(x),x)− s0(κ(x), t0(x),x)| ≤ 2s∞
N .

Assumption 4.6 gives

Pr(0 < ζ+(X)< t)≤ Pr(min
κ∈K

min
t∈T,t 6=t0

|s0(κ , t,X)− s0(κ , t0,X)| ≤ t)≤ B̄t,

which implies Pr(0 < ζ+(X)< 2s∞
N) = O(s∞

N). Collecting the terms gives

Eτ0(X)1{τ0(X)< 0} ≤ Eζ+(X)1{τ0(X)< 0}

≤ E(|s(κ(X), t(X),X)− s0(κ(X), t(X),X)|+ |s(κ(X), t0(X),X)− s0(κ(X), t0(X),X)|)1{τ0(X)> 0}

≤ 2s∞
N Pr(τ0(X)> 0)≤ 2s∞

N Pr(ζ+(X)> 0) = O(r2
N).

Step 3. Likewise, if τ0(x)< 0, we decompose

τ0(x) =:
(
s0(κ(x), t(x),x)− s0(κ0(x), t(x),x)

)
+ s0(κ0(x), t(x),x)− s0(κ0(x), t0(x),x)︸ ︷︷ ︸

≥0

< 0

= ζ−(x)+ τ+0 (x),

which implies ζ−(x)< 0. The rest of the argument follows similarly to Step 2, except for the Assumption
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4.6 is invoked as

Pr(0 < ζ−(X)< t)≤ Pr(min
t∈T

min
κ 6=κ0

|s0(κ , t,X)− s0(κ0, t,X)| ≤ t)≤ B̄t,

which implies Pr(0 < ζ−(X)< s∞
N) = O(s∞

N).
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