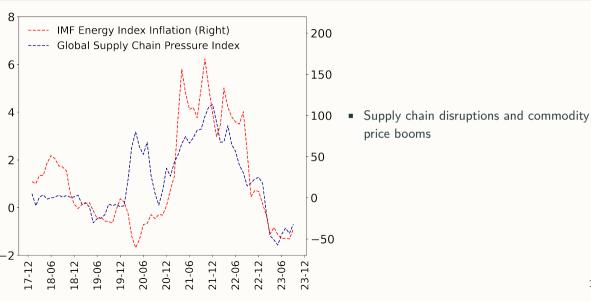
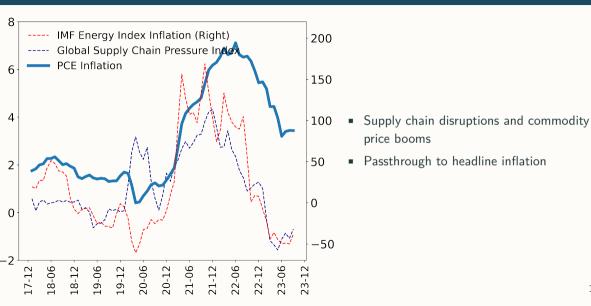
Inflation and GDP Dynamics in Production Networks: A Sufficient Statistics Approach

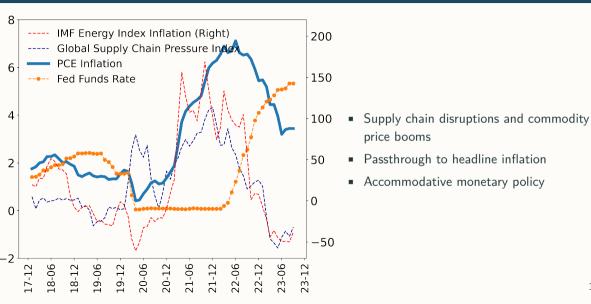
Hassan Afrouzi Columbia University Saroj Bhattarai UT Austin

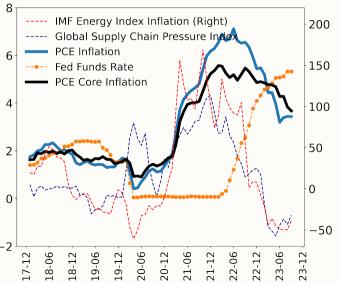
Indiana University Nov 2, 2023

Introduction









- Supply chain disruptions and commodity price booms
- Passthrough to headline inflation
- Accommodative monetary policy
- Slow and persistent rise of core inflation

Inflation Dynamics in Production Networks: What We Do

- Analytical solutions and sufficient statistics for inflation and GDP dynamics in production network economies with sticky prices
- Quantify how production networks affect the size and persistence of the economy's response to monetary and sectoral TFP/wedge shocks

Inflation Dynamics in Production Networks: What We Do

- Analytical solutions and sufficient statistics for inflation and GDP dynamics in production network economies with sticky prices
- Quantify how production networks affect the size and persistence of the economy's response to monetary and sectoral TFP/wedge shocks
- Characterize the disproportionate effect of network-adjusted sticky sectors on inflation and GDP
- Analytical and quantitative analysis of sectoral to aggregate inflation pass-through

Inflation Dynamics in Production Networks: What We Do

- Analytical solutions and sufficient statistics for inflation and GDP dynamics in production network economies with sticky prices
- Quantify how production networks affect the size and persistence of the economy's response to monetary and sectoral TFP/wedge shocks
- Characterize the disproportionate effect of network-adjusted sticky sectors on inflation and GDP
- Analytical and quantitative analysis of sectoral to aggregate inflation pass-through
- Policy counterfacutal: Stabilizing inflation driven by a network-adjusted flexible price sector leads to contraction in GDP and GDP gap

Literature

- Nominal frictions & I-O linkages: La'O and Tahbaz-Salehi (2022); Rubbo (2023);
 Lorenzoni and Werning (2023)
 - Analytical characterization of micro/macro dynamic propagation of both monetary and sectoral shocks
- I-O linkages and heterogeneity in price stickiness: Basu (1995); Carvalho (2006);
 Bouakez et al. (2009); Nakamura and Steinsson (2010); Pasten et al. (2020)
 - Unrestricted I-O structure and analytical solutions
- Macroeconomic implications of production networks and sectoral shocks: Acemoglu
 et al. (2012); Baqaee and Farhi (2020); Bigio and La'O (2020); Liu and Tsyvinski (2021)
 - Emphasis on interaction of production networks with price stickiness for the propagation of sectoral shocks

Model-Description

- Time is continuous and runs forever
- n industries indexed by $i \in [n] \equiv \{1, \ldots, n\}$
- A measure of monopolistically competitive intermediate firms in each sector
- A final good producer in each sector packages and sells a sectoral good
- Sectoral goods consumed by household and used for production

Household

$$\max \int_0^\infty e^{-\rho t} \left[\ln(C_t) - L_t \right] dt$$

$$\sum_{i \in [n]} P_{i,t} C_{i,t} + \dot{B}_t \le W_t L_t + i_t B_t + T_t$$

$$C_t \equiv \Phi(C_{1,t}, \dots, C_{n,t})$$

$$P_t \equiv \sum_{i \in [n]} P_{i,t} C_{i,t} / C_t$$

5

Household

$$\max \int_0^\infty e^{-\rho t} \left[\ln(C_t) - L_t \right] dt$$

$$\sum_{i \in [n]} P_{i,t} C_{i,t} + \dot{B}_t \le W_t L_t + i_t B_t + T_t$$

$$C_t \equiv \Phi(C_{1,t}, \dots, C_{n,t})$$

$$P_t \equiv \sum_{i \in [n]} P_{i,t} C_{i,t} / C_t$$

Monetary Policy controls

$$\{M_t = P_t C_t\}_{t \geq 0}$$

5

Household

$$\max \int_0^\infty e^{-\rho t} \left[\ln(C_t) - L_t \right] dt$$

$$\sum_{i \in [n]} P_{i,t} C_{i,t} + \dot{B}_t \le W_t L_t + i_t B_t + T_t$$

$$C_t \equiv \Phi(C_{1,t}, \dots, C_{n,t})$$

$$P_t \equiv \sum_{i \in [n]} P_{i,t} C_{i,t} / C_t$$

• Monetary Policy controls $\{M_t = P_t C_t\}_{t>0}$

• Golosov and Lucas (2007) utility:

$$W_t = M_t = P_t C_t$$

Household

$$\max \int_0^\infty e^{-\rho t} \left[\ln(C_t) - L_t \right] dt$$

$$\sum_{i \in [n]} P_{i,t} C_{i,t} + \dot{B}_t \le W_t L_t + i_t B_t + T_t$$

$$C_t \equiv \Phi(C_{1,t}, \dots, C_{n,t})$$

$$P_t \equiv \sum_{i \in [n]} P_{i,t} C_{i,t} / C_t$$

• Monetary Policy controls $\{M_t = P_t C_t\}_{t>0}$

Golosov and Lucas (2007) utility:

$$W_t = M_t = P_t C_t$$

Final Good Producer

$$\max P_{i,t}Y_{i,t} - \int_0^1 P_{ij,t}Y_{ij,t}^d \mathrm{d}j \quad s.t.$$

$$Y_{i,t} = \left[\int_0^1 (Y_{ij,t}^d)^{1-\sigma_i^{-1}} \mathrm{d}j \right]^{\frac{1}{1-\sigma_i^{-1}}}$$

Model-Intermediate Good Producers

• **Production**: Firm $ij, j \in [0, 1]$ produces with a CRS production function

$$Y_{ij,t}^s = Z_{i,t}F_i(L_{ij,t},X_{ij,1,t},\ldots,X_{ij,n,t})$$

Arbirtrary production structure with aggregate and sectoral shocks

Model-Intermediate Good Producers

• **Production**: Firm $ij, j \in [0, 1]$ produces with a CRS production function

$$Y_{ij,t}^s = Z_{i,t}F_i(L_{ij,t},X_{ij,1,t},\ldots,X_{ij,n,t})$$

- Arbirtrary production structure with aggregate and sectoral shocks
- **Pricing**: In sector *i*, i.i.d. price changes arrive at Poisson rate $\theta_i > 0$

Model-Intermediate Good Producers

• **Production**: Firm $ij, j \in [0, 1]$ produces with a CRS production function

$$Y_{ij,t}^s = Z_{i,t}F_i(L_{ij,t}, X_{ij,1,t}, \dots, X_{ij,n,t})$$

- Arbirtrary production structure with aggregate and sectoral shocks
- **Pricing**: In sector *i*, i.i.d. price changes arrive at Poisson rate $\theta_i > 0$
- A firm ij that gets to change its price at time t maximizes

$$\max_{P_{ij,t}} \int_{0}^{\infty} \theta_{i} e^{-(\theta_{i}h + \int_{0}^{h} i_{t+s} ds)} \underbrace{\left[\underbrace{(1 - \tau_{i,t}) P_{ij,t} \mathcal{D}(P_{ij,t} / P_{i,t+h}; Y_{i,t+h})}_{\text{total revenue at time } t} - \underbrace{\mathcal{C}_{i}(Y_{ij,t+h}^{s}; \mathbf{P}_{t+h}, Z_{i,t+h})}_{\text{total cost at time } t} \right] dh$$
subject to $Y_{ii,t+h}^{s} \geq \mathcal{D}(P_{ij,t} / P_{i,t+h}; Y_{i,t+h}), \quad \forall h \geq 0$

Heterogeneous Calvo-type price stickiness across sectors

Theoretical Results

Desired Prices

$$p_{i,t}^* \equiv \omega_{i,t} + mc_{i,t}$$

$$mc_{i,t} \equiv \alpha_i m_t + \sum_{k \in [n]} a_{ik} p_{k,t} - z_{i,t}$$

$$\omega_{i,t} \equiv \log(\frac{\sigma_i}{\sigma_{i-1}} \times \frac{1}{1 - \tau_{i,t}})$$

Desired Prices

$$\begin{aligned} p_{i,t}^* &\equiv \omega_{i,t} + mc_{i,t} \\ mc_{i,t} &\equiv \alpha_i m_t + \sum_{k \in [n]} a_{ik} p_{k,t} - z_{i,t} \\ \omega_{i,t} &\equiv \log(\frac{\sigma_i}{\sigma_{i-1}} \times \frac{1}{1 - \tau_{i,t}}) \end{aligned}$$

• With I-O matrix $\mathbf{A} \equiv [a_{ik}] \in \mathbb{R}^{n \times n}$:

$$\mathbf{p}_t^* = lpha m_t + \mathbf{A} \mathbf{p}_t + oldsymbol{\omega}_t - oldsymbol{z}_t$$

Desired Prices

$$p_{i,t}^* \equiv \omega_{i,t} + mc_{i,t}$$

$$mc_{i,t} \equiv \alpha_i m_t + \sum_{k \in [n]} a_{ik} p_{k,t} - z_{i,t}$$

$$\omega_{i,t} \equiv \log(\frac{\sigma_i}{\sigma_{i-1}} \times \frac{1}{1 - \tau_{i,t}})$$

• With I-O matrix $\mathbf{A} \equiv [a_{ik}] \in \mathbb{R}^{n \times n}$:

$$\mathbf{p}_t^* = lpha m_t + \mathbf{A} \mathbf{p}_t + oldsymbol{\omega}_t - oldsymbol{z}_t$$

• Flex. price eq'm: $p_t^f \equiv p_t = p_t^*$

$$\mathbf{p}_t^f = m_t \mathbf{1} + \mathbf{\Psi}(\omega_t - \mathbf{z}_t)$$
 $\Psi \equiv (\mathbf{I} - \mathbf{A})^{-1}$ (inverse Leontief)

Desired Prices

$$p_{i,t}^* \equiv \omega_{i,t} + mc_{i,t}$$

$$mc_{i,t} \equiv \alpha_i m_t + \sum_{k \in [n]} a_{ik} p_{k,t} - z_{i,t}$$

$$\omega_{i,t} \equiv \log(\frac{\sigma_i}{\sigma_{i-1}} \times \frac{1}{1 - \tau_{i,t}})$$

• With I-O matrix $\mathbf{A} \equiv [a_{ik}] \in \mathbb{R}^{n \times n}$:

$$\mathbf{p}_t^* = lpha m_t + \mathbf{A} \mathbf{p}_t + oldsymbol{\omega}_t - oldsymbol{z}_t$$

• Flex. price eq'm: $\mathbf{p}_t^f \equiv \mathbf{p}_t = \mathbf{p}_t^*$

$$\mathbf{p}_t^f = m_t \mathbf{1} + \mathbf{\Psi}(oldsymbol{\omega}_t - \mathbf{z}_t)$$
 $oldsymbol{\Psi} \equiv (\mathbf{I} - \mathbf{A})^{-1}$ (inverse Leontief)

 A is a matrix of strategic complementarities

$$\mathbf{p}_t^* = (\mathbf{I} - \mathbf{A})\mathbf{p}_t^f + \mathbf{A}\mathbf{p}_t$$

Results-Sectoral Price Dynamics

- Log-linearize around the *efficient* steady state; stack log-prices in $\mathbf{p}_t \in \mathbb{R}^n$
- Let $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{n \times n}$ be input-output matrix in the efficient steady-state
- If prices were flexible, then $\mathbf{p}_t = \mathbf{p}_t^f \equiv m_t \mathbf{1} + (\mathbf{I} \mathbf{A})^{-1} (\omega_t \mathbf{z}_t)$

Results-Sectoral Price Dynamics

- Log-linearize around the *efficient* steady state; stack log-prices in $\mathbf{p}_t \in \mathbb{R}^n$
- Let $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{n \times n}$ be input-output matrix in the efficient steady-state
- If prices were flexible, then $\mathbf{p}_t = \mathbf{p}_t^f \equiv m_t \mathbf{1} + (\mathbf{I} \mathbf{A})^{-1} (\omega_t \mathbf{z}_t)$

Proposition: Log-linearized Price Dynamics

Sectoral prices \mathbf{p}_t solve the following system of **sectoral Phillips curves**:

$$\dot{\pi}_t =
ho \pi_t + \Theta^2 (\mathbf{I} - \mathbf{A}) (\mathbf{p}_t - \mathbf{p}_t^f)$$
 with BCs $\mathbf{p}_0 = \mathbf{p}_{0^-}, \quad \|\mathbf{p}_t - \mathbf{p}_t^f\|$ bounded

- $\Theta = \mathsf{diag}(\theta_i) \in \mathbb{R}^{n \times n}$ is diagonal matrix of frequencies of price adjustments
- $\Gamma \equiv \Theta^2(I A) \in \mathbb{R}^{n \times n}$ is the duration-adjusted Leontief matrix

Results-Sectoral Price Dynamics: Remarks

$$egin{aligned} \dot{m{\pi}}_t =
hom{\pi}_t + m{\Gamma}(m{p}_t - m{p}_t^f), & \Gamma = m{\Theta}^2(m{\mathsf{I}} - m{\mathsf{A}}) \end{aligned}$$

- ullet Is the slope of sectoral Phillips curves in matrix form
 - $\tilde{y}_t \equiv \beta'(\mathbf{p}_t^f \mathbf{p}_t)$ is the aggregate GDP gap: (Aoki, 2001; Benigno, 2004)

$$\dot{m{\pi}}_t =
ho m{\pi}_t + \Gamma \overbrace{\left(\mathbf{q}_t - \mathbf{q}_t^f
ight)}^{ ext{relative price gaps}} - \Gamma \mathbf{1} ilde{y}_t$$

- \mathbf{q}_t^f is mean zero, but there is dispersion within it (Lorenzoni and Werning, 2023)
- The Phillips curve uniquely determines the path of prices given a path for \mathbf{p}_t^f
- All shocks affect price dynamics only through \mathbf{p}_t^f

Results-Sectoral Price Dynamics: Remarks

$$\dot{m{\pi}}_t =
ho m{\pi}_t + m{\Gamma}(m{p}_t - m{p}_t^f), \qquad m{\Gamma} = m{\Theta}^2(m{I} - m{A})$$

- lacksquare Γ is the slope of sectoral Phillips curves in matrix form
- The Phillips curve uniquely determines the path of prices given a path for \mathbf{p}_t^f
 - Inflation adjusts so price gaps can close, with Γ capturing speed of adjustment
 - Why I A? Those who adjust, do not adjust all the way (not inverse Leontief)
- All shocks affect price dynamics *only* through \mathbf{p}_t^f

Results-Sectoral Price Dynamics: Remarks

$$\dot{m{\pi}}_t =
ho m{\pi}_t + m{\Gamma} (m{p}_t - m{p}_t^f), \qquad m{\Gamma} = m{\Theta}^2 (m{\mathsf{I}} - m{\mathsf{A}})$$

- lacksquare is the slope of sectoral Phillips curves in matrix form
- The Phillips curve uniquely determines the path of prices given a path for \mathbf{p}_t^f
- All shocks affect price dynamics *only* through \mathbf{p}_t^f
 - General solution for any path of \mathbf{p}_t^f in paper
 - IRFs to specific paths of shocks next

Corollary

Let $\rho = 0$. IRFs to a 1% one-time unanticipated permanent increase in m:

$$\mathbf{p}_t = (\mathbf{I} - e^{-\sqrt{\Gamma}t})\mathbf{1}$$

(Sectoral Price IRFs)

- Transition dynamics governed by the principal square root $\sqrt{\Gamma}$

Corollary

Let $\rho = 0$. IRFs to a 1% one-time unanticipated permanent increase in m:

$$\mathbf{p}_t = (\mathbf{I} - e^{-\sqrt{\Gamma}t})\mathbf{1}$$
 (Sectoral Price IRFs) $\pi_t = \sqrt{\Gamma}e^{-\sqrt{\Gamma}t}\mathbf{1}$ (Sectoral Inflation IRFs)

• Transition dynamics governed by the principal square root $\sqrt{\Gamma}$

Corollary

Let $\rho = 0$. IRFs to a 1% one-time unanticipated permanent increase in m:

$$\mathbf{p}_t = (\mathbf{I} - e^{-\sqrt{\Gamma}t})\mathbf{1}$$
 (Sectoral Price IRFs) $\pi_t = \sqrt{\Gamma}e^{-\sqrt{\Gamma}t}\mathbf{1}$ (Sectoral Inflation IRFs) $\pi_t = \boldsymbol{\beta}^{\mathsf{T}}\sqrt{\Gamma}e^{-\sqrt{\Gamma}t}\mathbf{1}$ (CPI Inflation IRF)

- Transition dynamics governed by the principal square root $\sqrt{\Gamma}$

Corollary

Let $\rho = 0$. IRFs to a 1% one-time unanticipated permanent increase in m:

$$\begin{array}{ll} \mathbf{p}_t = (\mathbf{I} - e^{-\sqrt{\Gamma}t})\mathbf{1} & \text{(Sectoral Price IRFs)} \\ \pi_t = \sqrt{\Gamma}e^{-\sqrt{\Gamma}t}\mathbf{1} & \text{(Sectoral Inflation IRFs)} \\ \pi_t = \boldsymbol{\beta}^{\mathsf{T}}\sqrt{\Gamma}e^{-\sqrt{\Gamma}t}\mathbf{1} & \text{(CPI Inflation IRF)} \\ \tilde{y}_t = m_t - p_t = \boldsymbol{\beta}^{\mathsf{T}}e^{-\sqrt{\Gamma}t}\mathbf{1} & \text{(GDP Gap IRF)} \end{array}$$

- Transition dynamics governed by the principal square root $\sqrt{\Gamma}$

Results-Inflation and GDP IRFs to Sectoral Shocks

Corollary

Let $\Psi \equiv (\mathbf{I} - \mathbf{A})^{-1}$. IRFs to a 1% (almost) permanent inflationary TFP/wedge shock to sector i are:

$$\begin{aligned} \mathbf{p}_t &= (\mathbf{I} - e^{-\sqrt{\Gamma}t}) \mathbf{\Psi} \mathbf{e}_i & \text{(Sectoral Price IRFs)} \\ \boldsymbol{\pi}_t &= \sqrt{\Gamma} e^{-\sqrt{\Gamma}t} \mathbf{\Psi} \mathbf{e}_i & \text{(Sectoral Inflation IRFs)} \\ \boldsymbol{\pi}_t &= \boldsymbol{\beta}^\intercal \sqrt{\Gamma} e^{-\sqrt{\Gamma}t} \mathbf{\Psi} \mathbf{e}_i & \text{(CPI Inflation IRF)} \\ \boldsymbol{\tilde{y}}_t &= \boldsymbol{\beta}^\intercal e^{-\sqrt{\Gamma}t} \mathbf{\Psi} \mathbf{e}_i & \text{(GDP Gap IRF)} \end{aligned}$$

- Two separate roles of the Leontief matrix:
 - Static transmission through inverse Leontief $(\mathbf{e}_i o \Psi \mathbf{e}_i)$
 - **Dynamic** propagation through duration-adjusted Leontief $(\Psi {f e}_i o e^{-\sqrt{\Gamma} t} \Psi {f e}_i)$

Results-CIR of GDP Gap

Corollary

The cumulative impulse response (CIR) of GDP gap is given by

$$\mathsf{CIR}_{ ilde{y}} \equiv \int_0^\infty (y_t - y_t^f) \mathrm{d}t$$

$$= \underbrace{oldsymbol{eta}^\mathsf{T} \sqrt{\Gamma}^{-1} \mathbf{1}}_{ ext{response to monetary shock}}, \qquad \underbrace{oldsymbol{eta}^\mathsf{T} \sqrt{\Gamma}^{-1} \Psi \mathbf{e}_i}_{ ext{response to monetary shock}}$$

- General result on a summary statistic for monetary non-neutrality
- Persistence of inflation reflected in effects on GDP gap for both shocks

Unpacking $\sqrt{\Gamma}$: Local Expansion around Disconnected Economies

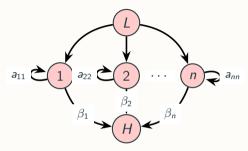
- Next we construct $\sqrt{\Gamma}$ from the data and compute IRFs
- For example, the IRF of GDP gap to a monetary shock is of form

$$rac{\partial}{\partial \delta_m} \tilde{\mathbf{y}}_t = oldsymbol{eta}^\intercal \mathrm{e}^{-\sqrt{\Gamma}t} \mathbf{1} = \sum_{i=1}^n w_i \mathrm{e}^{-d_i t}$$

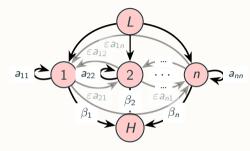
for some weights w_i and eigenvalues d_i .

- We want to connect w_i 's and d_i 's to the economic structure, but how?
- To interpret, expand towards an arbitrary network starting from a benchmark

Perturbation around Disconnected Economies

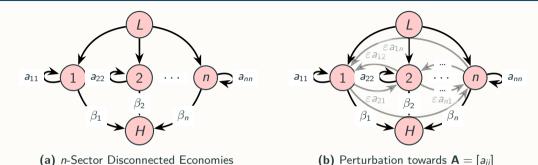


(a) n-Sector Disconnected Economies



(b) Perturbation towards $\mathbf{A} = [a_{ij}]$

Perturbation around Disconnected Economies



Note

Study how persistence, non-neutrality, and pass-through change for small arepsilon

This is accurate quantitatively and now we can match eigenvalues to sectors

Quantitative Results

Sufficient Statistics from Data

- Construct Γ and β using detailed sectoral U.S. data
 - Use the IO tables from BEA to construct IO linkages across sectors (A); consumption expenditure shares (β) ; and sectoral labor shares (α)
 - From 2012 at the detailed-level disaggregation (393 sectors)
- Construct the diagonal matrix Θ^2 , whose elements are the squared frequency of price adjustment, using data from Pasten et al. (2020)

Aggregate Effects of a Monetary Shock

- Compute impulse response functions to a monetary shock
 - Shock size such that CPI inflation increases by 1 percent on impact
- Compare with a "horizontal" economy which only uses labor as input
 - Monetary non-neutrality 4.1 times higher
 - Persistence of CPI inflation higher (strategic complementarity)
- Compare with a "homogeneous frequency of price adjustment" economy
 - Monetary non-neutrality 2.4 times higher (network-adjusted-duration heterogeneity)
- Explore sectoral responses and role of network in detail

Figure 2: Keep Frequencies Heterogeneous; go from $\mathbf{A}=\mathbf{0}\to\mathbf{A}_{\text{data}}$

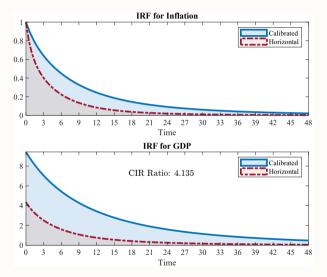
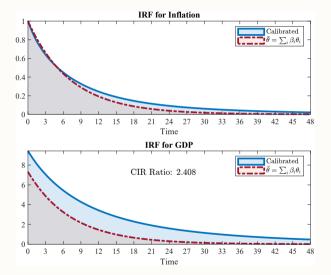
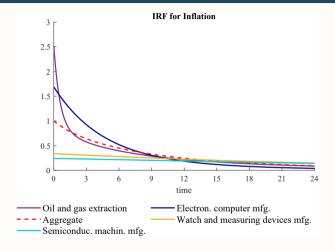


Figure 3: Keep Network Fixed; Go from Homogeneous Freq. to Heterogeneous Freq.



Distribution of Sectoral Responses to a Monetary Shock



Negative correlation between impact response and persistence $(d_i \approx heta_i \sqrt{1-a_{ii}})$

detailed ranks

Network Effects on Monetary Non-Neutrality

- How does monetary non-neutrality change with input-output linkages?
 - Sectors have disproportionate roles based on their adjusted durations, $D_i \equiv 1/(\theta_i \sqrt{1-a_{ii}})$

Monetary Non-Neutrality

Input-output linkages amplify monetary non-neutrality.

$$\mathsf{CIR}_{\tilde{\mathbf{y}},\delta_m} = \sum_{i=1}^n \underbrace{\beta_i D_i}_{\substack{\text{direct effect of sector } i}} + \varepsilon \sum_{i=1}^n \underbrace{D_i \times \sum_{j \neq i}^n a_{ji} \times \frac{\beta_j}{1 - a_{jj}} \times \frac{D_i}{D_i + D_j}}_{\substack{\text{higher-order indirect effect of sector } i \text{ through network } \geq 0}} + \underbrace{\mathcal{O}(\|\varepsilon\|^2)}_{\substack{\text{higher-order effects}}}$$

Disproportionate Effects of a Few Sectors

Table 1: Ranking of industries by eigenvalues in the disconnected economy

Industry	θ_i	$\theta_i \sqrt{1-a_{ii}}$	Eigenvalue $\sqrt{\Gamma}$
Insurance agencies, brokerages, and related act	0.035586	0.022688	0.022439
Coating, engraving, heat treating and allied ac	0.027804	0.02744	0.027327
Warehousing and storage	0.032407	0.030659	0.030562
Semiconductor machinery manufacturing	0.034003	0.032861	0.032858
Flavoring syrup and concentrate manufacturing	0.038897	0.038458	0.038413
Showcase, partition, shelving, and locker manuf	0.039775	0.039335	0.039325
Packaging machinery manufacturing	0.040667	0.039349	0.039346
Machine shops	0.044323	0.043501	0.042797
Watch, clock, and other measuring and controlli	0.043928	0.043682	0.043607

Counterfactual Exercise

Dropping the top three sectors reduces GDP CIR by 16 percent even though their expenditure share is zero.

Aggregate Effects of Sectoral Shocks

- Compute "pass-through" of sectoral shock inflation to aggregate inflation
 - Sectoral shock that increases sectoral inflation by 1% and lasts for T_s^i periods
 - Letting $D_i \equiv 1/(\theta_i \sqrt{1-a_{ii}})$ be the adjusted duration of sector i:

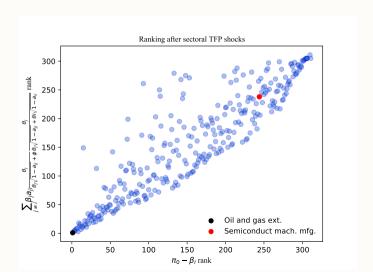
Aggregate Effects of Sectoral Shocks

Input-output structure amplifies the inflationary effects of sectoral shocks:

$$\frac{\partial}{\partial \varepsilon} \left[\frac{\partial \pi_0}{\partial \pi_0^i} \Big|_{\delta_z^i} \right] = \sum_{j \neq i} a_{ji} \times \underbrace{\frac{\beta_j}{1 - a_{jj}}}_{\text{Domar weight}} \times \underbrace{\frac{T_s^i}{T_s^i + D_j}}_{\text{Shock/spell duration of } j} \times \underbrace{\frac{D_i}{D_i + D_j}}_{\text{relative stickiness of } i \text{ to } j}$$

Impact Pass-through to Aggregate Inflation

Figure 4: Correlation of actual and approximate ranks

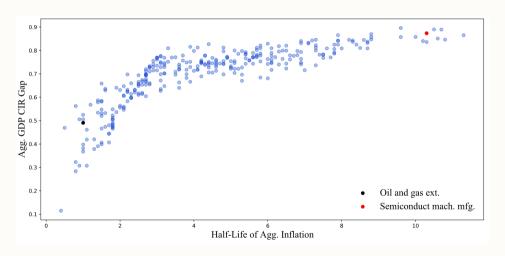


Effects on Aggregate GDP gap

- For aggregate GDP gap effects, impact pass-through to aggregate inflation not informative
- What matters is the persistence in aggregate inflation due to sectoral shocks
- Persistence is determined by transition dynamics in the model
- Duration-adjusted Leontief matrix summarizes all dynamics

Again, Persistence Really Matters

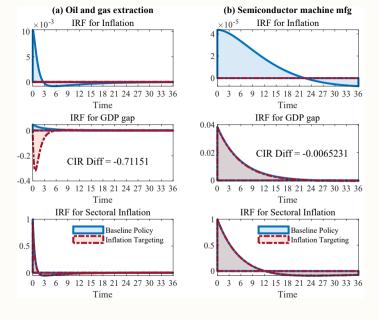
Figure 5: Correlation of aggregate GDP gap with half-life of inflation

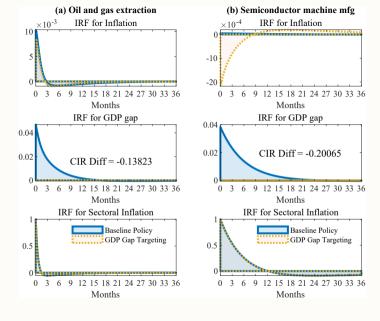


Endogenous Monetary Policy

- So far, considered monetary policy and sectoral shocks separately
- How does endogenous monetary policy change sectoral shock transmission?
- Baseline monetary policy equivalent to keeping nominal rates constant
- Now compare it with strict CPI inflation targeting and GDP gap targeting
- Recall stabilizing inflation \neq stabilizing GDP gap:

$$\dot{\pi}_t = \rho \pi_t + \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\Gamma} (\mathbf{q}_t - \mathbf{q}_t^f) - \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\Gamma} \mathbf{1} \tilde{\boldsymbol{y}}_t$$





Extensions

- Finite Frisch elasticity
- Taylor rule as monetary policy
- Aggregate Phillips curve and slopes
- IO matrix measurement at a more aggregated level

Conclusion

Conclusion

- Sufficient statistics for dynamics with sticky prices and production networks
- Persistence of aggregate inflation is key for aggregate propagation of shocks
- Real effects of monetary policy are amplified by input-output linkages
 - Quantitatively relevant in a calibrated U.S. economy
 - Some sectors play a major role
- Stabilizing inflation in response to sectoral shocks can have different implications based on the originating sector
- Future work
 - Optimal policy
 - Menu costs

References

- Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012). The network origins of aggregate fluctuations. *Econometrica* 80(5), 1977–2016.
- Aoki, K. (2001). Optimal monetary policy responses to relative-price changes. Journal of monetary economics 48(1), 55-80.
- Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equilibrium. The Quarterly Journal of Economics 135(1), 105-163.
- Basu, S. (1995). Intermediate goods and business cycles: Implications for productivity and welfare. The American Economic Review, 512-531.
- Benigno, P. (2004). Optimal monetary policy in a currency area. Journal of international economics 63(2), 293-320.
- Bigio, S. and J. La'O (2020). Distortions in production networks. The Quarterly Journal of Economics 135(4), 2187-2253.
- Bouakez, H., E. Cardia, and F. J. Ruge-Murcia (2009). The transmission of monetary policy in a multisector economy. *International Economic Review 50*(4), 1243–1266.
- Carvalho, C. (2006). Heterogeneity in price stickiness and the real effects of monetary shocks. Frontiers in Macroeconomics 2(1).
- Golosov, M. and R. E. Lucas (2007). Menu costs and phillips curves. Journal of Political Economy 115(2), 171-199.
- La'O, J. and A. Tahbaz-Salehi (2022). Optimal monetary policy in production networks. Econometrica 90(3), 1295-1336.
- Liu, E. and A. Tsyvinski (2021). Dynamical structure and spectral properties of input-output networks. Manuscript.
- Lorenzoni, G. and I. Werning (2023). Inflation is conflict. Technical report, National Bureau of Economic Research.
- Nakamura, E. and J. Steinsson (2010). Monetary non-neutrality in a multisector menu cost model. *The Quarterly journal of economics* 125(3), 961–1013.
- Pasten, E., R. Schoenle, and M. Weber (2020). The propagation of monetary policy shocks in a heterogeneous production economy. *Journal of Monetary Economics* 116, 1–22.
- Rubbo, E. (2023). Networks, phillips curves and monetary policy. Econometrica (Forthcoming).

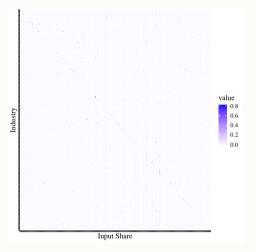


Figure 6: U.S. sectoral input-output matrix (heat map) in 2012

Figure 7: Eigenvalues in the disconnected economy and the baseline economy.

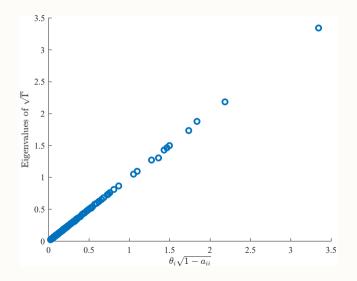


Figure 8: Correlation of actual and approximate ranks

