A uniformly valid test for instrument exogeneity

Prosper Dovonon Concordia University

Nikolay Gospodinov Atlanta FED

Indiana University, Nov. 19, 2024

[Setup, and contrib.](#page-1-0) [Existing tests, literature review](#page-6-0) [Theory and results](#page-14-0) [Introduction](#page-1-0) [Motivation and contribution](#page-3-0) **[Outline](#page-5-0)**

Setup

• We consider the linear regression model with possibly endogenous regressors:

$$
y_i = \eta_0 + x_i'\theta_0 + \varepsilon_i,
$$

where $(\eta_0, \theta_0) \in \mathbb{R} \times \mathbb{R}^p$.

- Let $z_i \in \mathbb{R}^m$ be the vector of instruments.
- The goal is to consistently test for:

 $H_0: E(\varepsilon_i|z_i)=0$, a.s.

without any knowledge of the instruments' strength.

- The sample $\{(x_i, z_i, y_i) \in \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R} : i = 1, \ldots, n\}$ is i.i.d.
- We do not require that $m \geq p$ but we need the support of z_i to be rich enough.

[Introduction](#page-1-0) [Motivation and contribution](#page-3-0) **[Outline](#page-5-0)**

Instrument's strength

We assume that:

• For some
$$
\delta \geq 0
$$
,

$$
E(x_i|z_i)=\mu_x+\frac{C(z_i)}{n^{\delta}},
$$

▶ and

 $Rk \left[E(C(z_i)C(z_i)') \right] = p.$

- $\delta = 0$: strong instruments.
- \bullet 0 $< \delta < 1/2$: semi-weak instruments (Hahn and Kuersteiner, 2002; Antoine and Renault, 2009).
- $\delta \geq 1/2$: weak instruments (Staiger and Stock, 1997,...).
- $\delta = \infty$: completely irrelevant instruments.

Instrument's strength/exogeneity: The pitfall

In standard GMM infer. with fixed $#$ of uncond'nal moment restr.:

- If the instruments are exogenous: $E(\varepsilon_i|z_i)=0$, a.s.,
	- When $\delta = 0$: consistent estimation and asymptotic normality.
	- When $0 < \delta < 1/2$: (slow-rate) consistent estimation and asymptotic normality.
	- When $\delta \geq 1/2$: consistent/convergent estimation is not possible. $\delta = \infty$: no information about the true value.
- If the instruments are not exogenous: $P(E(\varepsilon_i|z_i)=0) < 1$:
	- If $\delta = 0$: Convergence to a pseudo true value.
	- If $\delta > 0$: the estimator diverges to ∞ regardless of true value.
	- \blacktriangleright This may result to a misleading inference; x falsely significant!
- Before parameter inference, need for exogeneity test that is valid irrespective of strength.

[Introduction](#page-1-0) [Motivation and contribution](#page-3-0) **[Outline](#page-5-0)**

Summary of Main Results

- We propose a uniformly valid exogeneity test for instruments on linear IV models.
- This test is a normalized *J*-test based on an expanding number k_n of moment restrictions.
- We analyze the limiting behavior of the GMM estimator depending on the instruments strength leading to the choice of k_n .
- We show that, regardless of the instruments' strength:
	- The test is asymptotic standard normal under the null of exogeneity
	- The test is consistent under the alternative.
- We revisit some empirical findings on impact of trade on growth.

[Introduction](#page-1-0) [Motivation and contribution](#page-3-0) **[Outline](#page-5-0)**

Outline

- Review of standard J-test for specification.
- **e** Literature review.
- Our testing framework.
- Main results.
- **•** Empirical application.

Is the J-test robust to instrument's strength?

Consider the Hansen-Sargan J-test for correct specification of uncond. moment models:

- Fixed number, k, of moment restrictions: $h(z_i) \in \mathbb{R}^k$, $k > p$.
- Apply J-test to: $E(h(z_i)\varepsilon_i)=0$.
- Outcome when z_i is strong, weak, etc.
- We do this by simulations:

 $y_i = \theta_0 x_i + \alpha_0 f(z_{1i}) + \varepsilon_i, \quad x_i = \rho_{xz} z_i + v_i,$

- $z_i = (z_{1i}, z_{2i})' \sim \text{NID}(0, l_2), \theta_0 = 1,$
- $\rho_{xz} = (0.3 \, 0.3)$, for strong instr; $\rho_{xz} = 0$, for compl. irrel. instr.
- $(\varepsilon_i, v_i)' \sim N(0, (1, 0.5, 1)).$

The J[-test](#page-6-0) [Literature review](#page-11-0)

Is the J-test robust to instrument's strength?

Power curve of the J-test when instr. is strong - $f(z_{1i})$ linear

The J[-test](#page-6-0) [Literature review](#page-11-0)

Is the J-test robust to instrument's strength?

Power curve of the J-test when instr. is irrelevant - $f(z_{1i})$ linear

The J[-test](#page-6-0) [Literature review](#page-11-0)

Is the J-test robust to instrument's strength?

Power curve of the J-test when instr. is irrelevant - $f(z_{1i})$ nonlinear

Is the J-test robust to instrument's strength?

- By testing a fixed number of moment restrictions, J-test does not integrate enough information to generate power.
- In a way, it does not fully test for the conditional restriction.
- We will propose a test for $E(\varepsilon_i|z_i)=0,$ a.s. by allowing $g(z)$ to have an increasing size.
- This is essential for uniform validity of the resulting test.

Literature on conditional moment models

e Estimation

- Carrasco & Florens (2000): Objective function is the norm of moment function on a Hilbert space.
- Dominguez & Lobato (2004) use the expected square of the 'integrated regression function'.
- Chunrong & Chen (2003) propose the seive minimum distance estimator.
- Lavergne & Patilea (2013): Inference is based on the kernel estimate of the conditional moment.

Literature on conditional moment models

• Specification test

- Bierens (1982, 84, 87, 90), Bierens & Ploberger (1987), Carrasco & Florens (2000), Dominguez & Lobato (2010): propose CMR tests that are consistent by using an increasing number of instruments.
- Tripathi & Kitamura (2003) introduce the "smoothed" empirical likelihood based test that Smith (2007) extends to the family of Cressie-Read divergence functions.
- Delgado, Dominguez & Lavergne (2006): propose a kernel estimation based test.
- de Jong & Bierens (1994): propose a chi square-type test that converges to a standard normal distribution: Easy to implement and has non trivial power.
- Dovonon & Gospodinov (2024): Extend dJB-type of tests to dependent data and locally under-identified models.

Exogeneity test for linear IV models with possibly weak instruments

- Parameter inference in linear IV models robust to weak identification: Antoine & Lavergne (2023).
- **o** Specification test:

Jun & Pinkse (2009,12): propose a non parametric test for instr. exogeneity,

Doko Tchatoka & Dufour (2023): study the DWH-type of exogeneity tests under weak instruments,

Dovonon & Gospodinov (2023): propose a dJB-type of cond'al mom. test that is consist. when instr. are compl. irrel.

This paper is an extension of D&G (2003) to instruments of arbitrary strength!

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

The testing framework

• We aim to test:

$$
H_0: \quad E(\varepsilon_i|z_i)=0, \ \text{a.s.}
$$

We follow D&G (2023,24) and de Jong & Bierens (1994) by testing the equivalent seq. of uncond'al moment restrict's:

$$
E\left(g^{(k)}(z_i)\varepsilon_i\right)=0, \quad k=1,2,\ldots,
$$

- $g^{(k)}(z) := (g_1(z), \ldots, g_k(z))$ is an \mathbb{R}^k -valued function of the enumeration of the:
- basis functions, $(g_I(z))_{I \in \mathbb{N}}$, of $L^2(P_z) := L^2(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m), P_z)$.
- Example: $g_l(z) = \cos(l\Psi(z)) + \sin(l\Psi(z))$, $l = 1, \ldots$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

The GMM estimator

Moment condition: with $Z_i := g^{(k)}(z_i)$,

 $E((Z_i - \bar{Z})[y_i - \bar{y} - (x_i - \bar{x})'\theta_0]) = 0, \ \ k = 1, \ldots$

 \bullet The GMM estimator with weighting matrix \hat{W} :

 $\widetilde{\theta} = (\widetilde{\mu}'_{\mathsf{zx}}\hat{W}\widetilde{\mu}_{\mathsf{zx}})^{-1}\widetilde{\mu}'_{\mathsf{zx}}\hat{W}\widetilde{\mu}_{\mathsf{zy}}$

with $\tilde{\mu}_{\mathsf{a} b} := n^{-1} \sum_{i=1}^n (a_i - \bar{a})(b_i - \bar{b})'$

The first-step GMM or standard IV estimator use, e.g.,

$$
\hat{W} = I_k
$$
, or $\hat{W} = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \bar{Z})(Z_i - \bar{Z})'.$

• The 2SGMM uses:

$$
\hat{W} = \hat{V}(\tilde{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_i(\tilde{\theta})^2 (Z_i - \bar{Z})(Z_i - \bar{Z})',
$$

with $\hat{\varepsilon}_i(\theta) := y_i - \bar{y} - (x_i - \bar{x})'\theta$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

The test statistics

• The Hansen-Sargan J-test statistic:

$$
J_n:=n\left(\tilde{\mu}_{zy}-\tilde{\mu}_{zx}\hat{\theta}\right)'\hat{V}^{-1}\left(\tilde{\mu}_{zy}-\tilde{\mu}_{zx}\hat{\theta}\right),
$$

 \blacktriangleright where $\hat{\theta}$ is the 2SGMM and $\hat{V} := \hat{V}(\hat{\theta})$.

• Our test statistic:

$$
S_{n,k}=\frac{J_n-k}{\sqrt{2k}}.
$$

- \blacktriangleright The *J*-test stat. introduced is slightly different than the standard.
- \triangleright The change is essential to obtain exact asymptotic normality for $S_{n,k}$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Key assumptions

Let
$$
a_k := E[(Z_i - \mu_z)C(z_i)'], V_z := Var(Z_i)
$$

Assumption

$$
||a_k||_2 = O(1), \text{ and } Rank(C(z_i)C(z_i)') = p.
$$

Assumption

\n- (a)
$$
x_i
$$
, ε_i , and Z_i have up to 8th moment, (b) $\lambda(V_z) \in (\underline{\lambda}, \overline{\lambda})$,
\n- (c) $\lambda(E[w_i^2(Z_i - \mu_z)(Z_i - \mu_z)']) \leq \overline{\lambda}$: $w_i \in \{\varepsilon_i, x_{hi} : h = 1, \ldots, p\}$.
\n

Assumption

Assume that there exists W a nonrandom (p, p) -matrix symmetric positive definite such that: $\|\hat{W} - W\|_2 = o_P(k^{-1/2})$ and $\lambda_{\max}(W) \leq \bar{\lambda}$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Behavior of the GMM estimator

Theorem

Under H₀ and the assumptions above, if $k \to \infty$ with $k = o(n)$, then:

(a) If
$$
\delta \ge 1/2
$$
, then $\tilde{\theta} = \theta_0 + \mathbb{V}_{1k}^{-1} \mathbb{C}_{1k} + O_P(k^{-1/2})$.

(b) If $0 \le \delta \le 1/2$, then:

- If $k \ll n^{1/2-\delta} \lor k \sim n^{1/2-\delta}, \quad \tilde{\theta} = \theta_0 + O_P(n^{-1/2+\delta}).$
- If $n^{1/2-\delta} \ll k \ll n^{1-2\delta}$, $\tilde{\theta}$ converges but at a slower rate.
- If $k \sim n^{1-2\delta} \vee k \gg n^{1-2\delta}$, $\tilde{\theta}$ is inconsistent.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

A surprising implications

- When z_i is completely irrelevant, the GMM estimator when z_i is completely irrelevant, the Givilvi estimate converges at the rate \sqrt{k} to a "pseudo-true" value.
- Under the assumption that:

$$
E(x_i x_i'|z_i) = V_x, \text{ and } E(x_i \varepsilon_i | x_i) = c_x,
$$

the theorem shows that

$$
\tilde{\theta} \stackrel{P}{\rightarrow} \theta_0 + V_{\mathsf{x}}^{-1} c_{\mathsf{x}}.
$$

- Same limit as OLS.
- Simulating arbitrary instruments and doing IV converges to the same limit as OLS.
- \bullet 0 \lt δ \lt 1/2 corresponds to a 'phase transition' where where estimation is consistent for the right k .

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Robust choice of $k = k_n$

- For $\delta \in [0, 1/2)$, when k grows slowly, this result is consistent with Antoine and Renault (2012) who consider k fixed.
- For $\delta > 1/2$, it suffices that $k = o(n)$ for the stated convergence to hold.
- For robustness, k_n must grow slower than n^{α} for any $\alpha \in (0, 1/2].$
- \bullet A right choice of k is:

 $k := k_n = a(\log n)^b$, for some $a, b > 0$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Asymptotic behavior under the null

For the first step GMM, define:

$$
q_{1i} = (Z_i - \mu_z)'W(Z_i - \mu_z), \quad v_i := x_i - E(x_i|z_i),
$$

$$
r_{1i}=\varepsilon_i-v_i'\left(E(q_{1i}\cdot v_iv_i')\right)^{-1}\left(E(q_{1i}\cdot\varepsilon_i\cdot v_i)\right),
$$

$$
V_{1,\delta} = \begin{cases} E(\varepsilon_i^2 (Z_i - \mu_z)(Z_i - \mu_z)') & \text{if } 0 \leq \delta < 1/2, \\ E(r_{1i}^2 (Z_i - \mu_z)(Z_i - \mu_z)') & \text{if } \delta \geq 1/2. \end{cases}
$$

For the second step GMM, define:

 q_{2i} as q_{1i} but with $V_{1,\delta}$ replacing W; r_{2i} as r_{1i} but with q_{2i} ; and $V_{2,\delta}$ as $V_{1,\delta}$ but with r_{2i} .

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Behavior of the weighting matrix and 2SGMM

Assumption

Assume that
$$
E(r_1; v_i | z_i) = 0
$$
 and $\lambda(V_{1,\delta}) \geq \underline{\lambda}$.

Theorem

If the assumptions above hold and $k \to \infty$ with $k \sim a(\log n)^b$, for some a, $b > 0$. Then, under H_0 , we have:

(a) If
$$
0 \le \delta < 1/2
$$
, $\tilde{V} - V_{1,\delta} = O_P(n^{-1/2+\delta})$.
If $\delta \ge 1/2$, $\tilde{V} - V_{1,\delta} = O_P(k^{-1})$.

(b) If $0 \le \delta < 1/2$, $\hat{\theta} = \theta_0 + O_P(n^{-1/2+\delta}).$ If $\delta \geq 1/2$, $\hat{\theta} = \theta_0 + \mathbb{V}_{2k}^{-1}$ $C_{2k}^{-1}\mathbb{C}_{2k} + O_P(k^{-1/2}).$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

The test statistic under H_0

Assumption

Assume that
$$
E(r_{2i}v_i|z_i) = 0
$$
 and $\lambda(V_{2,\delta}) \geq \underline{\lambda}$.

Theorem

Suppose the assumptions above hold, and $k \to \infty$ with $k \sim$ a $(\log n)^b$, for some a, $b > 0$. Then, under H_0 , for any value of $\delta \in [0, +\infty]$, we have:

$$
S_{n,k} \stackrel{d}{\longrightarrow} N(0,1).
$$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Sketch of proof (case $\delta \geq 1/2$)

We show that:

 \hat{V} is equal to:

$$
V_{2,\delta} + o_P(\bullet) := E\left(r_{2i}^2(Z_i - \mu_z)(Z_i - \mu_z)'\right) + o_P(\bullet)
$$

$$
\bullet \ \ J_n - k = A_{1n} + A_{2n} + o_P(\bullet), \text{ with}
$$

$$
A_{1n}=\frac{1}{n}\sum_{i\neq j}r_{2i}r_{2j}(Z_i-\mu_z)'V_{2,\delta}^{-1}(Z_j-\mu_z),
$$

$$
A_{2n}=\frac{1}{n}\sum_{i=1}^n r_{2i}^2(Z_i-\mu_z)^\prime V_{2,\delta}^{-1}(Z_i-\mu_z)-k.
$$

We show that $A_{2n} = o_P($ √ k) and the CLT for degener. U -stat of Hall (1984) allows to claim that $A_{1n}/\,$ √ $2k \stackrel{d}{\rightarrow} N(0, 1).$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Discussion

- The test is easy to implement: quantiles from $N(0, 1)$.
- This asymptotic distribution is valid under H_0 regardless of the strength of z_i .
- Even if the system is not overidentified, i.e., $|z_i| \le |x_i|$, the test can be performed.
- \bullet z_i needs a support that is rich enough (ex: continuous).
- In comparison to Jun & Pinkse (2009,12), our result is sharp: They are conserv. under weak instr.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Asymptotic behavior under the alternative

• The alternative hypothesis amounts to:

 $P\left(E(\varepsilon_i(\eta,\theta)|z_i)=0\right)<1,\quad \forall (\eta,\theta)\in \mathbb{R}^{p+1}$

We can show that, for any compact $\mathcal{C} \subset \mathbb{R}^{p+1}$,

 $\exists k_0\in\mathbb{N}$ and $\delta_0>0: \quad \inf_{(\eta,\theta)\in\mathcal{C}}\Vert E[g^{(k)}(z_i)\varepsilon_i(\eta,\theta)]\Vert_2>\delta_0.$

- Thus $c_z := E[g^{(k)}(z_i)\varepsilon_i(\eta_0,\theta_0)]:=E[Z_i\varepsilon_i(\eta_0,\theta_0)]\neq 0,$ for k large enough.
- Internal consistencies require that $||c_z||_2 = O(1)$.
- We maintain this condition.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

2SGMM under the alternative

Theorem

If some regularity conditions hold and $k \sim a(\log n)^b$, for some a, $b > 0$. Then, under H_1 , we have:

(a) For
$$
0 < \delta < 1/2
$$
,

$$
\hat{\theta}-\theta_0=O_P(n^{\delta}).
$$

(b) For
$$
\delta = 0
$$
,

$$
\hat{\theta} - \theta_0 = A_k c_z + O_P\left(\frac{1}{\sqrt{k}}\right).
$$

(c) For $\delta \geq 1/2$, $\hat{\theta} - \theta_0 = O_P$ √ n k $\bigg)$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Comments

- The estimator $\hat{\theta}$ explodes when the instruments are not strong.
- \bullet This may have adverse consequences on *t*-statistics if the variance does not explode fast enough.
- Standard inference may be misleading:
	- \blacktriangleright falsely claim that x is significant,
	- in and this, only because z_i is (unknowingly) endogenous.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

 J_n and $S_{n,k}$ under the alternative

Let
$$
P_{\delta} = \sum_{k=1}^{n} a_k (a'_k \sum_{k=1}^{n} a_k)^{-1} a'_k \sum_{k=1}^{n} a_k
$$
 and
\n
$$
\Delta_k = c'_z \sum_{k=1}^{n} (a_k - a_k) \sum_{k=1}^{n} a_k
$$

Theorem

Under the same conditions as above, we have:

(a) For
$$
0 < \delta < 1/2
$$
: $\exists C > 0$ such that,

$$
J_n \geq n^{1-2\delta} \cdot C \cdot (\Delta_k + o_P(1)) \quad w.p.a.1.
$$

(b) For $\delta = 0$: $J_n \geq n \cdot C \cdot \Delta_k + O_P(n)$ √ $w.p.a.1.$

$$
S_{n,k} \geq \frac{n^{1-2\delta}}{\sqrt{k}} \cdot (C \cdot \Delta_k + o_P(1)), \quad w.p.a.1
$$

so that $J_n, S_{n,k} \to \infty$, in probability as $n \to \infty$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

 J_n and $S_{n,k}$ under the alternative (2)

Theorem

(c) For $\delta > 1/2$: There exists a random sequence $\pi_n > 0$ such that lim_{$\epsilon \perp 0$} $P(\pi_n \leq \epsilon) = 0$ and, with probability approaching 1,

$$
J_n \geq k^2 \cdot \pi_n \cdot ||c_z||_2^2 + o_P(1),
$$

$$
S_{n,k} \geq 2^{-3/2} \cdot k^{3/2} \cdot \pi_n \cdot ||c_z||_2^2 + o_P(1)
$$

so that both $J_n, S_{n,k} \to \infty$, in probability as $n \to \infty$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Comments on J_n and $S_{n,k}$ under H_1

- \bullet J_n and S_{n,k} explode to $+\infty$ under H₁
	- ▶ For $0 \le \delta < 1/2$, the test statistics explode with *n* as in standard settings.
	- **►** For $\delta \geq 1/2$, only k is responsible for power.
	- In this case, when k fixed, power is not guaranteed.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Intuition for power when $\delta \geq 1/2$

Consider the simple case: $\mu_z = 0$, $|x_i| = 1$, $\mu_x = 0$ and $\mu_y = 0$.

We show that:

- $\hat{\theta} \theta_0 := \hat{e} \sim \frac{\sqrt{n}}{k}$ $\frac{\sqrt{n}}{k}h_n$; $h_n = O_P(1)$.
- The signal: $\sqrt{n}(\bar{\mu}_{zy} \hat{\theta}\bar{\mu}_{zy}) \sim \sqrt{n}$ \overline{nc}_z .
- $\hat{V} \sim \hat{e}^2 E(x_i^2 Z_i Z_i')$ explodes but slower than the signal.
- As a result.

$$
J_n \sim k^2 \cdot h_n^2 \cdot c_z' \left(E[x_i^2 Z_i Z'_i] \right)^{-1} c_z.
$$

▶ Due to expanding k , J_n explodes at rate k^2 and $S_{n,k}$ explodes at rate $k^{3/2}$.

[Simulation results](#page-33-0) [Empirical results](#page-38-0)

Simulation design

$$
y_i = \theta_0 x_i + \alpha_0 z_{1i} + \varepsilon_i, \quad x_i = \Pi(\delta)' Z_i + v_i,
$$

$$
\theta_0 = 1, \quad \Pi(\delta) = n^{-\delta} \iota,
$$

\n
$$
Z_i = (z_{1i}, z_{1i}, z_{1i})' \sim \text{NID}(0, I_3),
$$

\n
$$
(\varepsilon_i, v_i)' \sim N(0, (1, 0.3, 1)).
$$

\n
$$
g_I(z) = \cos(I\Psi(z)) + \sin(I\Psi(z)), \quad I = 1, ..., \lceil \log n \rceil,
$$

\n
$$
\Psi(z) = 2 \arctan(z), \quad \alpha_0 \in [0, 0.4], \quad \delta \in \{0, 0.2, 0.5, 1, 100\}.
$$

\n
$$
n = 500, \text{ nReplications} = 100,000.
$$

J-test with 3 instr. $\chi^2(2)$ under the null.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Rejection rates under the null $(\alpha_0 = 0)$

 $n = 500$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Power curves $(\alpha \in [0; 0.4])$

$n = 500$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Power curves $(\alpha \in [0; 0.4])$

$n = 5,000$

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

2 endogenous variables, 4 instruments with heterogeneous strength. $n = 500$.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Impact of trade on economic growth

- We revisit some studies of impact of trade on growth, Hausman et al. (2007).
- Country regression of Income per capita on proxies of trade share (ratio of Export or import to GDP): $\mathsf{EXPY}_i.$
- The dependent variable is: Average annual growth in GDP per capita.
- $EXPY_i$ is endogenous: Instruments proposed: country size (population, land area, human capital).
- Are these instruments exogenous?
- We examine this with our test statistic and the standard J-test.
- Dataset: 79 countries, yearly data: 1962-2000.

[Simulation results](#page-33-0) [Empirical results](#page-38-0)

Result

J. i.

[Theory](#page-14-0) [Simulation results](#page-33-0) [Empirical results](#page-38-0)

Conclusion

- We propose a test for instr. exogeneity in lin. regr. models.
- In contrast to existing tests, our test is consistent regardless of instr.'s strength, easy to compute, asymp. normal.
- The test is based on expanding moment condition through basis functions and require that the support of instr. is rich.
- Our test also applies to a variety of configurations including: just-identified and under-identified models.
- Interesting extensions: Non-linear models and models of time dependent data.